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Wavelet-Domain Video Denoising Based on
Reliability Measures
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Abstract—This paper proposes a novel video denoising method
based on nondecimated wavelet band filtering. In the proposed
method, motion estimation and adaptive recursive temporal fil-
tering are performed in a closed loop, followed by an intra-frame
spatially adaptive filter. All processing occurs in the wavelet do-
main.

The paper introduces new wavelet-based motion reliability
measures. We make a difference between motion reliability per
orientation and reliability per wavelet band. These two relia-
bility measures are employed in different stages of the proposed
denoising scheme. The reliability per orientation (horizontal
and vertical) measure is used in the proposed motion estimation
scheme while the reliability of the estimated motion vectors (MVs)
per wavelet band is utilized for subsequent adaptive temporal
and spatial filtering. We propose a novel cost function for motion
estimation which takes into account the spatial orientation of
image structures and their motion matching values. Our motion
estimation approach is a novel wavelet-domain three-step scheme,
where the refinement of MVs in each step is determined based on
the proposed motion reliabilities per orientation. The temporal
filtering is performed separately in each wavelet band along the
estimated motion trajectory and the parameters of the temporal
filter depend on the motion reliabilities per wavelet band. The final
spatial filtering step employs an adaptive smoothing of wavelet
coefficients that yields a stronger filtering at the positions where
the temporal filter was less effective.

The results on various grayscale sequences demonstrate that
the proposed filter outperforms several state-of-the-art filters
visually (as judged by a small test panel) as well as in terms of
peak signal-to-noise ratio.

Index Terms—Motion estimation, video denoising, wavelets.

1. INTRODUCTION

IDEO sequences are often distorted by noise during acqui-
Vsition or transmission. Certain noise sources are located in
camera hardware, becoming activated under poor lighting con-
ditions. Other noise sources are due to transmission over ana-
logue channels. Noise reduction is required in many applica-
tions, e.g., for visual improvement in video surveillance, tele-
vision and medical imaging; as a preprocessing step for further
analysis of video sequences (tracking, object recognition, etc.)
or for video coding. In many video applications, the noise can
be well approximated by the additive white Gaussian model [1],
which we consider in this paper.
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Recently, a number of video denoising methods have been
proposed, e.g., [2]-[15]. A thorough review of classical noise
reduction algorithms for digital image sequences is presented
in [13].

Motion-compensated denoising techniques attempt to better
exploit the considerable temporal redundancy in video by tem-
porally smoothing pixel values along their estimated motion tra-
jectories [7], [9], [16]. Techniques such as these do not have the
potential disadvantage of reducing the spatial resolution of the
input sequence and can even improve it. Furthermore, time-re-
cursive implementations are efficient in terms of low computa-
tional cost.

It is, however, often impossible or impractical to establish the
exact temporal correspondence between consecutive frames for
all pixels (e.g., because of occlusion, inaccurate motion esti-
mates or computational complexity restrictions). When motion
estimation fails, motion-compensated temporal denoising can
produce disturbing artifacts. This is especially true for recursive
techniques where errors propagate through the sequence. One
solution to this problem is to reduce the amount of temporal fil-
tering where no accurate MVs are found [9]. Even so, certain ar-
tifacts and/or noise remain and hence additional spatial filtering
is desirable. In the case where the spatial filter is applied after
the temporal one, the input noise is generally nonstationary and
is therefore more difficult to remove [10].

The spatio-temporal filters based on the above principles are
either nonseparable (“fully 3-D’) [2]-[6], or separable (“2-D +
1-D”) [7]-[14]. Moreover, separable filters come in three vari-
ants: “spatial-first” filters, where spatial filtering is performed
before temporal filtering [12]-[14]; “temporal-first” filters,
where the order is reversed [7], [10], [11]; and “combined”
filters where two filters are applied in parallel with their outputs
combined (usually through weighted averaging) [9], [13], [14].

Full 3-D solutions often have large memory requirements
and can introduce a significant time delay because 3-D wavelet
transforms often imply processing several future frames before
the current one. This is undesirable in interactive applications
such as infrared camera-assisted driving or video-conferencing.

Spatial-first techniques facilitate subsequent motion estima-
tion; in these schemes motion estimation can be quite simple and
yet robust against noise. However, the spatial denoising may in-
troduce some local “ringing” or blurring artifacts, particularly
at high noise levels.

The combined spatio-temporal solution is potentially more
advantageous due to the possibility of the joint optimization
of the spatial and temporal filter performance. Nevertheless, in
order to optimize the performance of the combined spatio-tem-
poral filter, one has to estimate the correct (spatially varying)
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weight for each filter (spatial and temporal). This is often diffi-
cult task which leads to a nonunique solution [9], [13], [14].

In this paper we adopt the temporal-first approach in order to
minimize both spatial blurring and artifacts such as “ringing.”
In order to make our temporal filter efficient we develop a novel
robust motion estimation method. We assume that in the vicinity
of important image structures robust motion estimation is usu-
ally possible, even without spatial filtering. Although the relia-
bility of the motion estimates decreases to some extent at higher
noise levels, in the vicinity of important image discontinuities
the estimated M Vs are sufficiently accurate for the proposed fil-
tering scheme. Moreover, when motion reliability lowers, the
amount of temporal filtering decreases and hence the spatial
filter has to deal with higher noise levels.!

In the proposed motion estimation approach we make use
of “image discontinuities” which describe discontinuities
such as edges, corners, peaks, lines, etc. These discontinuities
are represented by a set (group) of large wavelet coefficient
magnitudes, with significantly higher magnitude than the ones
representing noisy flat image regions. Specifically, we perform
motion matching (aligning) of the image discontinuities in a
wavelet band of specific orientation as follows. At the positions
where significant image discontinuities are present we search
best motion match (in correspondence to the previous frame)
in a direction perpendicular to the orientation of the wavelet
band. In such a manner we obtain “reliable” motion estimates
which are robust against noise. On the other hand, in uniform
areas (characterized by none-significant wavelet coefficient
values) we assume that reliable motion estimate can not be
obtained. Hence, in this case we look for the best MV from
the spatio-temporal neighborhood, which is assumed to be
sufficiently reliable.

