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Abstract—This paper addresses the optimization problem of
minimizing the number of memory access subject to a rate con-
straint for any Huffman decoding of various standard codecs. We
propose a Lagrangian multiplier based penalty-resource metric to
be the targeting cost function. To the best of our knowledge, there
is few related discussion, in the literature, on providing a criterion
to judge the approaches of entropy decoding under resource con-
straint. The existing approaches which dealt with the decoding of
the single-side growing Huffman tree may not be memory-efficient
for arbitrary-side growing Huffman trees adopted in current
codecs. By grouping the common prefix part of a Huffman tree, in
stead of the commonly used single-side growing Huffman tree, we
provide a memory efficient hierarchical lookup table to speed up
the Huffman decoding. Simulation results show that the proposed
hierarchical table outperforms previous methods. A Viterbi-like
algorithm is also proposed to efficiently find the optimal hierar-
chical table. More importantly, the Viterbi-like algorithm obtains
the same results as that of the brute-force search algorithm.

Index Terms—Audio/video decoding, Huffman decoding, tree
data structure.

I. INTRODUCTION

RADITIONAL entropy coding in multimedia com-
T pression applications, such as JPEG, MPEG-1/2/4,
AAC/AAC+, H.264/AVC and Windows Media Video version
9 (WMV9), heavily relies on Huffman-tree based construction
codes. Results of [1], [2] shown that even after optimizing the
decoding module, entropy decoding still occupies a major por-
tion of decoder’s timing profiles. Due to its sequential nature,
speeding up entropy decoding, however, is not as straight for-
ward as to speed up the other modules of a decoding process by
issuing several independent instructions simultaneously. There-
fore, Huffman decoding is one of the important factors that
influencing on the overall complexity of a decoding module.
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One way to speed Huffman decoding up is to find a tree-based
representation structure of the given Huffman code and its ef-
ficient traversing algorithm. Chung et al. [3] proposed an
memory-efficient array to present the Huffman-tree (HT) in
breadth-first search manner. From left to right, the nodes of the
HT are stored in an array of consecutive memory locations, of
which the entries are either the return symbols of leaf nodes
or the offset addresses of internal nodes to the branch down
children nodes. The data structure designed for MPEG-2 AAC,
proposed by Lee et al. [4], is similar to that of [3]. Chen et al.
[5] assigned the weight 2"~ to level I leaf nodes of a height
h HT and then performed the Huffman decoding by searching
the corresponding weight of the given binary codeword. Lin
et al. [6] transformed the original HT to a single-side growing
Huffman-tree (SGH-tree) and presented a memory-efficient
data structure for representing and traversing the SGH-tree.
Lin et al. assigned the logical address, ¢; — ¢y, + 22:2 fr_1,
to each symbol s;, where ¢; is the codeword of symbol s;,
l; is the level of s;, ¢, is the number of internal nodes in
level I; and f;, is the number of leaf nodes of level k. The
Huffman decoding of [6] is conducted by searching the logical
address of the given binary codeword. This approach might be
infeasible for existent HTs because the process of transforming
HT to SGH-tree is required. The memory usage of tree-based
methods [3]-[6] is very efficient; however, one does not know
how many bits should be inspected during decoding. That is,
all possible lengths of codewords are required to be inspected
during decoding, in the worst case.

Another way to speed Huffman decoding up is to construct
a look-up table (LUT) and inspect several input bits, at a time,
as the address of the table. This multiple-bit-inspecting nature
implies that the LUT-based method needs shorter memory
access time than that of the tree-based apporach, in general.
Hashemian, in [7], partitioned an HT by clustering several
bits together into subtrees and constructed a memory efficient
LUT for each subtree; Aggarwal ef al. [8] partitioned the code
symbols into clusters and constructed one LUT for each cluster;
Choi et al. [9] and Jiang et al. [10] partitioned an SGH-tree on
the basis of pattern-matching and constructed memory-efficient
LUT-based Huffman decoders. In general, when an HT is irreg-
ularly sparse, the approaches of [7]-[10] will face the memory
waste problem because there are many redundant nodes (i.e.,
redundant table entries). Hashemian also proposed a condensed
Huffman table (CHT) for SGH-tree in [11] which partitions
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codewords into several sets based on the codeword lengths.
The Huffman decoding of [11] is conducted by performing a
sequential search on the CHT. The problem CHT approach
faced similar to that of [6], that is, when decoding actual data
the process of transforming exist HTs to SGH-trees is required.
A binary search based method was proposed by Wang et al. in
[12], where codewords were extended to a unique length (i.e.,
the depth of the HT). These expanded codewords partition the
contiguous table address into disjoint intervals. Wang et al.
recorded only the starting addresses of the disjoint intervals and
performed the Huffman decoding through binary search upon
these starting addresses. The problem of binary-search-based
method is that reaching higher probability codewords needs
more memory access time than that of lower probability ones.
The aforementioned approaches, in short, can customize a
single SGH-tree based Huffman decoder well in terms of
memory efficiency and required execution speed.

