
 1 

Abstract—In this paper, a new Computation-Control Motion 

Estimation (CCME) method is proposed which can perform 

Motion Estimation (ME) adaptively under different computation 

or power budgets while keeping high coding performance. We first 

propose a new class-based method to measure the Macroblock 

(MB) importance where MBs are classified into different classes 

and their importance is measured by combining their class 

information as well as their initial matching cost information.  

Based on the new MB importance measure, a complete CCME 

framework is then proposed to allocate computation for ME. The 

proposed method performs ME in a one-pass flow.  Experimental 

results demonstrate that the proposed method can allocate 

computation more accurately than previous methods and thus has 

better performance under the same computation budget. 
 

Index Terms—Computation-Control Video Coding, Motion 

Estimation, MB Classification 
 

I. INTRODUCTION AND RELATED WORK 

OMPLEXITY-Scalable Video Coding (CSVC) (or 

Computational-Scalable/Power-aware video coding) is of 

increasing importance to many applications [1-5,11,13,14,18], 

such as video communication over mobile devices with limited 

power budget as well as real-time video systems which require 

coding the video below a fixed number of processor 

computation cycles. 

The target of the CSVC research is to find an efficient way to 

allocate the available computation budget for different Video 

Parts (e.g., Group of Pictures (GOPs), frames, and Macroblocks 

(MBs)) and different Coding Modules (e.g., Motion Estimation 

(ME), Discrete Cosine Transform (DCT), and Entropy Coding) 

so that the resulting video quality is kept as high as possible 

under the given computation budget. Since the available 

computation budget may vary, the CSVC algorithm should be 

able to perform video coding under different budget levels. 

Since ME occupies the major portion of the whole coding 

complexity [6,12], we will focus on the computation allocation 

for the ME part in this paper (i.e., Computation-Control Motion 

Estimation (CCME)). Furthermore, since the computation often 

can be roughly measured by the number of Search Points (SPs) 

in ME, we will use the term SP and Computation 
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interchangeably.  

Many algorithms have been proposed for CCME [1-5,14].  

They can be evaluated by two key parts of CCME: (1) the 

computation allocation, and (2) the MB importance measure. 

They are described as follows. 

(1) The computation allocation order.  Two approaches can be 

used for allocating the computations: one-pass flow and 

multi-pass flow. Most previous CCME methods [2-4] allocate 

computation in a multi-pass flow, where MBs in one frame are 

processed in a step-by-step fashion based on a table which 

measures the MB importance. At each step, the computation is 

allocated to the MB that is measured as the most important 

among all the MBs in the whole frame. The table is updated 

after each step. Since the multi-pass methods use a table for all 

MBs in the frame, they can have a global view of the whole 

frame while allocating computation. However, they do not 

follow the regular coding order and require the ME process to 

jump between MBs, which is less desirable for hardware 

implementations.  Furthermore, since the multi-pass methods do 

not follow the regular coding order, the neighboring MB 

information cannot be used for prediction to achieve better 

performance. Compared to the multi-pass flow approach, 

one-pass methods [5,14] allocate computation and perform ME 

in the regular video coding order. They are more favorable for 

hardware implementation and can also utilize the information 

from neighboring MBs. However, it is more difficult to develop 

a good one-pass method since (a) a one-pass method lacks a 

global view of the entire frame and may allocate unbalanced 

computations to different areas of the frame, and (b) it is more 

difficult to find a suitable method to measure the importance of 

MBs.  

(2) The MB importance measure. In order to allocate 

computation efficiently to different MBs, it is important to 

measure the importance of the MBs for the coding performance, 

so that more computation will be allocated to the more 

important MBs (i.e., MBs with larger importance measure 

values).  Tai et al. [2] use the current Sum of Absolute 

Difference (SAD) value for the MB importance measure. Their 

assumption is that MBs with large matching costs will have 

more room to improve, and thus more search points will be 

allocated to these MBs. Chen et al. [5,14] use a similar measure 

in their one-pass method. However, the assumption that larger 

current SAD will lead to bigger SAD decrease is not always 

guaranteed, which makes the allocation less accurate.  Yang et 

al. [3] use the ratio between the SAD decrease and the number 

of SPs at the previous ME step to measure the MB importance. 
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Kim et al. [4] use a similar measure except that they use 

Rate-Distortion Cost Decrease [4] instead of the SAD decrease. 

However, their methods can only be used in multi-pass methods 

where the allocation is performed in a step-by-step fashion and 

cannot be applied to one-pass methods.  