In [17], we proposed a separable approach for motion estima-
tion where both horizontal and vertical MV components were
estimated separately by minimizing two mutually independent
cost functions. For estimating each vector component one MV
was estimated and the corresponding MV component was taken.
Namely, the estimated MV was built out of two MVs by taking
the corresponding vector component from each of the two. How-
ever, this approach yields less accurate motion estimates in cases
where true motion is in a diagonal direction. In this paper, we
define a joint cost function which depends on two directional
cost functions, which are weighted according to the estimated
motion orientation reliabilities.

In the proposed approach, we define the reliability of the M Vs
in a novel way, for each direction (in the case of motion esti-
mation) and for each wavelet band (in the case of motion com-
pensation). Based on the estimated MVs and the corresponding
reliability per wavelet band, we perform adaptive temporal fil-
tering within each wavelet band. The temporal filtering consists
of recursive adaptive smoothing along the estimated motion tra-
jectories, where the level of filtering is proportional to the esti-
mated reliability of the motion estimates in the corresponding
wavelet band.

1 A spatial filter could be introduced as a preprocessing step for motion estima-
tion, which could improve motion estimation reliability at higher noise levels.
Based on our experiments, we do not expect that the end filtering result would
be significantly improved to justify the introduction of this additional filtering
step.

Because the reliability of the estimated M Vs in general varies
from one place to another, the level of temporal filtering (noise
suppression) varies from place to place as well. Consequently,
the noise remaining after the temporal filter is nonstationary.
Since existing spatially adaptive filters usually assume sta-
tionary noise, we apply a novel spatially adaptive filter that
efficiently removes nonstationary noise. The proposed filter
applies weighted averaging of the wavelet coefficients within a
2-D sliding window, where the degree of spatial smoothing is
influenced by the amount of preceding temporal filtering.

We have processed different grayscale sequences with our
algorithm and have compared its performance with several
state-of-the-art filters. The evaluation of the results was done in
terms of peak signal-to-noise ratio (PSNR) and visual quality,
judged by a six-person panel. From a PSNR point of view,
the new filter behaves better than the reference filters in most
cases (the average improvement is 1 dB and usually more). The
proposed algorithm was found to be the best by the panel in
90% of test cases in terms of overall quality and in 87% and
55% of test cases in terms of noise reduction, and least visible
artifacts, respectively.

The paper is organized as follows. Section II reviews existing
motion estimation techniques. Section III presents the proposed
spatio-temporal filter along with the motion estimation algo-
rithm, and Section III-A introduces the concept of “reliability”
for motion estimates in respect to specific motion direction and
to each wavelet band separately. Section III-B describes the
new algorithm for motion estimation, Section III-C the proposed
temporal recursive filter and Section III-D our spatial filtering
technique. We present experimental results in Section IV and
conclude the paper in Section V.

II. MOTION ESTIMATION TECHNIQUES FOR VIDEO DENOISING

Classical single resolution motion estimation and compen-
sation techniques use block-matching [1], [18]. This assumes
that motion is translational and locally stationary. In general,
block matching techniques can be classified according to: 1)
the block size which can be fixed [19] or variable [18], [20];
2) the search strategy (e.g., hierarchical [21], [22] or three-step
approach [23]); and 3) matching criteria (e.g., maximum cross
correlation or minimum error). The MV v is determined by min-
imizing a certain cost function in a confined search area

v(s) = argrrgn [cost(s, V)] (1)

where cost(s,Vv) is a linear or nonlinear function of the pixel
values from the sth block of the current frame and those from
the corresponding block in the previous frame, displaced by the
MYV v. The most common cost function is the mean absolute
difference (MAD).

Ambiguity in motion estimation usually arises when no spa-
tial image discontinuities (structures) exist within the block or
when the motion model is too simple to describe real motion.
MYV fields estimated from only two frames (the so-called “dis-
placed frame difference”) often provide locally optimal esti-
mates but cannot guarantee that the vector field resembles the
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Fig. 1. General framework description of the proposed algorithm. I,, (¢): input
noisy frame; I;(t): spatio-temporally filtered frame; WB,, (?): noisy wavelet
band; WB¢(t): temporally filtered wavelet band; WB¢(t): spatio-temporally

filtered wavelet band; o,,: standard deviation of Gaussian noise; t: temporal
coordinate; Sy (%): set of estimated MVs v for frame ¢.

true object motion [1] in the scene. This can present a signifi-
cant problem for video conversion and denoising. In [24]-[26],
a recursive “true-motion” estimator was proposed to avoid am-
biguity and reduce the computation time.

Multiresolution motion estimation [21], [27]-[32] increases
the accuracy of the estimated MVs in comparison with single
scale solutions. Moreover, the multiresolution approach signif-
icantly reduces the computation time and has the potential to
yield smoother MV fields [21]. The basic approach is first to es-
timate rough MVs at coarse scales and then refine them using
information from finer scales. In [31], a multiresolution scheme
which exploits spatio-temporal correlation between MVs was
proposed for video coding purposes.

The wavelet domain motion estimation methods presented
in [21], [28]-[30], and [33] first decompose all frames using
a decimated (critically sampled) 2-D wavelet transform and
subsequently exploit the temporal correspondence between the
wavelet bands from two consecutive video frames. However,
the accuracy of the motion estimation based on a critically
sampled wavelet transform is limited because of its shift variant
nature. It has been shown that the use of a shift-invariant wavelet
decomposition improves the accuracy of motion estimation and
enables better temporal filtering along the motion trajectories
[34]. Efficient solutions in this respect include cycle spinning
[29], [30] and the use of nondecimated wavelet transform [35].

III. PROPOSED VIDEO DENOISING METHOD

A general description of the proposed video denoising algo-
rithm is presented in Fig. 1. Three important steps are the fol-
lowing.

* Motion estimation: The proposed approach estimates a
single MV field for all wavelet bands but different MV
reliabilities in each band. In the motion estimation, we
make use of spatial image discontinuities, represented by
wavelet coefficients, in combination with spatio-temporal
correlations of the MVs, within a recursive scheme.

* Motion compensation: Temporal filtering in each wavelet
band is recursively performed along the estimated motion
trajectories. The amount of filtering is tuned to the esti-
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mated reliability of the corresponding MVs within a cer-
tain block of wavelet coefficients.

» The adaptive spatial filtering scheme suppresses the re-
maining (nonstationary) noise. The proposed spatial filter
performs adaptive averaging of the wavelet coefficients
within a 2-D sliding window in such a way that the relia-
bility of the preceding temporal filter influences the degree
to which the spatial smoothing is applied.