Nevertheless, most designs of nowadays video/audio codecs
have masses of HTs, e.g., AAC has 12 HTs, AAC+ has 12 HTs
for spectral band replication (SBR), MPEG-2 video has 14 HTs,
MPEG-4 has 24 HTs, H.264/AVC has 29 HTs and WMV-9 has
86 HTs. More importantly, the structures of these HT's are some-
times arbitrary-side-growing instead of single-side-growing. By
taking all HTs of a specific codec into account under certain re-
sources constraints, such as memory space or power consump-
tion, direct SGH-tree based partitioning becomes infeasible be-
cause: 1) the independency of each direct SGH-based parti-
tioning may result in a memory requirement larger than the
total memory constraint, and 2) the corresponding HT's are often
complicated and arbitrary-side growing, the approaches which
are designed on the basis of SGH-tree may not work efficiently
enough. That is, the execution speed may not meet the appli-
cation need. Therefore, to deal with the first issue, an auto-
matic join partitioning approach for all given HTs (under cer-
tain resource constraint) is investigated. We first propose a La-
grangian multiplier based penalty-resource metric in Section II
for compromising the processing efficiency and the memory
usage. With the proposed metric, any optimal solution algorithm
for finding a Lagrangian multiplier can be adopted. As to the
second issue, [13] provided two hierarchical approaches for par-
titioning any arbitrary-side growing HT effectively in memory
usage. Since optimizing a hierarchical partition plays a cru-
cial role in partitioning an arbitrary-side-growing Huffman tree
(AGH-tree), in Section III, we develop a Viterbi-like algorithm
for searching optimal hierarchical structures in AGH-trees. The
processing efficiency and memory usage of our approach are
then experimentally compared with those of the conventional
approaches in Section I'V. Finally, concluding remarks are made
in Section V.

II. PENALTY-RESOURCE METRIC

Intuitionally, for any specific codec, a Huffman decoding
module (HDM: a Huffman decoder which has to deal with
more than one HTs) usually possesses more resource than a
simple Huffman decoder (which deals with only one HT) and
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better coding performance (lower penalty) is also expected. For
example, if we construct a LUT based on the longest bit length
of an HT, [,,.x, the memory access time is only one unit but
the corresponding memory size becomes exponentially huge,
ie., 2lmax, Obviously, there is a tradeoff between the resource
and the penalty. A meaningful metric for designing good HDM
should consider the penalty and the resource constraint at the
same time.

A. Penalty-Resource Modeling

An appropriate modeling of an HDM should honestly re-
flect the relationship between the penalty (e.g., the number of
memory access or decoding speed) and the resources require-
ment (e.g., the amount of table size) for fulfilling the applica-
tion needs. However, the realization of an application is both
algorithm and technology dependent, which means a precise re-
lationship between penalty and resource requirement is hard to
be defined.

First, from the algorithmic point of view, the logarithmic
function seems reasonable to reflect the relationship between
the penalty and the resource requirement. This is because both
LUT-based and binary-search-based algorithms conducting
multiple bits inspection at one time, and therefore, the re-
quired memory size increases exponentially with respect to
the number of inspection bits. Second, from the realization
technology point of view, the radical squared expression seems
useful for reflecting the prescribed relationship. This comes
from the fact that the capacity of a memory, for an embedded
system, can be mapped to the width of a chip area which decides
the latency of a random access. In general, for applications
without resource constraints, the equivalent relation between
penalty and resource requirement changes with applications
and may not be linear.

Fortunately, for applications with resources constraints,
the Lagrangian Multiplier technique can naturally capture
the equivalent relation between the penalty and the resources
requirement. This is because for ensuring the formulation of
Lagrangian multiplier based cost function meaningful, both
the penalty and the resource constraint should be monotonic
functions of the non-negative parameter A [14]. Therefore,
mathematically, the specific relationship between penalty and
resource constraint can be represented as an appropriate func-
tion of A. This explains why, as represented in usual Lagrangian
formulations, there is no scaling and weighting criteria involved
in our Penalty-Resource modeling for HDM, as illustrated in
the following discussions.

B. Penalty-Resource Modeling for HDM

Suppose an HDM has n HT's and there are in total I possible
fulfilled partitions. Let f; denote one of the possible fulfilled
partitions composed by 054, j = 1...n, thatis

fiéU_i:(Uv‘,lOUﬂo"'OUin) (1)

where @; denotes the overall partition for the «+th fulfilled par-
tition, o;; denotes the jth component (partition method) of 7;,
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1 =1,2,..., 1. Consequently, we define the penalty and the re-
source of a fulfilled partition for an HDM, f;, respectively, as

P(fi) =1+ ZP(Uij) (2)
j=1
and
R(f;) = n x entry_size + Z r(oi;)- 3)
j=1

To meet the memory space constraint, the resource requirement
here is defined linearly proportional to the memory size. p(o;;)
in (2) denotes the required number of memory access for the
partition o;; and is measured by counting the memory access
times p,,; weighted by a factor u;, that is

p(0ij) = uipo,; - 4

Similarly, r(o;;) in (3) denotes the required memory size 7,
and is measured by counting the memory usage of the partition
0;; weighted by a factor v;, that is

7(0ij) = vito,; - (5)

To locate each o;; onto the final memory bank, we need one
extra table, with size of n X entry_size to memorize the root
addresses of each o;; in the memory bank. The cost of this extra
table access results in the term *1’ in (2).

C. Lagrangian Multiplier Optimization

The Lagrangian technique could be applied to discrete sam-
ples without loss of optimality if a solution exists in the convex
hull that meets the resource constraint [15], [16]. The first issue
mentioned in Section I can now be modeled as: given a resource
constraint R, find the most appropriate partition f* such that

R(f*) < R (6)
and

P(f7) )

is minimized.

