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Abstract— This paper proposes an object-based approach to a
class of dynamic image-based representations called “plenoptic
videos,” where the plenoptic video sequences are segmented into
image-based rendering (IBR) objects each with its image se-
quence, depth map, and other relevant information such as shape
and alpha information. This allows desirable functionalities such
as scalability of contents, error resilience, and interactivity with
individual IBR objects to be supported. Moreover, the rendering
quality in scenes with large depth variations can also be improved
considerably. A portable capturing system consisting of two linear
camera arrays was developed to verify the proposed approach.
An important step in the object-based approach is to segment
the objects in video streams into layers or IBR objects. To reduce
the time for segmenting plenoptic videos under the semiautomatic
technique, a new object tracking method based on the level-set
method is proposed. Due to possible segmentation errors around
object boundaries, natural matting with Bayesian approach is
also incorporated into our system. Furthermore, extensions of
conventional image processing algorithms to these IBR objects
are studied and illustrated with examples. Experimental results
are given to illustrate the efficiency of the tracking, matting,
rendering, and processing algorithms under the proposed object-
based framework.

Index Terms— Dynamic image-based representations, image-
based rendering (IBR), object-based, plenoptic videos.

I. INTRODUCTION

MULTIVIEW IMAGING (MVI) has attracted great at-
tention recently due to its increasingly wide range

of applications and the decreasing cost of digital cameras.
This opens up many new and interesting research topics as
well as applications, such as virtual view synthesis for three-
dimensional (3-D) television (3-DTV) and entertainment,
high-performance imaging, video processing and analysis for
surveillance, distance learning, industry inspection, etc.
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One of the most important applications in MVI proba-
bly is the development of advanced immersive viewing or
visualization systems using, say, 3-D or multiview TVs. With
the introduction of multiview TVs, it is expected that a new
age of 3DTV systems will arrive in the nearest future. To
realize these goals, however, there are still many new and
challenging issues to be addressed. In particular, multiview
systems normally require large amounts of storage and are
considerably difficult to construct. Of more importance still,
the various cameras in the camera array usually have very dif-
ferent characteristics and positions, which make the synthesis
of virtual view (multiview synthesis) difficult.

Image-based rendering (IBR) refers to a collection of tech-
niques and representations that allow 3-D scenes and objects to
be visualized in a realistic way without the full 3-D model re-
construction. Since IBR uses images as the primary substrate,
its potential for photorealistic visualization has tremendous
appeal. It is not surprising that IBR has received increasing
attention recently. In IBR [1]–[15], new views of scenes are
reconstructed from a collection of densely sampled images or
videos. The reconstruction problem (i.e., rendering) is treated
as a multidimensional sampling problem, where new views
are generated from densely sampled images and depth maps
instead of building an accurate 3-D model of the scene. Since
the data size associated with the image-based representations
is usually very large, especially in the case of dynamic scenes,
capturing, compression, and effective rendering are funda-
mental problems in IBR research [6], [7]. Different image-
based representations have been proposed to simplify the
capturing process and storage requirements. For a recent
survey of IBR, readers are referred to [7] for more details.
In previous works [13], [14], a class of dynamic image-based
representations called the “plenoptic video” was proposed for
dynamic scenes. The plenoptic video is a simplified light field
for dynamic environments. It is obtained by capturing videos
that are regularly placed along a series of line segments,
instead of a 2-D plane, in the static light fields. The main
motivation is to reduce the high dimensionality and excessive
hardware cost in capturing dynamic representations. Despite
the employed simplification, plenoptic videos can still provide
a continuum of viewpoints, significant parallax, and lighting
changes along line segments joining the camera arrays.

A difficult problem in rendering light fields and plenoptic
videos is the excessive artifacts due to depth variations. If
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the scene is free of occlusions, then the concept of plenoptic
sampling [8] can be applied to determine the sampling rate
in the camera plane. Unfortunately, because of depth disconti-
nuities around object boundaries, the sampling rate is usually
insufficient and significant, rendering artifacts due to occlusion
are observed. Moreover, appropriate mean depths for objects
have to be determined to avoid blurring within the objects and
ghosting at the boundaries. Thus, depth segmentation or some
kind of depth information is necessary in order to improve
the rendering quality. Motivated by Gortler et al.’s work on
lumigraph [4] and the layered depth images of Shade [5], we
assume that each image pixel in a light field has a color as
well as a depth value. Instead of using a global depth map, this
representation, which can be viewed as local depth images be-
tween successive cameras, is less sensitive to errors in camera
position and depth maps encountered in practical multicamera
systems. Due to the limited amount of information that we
can gather from images and videos, a very high resolution
depth map is usually unavailable. Besides, the data rate of
these detailed depth map sequences is very high. Fortunately,
plenoptic sampling tells us that the dense sampling of image-
based representation will tolerate this variation within the
segments by interpolating the plenoptic function. In other
words, it is highly desirable to focus on objects with large
depth discontinuities. By properly segmenting the videos into
objects at different depths, the rendering quality in a large
environment can be considerably improved, as demonstrated
by the pop-up light fields [9].