The proposed method uses a nondecimated wavelet trans-
form implemented with the a trous algorithm [35]. We apply
a two-dimensional (spatial) wavelet transform to each video
frame and denote wavelet bands (WB) of this spatial wavelet
transform by WB = LL, LH, HL., HH for the low-pass (approx-
imation), horizontal, vertical, and diagonal orientation bands,
respectively. We use a subscript to denote the noisy or denoised
band as follows. WB,,: noisy band; WBy¢: temporally filtered;
and WDBgs: spatio-temporally filtered band. Additionally, we
denote the spatial position as r = (z, y) and frame index (time)
as t. The decomposition level is denoted by a superscript (1),
where [ = 1,...,N (1 denotes the finest scale and N the
coarsest).

As can be seen from Fig. 1, the noisy input frame I,(r,t)
is first decomposed into wavelet bands WB')(r, t). Using the
noisy wavelet bands WBS) (t) from the current frame and tem-
porally filtered wavelet bands WBE? (t — 1) from the previous
time recursion, and taking into account the estimated standard
deviation (o) of the Gaussian noise, we perform motion esti-
mation. Subsequently, we apply a recursive temporal filter (Sec-
tion I1I-C) on the noisy wavelet bands WB'Y (¢) along the esti-
mated motion trajectory, using the corresponding WBE? (t-1)
band. The temporally filtered wavelet bands WBE? (t) are fur-
ther subjected to spatial filtering. Finally, the inverse wavelet
transform yields the denoised video sequence I(t).2

We define the MAD for each block s in the wavelet band
WBO(r, 1), as follows:

MAD (s, £, v)

- % 3 ‘WBS)(r,t) ~WBY(@x—-v,t-1)| @
reB;

where s denotes the index of a block within the current frame,
t the current frame index, and v a MV. B, represents a set of
N = N, x N, spatial positions belonging to the given block s,
where N, = 8 and N, = 8 represent the number of rows and
columns in the block, respectively.

A. Reliability of MV Estimates

We introduce the idea of reliability of the MVs in respect to
each motion orientation (horizontal and vertical) and to each
wavelet band, separately. The reliability of the MV per orienta-
tion is used in the proposed motion estimation approach (which
employs three-step search scheme) for coordinating the refine-
ment of the initial MV in each step (Section III-B). Addition-
ally, we define the reliability of the finally estimated MVs per

2The estimation of the Gaussian noise level is performed using a spatial-gra-
dient approach [36], based on evaluating the distribution of spatial gradient mag-
nitudes.
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t t!

Fig. 2. Position of spatial and temporal motion block neighbors. s: spatially
neighboring block; #: temporally neighboring block; ¢: central block.

wavelet band to determine the appropriate amount of temporal
filtering (Section III-C), along the estimated motion trajectory.

We define the horizontal 6 and vertical 6y, “per orientation”
reliabilities of the MV v, as follows:

11 (3.t 0, V) <
H\S,1,0n,V) =
14+ 3N dMADY (5.t v)
o
Ov (s,t,0n,v) = — 3)
1+ Zi\:l dlMADgI){(s, t,v)
with parameters d; (I = 1,..., N) denoting the weights asso-
ciated with the corresponding wavelet decomposition scale [,

where dy = dy = ... = dy and Zfil dy =1.

Analogously, we define the “per wavelet band” reliability
(WB(I)) of the estimated MV v, for temporal filtering, as
follows:

On

“4)

oD (s,t,0,,V) = .
WP 14+ MAD (s, ¢, v)

The defined motion reliabilities per orientation in (3) are ex-
pressed as the ratio of the standard deviation of noise o,, and the
sum of MADs for the perpendicularly oriented wavelet bands
from different scales. On the other hand, the defined reliability
per wavelet band in (4) is expressed as the ratio of the o,, and
the MAD of the corresponding wavelet band. These reliabili-
ties are expected to be around 1 in the case of a reliable MV
estimate (MAD values are close to 0,,) and lower in the oppo-
site case (MAD values are significantly higher than o,,). More
specifically, 6, 6y and 9&,)]3 are the smallest (close to zero) in
poorly motion matched (spatially) structured areas.

B. Motion Estimation

We propose a new block-based motion estimation approach
which employs a three-step search [1], [18], [23], within
the wavelet domain, operating in a spatio-temporal recursive
manner. In the first step the initial MV is fixed to either a pre-
viously computed MV from the spatio-temporal neighborhood
(Fig. 2) or a zero MV. Subsequently, the chosen initial MV
is refined in the three steps. The proposed motion estimation
approach produces a single MV field which is used for the
adaptive temporal filtering for all wavelet bands.

In the proposed method, the refinement of the initial MV
is based on motion-matching image discontinuities (repre-
sented by groups of significant wavelet coefficients) and
defined reliabilities per orientation (3). Specifically, the motion
matching value of the image discontinuities is determined as
the MAD (2) for the tested MV and corresponding wavelet

band. By assuming that the motion estimation is most reliable
on significant image discontinuities (producing largest wavelet
coefficient magnitudes) and the least reliable in uniform areas
(characterized by none-significant wavelet coefficient values),
we distinguish three possible cases in our approach.

* A low motion matching value for image discontinuities.
This implies perfect motion-alignment. In this case we con-
sider that we have found a perfect motion match and that
no further refinements of the initial MV are necessary.

e A low motion matching value in uniform image areas. In
this case we consider that the motion cannot be adequately
estimated. Thus, we must rather rely on (already obtained)
reliable spatio-temporally neighboring MVs and prevent
further refinements (changes) of the chosen initial MV.

* A high motion matching value for image discontinuities.
This implies poor motion alignment. In this case, we con-
sider that the initial MV is far from the optimal motion
match and that refinement is necessary. However, this is
not a problem since in this case reliable motion estimation
(matching) is possible.

The reason for choosing the specific spatio-temporal neigh-
borhood in Fig. 2, with four causal spatial neighbors and nine
temporal neighbors, is the reduced computation complexity.
Using two spatial and two temporal MV predictions, lying
on two perpendicular axes, we can still take into account the
majority of the motion object borders [24].3

1) Wavelet-Domain Three-Step Method: As opposed to the
method of [31] which estimates first MV field at the roughest
scale (lowest resolution) and then in the following steps (at
higher resolution scales) refines the MV field, in our method
we take into account information at each step from all resolu-
tion scales simultaneously. Moreover, we refine the initial MV
in a superior manner; in contrast to the method of [31] which
refines the MV field in terms of the minimal MAD values of
the low-pass image representations, we refine the MV field by
minimizing (a newly defined) cost measure. The cost measure
depends on the motion matching values of the horizontal and
vertical image discontinuities, which are weighted according to
the reliabilities per orientation (horizontal and vertical) of the
initial MV.