In this paper, a new one-pass CCME method is proposed. We 

first propose a Class-based MB Importance Measure (CIM) 

method where MBs are classified into different classes based on 

their properties. The importance of each MB is measured by 

combining its class information as well as its initial matching 

cost value. Based on the CIM method, a complete CCME 

framework is then proposed which first divides the total 

computation budget into independent sub-budgets for different 

MB classes and then allocates the computation from the class 

budget to each step of the ME process. Furthermore, the 

proposed method performs ME in a one-pass flow, which is 

more desirable for hardware implementation. Experimental 

results demonstrate that the proposed method can allocate 

computation more accurately than previous methods while 

maintaining good quality. 

The rest of the paper is organized as follows: Section II 

describes our proposed CIM method. Based on the CIM method, 

Section III describes the proposed CCME algorithm in detail. 

The experimental results are given in Section IV. Section V 

gives some discussions, and Section VI concludes the paper.  

II. THE CLASS-BASED MB IMPORTANCE MEASURE 

In this section, we discuss some statistics of ME and describe 

our Class-based MB Importance Measure method in detail. For 

convenience, we use COST [10] as the ME matching cost in the 

rest of the paper. The COST [10] is defined as in Eqn. (1): 
 

 )(MVRSADCOST MOTION                                          (1) 

 

where SAD is the Sum of Absolute Difference for the block 

matching error,  R(MV) is the number of bits to code the Motion 

Vector (MV), and MOTION is the Lagrange multiplier [19].   

In this paper, the CIM method and the proposed CCME 

algorithm is described based on the Simplified Hexagon Search 

(SHS) [7] algorithm. However, our algorithms are general and 

can easily be extended to other ME algorithms [9,10,15-17].   

The SHS is a newly developed ME algorithm which can 

achieve performance close to Full Search (FS) with 

comparatively low SPs. The SHS process can be described as in 

Fig. 1.  

Before the ME process, the SHS algorithm first checks the 

init_COST which is defined as: 
 

 PMVCOSTCOSTCOSTinit ,min_ )0,0(                             (2) 

 

where COST(0,0) is the COST of the (0,0) MV, and COSTPMV is 

the COST of the Predictive MV (PMV) [7]. If init_COST is 

smaller than a threshold th1, the SHS algorithm will stop after 

performing a small local search (search 4 points around the 

position of the init_COST), which we call the Upper Path. If 

init_COST is larger than the threshold, the SHS algorithm will 

proceed to the steps of Small Local Search, Cross Search, 

Multiple Hexagon Search, Small Hexagon Search and Small 

Diamond Search [7], which we call the Lower Path. Inside the 

lower path, another threshold th2 is used to decide whether or 

not to skip the steps of Cross Search and Multi Hexagon 

Search. 

 
 

 
Fig 1. The SHS process. 

 

A.  Analysis of Motion Estimation Statistics 

In order to analyze the relationship between the COST value 

and the number of search points, we define two more COSTs:  

COST_mid (the COST value right after the Small Local Search 

step in the Lower Path) and COST_final (the COST value after 

going through the entire ME process), as in Fig. 1. Three MB 

classes are defined as: 
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  (3) 

 

where cur_MB is the current MB, th1 is the threshold defined in 

the SHS algorithm [7] to decide whether the init_COST is large 

or small [7], and c is another threshold to decide the significance 

of the cost improvement between COST_mid and COST_final. 

MBs in Class 1 are MBs with small current COST values. Class 

2 represents MBs with large current COST values where 

additional searches can yield significant improvement. Class 3 

represents MBs with large current COST values but where 

further searches do not produce significant improvement. If we 

can predict Class 3 MBs, we can save computation by skipping 

further searches for the Class 3 MBs. It should be noted that 

since we cannot get COST_final before actually going through 

the Lower Path, the classification method of Eqn. (3) is only 

used for statistical analysis. A practical classification method 

will be proposed later in this section. Furthermore, since MBs in 

Class 1 have small current COST value, their MB importance 

measure can be easily defined. Therefore, we will focus on the 

analysis of Class 2 and Class 3 MBs. 

Table 1 lists the percentage of Class 1, Class 2 and Class 3 

MBs over the total MBs for sequences of different resolutions 

and under different Quantization Parameter (QP) values where c 

of Eqn. (3) is set to be different values of 0, 2% of COST_mid, 

and 4% of COST_mid. It should be noted that 0 is the smallest 

possible value for c. We can see from Table 1 that the number of 

Class 3 MBs will become even larger if c is relaxed to larger 

values. 
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Table 1   

Percentage of Class 1, Class 2, and Class 3 MBs over the total MBs (100 frames for Qcif and 50 frames for Cif and SD) 

                                      

Sequence                            

QP=23                             QP=28                            QP=33                           

Class 1 MB  Class 2 MB  Class 3 MB  Class 1 MB  Class 2 MB  Class 3 MB  Class 1 MB  Class 2 MB  Class 3 MB  

Q
ci

f 
(1

7
6
x
1
4
4
) 