These observations motivate us to develop an object-based
approach to plenoptic videos, where the plenoptic video se-
quences are segmented into IBR objects, each with its image
sequence, depth map, and other relevant information such as
shape information [15]. Therefore, desirable functionalities
such as scalability of contents, error resilience, and interac-
tivity with individual IBR objects (including random access at
the object level) can be incorporated. For example, IBR ob-
jects can be processed, rendered, compressed, and transmitted
separately. An important step in the object-based approach is
to segment objects in plenoptic video sequences into layers
or IBR objects with different depth values. To reduce the
segmentation time and improve reliability, one possibility is
to obtain an initial segmentation of the video at key views
using semiautomatic tools [18] and rely on tracking techniques
to segment the objects at different views and at subsequent
time instants. Towards this end, an automatic object track-
ing approach using the level-set method is proposed in this
paper [16], [17]. Our method, which utilizes local and global
features of the image sequences and depth information, instead
of global features exploited in [19], can achieve better tracking
results for objects, especially with nonuniform energy distri-
bution. Due to depth discontinuity and possible segmentation
errors, matting [9], [20] is usually performed. By using the
estimated alpha map and texture, it is also convenient to
composite the IBR objects onto the background of the original
or other plenoptic videos. The Bayesian approach in [20]
is adopted in our system because of its good performance.
After the objects in a plenoptic video have been extracted,
the depth information for each IBR object can be further

refined. An algorithm for rendering and postprocessing of
plenoptic video with layered depth map is proposed, which
has a low computational complexity. Another key problem
associated with dynamic image-based representations is the
compression of the tremendous amount of data. We have
developed an object-based compression scheme for plenoptic
videos to facilitate its rendering, transmission and storage. Due
to page limitation, this object-based compression scheme is
separately treated in a companion paper.

Since images and videos are special cases of the plenop-
tic function, it is envisioned that many conventional image
processing algorithms [21] such as coding, segmentation,
etc. have a similar analogy in IBR. We shall refer to these
generalizations as plenoptic video processing or plenoptic
processing in general. Moreover, as we will be focusing on
the object-based approach, we will refer to the associated
processing operations as object-based plenoptic processing.
Another objective of this paper is devoted to the extension
of some commonly used image processing algorithms to IBR
and their possible applications. In particular, this will allow us
to greatly increase the viewing freedom such as synthesizing
views away from the camera line segments and performing
zooming, panning, looking upward and downward, etc. To
verify the proposed approach, a portable plenoptic video
system, which consists of two linear arrays each carrying six
video cameras, for large environment and dynamic scenes was
constructed. The rendering and processing results are very
satisfactory, which demonstrate the usefulness of the proposed
object-based approach.

The rest of this paper is organized as follows. After a brief
review of the concept of plenoptic function and the plenoptic
videos, the construction of the proposed capturing system is
described in Section II. The proposed object tracking algorithm
and matting algorithm are presented in Section III. Section IV
is devoted to the rendering of the IBR objects. The proposed
object-based processing algorithms are described in Section V.
Experimental results using the plenoptic videos as an example
are also given to illustrate the concept. Finally, conclusions
are summarized in Section VI.

II. THE PLENOPTIC VIDEO SYSTEM

A. Plenoptic Function

The seven-dimensional plenoptic function, P7 = (Vx , Vy,
Vz, θ, φ, λ, τ ), was first coined by Adelson and Bergen [1] to
describe all the radiant energy that is perceived at any 3-D
viewing point (Vx , Vy, Vz), from every possible angle (θ, φ)
for every wavelength λ, and at any time τ . Based on this
function, theoretically, novel views at different positions and
time instants can be reconstructed from its samples, provided
that the sample rate is sufficiently high. Due to its high-
dimensional nature, data reduction/compression, transmission,
and efficient rendering of the plenoptic function are essential to
IBR systems. One approach is to restrict the viewing freedom
of users so that the dimension of representations can be
reduced. Light fields [3] or lumigraph [4] are two important
types of four-dimensional image-based representations where
images on a camera plane are taken to render novel views of
the scene.
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Fig. 1. (a) 4-D static light fields: viewpoints constrained on a 2-D plane. (b)
4-D SDLF viewpoints constrained along a line in a dynamic environment.