In our approach the search area in each step of the algorithm is
confined to a (N, /27~") x (N, /29=") block where j = 1,2,3
for the first, second, and third step, respectively. For each step j
of the algorithm, we define initial MVs v; 7) and MV corrections
vgj) Ej) is fixed and Vﬁj) ,Ej) + v&j)
are then tested in order to find the best matching vector VIE] ) for
step 7. The best matching vector is determined by minimizing a
cost function (which we define later), as follows:

where v varies. The vectors v

v,()j)(s,t) = arg (n)ﬁn cost (3./t,19H./19V,v£j),v£j)> 5)
VCJ GS]'

where S; represents the set of allowed vgj )s. The best matching

MV V,()J at step three (j = 3) is defined as the final estimated

MV vy¢. The initial MV at each step 7 > 1 is the best estimated

3This enables efficient implementation of the concept which combines the
consistent velocity field of a recursive process with a fast step response, as re-
quired at the contours of moving objects [24].
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Fig. 3. The 2-D — (3 X 3)-sliding window: spatially processed neigh-
boring coefficients P = W'Bii)f(mt), currently spatially processed coef-
ficient C = \N’Bﬁ)(rc,t), spatially unprocessed neighboring coefficients
U= V\/BE?( r,t); r. is the central spatial position of the sliding window.

MV from the preceding step, i.e., vgj) = véj_l). In the first
step (j = 1) the initial MV is the best matching MV among
the tested MVs from a spatio-temporal neighborhood (Fig. 2).
Specifically, we define the initial MV at step 1, vgl) as the prior
initial MV candidate v,,; that minimizes

v,gl)(s,t) = arg mi€nU (MAD&q)(S./t,Vpi) + P(vm-)) (6)
pi
where v,,; denotes the prior initial MV candidate and P(v,;)
represents a penalty for the corresponding vector v,;, with
which we introduce prior knowledge. If the penalty P(v,;)
is smaller, the initial MV candidate v,,; is more likely to be
chosen as the initial MV v(l) for the first step of the motion
estimation approach.

The prior initial MV candidates v,; belong to set
U = {0,s,s,t,t'} shown in Fig. 2. This candidate set
includes the zero MV (0) and the MVs from two neighboring
blocks within the current frame (s,s’) and from two neigh-
boring blocks in the previous frame (t,t’). The zero MV (0)
is used for a reinitialization of the MV search (estimation) and
the spatio-temporal neighboring vectors (s, s’, t, t’) are used to
enable spatio-temporal recursiveness in the motion estimation
approach.

By assigning the smallest penalty to v,,; = 0, we increase the
sensitivity of the motion estimation to sudden scene changes or
the appearance of small image parts (this concerns the accuracy
of the motion estimation). Hence, the penalty for v,; being equal
to either of the four spatio-temporal neighboring vectors (Fig. 2)
should be sufficiently large to reinitialize the MV search in case
of sudden scene changes. However, the penalty value should not
be too big either in order to enable spatio-temporal recursive-
ness in the motion estimation and consequently enforce smooth-
ness (consistency) of the MV field. In our experiments, we use
P(0) = 0 and P(v,;) = 2.5; this constant was experimentally
optimized in terms of maximal MV consistency and accuracy.

In step 1, we consider the candidate MV corrections V£1)
with horizontal component vg) and vertical component vg)

in the set {—8,—4,0,4,8}. They are added to the v,gl) and

tested in order to find the best matching MV vl()l) In the second

step, v (2) = v(l) and the candidate MV corrections v( )
have horlzontal vﬁj and vertical v( ) components within the set
{—4,-2,0,2,4}. Finally, in the thlrd step, V(3) = V(z) and the

components ng) and U£ ) belong

candidate MV correction v£3

to the set {—2,—1,0,1,2}.
2) Cost Function: We define a novel cost function for motion

estimation, consisting of horizontal and vertical components,

where each component is weighted by the estimated reliability

measures with respect to the corresponding initial MV compo-
nent

cost(s, t, Vg, Vv, vi,Ve) = kz(s,t, 95, ve, )costa (s, t,v; + V,)
+ky(s,t, 9y, v, )costy (s, t,vi+ V)

(N

where cost,.(s, ¢, v) and cost,(s, ¢, v) are separate cost func-
tions for horizontal and vertical motion, respectively, defined as

N
costy(s,t,v)= MADSE)(S, t,v) +Z MADg)L(& t,v)
1=1

N
costy (s, t,v)= MADS;Z)(& t,v) —I—Z MAD&I(S, t,v).
1=1
(®)
The multiplicative penalties £k, and k, in the cost function (7)
are defined in terms of the motion reliabilities, as follows:

o
kz (37 t? 19H7 Ugi)) = Cl + 02 oN—j 19%—[
o)
k'y (87t7/l9V7vg)) :Cl + CZ 2]\7;1 192 (9)

where the constants C; and C5 are optimized in order to obtain
a noise robust and smooth MV field. We have experimentally
found the following optimal parameter values: C; = 1, Cy =
1.45. The values of the constants C; and C» are fixed in all three
steps and the correction MV components (|sz | and |ij ) |) are
normalized with their maximum amplitudes (2~ ~7) for j step
of the proposed algorithm.

The cost. (s, t, v) and costy, (s, t, v) functions in (8) represent
motion (block) matching measures of the horizontal and ver-
tical image structures, respectively. Image structures (disconti-
nuities) appear stronger in a specific wavelet band depending
on their orientation and are used to perform motion matching in
a direction perpendicular to their discontinuity orientation. For
example, motion matching of a group of significant wavelet co-
efficients in horizontally oriented wavelet bands enables reliable
(noise robust) motion estimation in a vertical direction. This is
because, in the latter case, there will be significant difference in
motion matching value between well and poorly aligned hori-
zontal image discontinuities. Hence, the ambiguity concerning
the optimal vertical MV component decreases as well as the sen-
sitivity to noise. The same idea holds for the vertically oriented
image structures and the horizontal MV component.