Lagrangian multiplier techniques can naturally be applied to
solve this kind of problems. Thus, we define the penalty-re-
source (P-R) cost of f; as

n n

C(fi) £ P(fi) + MR(f:)) = Y _p(oi) + A | D r(oij)

J=1 J=1

()]

The problem becomes, for a given A > 0, finding the solu-
tion f* which minimizes C( f;). The theorem given in [16] illus-
trates that the above constrained problem (cf. (6) and (7)) can be
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solved as a unconstrained problem with a certain nonnegative A
(cf. (8)). Let P*(\) and R* (), respectively, be the penalty and
the resource constraint corresponding to f* under the given .
To obtain a correct A under the given resource constraint, several
approaches have been provided [16], [17]. A simple strategy to
find A is using iterative bisection search algorithm[16] which
makes R*(\) toward R,.. Furthermore, since each o;; is inde-
pendent of f;, to solve

min Zp(oij) + A Z r(0oij) 9
j=1 J=1

is equivalent to solve

n

Z min(p(oi;) + Ar(oij)). (10)
Jj=1
That is, we can separately find o;; which minimizes
ploij) + Ar(oij) (11)

under the given .

With the aid of the P-R cost function, the join penalty-re-
source optimal solution for an HDM with multiple HTs can be
found systematically. However, for discrete samples, the draw-
back of the above approach is that the optimal f* may not
be reachable if Lagrangian techniques are used directly. For-
tunately, if the convex hull of the P-R cost function is dense
enough, the gap between the best achievable and the optimal
solutions would be small. In the next section, we will develop
a novel partitioning method which is believed to reach a tiny
neighborhood of the optimal solution.

III. HIERARCHICAL ARBITRARY-SIDE
GROWING TABLE (HASGT)

In this section, we break an HDM into discrete samples (i.e.,
Huffman trees, 7T;) and focus on optimizing the hierarchical
partition of each sample (i.e., finding each o;;). We first intro-
duce two partition methods to cluster an HT into several LUTs:
the modified Hashemian cut (MHC) and the bits-pattern-Xor
(Bpx). These two methods are motivated by the Hashemian’s
method [7] and the bits-pattern matching scheme [9], [10],
respectively. Hahemian’s method [7] uses fixed length clus-
tering and a supper tree to memories the location of individual
subtree. MHC provides more flexible ways for constructing
LUTs, which clusters the common length symbols together [cf.
Fig. 1(b)]. MHC behaves very similar to Hahemian’s method
except the length of clusters is varying, and also incorporates
a supper tree into LUTs. The scheme given in [9], [10] simply
counts the leading 1’s of symbols, so it is inefficient for an
AGH-tree; therefore, a better memory usage can be expected.
Bpx is a LUT that indexes each symbol by the number of
leading common bits with a certain bits-pattern (cf. Fig. 1(c)).
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Fig. 1. Rectangular boxes represent the codeword values and the circle nodes represent the values of symbols. (a) Huffman tree with 16 symbols. (b) Example
of applying the MHC method. (c) Example of applying the Bpx method in which the boldface line represents one of the bits-patterns. (d) Example of HASGT

clustering.

More specifically, as shown in Fig. 1(a), we take a Huffman
tree [18],! T, as an example to illustrate the MHC and the
Bpx schemes. MHC partitions a tree by cut-lines. As shown
in Fig. 1(b), T is partitioned by three cut-lines: z-z, y-y, and
z-z. There is a LUT for each cluster which memorizes every
value of symbols and every code length of symbols within the
cluster. MHC introduces memory waste because it duplicates
the symbols that are not of the same length as the cluster size.
For example, symbol 7 in Fig. 1(b) will be duplicated four
times in the second cluster. For a Bpx, we index symbols by
counting the largest number of common leading bits of a given
bits-pattern. As an example, for the bits-patterns (1001); and
(1011), the largest number of common bits (LCB) is two. In
practice, the above method can be realized by counting the
number of leading zeros after bitwise XORing with a given
bits-pattern. Consider the example in Fig. 1(a), given the
bits-pattern ”(101111000000);” [as shown in the boldface line
in Fig. 1(c)], if we cluster all symbols of 7" by Bpx, the LCB of
{3,6}, 0,7, {8,5},4, 1,2, {15,11}, 10, 9, 14, and {12,13} are
0,1,2,3,4,5,6,7,8,9, 10 and 11, respectively. Likewise, we
need small LUTs to distinguish the symbols that are of the same
number of LCB, such as {3,6}, {8,5}, {15,11}, and {12,13}.
Due to the hardware consideration, the instruction for counting
the leading zeros and bitwise-XORing are limited in length, we
can not apply any length Bpx onto a Huffman tree haphazardly.
Meanwhile, if the symbols are equal probable, the codelengths
of them are the same after Huffman code construction. MHC
performs better than Bpx does, in this case. In the next section,

IThis Huffman tree associating with a Huffman table is used in Windows

Media Video 9, which estimates the probabilities of occurrence of different
transform types at high bit-rate.

we will integrate the two partition methods, MHC and Bpx,
together to provide an even better Huffman tree partitioning.