Fig. 1(a) illustrates the principle of light field or lumigraph,
where the (u, v) plane is the focal plane and (s, t) plane is
the camera plane [4]. For dynamic light fields, the number
of videos on a 2-D plane is usually very large. To avoid
such a high dimensionality and the excessive hardware cost, a
kind of simplified dynamic light field (SDLF) with viewpoints
being constrained along line segments instead of a 2-D plane,
as illustrated in Fig. 1(b), was proposed [11]–[14]. Because
of the close relationship between the SDLF with traditional
videos, we also referred it to as “plenoptic videos.” Despite
the simplicity of the overall system, significant parallax and
lighting changes along the horizontal direction can also be
observed.

B. The Plenoptic Video System

Previous attempts to generalize image-based representations
to dynamic scenes are mostly based on 2-D panoramas. These
include the QuickTime VR [2] and panoramic videos [10].
The panoramic video is a sequence of panoramas created at
different locations along a path in space, which can be used to
capture dynamic scenes at a stationary location or in general
along a path with 360◦ of viewing freedom. The plenoptic
video described in this paper is a simplified light field for
dynamic environment as shown in Fig. 2, where viewpoints
of the user are constrained along line segments to reduce the
complexity of the dynamic IBR system. Unlike panoramic
videos, users can still observe significant parallax and lighting
changes. More recently, there have been attempts to construct
light field video systems for different applications and charac-
teristics. These include the Stanford multicamera array [22],
the 3-D rendering system of Naemura et al. [23], and the (8
× 8) light field camera of Yang et al. [24]. The Stanford array
consists of more than 100 cameras and is intended for large-
environment applications. It uses a low-cost CMOS sensor and
dedicated hardware for real-time compression. The systems in
[24] and [25] consist of respectively 16 and 64 cameras and
are intended for real-time rendering applications.

Fig. 3 shows the proposed plenoptic video system used to
capture dynamic scenes in this paper. This system consists
of two linear arrays of cameras, each hosting six JVC DR-
DVP9ah video cameras. The spacing between successive cam-
eras in the two linear arrays is 15 cm. The angle between the
arrays is 165◦ connected together to form longer segments.
Because the videos are recorded on tapes, the system is
portable for capturing degree and can be flexibly adjusted.
More arrays can be outdoor dynamic scenes. Along each linear
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Fig. 2. Plenoptic videos: multiple linear camera array of 4-D SDLFs with
viewpoints constrained along line segments.

Fig. 3. Two linear camera arrays, each consists of six JVC video cameras.

camera array, a 4-D simplified dynamic light field is captured.
The use of multiple linear arrays allows the user to have more
viewing freedom in sport events and other live performance.
The proposed system represents a design tradeoff between
simplicity and viewing freedom. Other configurations can also
be employed.

As those are off-the-shelf DV cameras, we do not have
shutter synchronization. During capturing, an audio pulse is
used to synchronize the DV cameras. The image frames that
are closest to the time instance of the audio pulse in all the
DV tapes data are measured. In our experiments, the rendering
result is good and no temporal interpolation is needed. This
is probably due to the stability of the clock generators in the
DV cameras.

The cameras are calibrated using the method in [26]. In
order to use this method to calibrate our camera array, a large
reference grid is designed so that it can be seen simulta-
neously by all the cameras. By using the extracted intrinsic
and extrinsic parameters of the cameras, the captured videos
can be rectified for depth estimation and rendering. After
capturing, the video data stored on the tapes can be transmitted
to computers through FireWire interface. All these components
are relatively inexpensive and they can readily be extended
to include more cameras. Fig. 4 shows snapshots of plenoptic
videos Dance and Ping-Pong captured by the proposed system.
The resolution of these real-scene plenoptic videos is 720×576
pixels in 24-bit RGB format.