The MAD(LJZ) component is added to the directional cost
functions (8) in order to increase MV field consistency and ac-
curacy in the case where orientation reliabilities (horizontal and
vertical) significantly differ. In that case, without the MAD(N)
component, the final cost function in (7) would essentially de—
pend on motion matching for only one MV component (the one
for which the initial MV produces lower reliability per orienta-
tion). This can introduce ambiguity in the motion matching be-
cause the information about the motion matching concerning the
other motion component (the one for which the initial MV pro-
duces higher reliability per orientation) is lost. This often occurs
in motion matching of corner-like image structures when one
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Fig. 4. Results for the 29th frame of “Bicycle” sequence with added Gaussian noise (o,, = 15), processed by (c) WRTF filter and (d) 3RDS filter [16].

(a) Original image frame. (b) Noisy image frame.

MYV component has (already) “converged” to the optimal one
and the other not. By incorporating MAD(LJI\Z) in the directional
cost functions (8) we include the information about the motion
matching concerning both MV components. We use the LLMY)
wavelet band for this purpose because it has a higher SNR than
the HH") wavelet band, for example, and contains information
concerning both vertical and horizontal image structures.

In the proposed expressions, the penalties k. and &, defined
in (9) incorporate information concerning the motion matching
error of vertically and horizontally oriented image discontinu-
ities for the initial MV, respectively. The smaller the matching
error, the higher the reliability of a motion match in a direction
perpendicular to the orientation of the corresponding image dis-
continuity, meaning that the corresponding initial MV compo-
nent is closer to the optimal one. As a result, the corresponding
penalty (k. or k) will proportionally increase for the corre-

sponding nonzero correction MV component (vg) or vg)). In

such a manner, in case of higher reliabilities we assign more
weight to the corresponding cost function [cost,, or cost, in (8)]
for the tested nonzero correction MVs. Consequently, the prob-
ability that the initial MV (component) is significantly changed
is then reduced.

In the case where the reliabilities 9 7 and/or 99y, are small the
corresponding penalties k, and/or k, are nearly independent of
vgj ) and reduce to the constant C';.4 Hence, the cost function in
(7) will depend only on the corresponding cost functions (cost,
and/or cost,) and as a result fewer restrictions on the tested
(correction) MVs will be applied. This is justified because we
assume that in case of image structured areas motion estimation
can be reliably determined.

4This happens when the motion block belongs to a structured image area and
the initial MV is far from optimal.
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Fig. 5. PSNR versus frame index. (a) “Bicycle” sequence with added Gaussian noise, o,, = 15. (b) “Salesman” sequence with added Gaussian noise, o,, = 10.
(c) “Salesman” sequence with added Gaussian noise, o,, = 15. (d) “Salesman” sequence with added Gaussian noise, o,, = 20. (Color version available online

at: http://ieeexplore.ieee.org.)

We additionally note that the cost function in (7) is a nonlinear
function of the MAD values from the corresponding wavelet
bands. As a result, the estimated (single) MV field does not rep-
resent an averaged MV field of the corresponding wavelet bands
(such as in [30]) but rather a nonlinear, structure-oriented com-
bination of the MVs.

C. Recursive Temporal Filtering (RTF)

In this section we propose a new wavelet domain recursive
temporal filtering (RTF) scheme which filters a video sequence
along the estimated motion trajectories and adapts the amount of
smoothing to the estimated reliability of the MVs. Specifically,
recursive adaptive temporal filtering is performed separately in
each noisy (nonprocessed) wavelet band WBS ) (r,t) as follows:

= Oégv)B(sv t,yon, Vb)WBEfc)(I‘ — vy, t — 1)

+ (1= allss. 1.0, %)) WBO(r, 1) (10)

WBY (r, )

where WBE? stands for the temporally processed wavelet band
at scale [. The weighting factor agv)B(s, t, 0, V) controls the
amount of filtering for each wavelet band (WB() in the fol-

lowing way:

Y

2
l l l
O‘%V)B(s?t’gmvb) = b%B (79§x23(57t;0n7vb))

with 192,[3]3 the motion reliability per wavelet band WB (Sec-
tion III-A) of the MV v;, and bg\;B anormalizing parameter that
we experimentally optimize in terms of the mean squared error.
Specifically, in our two-scale decomposition implementation we
determine the parameters for the first (finest) scale as b%)B =
0.9, for the second scale as bg,)B = 0.95 and br(?]z = 1.25 for
the low-pass (approximation) band (roughest scale). We have
chosen the quadratic dependency in (11) because our experi-
ments showed that it introduces less temporal blur and artifacts
than e.g., a linear model which does not respond well to MV
miss-matches. In addition, we have also tested higher degree
models and found that the quadratic dependency model indeed
provides the best results in terms of maximal PSNR of the de-
noised sequence.

The amount of temporal filtering applied in each wavelet band
is of crucial importance. Not only will the filtered band be used
for filtering future frames but for future motion estimation too.
Therefore, if no reliable MV can be found for a certain block,
we filter less. In such a manner, we avoid the propagation of any
artifacts through the processed sequence.

Note that the values of agV)B(s, t,on,vy) are confined
to [0,1] where a%}B(& t,on,vy) = 0 means no filtering
at all and ag,lv)B(s, t,0n,vp) = 1 means full filtering, i.e.,
the current noisy wavelet coefficient is replaced by the
corresponding filtered coefficient from the previous frame
(WBg?(r, t) = WBg?(r — vy, t — 1)). However, in the latter
case a problem may occur when WBg? (r — v, — 1) has not
been sufficiently filtered and hence a noisy wavelet coefficient
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Fig. 6. PSNR versus frame index. (a) “Tennis” sequence with added Gaussian noise, o,, = 10. (b) “Tennis” sequence with added Gaussian noise, 7, = 15. (c)
“Tennis” sequence with added Gaussian noise o,, = 20. (d) “Flower Garden” sequence with added Gaussian noise, o,, = 10. (e) “Flower Garden” sequence with
added Gaussian noise, o,, = 15. (f) “Flower Garden” sequence with added Gaussian noise o,, = 20. (Color version available online at: http://ieeexplore.ieee.org.)

will propagate through the sequence. To solve this problem
we update onlVB(s, t,on, vp) defined in (11) with a correction
function, as follows:

agV)B(r, t) (1 + agV)B(r —Vp,t — 1))
2
and we use o* instead of «. Note that the correction function
(12) aims at reducing the amount of filtering in the current time-
recursion when the amount of filtering in the previous frame is
relatively low. In the case where awB(r —vp,t —1) =0, we
have awB*(r,t) R~ 0.5018\,)]3(1', t); this is a reasonable choice
since it means that in the case where the wavelet coefficient from
both the current and previous frame are noisy, simple averaging
is performed. On the other hand, when ag\;B (r—wvp,t—1) =1,

we have agv)B*(r, t) = O‘g\;B (r,t). Furthermore, we apply full

ol (1) = (12)

filtering (ov = 1) in the case where at least two time-recursions
with reliable M Vs have been applied in the last two frames.