A. Structure of an HASGT

Due to the difference of tree growing tendencies (single-side
v.s. arbitrary-side), the preference of MHC and Bpx is tree struc-
ture dependent. Basically, MHC is suitable for near-full trees
while Bpx behaves better for more-sparse trees. As an example,
T in Fig. 1(d) is first cut by an MHC with length-2, because there
is a length-2 full subtree at the top of the Huffman tree. The re-
mainder of 7" beyond the cut-line, z — x, forms another subtree
to. As for to, however, there is no apparent partitioning method.
Because, if 5 is again partitioned by an MHC with a longer or
shorter length, the memory waste problem or the memory access
time increasing problem will be introduced, respectively. Con-
versely, if ¢ is partitioned by a Bpx with bits-pattern (1111);,
the memory waste problem is solved but there still needs an
extra memory access for ¢1y. In brief, the selection of parti-
tioning method for this example [cf. Fig. 1(d)] is only heuris-
tics-based and, more importantly, the total memory access or
memory size usage does not guarantee reaching to the optimal
solution. A compact data structure to represent HASGT and the
corresponding discussions can be found in [13].

As a prescribed, the heuristics-based approaches can not give
apparent criteria to construct the optimum HASGT; moreover,
manually partition HT is not applicable for mass HTs and may
lead to erroneous judgment. Therefore, we propose an optimal
HASGT construction method in Section III-C based on the cost
function associated with an HASGT, presented in Section III-B.
Before defining the cost function, we first express several termi-
nologies for simplifying the following discussions.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 00:21 from |IEEE Xplore. Restrictions apply.



WANG et al.: MEMORY EFFICIENT HIERARCHICAL LOOKUP TABLES

1339

Fig. 2. Referring to Fig. 1(a), there are totally fourteen possible ways to partition the tree from the root under the condition that the length of instruction is 4 bits.
The bold lines indicate the paths corresponding to various bits-patterns. The dotted lines represent cut-lines. The green boxes are roots of subtrees in which the
partitioning methods are switched. The pink circles are symbols in the current cluster. (a)—(d) There are 2, 4, 2, and 2 possible ways for conducting Bpx partitions
in which the bits lengths are one, two, three and four, respectively. (e)—(h) Clusters corresponding to one, two, three and four bits lengths and represent MHC-1,

MHC-2, MHC-3 and MHC-4, respectively.

As shown in Fig. 3(a), MHC X’—X' line partitions 7', which
results in a subtree, t5. MHC Y-Y line partitions 75 introducing
another subtree to3. Bpx (1011), partitions ¢35 inducing the
subtree ¢1ss. Finally, ¢1gg is partition by Bpx (0000); and no
more subtree existed. The available first-order partitions of iy,
are viewed as a set of operations. Referring to Fig. 2, for in-
stance, there are 14 first-order operations, op’s, for the HT given
in Fig. 1(a).

Since the set of op’s varies in t;,’s, we denote O P, as the set
of op’s for t;,. In previous sections, the symbol o;; is needed to
specify the ith sort of HASGT associated with T;. The o;; is
composed of a series of op’s:

(12)

aij = (0Pijks - -5 OPij,q)

where op;; ;, is the op for partitioning ?;, associated with o;;.
Normally, k begins from zero (i.e., the root of 7T').

Next, for discussing the cost of o;;, we construct a Hierar-
chical — tree (H-tree) related to each o;; by the following steps:

step-(1) Input: A subtree, £; Output: a Structure sy,
a) Select an op from O P.
b) s; = the set of

i) ty, t, where t, is the root of subtrees which are out of
the current op cluster

i1){0}, the singleton (or tree-root), if k equals to zero

step-(2) : For each ¢, in sy, Input according to ¢, in step-(1)

Steps (1) and (2) are processed recursively until all symbols
are included. And the resultant H-tree is the union of all sy,.

B. The Measurement of HASGT

Following the discussions given in Section II-C, we define the
cost of ¢;, as

Ck = Pr + ATk. (13)

The penalty, p, and resource constraint, 7, of ¢ are decided
by the current choice of op and the cost of its associated subtrees,
thus the penalty of ¢;, partitioned by op would be

Dk.op = prob(t) x penalty(op) + Z Dq (14)

q in sg

in which prob(ty) is the probability associated with ¢, and op
partitions t;, and induces penaltys, o,. The suffix k,op is de-
cided by o;; 1. p; which denotes the penalty of out-of-cluster
root node t,. The resource ry o, Of £ associated with op be-
comes

Tkop = TE€SOUTCEY op + E Tq (15)

q in sp

where resourcey, o, represents the required LUT size for the
partition op of t;.. Similarly, r, denotes the resource requirement
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Fig. 3. (a) HASGT which is composed by 5, 25 and #155. (b) H-tree corresponds to Fig. 3(a).

t,. Consequently, the P-R cost of ¢;, with choosing op from O P,
becomes:

Ck =Dk + AT

=prob(tx) X prop + Z Pqg+ A | Thop + Z Tq

qin sy, q in sy,
:pr()b(tk) X Pk,op + )\Tk,op + Z Dq + Z Cq- (16)
qin sy q in sg

Notice that ¢, for k& = 0 is the same as the one described in
(11). Our goal is to find an HASGT, o;;, such that the cost of
hierarchical partition of 7" is minimal, that is

a7)

min cg.
op
Since manually solving hierarchical partition is tedious and
time consuming; moreover, the so-obtained results may not
be the best one. For automation, the brute-force top-down
searching all possible partitions is, of course, an intuitive
solution. Nevertheless, brute-force approach can not find the
optimal solution efficiently. We will develop a fast optimizing
HASGT method in the next section.