III. OBJECT TRACKING AND MATTING

A. Object Tracking Using Level-Set Method

In the proposed approach, objects at large depth differences
are segmented into layers and are compressed and rendered
separately. This helps to avoid the artifacts at object bound-
aries due to depth discontinuities. In the proposed method,
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Fig. 4. Snapshots of the plenoptic videos: (upper) Dance and (lower) Ping-Pong.

an initial segmentation of the objects in, say, a key frame is
first obtained using a semiautomatic approach [18]. Tracking
techniques are then employed to segment the objects at other
video streams and subsequent time instants. Our method is
based on the level-set method or geometric partial differential
equations (PDE). The initial segmentation provides prior infor-
mation of the object to be segment and simplifies considerably
the tracking of the objects at nearby camera views. The use of
PDE and curvature-driven flows in tracking, segmentation, and
image analysis has received great attention over the last few
years [27]–[31]. The basic idea is to deform a given curve, sur-
face, or image according to the PDE, and arrive at the desired
result as the steady-state solution of this PDE. The problem
can also be viewed as minimizing a certain energy function

UI (C) =
∫

I
F(C, x)dx (1)

as a function of a curve or surface C . The subscript indicates
that the energy is computed from the given images I . Usually,
F(C, x) is designed to measure the deviation of the desired
curve from C at point x. To minimize the functional in (1),
the variational approach can be employed to convert it to a
partial differential function. A necessary condition for C to be
a local minimum of the functional is U

′
I (C) = 0. To solve it

numerically, we usually start with an initial curve C0 and let
it evolve over a fictitious time variable t according to a PDE,
which depends on the derivative U

′
I (C) as follows:

∂C(t)

∂t
= U

′
I (C(t)). (2)

However, conventionally finite difference methods are un-
suitable to solve (2), because the PDE might be singular at
certain points. A major breakthrough in solving (2) is due to
Sethian and Osher [32], and the method is commonly referred
to as the level-set method. The basic idea behind the level-set
method is to represent a curve or surface in an “implicit form”
such as the zero level-sets or isophone of a higher dimensional
function. More formally, the time evolution of curves C(x, t)
is represented as the level-set of an embedding function φ(x, t)

Lc(x, t) := {(x, t) ∈ R3: φ(x, t) = c} (3)

where c is a given real constant. Equation (2) can be rewritten
as a PDE of φ(x, t) as follows:

∂φ(t)

∂t
= β‖∇φ‖ (4)

where β is the velocity of the flow in the normal direction
and is derived from U

′
I (C(t)) above. The initial curve C0 is

associated with the level-set with c = 0, i.e. zero level-set,
and its time evolution is computed numerically by solving the
following equation for φ(t), after discretizing at a sufficiently
small time interval or step �t

φ((n + 1)�t) = φ(n�t) + �t · G(φ, x) (5)

where G(φ, x) is an appropriate approximation of the right-
hand side of (4). The desired solution is obtained when the
PDE converges at sufficiently large values of n.

For our object tracking and segmentation problem, we
define the following energy function for curve C

UI (C) = γ

∫
I

Cinsidedxdy − β

∫
I

Coutsidedxdy + λLength(C)

(6)
where γ, β, and λ are positive parameters, Cinside(x, y) and
Coutside(x, y) are two functions designed respectively, to con-
trol the expansion and contraction of the curve C at the
location (x, y), and Length(C) measures the length of the
curve. In conventional level-set methods [19], the pixel values
inside and outside the curve C are assumed to be independent
and Gaussian-distributed with means cin and cout, respectively,
inside and outside the curve, and then it can be shown that
the PDE so obtained can be written as (details omitted due to
page limitation)

∂φ

∂t

∣∣∣∣
(x,y)

= γ (u(x,y) − cin)
2 − β(u(x,y) − cout)

2

+ λ · div

( ∇φ

|∇φ|
)

(7)

where u(x,y) is the value of the pixel at location (x, y), and
cin and cout denote the driving force inside and outside the
curve C , respectively. The third term, which is derived from
Length(C), makes the curve smooth and continuous.