Because of the imperfections of the motion estimation
process, due to various difficulties such as occlusion or an im-
perfect motion estimation model, the temporal filter still leaves
some noise behind. This remaining noise is nonstationary
because of the varying amount of filtering applied for different
spatial positions r. The nonstationary noise introduced by the
recursive adaptive temporal filter is removed by the spatial filter
proposed in Section III-D.

D. Adaptive Spatial Filtering

Spatial filtering is especially useful at higher noise levels, but
even for lower noise levels it can significantly improve video
quality. In order not to reduce the resolution of the input image
sequence, one has to adapt filtering to the spatial details, i.e.,
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Fig. 7. Results for the 75th frame of the processed “Flower Garden” sequence with added Gaussian noise, ¢,, = 15, by (c) the 3DWTF algorithm, and (d) the

WRSTF algorithm. (a) Original image frame. (b) Noisy image frame.

take into account the (local and/or global) statistical distribu-
tion of the image such as in [12]. In our proposed scheme, where
the temporal filter precedes the spatial one, the spatial filter has
to deal with nonstationary noise, since the amount of temporal
smoothing varies from one spatial position to another (according
to the reliability of motion estimates). In certain rare cases where
the M Vs are not estimated properly, the temporal filter may in-
troduce artifacts. In the literature a number of spatial adaptive
methods have been proposed for spatio-stationary noise [12],

[37]-[41]; their performance in the case of nonspatio-stationary
noise is decreased and strongly depends on the spatial adaption
to the local noise variance.

We propose a low-complexity method for spatial denoising
of temporally filtered frames corrupted by nonstationary noise.
The proposed spatial filter is an extension of our filter [6], [17],
which adaptively averages the wavelet coefficients within a 2-D
sliding window in such a way that the reliability of the motion
estimates, i.e., the amount of preceding temporal filtering, in-
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(b)

Fig. 8. Results for the 40th frame of the processed “Salesman” sequence with added Gaussian noise, o,, = 20, by (a) the 3DWTF algorithm of Selesnick, and

(b) the proposed WRSTF algorithm.

fluences the degree of spatial smoothing for the corresponding
wavelet coefficients.5

Let 6(r.) denote the 3 x 3 neighborhood surrounding the
central pixel r. depicted in Fig. 3. Note that this neighborhood
includes certain coefficients that are already spatio-temporally
filtered WBgi)f(r, t) and others that are only temporally filtered

WBE?(I‘, t). The proposed spatial filter is

Yreso wO (e, HWB Y (r, 1)
Zreé(r) w(l) (I‘, t)

where the subscripts f € {tf, st f} denote temporally or spatio-
temporally filtered coefficients, depending on their spatial posi-
tion in the neighborhood, shown in Fig. 3. The weighting coef-
ficients w () (r) are defined as follows:

WB(H(re. 1) =

13)

WO, 0) = {0, if )WBE?(rc,t) ~WBY(r, )] > kT
1, otherwise

14
where the threshold 7" = MADS\;B (s,t, vp). The parameter &,
optimizes the performance of the spatial filter and ranges from
km = 0.75 to k,;, = 1.25 (in our implementation we have fixed
it to k,,, = 1, which for most sequences gives the best visual
result). Apart from a particular sequence, the optimal k,,, value
can also depend on the noise model; in our case we have only
considered Gaussian noise. Hence, the lower the MAD for the
corresponding wavelet band WB and block s, the less we will
average. In other words, the more the temporal filter reduces
the noise, the weaker the spatial filtering that will be applied.
This agrees with our goal; the proposed spatial filter is intended
to suppress the remaining noise without seriously reducing the
resolution of the input image sequence.

SWe consider the averaging of wavelet coefficients in a small spatial neigh-
borhood as one approach of a spatially adaptive soft-thresholding technique.

IV. EXPERIMENTAL RESULTS

In our experiments we used 12 different grayscale se-
quences: “Salesman,” “Miss America,” “Bicycle,” “Trevor,”
“Tennis,” “Flower Garden,” “Bus,” “Mobile,” “Chair,” “Dead-
line,” “Foreman,” “Renata,” and “Cargate.” We added artificial
Gaussian noise of the following standard deviation values:
on = 5,10,15,20,25,30 and processed the sequences with
different filters.6

For performance comparison, we use four wavelet-based
methods: 1) the spatio-temporal bivariate nonseparable 3-D
wavelet thresholding in a dual-tree complex wavelet repre-
sentation of [4] but with a signal adaptive threshold of [39].
For a fair comparison with the best available methods, Prof.
I. Selesnick kindly provided the results of their latest video
denoising algorithm, 3DWTF; 2) the adaptive spatio-temporal
filter (ASTF) of [14]; 3) the multiclass wavelet spatio-temporal
filter (MCWF) of [6]; 4) the sequential wavelet domain and
temporal filtering (SEQWT) of [12]; and two spatial domain
filters; 5) the rational filter (Rational) of [3]; and 6) the temporal
recursive filter (3RDS) of [16]. For some methods [4], [14],
[39], their authors processed our sequences; we implemented
some other methods [3], [6], [12], [16] ourselves. The results
of the processed sequences, along with the proposed method
and with the methods used for comparison, can be viewed at
the following link: http://telin.ugent.be/~vzlokoli/Results_J.