C. Viterbi-Like Optimizing HASGT Method

From (16), we observed that ¢y, is decided by op’s taken from
OPy, and the precalculated cost c,. Those ¢,’s which are not
of minimal values can not meet to goal of minimizing cg, that
is, the corresponding set of op’s (denoted as OP,) could be
omitted during optimization just like the tree pruning operations

in the well-known Viterbi algorithms. In other words, one can
calculate the initial cost (i.e., the cost of the first-order parti-
tion) and the corresponding minimal ¢, and then the problem
of searching for optimal cost HASGT can be converted to sub-
problems of searching for minimal cost of each ty,.

According to the above inference, we propose a Viterbi-like
algorithm to find the optimal HASGT. We adopt a bottom-up ap-
proach which traverses all internal subtrees, t;,. As prescribed,
those op’s associated with the minimal P-R cost, in each O P,
will be selected as the best partitions for each ¢; while those
op’s which are not of the minimal cost will be discarded, during
each searching stage. The subtree, {5, can immediately deter-
mine a minimal op from O Py, once every internal subtree, ¢,
behind the current ¢; has found the corresponding op’s which
are of minimal cost. Since we never know the actual probability
of each tj, we assume the prob(ty), in (16), is related to its
code length. In other words, the prob(t;) is simply assigned as
(1/2)codelength Then, the optimal structured HASGT could be
constructed through a Viterbi-like algorithm with the parame-
ters of the pre-defined prob(t;) and the A obtained from an it-
erative bisection search, described in Section II-C.

D. Complexity Analysis

To show the superiority of our work, the construction com-
plexity of the brute-force approach and that of the proposed
method have been derived; however, due to the page length
limit, we post the detail derivation on our web-site [19]. We
summarize the derived result in the following. For a tree with
depth n, let A,, be the complexity of constructing HASGTs, H,,
be the complexity of constructing hierarchical MHC partitions,
and let B,, be the complexity of constructing hierarchical Bpx
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partitions. Then, as shown in [19], A,, can be formulated by H,,
and B,, as

n
1

Ap = (Bi+ Hi)(An_i)* .

i=1

(18)

Basically, the concrete construction complexity depends on the
structure of target HT. The constructing complexities for two
extreme cases, the perfect binary tree (PBT) and the SGH-Tree,
are derived in detail in [19].

For the case of PBT, it can be proved that

An > 22,1_2+2,1—1 n 22,1—2 (19)

while the complexity of the proposed method, ;1;, becomes

A, =2n-2" —n. (20)
Similarly, for the case of SGH-Tree, we have
A, >2.-3"7 14 on L (21)
and
—~ 3 1
A, = M (22)
2
For both cases, we obtain that
A, < A,. (23)

IV. EXPERIMENTAL RESULTS

In this section, we focus on two subjects: 1) illustrating the
benefit obtained from the prescribed metric and 2) comparing
HASGT with previous well-known methods M1 [3], M2 [4],
M3 [5], M4 [6], M5 [7], M6 [8], M7 [11] and M8 [12]. The
first subject is investigated in Section I'V-A, and the second sub-
jectis discussed from two perspectives: the complexity analysis
and the performance comparison when decoding the actual data,
which are presented in Sections IV-B and C, respectively.

To provide practically realistic experimental results, all
experiments are conducted for various Huffman tables of
video/audio codecs including: 12 HTs of AAC and 12 HTs
of AAC+ SBR audio codecs, 14 HTs of MPEG-2, 24 HTs of
MPEG-4, 29 HTs of H.264/AVC and 86 HT's of WMV-9 video
codecs. Meanwhile, the performance evaluation is measured
by the metric mentioned in Section II-B. The probability of
each HT [i.e., u; in (4)] is the average of actual appearance in
the conformance sequences[20]-[22]. The number of confor-
mance sequences for testing AAC, AAC+, MPEG-2, MPEG-4,
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H.264/AVC and WMV are 62, 47, 35, 20, 74 and 5, respec-
tively. The resource is defined to be the actual memory size
(i.e., v; in (5) is set to be one) and the penalty is counted by
the weighted numbers of memory access for all code symbols.
The memory access is defined as the number of times to access
the proposed data structure. The weighted factor is the actual
frequency of occurrence for each symbol which is obtained
directly from the conformance sequences. It is reasonable to
define the number of memory access (NMA) as the penalty
because NMA plays a major role in most on-chip designs. Our
simulation platform is Intel Core Duo processor with clock
speed of 1.8 GHz. All programs are coded in C++ language and
executed under the Windows XP operating system.