There are two different methods for determining cin and
cout: global-based; and local-based. The global-based method
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Fig. 5. (a) Tracking result of the global-based method. (b)-(d) Tracking results of the proposed method.

which is adopted in [19] utilizes all the pixels to drive curve C .
The global-based method has the advantage of fast evolution
speed and is less sensitive to noise. However, some fine
features along the object’s boundary to be tracked may be
lost. Fig. 5(a) shows an example tracking result using the
global-based method. It can be seen that the girl’s right hand
is outside the curve, because its mean is more similar to
the background than to its body. On the contrary, the local-
based method uses the local mean value inside a window
instead of all the image pixels. In [27] and [33], a local-based
method is exploited, where cin and cout are set as follows:
cin = u(x+i,y+ j), where (u(x,y) − u(x+i,y+ j))

2 is the minimum
value over all integer pairs (i, j) such that |i | ≤ m and | j | ≤ m
and pixel (x+i, y+ j) is inside the curve C ; cout = u(x+i,y+ j),
where (u(x,y) − u(x+i,y+ j))

2 is the minimum value over all
integer pairs (i, j) such that |i | ≤ m and | j | ≤ m and pixel
(x + i, y + j) is outside the curve C . Obviously, this method
utilizes local features of the image to cope with objects having
a nonuniform energy distribution. Unfortunately, this method
is rather sensitive to image noise, because only one pixel is
chosen for determining both cin and cout. Here we propose to
combine the advantages of both the global-based and local-
based methods by employing the following cin and cout⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cin = average (u(x+i,y+ j)), where |i | ≤ m, | j | ≤ m and

pixel (x + i, y + j) is inside the curve C

cout = average (u(x+i,y+ j)), where |i | ≤ m, | j | ≤ m and

pixel (x + i, y + j) is outside the curve C.
(8)

Although the initial contour obtained from other views help
in providing prior information of the object shape, objects
may overlap each other and may affect the performance of the
level-set method based on intensity alone. Here we propose to
segment the intensity information with disparity information
computed from adjacent images. In computing the depth map,
we use squared intensity differences as cost function, and
aggregate the cost in a square window weighted by color
similarity and geometric proximity as in Yoon’s method [34].
The disparity map is first estimated by the pyramid Lucas–
Kanade (LK) feature-tracking algorithm, which minimizes the
cost/energy by the least-squares method. Instead of defining
smoothness term in the energy function, the disparity map is
anisotropic diffused after LK method. Finally, a symmetric
stereo model [35] is introduced for occlusion detection and
optimized with Belief-propagation. By adding an additional
depth term to the level-set speed function (7), we get the new

speed function as follows:

∂φ

∂t

∣∣∣∣
(x,y)

= γ1(u(x,y) − cin)
2 − β1(u(x,y) − cout)

2

+ γ2(d(x,y) − din)
2 − β2(d(x,y) − dout)

2

+ λ · div

( ∇φ

|∇φ|
)

(9)

where the d(x,y) is the depth value of pixel (x, y), and din
and dout denote the local mean depth inside and outside the
curve C . Using this speed function, more satisfactory result
can be obtained. To improve tracking results, a key frame is
usually chosen for semiautomatic segmentation. Tracking is
then performed in forward and backward time until the objects
disappear.

B. Object Matting with Bayesian Approach

Due to possible segmentation errors around boundaries
and finite sampling at depth discontinuities, it is preferable
to calculate a soft, instead of a hard, membership function
between the IBR objects and the background. In other words,
the boundary pixels are assumed to be a linear combination of
the corresponding pixels from the foreground and background

I = αF + (1 − α)B (10)

where I , F , and B are the pixel’s composite, foreground, and
background colors, and 0 ≤ α ≤ 1 is the pixel’s opacity
component or the alpha map. Using this model, it is possible
to matte a given object with the original at different views and
other background. The digital analog of the matte (the α-map)
was introduced by Porter and Duff [36] in 1984 to facilitate
matting of objects. In natural matting, all variables α, F , and
B need to be estimated and the problem is to find the most
likely estimates for α, given the observation I . This can be
formulated as the maximization of the posteriori probability
P(F, B, α|I ). Using the Bayesian rule, we have

max
F,B,α

P(F, B, α|I ) = max
F,B,α

P(I |F, B, α)P(F, B, α)/P(I ).

(11)

Since the optimization parameters are independent of P(I ),
the latter can be dropped. Further, if F , B, and α are assumed
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Fig. 6. (a) Input image. (b) Alpha map. (c) - (d) New images of compositing extracted foreground over other background scenes.