A. Denoising Results

We first evaluated the performance of the proposed temporal
recursive filter only (WRTF), in terms of temporal blur and noise
reduction. Specifically, we have compared the denoising perfor-
mance of the WRTF method with the 3RDS algorithm, visually
(Fig. 4) and in terms of PSNR [Fig. 5(a)]. For implementing the
compared temporal recursive 3RDS filter, which uses a block
matching based motion estimation and compensation approach

6The range of grayscale values is assumed to be [0,255].
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Fig. 9. Results for the 20th frame of the processed “Tennis” sequence with added Gaussian noise, o,, = 15, by (c) the SEQWT algorithm and (d) the WRSTF

algorithm. (a) Original image frame. (b) Noisy image frame.

in the base domain, we computed the recursion variable k as
follows: k(s) = kro,/MAD(s); MAD(s) corresponds to the
mean absolute difference of displacement of block s for the es-
timated MV, while k, is noise reduction parameter (approxi-
mately equals 0.3, but the optimal value depends on noise level).
For motion estimation, the spatio-temporal neighboring MV's
used are as shown in Fig. 2. In Fig. 4, the visual result for a por-
tion of the 29th frame of the “Bicycle” sequence, corrupted with
Gaussian noise (o, = 15), is shown. The results show how cer-

tain details, such as the spokes of the bicycle wheel, are better
restored by the proposed WRTF filter, whereas the 3RDS filter
introduces artifacts. In Fig. 5(a) the filters are compared in terms
of PSNR for the “Bicycle” sequence with added Gaussian noise
of 0, = 15. The WRTF filter is approximately 3 dB better than
the 3RDS.

Next, the proposed WRSTF filter was compared to the other
methods in terms of 1) objective criteria: PSNR and in terms of
2) subjective criteria: visual quality.
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TABLE I
SUBJECTIVE EVALUATION OF THE ALGORITHMS’ PERFORMANCE; 1=3DWTF; 2=SEQWT; 3=WRSTF. THE ORDER OF THE NUMBERS CORRESPONDS TO THE
RANKING OF THE RESULTS ACCORDING TO VISUAL QUALITY

on = 10
image Person 1 Person 2 Person 3
sequence overall noise least overall noise least overall noise least
quality  reduction  artifacts | quality  reduction  artifacts | quality reduction  artifacts
Salesman 312 312 3=12 312 312 1=32 321 321 312
FlowerGar. 321 321 13=2 321 321 321 321 3=21 321
Tennis 312 321 132 321 321 312 312 231 312
o, =15
Salesman 1=32 1=32 312 312 312 132 312 321 132
FlowerGar. 321 321 132 321 2=31 312 312 321 312
Tennis 312 321 132 312 321 132 312 3=2 1 312
on = 20
Salesman 132 312 1=32 132 1= 132 312 321 132
FlowerGar. 321 321 132 312 321 312 312 321 312
Tennis 312 312 132 312 321 132 312 321 132
op = 10
image Person 4 Person 5 Person 6
Salesman 321 312 312 321 321 132 312 321 1=3=2
FlowerGar. 321 321 312 132 312 132 321 321 312
Tennis 321 321 321 31=2 321 132 3 2=1 321 31=2
on = 15
Salesman 312 132 132 3 2=1 321 312 312 312 312
FlowerGar. 312 312 31=2 312 312 132 321 321 312
Tennis 321 321 321 312 321 312 3 2=1 321 31=2
on = 20
Salesman 132 132 132 3 2=1 321 132 312 312 312
FlowerGar. 31=2 312 31=2 312 312 132 321 321 312
Tennis 321 312 312 312 321 3=12 321 321 312
Figs. 5 and 6 display graphs of the PSNR versus frame index 160
for three image sequences with three different noise levels. In 180 mWRSTF
Fig. 5(b)—(d), the PSNR values for the “Salesman” sequence m3DWF
are shown. For all three noise levels (o,, = 10, 15, 20), the pro- 140 SEQWT
posed WRSTF method produces the best PSNR for all time in- 120
stances. In comparison with the 3DWTF technique, the average
. . . . . . 100
improvement is approximately 0.5—1 dB and in comparison with
SEQWT the average improvement is 2 dB. The MCWF and 80
the ASTF methods are shown to have very similar PSNR per- -
formances, with approximately 3 dB lower PSNR, on average,
compared to the proposed WRSTF method. We note that the 40
reduced PSNR of the proposed WRSTF method in first 5-10 0
frames is due to the convergence time within the proposed re-
cursive scheme. 0 ‘
For the “Tennis” sequence the results are shown in gzsﬂ?y ReNdT;?on A;?t?f:r:t; '

Fig. 6(a)-(c). The proposed WRSTF method yields a slightly
better PSNR compared to the 3DWTF and SEQWT methods.
Namely, it is on average 0.3, 0.9, 1.5, and 2 dB better than the
3DWTF, SEQWT, MCWEF, and the ASTF methods, respec-
tively. The reason for the reduced PSNR in one part of the
sequence (frame number 20-35) is mostly due to zooming.
For the proposed motion estimation model without a zooming
feature model, we cannot get reliable MVs in the case of video
zooming and hence have to filter less, resulting in a reduced
PSNR. This at least does not introduce artifacts (see Fig. 9)
and the spatial filter still performs noise suppression to some
degree.

In Fig. 6(d)—(f), the PSNR for the “Flower Garden” sequence
is shown for three noise levels (o, = 10,15,20). The pro-
posed WRSTF method again outperforms the other compared
methods, in terms of PSNR, where the average improvement

Fig. 10. Results of the subjective evaluation.

over the 3DWTF method is 0.4 dB. Although this is relatively
small improvement, compared to the improvement over the
other methods: 1 dB for SEQWT, 1.5 dB MCWEF, 3 dB ASTF,
and 4 dB for the rational filter, the gain is significant. In certain
PSNR graphs the results for some methods were not shown
since their performance was significantly lower (less than 4 dB
in comparison with the proposed WRSTF method). Because the
“Flower Garden” sequence contains a great deal of complicated
texture, the subjective improvement is not sufficiently reflected
in the PSNR graphs. Hence, to show the real improvement
of the proposed WRSTF algorithm we refer the reader to the
denoised (processed) video sequence frames (or parts of them,
see Fig. 7) on our website.
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(b) WRSTF

Fig. 11. Result for the 103th frame of the TV sequence (kanaal3). (a) Noisy and (b) processed by the WRSTF filter.

Although from a PSNR point of view our method is not
always significantly better than the other methods, it invariably
performs best visually, as can be seen in Figs. 7 and 8, in com-
parison with the 3DWTF filter and in Fig. 9 in comparison to
SEQWT filter. Fig. 7 demonstrates that the proposed WRSTF
filter better suppresses noise in uniform areas than the 3DWTE,
while preserving texture equally well. Fig. 8 illustrates that
our method also outperforms the 3DWTF method, in terms of
spatio-temporal blur, for a relatively high noise level (o, = 20)
and fast movements (the “Salesman” sequence). Additionally,
Fig. 9 shows that the proposed WRSTF method better preserves
texture than the SEQWT method. The improvements of the
proposed method over the reference ones can be even better
seen by viewing the processed image sequences at our website:
http://telin.ugent.be/~vzlokoli/Results_J.