A. The Optimization of Hashemian’s Method

Hashemian’s method proposed in [7] did not provide effi-
cient algorithm of choosing the cluster bit lengths for mass
HTs. The cluster bit-length used in [7] is a heuristic-deter-
mined value which might not be suitable for all cases. That
means better performance of Hashemian’s method can be
expected. To show that the metric described in Section II is
useful for searching optimal solution for different Huffman
decoding methods, we demonstrate that the performance of
[7] can be further improved by using Lagrangian multiplier
technique with the aid of the proposed metric. We assume
the probability of appearance of each symbol in an HT is
related to its code length as before. After substituting the
probability into the proposed metric, the expected optimal
cluster length of each HT can be obtained through Lagrangian
multiplier based searching technique. In the following, the
optimized Hashemian’s method is evaluated by using the
conformance sequences [20]-[22] again. The conducted ex-
periments include Hashemian’s method with fixed bit-length 3
(H-3), Hashemian’s method with fixed bit-length 7 (H-7) and
Hashemian’s method with varied bit-length (H-varied), which
ranges from 3 to 7 bits. To verify that the performance of [7]
is improved by using the so-obtained optimal cluster lengths,
H-3 and H-7 are chosen as the baseline for comparison. Due
to the page limit, only the experimental results for MPEG-2
is shown in Fig. 4. Experimental results for other codecs can
be found in our web-site [23]. As prescribed, the penalty used
in our experiments is the average number of memory access
of the conformance sequences and the memory size is the
actual memory required for all 14 MPEG-2 HTs. The curve of
H-varied in Fig. 4 represents the results after optimization. The
least memory size required for H-varied is smaller than that of
H-3. The least memory access time of H-varied is the same as
that of H-7 while the memory size of H-varied is smaller than
that of H-7. For other codecs, we summarize the performance
of the method that requiring the least memory size (denoted
as H-A = INF) and method that requiring the least memory
access (denoted as H-A = 0) in Table I. In general, the perfor-
mances of H-A = INF and H-)\ = 0 are better than that of
H-3 and H7, respectively, in terms of the memory size (MS)
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Fig. 4. For an (MPEG-2)-HDM with 14 HTs, the green star point shows that the total resource used and the average memory access required, for H-3 bits
length cluster, are 2224 bytes and 4.69 units, respectively. The P-R curve is produced by combining clusters of Hashemian methods, with bit lengths 3, 4,
5, 6 and 7, under different resource constraints. The smallest resource size is 2050 bytes and the corresponding averaged memory access is 4.01 units. The
least averaged memory access is 3.29 units and the corresponding memory size is 4410 bytes. The averaged memory access of H-7 cluster is the same as
that of the H-varied cluster but the memory requirement of H-7 is 4716 bytes which is lager than that of the H-varied one.

TABLE 1
PERFORMANCE IMPROVEMENT OF HASHEMIAN’S METHOD [7]

AAC AAC+(SBR) MPEG-2
Method MS (KB) | MA | MS (KB) | MA | MS (KB) | MA
H-3bits 6.7 512 383 312 222 .69
H-A=INF 597 391 3.61 3.08 2.05 4,01
H-Tbits 9.24 341 9.56 3.02 472 3.29
HA=0 9.24 3.41 6.94 3.02 4.41 3.29
MPEG-4 H.264/AVC WMV
Method MS (KB) | MA | MS (KB) | MA | MS (KB) | MA
H-3bits 162 5.66 1.82 350 | 2622 | 437
H-A=INF 4.02 4.64 171 333 | 2528 | 382
H-7bits 1248 | 359 3.79 304 | 4737 | 3.16
HA=0 10.4 3.59 3.79 304 | 4654 | 3.16

and the number of memory access (MA). In short, from Fig. 4
and Table I, the performance of Hashemian’s method, indeed,
can be further improved by using the proposed P-R metric.

B. Complexity Analysis of Different Methods

The objective of this section is to compare the complexity of
the previous methods [3]—[8], [11], [12] and that of HASGT in
terms of MA and MS. Moreover, to depict a clear picture, the
cost of structure construction (CT) is also included. Basically,
the ideal scheme should be the one with little average memory
access, small memory space and short construction time. We
show the results of comparison for the different methods in
Table II. Since one does not know how many bits should be in-
spected during decoding when tree-based approaches: M1 [3],

TABLE II
COMPLEXITY COMPARISON AND ACTUAL CONSTRUCTION TIME

Scheme Worst MA MS CT WMVO sec.
M1 [3] O(N) O(n) O(n) 0.13
M2 [4] O(N) O(n) O(n) 0.28
M3 [5] O(N logn) O(n) O(n) 0.19
M4 [6] O(N) O(n) O(n) 0.09
M5 [7] O(N/e) O(2°N/c) | O(2°N/c) 0.31
M6 [8] 2 o2N) o2N) 0.14
M7 [11] O(N) O(n) O(n) 0.03
MS [12] O(log2N) O(n) O(n) 0.17
HASGT O(N/c) O(2°N/c) | O(2N2N+4) 57.6

M2 [4], M3 [5] and M4 [6] are used, the worst MA’s will be lin-
early proportion to the longest codelength of the HT, V. There-
fore, the corresponding MA complexity of tree-based methods
M1, M2, M4 is O(N). M3 needs another O(logn) process for
each given codeword, so its MA complexity is O(N logn). On
the other hand, tree-based methods store nearly all leaf nodes
and internal nodes of an HT, so the complexity of memory usage
is O(n), where n is the number of symbol in an HT. The con-
struction of a tree-based representation needs to traverse the
given HT, so the CT complexity is O(n).