Fig. 7. Examples of layered depth maps in the Dance sequence.

to be independent, then (11) can be written as

arg max
F,B,α

P(F, B, α|I )
= arg max

F,B,α
P(I |F, B, α)P(F)P(B)P(α)

= arg max
F,B,α

{ln P(I |F, B, α) + ln P(F)

+ ln P(B) + ln P(α)}. (12)

Taking the derivatives of (12), one gets a set of equations in
the estimates of α, F , and B. Interested readers are referred
to [20] for more information. Once the matting information
is obtained, conventional stereo-matching algorithm can be
employed to refine the depth values within each segment.

C. Experimental Results

The performance of the proposed tracking method is evalu-
ated using the Dance sequence, which is a real-scene plenoptic
video captured by our IBR capturing system. For each frame,
the initial curve C0 is the tracking result of the previous frame,
and the object curve of the key frames is obtained manually
using Lazy snapping [18]. The level-set contour evolution is
implemented using the narrow band method, where (9) is used
as the speed function. The window size m for the local energy
calculation is fixed to 6. Fig. 5(a) shows the tracking result of
the global-based method. The results of our method are shown
in Fig. 5(b) and (c), where the boundary is well delineated.
It can be seen from the results that the proposed method
gives more reasonable result for objects with nonuniform
energy distribution. Although the proposed intensity-based
method is capable of tracking the objects satisfactorily for a
number of frames, the performance will start to deteriorate
due to accumulation of tracking errors. This is illustrated
in Fig. 5(d), where parts of the girl’s head and right hand
are not well delineated. By using the proposed intensity and
depth-based level-set method, considerably more satisfactory
tracking results are obtained as shown later in Fig. 8.

The results of natural matting the IBR object are illustrated
in Fig. 6. Fig. 6(a) and (b) shows an example snapshot of a

segmented IBR object called “dancer” and its computed asso-
ciated alpha map. Fig. 6(c) and (d) shows example renderings
of the IBR object, after matting with two different backgrounds
or scenes. Fig. 7 shows some of the layered depth maps in the
Dance sequence. The tracking and matting results of the Ping-
Pong sequence are shown in Figs. 8 and 9. It can be seen that
the proposed intensity and depth information-based tracking
method performs very well even in the Ping-Pong sequence,
which consists of more than one overlapping objects.

IV. RENDERING OF IBR OBJECTS

A difficult problem of rendering light fields and plenoptic
videos is the excessive artifacts due to depth variations. Using
the layered depth map it is possible to detect occlusion and
interpolate the image pixels during rendering. In a previous
paper [11], a depth-matching algorithm for rendering and
postprocessing of plenoptic video with depth information was
proposed. This algorithm brings satisfactory rendering results,
but its arithmetic complexity is very high. Here, an improved
rendering algorithm with a much lower computational com-
plexity is proposed in this paper.

More precisely, instead of finding the depth value of the
image pixel to be rendered from adjacent light field images,
the two images are projected using the depth values of each
pixel to the current viewing position. During the reconstruction
of a pixel V in the viewing grid, two pixels are obtained from
projecting the left and right images to the position of pixel V .
If both of them have the same depth values, then there is
no occlusion and the value of V can be interpolated from
these pixels according to bilinear interpolation. On the other
hand, if their depth values differ considerably (say larger than
a threshold), then occlusion is detected. The projected pixel
with a small depth value will then occlude the other. Therefore,
the value of pixel V should be equal to the one with smaller
depth value. Furthermore, if multiple pixels are projected to
the location of pixel V, the intensity of pixel V is assigned
to the one with the smallest depth value. If only one pixel
from the left or right image is projected to the position of
pixel V, the intensity of pixel V is set to the intensity of this
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Fig. 8. Tracking results of the Ping-Pong sequence.

Fig. 9. Example alpha maps of the IBR objects “Player 1” and “Player 2” in the Ping-Pong sequence.

Fig. 10. Rendering results of the Dance sequence.

pixel. Finally, due to depth discontinuity, pixel V might not
have any projected pixels from adjacent light field images. In
this case, we employ the image consistency concept to “guess”
the intensity of these pixels [11] from neighboring rendered
pixels using interpolation or other inpainting techniques.

A. Experimental Results

The rendering results at different viewpoints of the Dance
and Ping-Pong sequences are shown in Figs. 10 and 11. It
can be seen that the object-based approach yields high-quality

renderings and it is effective in suppressing the ghosting and
blurring artifacts in the conventional approach with a single
mean depth. Our rendering algorithm avoids a complicated
full search of depth value used in [11], so the computational
complexity of the proposed algorithm is reduced significantly.
It takes about 1.3 s for the algorithm in [11] to render one
frame (720 × 576), while that of the proposed algorithm is
about 120 ms. Currently, all algorithms are run on the CPU. To
speedup the overall performance, time consuming algorithms,
such as pixel projecting (33.6%) and interpolation (51.1%),
can be transferred to the sophisticated GPU.
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Fig. 11. Rendering results of the Ping-Pong sequence.