The visual (subjective) quality was evaluated by a panel of six
people (four experts and two nonexperts in image processing).
For the three best methods from the PSNR point of view, i.e., 1)
the 3DWTF; 2) the SEQWT; and 3) the WRSTF algorithm, the
results were shown simultaneously, along with the input noisy
sequence. The panel members were asked to rank the three
algorithms in terms of 1) overall quality; 2) noise reduction;
and 3) amount of visible artifacts. In the case where the person
could not decide which one was better, the corresponding
methods were ranked equally. The experiment was carried
out on three different sequences, that is “Salesman,” “Flower
Garden,” and “Tennis” and with three different noise levels
(0, = 10,15, 20). The sequences used for the experiment can
be viewed on the website: http://telin.ugent.be/~vzlokoli/Re-
sults_J/subj_eval/. Table I shows the results of the experiment,
where the numbers denote the filters. 1: 3DWTF; 2: SEQWT; 3:
WRSTF, and order of the numbers corresponds to the ranking
of the results according to visual quality.

The results in Table I demonstrate that 1) in terms of overall
quality the proposed WRSTF algorithm was judged to be best
in 90% of the cases; 2) in terms of noise reduction the proposed
WRSTF method was found to be best in 87% of the cases; and
3) in terms of the amount of visible artifacts the WRSTF method
was preferred in 55% of the cases, in comparison with the other

TABLE II
AVERAGE COMPUTATION TIME REQUIRED FOR THE PROCESSING OF ONE
FRAME OF A CIF SEQUENCE (SIZE: 352 X 288), ON A AMD ATHLON 64
(4000+), 2.4 GHz PROCESSOR (WITH 2 GB RAM) AND A GNU/LINUX
OPERATING SYSTEM (IN C++).

method [ required time per frame (sec/frame)
Rational 0.092
3RDS 0.146
MCWF 0.756
SEQWT 0.814
WRSTF 0.866
ASTF 0.904

two methods. Fig. 10 summarizes the results of the subjective
comparison evaluation in a different way, where each method
was given 3 points when it was ranked first, 2 points when it
was ranked second, and 1 point when it was ranked third. Specif-
ically, Fig. 10 shows the average score for overall quality, noise
and artifacts. The results confirm that the proposed WRSTF
method scores best in all three aspects. In terms of visible ar-
tifacts, it is very close in performance to the 3DWTF algorithm.
However, in terms of noise reduction it scores much better than
SEQWT and 3DWTE, which show similar performance here.

In addition, based on our own observation, we deduced the
following. The ASTF of [14], designed for noise reduction in
video coding, showed relatively good performance in the case
of relatively low noise levels (o, & 10). However, for higher
noise levels (o, & 20), it does not sufficiently reduce noise and
introduces blocky artifacts that are mostly due to the failure of
motion estimation and compensation in a highly noisy environ-
ment. The MCWF of [6] also displayed relatively good perfor-
mance for lower noise levels. For higher noise levels the MCWF
filter did not introduce artifacts, but reduced the resolution of the
input sequence significantly and in some case introduced spiky
impulse-like artifacts. Finally, the rational filter (Rational) of [3]
displayed the worst performance of all. Nevertheless, it should
be noted that the rational filter is of the lowest complexity and
it can still produce relatively good denoising results, for cer-
tain images without significant spatial details and slow moving
objects.
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Finally, the denoising results for the processed video
sequences with real noisy scenarios by the proposed
WRSTEF filter are given on: http://telin.ugent.be/~vzlokoli/Re-
sults_J/New_Method/RealSeq/, along with the noisy sequences,
for subjective evaluation of the denoising results. Specifically,
we processed two sequences corrupted with white Gaussian-like
noise (one with relatively lower and the other higher noise level)
and two sequences with colored noise. From the results, it can
be concluded that the proposed WRSTF algorithm removes
noise sufficiently well in case of white Gaussian noise and
performs slightly less efficiently in case of colored noise;
some noise is still left after denoising, but essentially there is
a clear improvement of the noisy sequence. Fig. 11 illustrates
the denoising performance of the WRSTF method on one TV
sequence corrupted with colored-like noise.

B. Computational Complexity RSTF

We have evaluated the computation complexity of the
proposed WRSTF method in terms of the required time for
processing. On a AMD Athlon 64 (4000+), 2.4-GHz processor
(with 2 GB RAM), and a GNU/Linux operating system (in
C++), in the case of CIF sequences (size: 352 x 288) and 50
frames, we obtained the following results for the tested video
denoising algorithms, shown in Table I1.7 The processing time
for the WRSTF technique was approximately 35 seconds,
which corresponds to approximately 1.5 frames/s.8

As can be seen from the Table II, the base-domain tech-
niques, i.e., the Rational and 3RDS, require the least processing
time. On the other hand, wavelet-based techniques, the MCWF,
SEQWT, WRSTF, and ASTF, are significantly slower and
require approximately five times more processing time (the dif-
ference in complexity between the proposed WRSTF method
and the other compared (MCWEF, SEQWT, and ASTF) is small).

For the proposed WRSTF method, about 30% of the total
processing time is spent on the wavelet transform and approx-
imately 30% on motion estimation. The rest (40%) is required
by the proposed spatio-temporal filter. The proposed WRSTF
method could be implemented in real-time video applications
with possible optimization concerning the computation of the
wavelet transform, with a simplified scheme for motion estima-
tion and compensation (for a specific purpose). We note that the
computational complexity of the proposed algorithm was eval-
uated for an implementation that had not been fully optimized
for speed.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new method for motion es-
timation and image sequence denoising in the wavelet domain.
By robustly estimating motion and compensating for it appro-
priately, we efficiently remove noise without introducing visual
artifacts. In future work, we intend to refine our motion esti-
mation framework in order to deal with occlusion and “moving
block edges,” i.e., to refine the MV estimation process for blocks
undergoing two or more different motion.

7The 3DWTF method could not be tested because we didn’t have access to
the corresponding code.

8For this experiment, we processed the “Salesman” sequence in progressive
format.
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