The LUT-based methods, M5 [7] and M6 [8] inspect several
input bits at a time, so the symbol searching time is propor-
tional to the number of required inspections. If M5 inspects ¢
bits at a time, then N/c inspections are needed in the worst case.
M6, first, inspects N bits as an index and then performs table
lookup for locating the correct symbol according to the so-ob-
tained index. The MA complexity of M6 is, thus, only 2. M5
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Fig. 5. For MPEG-2 with 14 HTs, the memory sizes of M1, M2, M3, M6 and M8, respectively, are 2.24, 2.19, 0.89, 1.44 and 1.69 KB and the corresponding
memory access times are, respectively, 8.15, 5.50, 14.77, 2.97 and 7.20 units. The smallest memory size and the corresponding memory access time of M5 are
2.05 KB and 4.01 units, respectively. The least memory access time and the corresponding memory size of M5 are 3.29 units and 4.41 KB. The smallest memory
size of HASGT is 1.32 KB and the corresponding memory access time is 3.04 units. The least memory access time of HASGT is 2.14 units and the corresponding

memory size is 4.85 KB.

needs to construct 2¢ entries for every cluster and M6 needs to
construct 2"V entries in the worst case. Thus, CT complexities of
MS5 and M6 are O(2°N/c) and 2%, respectively. The MS com-
plexity of M5 increases exponentially with c, there are totally
N/c clusters and each has 2¢ entries. Hence, the MS complexity
of M5 is O(2°N/c). Similarly, M6 needs 2™ entries in the worst
case, thus, its MS complexity is O(2"V). M7 [11] performs a se-
quential search on CHT. The number of entries in CHT is lin-
early proportional to the number of various codelengths, so the
MA complexity of M7 is O(N). The memory usage of M7 de-
pends directly on the numbers of symbols and different code-
lengths, so its MS complexity is O(n + N). The construction
of M7 is proportional to the number of entries in CHT, so its
CT complexity is O(N). M8 [12] records the starting addresses
of symbols, thus both of its MS and CT complexities are O(n).
M8 performs binary search on the proposed structure, so its MA
complexity is O(logn).

Both MA and MS complexities of HASGT are similar to
those of the LUT-based method M5. However, the ¢ used in
MS5 is a heuristic-determined value which could affect both the
performances of MA and MS. We have proposed an algorithm,
described in Section III-C, to find out the appropriate ¢ under
a given resource constraint. The construction complexity of
HASGT depends on the required number of iterations, 4, for
searching an appropriate Lagrangian Multiplier and the com-
plexity of the proposed Viterbi-like algorithm. Thus, the CT
complexity of HASGT is O(2N2%4). The CT complexity of
HASGT is much higher than that of the other methods. How-
ever, the constructed data structure can be reused all the time
because the given HTs should not changed over time. Thus, it

is reasonable to spend more time for construction when better
performance can be provided. Of course, for applicability, the
actual construction time should be within an acceptable range.
The actual time required for constructing the 86 WMV9 HTs
for each of prescribed methods is listed in Table II. We apply
cluster length 4 for M5 as used in [7]. The constrained memory
size of HASGT for WMVO is targeted at 32 KB, and in total 11
iterations are required for finding the optimal partition, in our
experiment. The time required for the process of transforming
HT to SGH-tree, as prescribed, is not considered in our experi-
ments. From Table II, the actual construction time for HASGT
is acceptable. In addition to the prescribed complexity compar-
ison, the performance measurement for decoding actual data set
is of equal or even higher importance. In the next section, we
will focus on the performance of decoding an actual data set.

C. The Performance Comparison With Actual Data Set

The objective of this subsection is to compare the perfor-
mance of HASGT, upon actual data set, with that of previous
works: M1 [3], M2 [4], M3 [5], M5 [7], M6 [8], and M8 [12].
For M4 and M7, the process of transforming given HTs to
SGH-trees needs to change the processing stages within both
encoder and decoder sites which is infeasible for conformance
sequences, so M4 and M7 are not included in our experiments.
For HASGT, we limit the instructions for counting LCB (i.e.,
for Bpx) and pre-fetching (i.e., for MHC) to 7 bits in length.
The Lagrangian multiplier A is set to an arbitrary large value
so that the least memory size of specific codec, required by
HASGT, is achieved. When ) is set to zero, the least number of
memory access is also achieved.
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TABLE III
PERFORMANCE COMPARISON UNDER ACTUAL DATA SET
AAC AAC+ (SBR) MPEG-2
Method MS (KB) MA MS (KB) | MA | MS (KB) MA
M1 [3] 5.59 7.27 2.54 3.79 2.24 8.15
M2 [4] 54 5.83 2.38 2.88 2.19 5.5
M3 [5] 2.49 17.26 1.23 7.17 0.89 14.77
M5 A=INF [7] 5.97 391 3.61 3.08 2.05 4.01
M5 A=1IMM [T7] 6.51 3.63 4.54 3.02 4.22 3.29
M5 A =0 [7] 9.24 341 6.94 3.02 4.41 3.29
M6 [8] 3.77 3 2.34 3 1.44 3
M8 [12] 477 7.93 2.34 6.74 1.69 7.2
HASGT A= INF 441 3.08 2.02 2.08 1.32 3.04
HASGT A=IMM 472 2.35 2.27 2.01 1.62 2.36
HASGT A =0 7.88 2.2 6.45 2.01 4.85 2.14
MPEG-4 H.264/AVC WMV9
Method MS (KB) MA MS (KB) | MA | MS (KB) MA
M1 [3] 4.26 11.08 1.68 4.68 26.46 6.87
M2 [4] 4.13 6.9 1.75 3.62 25.88 5.13
M3 [5] 1.71 18.19 0.8 6.21 12.41 12.76
M5 A=INF [7] 4.02 4.64 1.71 3.33 25.28 3.82
M5A=IMM [T7] 8.58 3.59 3.46 3.05 27.17 3.16
M5 X =0 [7] 10.4 3.59 3.79 3.04 46.54 3.16
M6 [8] 55.52 3 1.51 3 24431.68 3
M8 [12] 3.29 7.31 1.5 445 24.08 6.9
HASGT A = INF 3.03 3.51 1.18 2.3 14.57 3.02
HASGT A=1IMM 3.76 2.54 1.37 2.12 18.56 2.17
HASGT A =0 12.48 2.29 4.58 2.02 59.85 2.08