Fig. 12. (a)–(d) Snapshots of the plenoptic video Dance from camera one to camera four.

V. OBJECT-BASED PLENOPTIC VIDEO PROCESSING

The main difference between processing a single-image
and plenoptic videos is in ensuring the image consistency
constraints in multiple views of the same object. Ideally,
when a group of pixels of an object in a given image is
modified, then the “corresponding” pixels in other images
should also be modified consistently. If scene geometry is
also available, then the lighting and other physical constraints
should also be observed. Due to the difficulty in acquiring
accurately scene geometry and other physical parameters, it is
unavoidable that the capability of automatic IBR processing
is limited. Or, in other words, additional prior information
must be provided by the users through appropriately designed
user interface and other tools.

In what follows, we are interested in generalizing some
commonly used image-processing algorithms to the IBR case
under the object-based framework. In principle, one should de-
termine the correspondence between image pixels and process
them as a whole. Under the object-based framework, similar
objects are segmented and grouped together. Therefore, it
is easier to approximately satisfy the image consistency by
processing the image pixels from the IBR object as a whole
instead of from the entire images. We first start with image
completion and then object enhancement and filtering.

A. Object Completion

When capturing the plenoptic videos, it may happen that
some cameras cannot capture the whole object. Fig. 12 shows
snapshots of the plenoptic video Dance. In the figure we can
see that cameras 1 and 2 captured the whole object “girl,”

Fig. 13. (a) Rendered image at one viewpoint between camera three and
four. (b) Rendering result after object completion processing.

but part of girl’s hand was not captured by cameras three
and four. During rendering, when the viewpoint is moved to
the region between cameras three and four, the reconstructed
object is incomplete, as shown in Fig. 13(a). The goal of object
completion is to inpaint those possible incomplete objects from
the IBR object at other camera views.

Since the missing pixels are captured by camera one, it can
be used to complete the IBR object. To this ends, we employ
model-based motion estimation [37] to estimate the motion
vectors of each pixel from the object in camera one to that
in camera two. We then wrap the former to the position of
the latter according to the motion vectors. After wrapping, the
two objects would almost overlap each other except at image
boundaries. Linear interpolation is then applied to reconstruct
the missing portion. This process can also be viewed as a kind
of inpainting process.

Because the distance between the object and cameras is
large and all cameras are placed on a horizontal line, we
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approximate the motion or disparity of the object by an affine
transformation

u(x) = X(x)a (13)

where u(x) is the motion vector, a denotes the affine transfor-
mation vector (a1, a2, a3, a4, a5, a6)

T , and

X(x) =
[

1 x y 0 0 0
0 0 0 1 x y

]
. (14)

The affine transformation vector a can be estimated by the
least-squares method. Thus, the motion of each pixel in an
object is completely specified by vector a. After wrapping
and linear interpolation, the completed object is shown in
Fig. 13(b). By using object completion, we can also render
views outside the line segments defined by the camera ar-
rays since the missing pixels can be effectively inpainted.
By synthesizing different views appropriately, we can also
generate views of stereo and multiview display for 3-D and
multiview TVs.

B. Object Enhancement

In many applications, an object captured in an image
sequence may need to be pasted on a different background.
During video editing, image enhancement algorithms such
as readjustment of intensity, sharpening, or blurring may be
needed to improve the quality of plenoptic videos. Since the
objects are already segmented from the plenoptic video, we
can therefore enhance selected objects individually instead
of the whole image. This provides more flexibility in data
processing. We now briefly outline a few different enhance-
ment algorithms for the object-based approach.

1) Histogram Equalization for Object: Histogram equaliza-
tion [21] can enhance the contrast of objects. A normalized
histogram of object pixels is given by

pr (rk) = nk

n
, k = 0, 1, 2, . . . , L − 1 (15)

where n is the total number of pixels in the object, nk is the
number of pixels that have intensity level rk , and L is the
total number of possible intensity levels. The transformation
function of histogram equalization has the form

sk = T (rk) =
k∑

j=0

pr (r j ) =
k∑

j=0

n j

n
, k = 0, 1, 2, . . . , L − 1.