Referring to Fig. 5, for 14 MPEG-2 HTs, the least memory
size of HASGT is smaller than that of M1, M2 and M8 while
the actual number of memory access is much less than that of
M1, M2 and M8. For the least memory size, HASGT needs 48%
more memory size than that of M3 but gains 4.86 times in exe-
cution speed as compared with M3. M6 partitions HT through
the positions of first bits change (i.e., the first positions from 0
to 1 and 1 to 0). M6 can be analyzed from the number of zeros
before one and/or ones before zero (i.e., 0,.1 and/or 1,.0) which
are subsets of Bpx. When A = I N F, HASGT prefers to select
Bpx partition for saving memory space. Therefore, the perfor-
mance of M6 is nearly the same as that of HASGT for MPEG-2
codec. However, in the worst case, the memory requirement of
M6 could be very large, as shown for the cases of MPEG-4 and
WMV in Table III. Under different resource constraints (i.e.,
different Lagrangian multipliers), the performances of the op-
timal M5 shown in Section IV-A are compared with those of
HASGT. For all cases with resource constraints, HASGT based
approach outperforms Hashemian method significantly. Notice
that the convex P-R curves of HASGT converge to two memory
accesses and this phenomenon can be explained as: one of the
access is for accessing the address of each LUT and another is
for locating the symbol within the LUT. This is also the reason
why the number of memory access of M6 is 3.

Due to the page limit, we only illustrate the performance for
MPEG-2 codec in Fig. 5. Similar experimental results for other
codecs can be found in our web-site [23]. For other codecs,
we summarize the performance comparisons among various
methods in Table III. Since we can not list all results under dif-
ferent resource constraints, only the least memory size (denoted
as A = INF), the least number of memory access (denoted
as A\ = 0) and the tradeoff result (denoted as A = IMM)

are included in Table III. The tradeoff result is obtained from
the outcome of the first iteration when bisection Lagrangian
Multiplier search is used. In general, when A = IM M, the
performances of HASGT are better than those of M1, M2, M5
and M8 in terms of memory size and the number of memory
access. As compared with M3, in average, HASGT needs 55%
more memory size to gain 4.33 times in execution speed. The
performances of M6 are similar to those of HASGT in the
least memory sizes for AAC, AAC+ (SBR), MPEG-2 and
H.264/AVC. However, from Table III, the memory size of M6
is huge for MPEG-4 and WMV9.

V. CONCLUSION

The Huffman-based entropy decoding is investigated in
detail in this paper. We propose a penalty-resource metric to
distinguish the best solution among different entropy decoding
methods under the resource (or penalty) constraints. We also
propose a hierarchical partitioning method, HASGT, which
provides more flexible partitioning methods with higher re-
source usage efficiency for dealing with AGH-tree. By the
designed metric, any Lagrangian multiplier based techniques
for searching optimal solutions can be applied directly. An op-
timal Lagrangian multiplier is associated with a total resource
constraint; therefore, given a fixed multiplier, the constraint
problem can be solved as an unconstraint problem. Once
the optimal Lagrangian multiplier is given, the problem of
searching an optimal HDM can be broken into finding the best
HASGT structure for each individual HT due to the indepen-
dency of HTs. Therefore, under a given Lagrangian multiplier,
the problem of considering overall resource constraint can be
released to individually find the best HASGT for each HT. This
approach for searching optimal solution can also be applied to
improve the performance of Hashemian methods.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 00:21 from |IEEE Xplore. Restrictions apply.



WANG et al.: MEMORY EFFICIENT HIERARCHICAL LOOKUP TABLES

Since HASGT provides more flexible ways to partition an
AGH-tree, the number of possible HASGT structures is te-
diously large. Searching the optimal solution in brute-force way
becomes infeasible, so we develop a Viterbi-like algorithm to
efficiently find the optimal HASGT structure. After theoretical
analysis, the complexity of the proposed Viterbi-like algorithm
is substantially less than that of the brute-force method. Con-
sequently, the performances of HASGT and previous existing
methods are evaluated for applying to considerable quantities
of HTs which are adopted in modern multimedia codecs such
as AAC, AAC+(SBR), MPEG-2, MPEG-4, H.264/AVC and
WMV-9. Under actual data set, the experimental results show
that HASGT based approach performs better than previous
approaches [3], [4], [7], [8], [12] in terms of memory size and
memory access. For the method of [5], HASGT needs extra
55% memory size but gain 4.33 times in execution time.
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