(16)
Thus, a processed object is obtained by mapping each pixel
with intensity rk in the input object into a corresponding pixel
with level sk via (16).

If histogram equalization is applied independently to the
original color components (R, G, B), it will usually result
in erroneous color. Therefore, image pixels are transformed
from the RGB color space to the hue, intensity, saturation
(HIS) color space. Histogram equalization is then applied
only to the color intensity component, leaving the other color
components (e.g., hue, saturation) unchanged. The rendering
image before processing is depicted in Fig. 14(a). Fig. 14(b)
and (c) shows the same image after object enhancement.
Only the brightness of the object “girl” is modified and the

background remains the same. For comparison, Fig. 14(d)
shows the rendering result after histogram equalization for the
whole image (not for object). We can see that the enhancement
mainly happens at the background, and the foreground object,
which is usually considered as more important part in an
image, is enhanced slightly. This shows the flexibility of the
object-based approach.

2) Object Deblurring: Deblurring [21] can effectively im-
prove the quality of image. Like histogram equalization,
deblurring can be applied to selected IBR objects. In general,
deblurring approaches fall into two broad categories: spatial-
domain methods; and frequency-domain methods. Here, a
spatial domain filter using second-order Laplacian derivative
is employed. Other frequency domain filters can also be used.
The second-order Laplacian derivative is defined as

∇2 f = ∂2 f

∂x2 + ∂2 f

∂y2

= f (x + 1, y) + f (x − 1, y)

+ f (x, y + 1) + f (x, y − 1) − 4 f (x, y). (17)

For RGB color space, the Laplacian of a pixel c(x, y) is

∇2c(x, y) =
⎡
⎣∇2R(x, y)

∇2G(x, y)

∇2B(x, y)

⎤
⎦ . (18)

The modified pixel is given by

ĉ(x, y) = c(x, y) − ∇2c(x, y). (19)

By applying this derivative to each pixel of the IBR object,
object deblurring can be achieved, as shown in Fig. 14(e).

3) Background Defocusing: The basic idea of background
defocusing is to blur the background, so that objects in the
foreground will be popped out. This object enhancement can
also be viewed as a kind of special effect. For simplicity, the
defocusing is approximated by an averaging or mean filter as
follows:

ĉ(x, y) = 1

mn

∑
(s,t)∈Sxy

c(s, t) (20)

where Sxy is a rectangular window of size m × n centered at
location (x, y). The window size adopted here is 5 × 5, and
the result of background defocusing is shown in Fig. 14(f).

C. Background Transformation

With the help of the alpha map of an object, it is possible
to matte a given object to a transformed background, such
as a rotated background, in the plenoptic videos. This special
effect is shown in Fig. 15. Fig. 15(a) is the original rendered
image while Fig. 15(b) and (c) shows the result after the object
“girl” is pasted to a new background. Further postprocessing
is needed if shadow and other lighting effects are required.
This is difficult to be carried out without the knowledge of
the geometry of the scene. Therefore, for interactive rendering
and relighting, capturing a rough geometry of the scene is of
great importance and hence a fruitful area of research.
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Fig. 14. Rendered images (a) before processing; (b)-(c) object enhancement processing; (d) after histogram equalization for the whole image; (e) after object
deblurring processing; and (f) after background defocusing processing.

Fig. 15. (a) Original rendered image. (b)-(c) Rendered images after background transformation processing.

VI. CONCLUSION

We have presented an object-based approach to image-
based synthesis and processing for 3-D and multiview TVs
using the plenoptic videos as an example. The plenoptic video
sequences are segmented into IBR objects each with its image
sequence, depth map, and other relevant information such as
shape information. A portable capturing system consisting
of two linear camera arrays, each hosting six JVC video
cameras, was developed to verify the proposed approach. We
also proposed an object tracking approach based on the level-
set method. The depth information for each IBR objects is
estimated separately, and a rendering algorithm using layered
depth map is also proposed. Natural matting with Bayesian
approach is employed to improve the rendering quality under
depth discontinuity and possible segmentation errors, and it
allows us to composite the IBR objects onto different plenoptic
videos. Furthermore, the concept of plenoptic processing is
introduced and illustrated with several typical video processing
operations and applications. Experimental results for tracking,
matting, rendering, and processing using both the synthetic and
real-world sequences demonstrate the usefulness, good quality,
and flexibility of the proposed approaches.
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