Foreman_Qcif  (c=0)             50%          5.5%          44.4%        33.8%      6.7% 59.4% 14.9% 8.2% 76.7% 

Akiyo_Qcif  (c=0)               96%         0%           4%          89%        0% 10% 68.7% 0% 31.2% 

Mobile_Qcif  (c=0)               6.9%         0.7%        92.2%       1.5% 0.8% 97.6% 0.6% 0.8% 98.4% 

C
if

  

(3
5

2
x

2
8

8
) 

 

Bus_Cif 

c=0 21.6% 21.8% 56.8% 14.6% 22.2% 63.1% 4.2% 25.7% 70% 

c=2%·Cost_mid 21.6% 20.5% 57.9% 14.6% 20.8% 64.6% 4.2% 22.9% 72.8% 

c=4%·Cost_mid 21.6% 19.5% 58.9% 14.6% 19.4% 66% 4.2% 20.6% 75.1% 

Football_Cif  (c=0) 22.4% 53.1% 24.5% 15.3% 54.1% 30.5% 2.3$ 58% 39.7% 

Container_Cif  (c=0) 90.6% 0% 9.3% 65.6% 0.2% 34.2% 48.8% 2.6% 48.6% 

 

Mobile_Cif 

c=0 11% 8.1% 80.9% 7.2% 8.5% 84.3% 4.3% 9.7% 86% 

c=2%·Cost_mid 11% 7.3% 81.7% 7.2% 7.7% 85.1% 4.3% 8.4% 87.3% 

c=4%·Cost_mid 11% 6.6% 82.4% 7.2% 6.8% 86% 4.3% 7.3% 88.4% 

Foreman_Cif  (c=0) 61.6% 12% 26.4% 51.5% 13.3% 35.2% 32.9% 17.1% 50% 

S
D

  

(7
2
0
x
5
7
6
) 

Mobile_SD (c=0) 37.6% 7.4% 55% 22.5% 7.9% 69.6% 12% 9% 79% 

Football_SD (c=0) 41.7% 29.4% 28.9% 32% 30% 38% 20.1% 32.1% 47.8% 

Flower_SD (c=0) 28.7% 8.7% 62.6% 25.1% 9.6% 65.3% 22.7% 11.4% 65.9% 

 

Fig. 2 shows the COST value distribution of Class 2 MBs and 

Class 3 MBs where c of Eqn. (3) is set to be 0. We only show 

results for Foreman_qcif with QP=28 in Fig. 2. Similar results 

can be observed for other sequences and other QP values. In Fig. 

2, 20 frames are coded. The experimental setting is the same as 

that described in Section 5. In order to have a complete 

observation, all the three COST values are displayed in Fig. 2, 

where Fig. 2(a), Fig. 2(b) and Fig. 2(c) show the distributions of 

init_COST, COST_mid, and COST_final respectively.  

From Fig. 2 and Table 1, we can observe that (a) a large 

portion of MBs with large current COST values can be 

classified as Class 3 where only a few SPs are needed and 

additional SPs do not produce significant improvement, and (b) 

The distribution of all the three COSTs for Class 2 and Class 3 

are quite similar. This implies that Class 2 or Class 3 cannot be 

differentiated based on their COST value only. 

Based on the above observations, we can draw several 

conclusions for the computation allocation as follows: 

(1) The number of SPs needed for keeping the performance for 

each MB is not always related to its current COST value. 

Therefore, using the COST value only as the MB importance 

measure, which is used by many previous methods [3,5,14], 

may not allocate SPs efficiently. 

(2) Further experiments show that for Class 2 MBs, the number 

of SPs needed for keeping the performance is roughly 

proportional to their init_COST value (although it is not true if 

Class 2 and Class 3 MBs are put together).  

These imply that we can have a better MB importance 

measure if we use the class and COST information together.  

As mentioned, since we cannot get COST_final before going 

through the Lower Path, Class 2 and Class 3 cannot be 

differentiated by their definition in Eqn. (3) in practice. 

Furthermore, since the COST distribution of Class 2 and Class 3 

is similar, the current COST value cannot differentiate between 

these two classes. Therefore, before describing our MB 

Importance Measure method, we first propose a practical MB 

classification method which we call the Predictive- 

MV-Accuracy-based Classification (PAC) algorithm. The PAC 

algorithm will be described in the following section. 

 

 
(a) Init_COST Distribution Comparison 

 
(b) COST_mid Distribution Comparison 

 
(c) COST_final Distribution Comparison 

Fig 2. COST value distribution for class 2 and class 3 MBs for Foreman_qcif 

sequence (Left: Class 2, right: Class 3). 

B.  The Predictive-MV-Accuracy-based Classification 

Algorithm 

The proposed PAC algorithm converts the definition of Class 

2 and Class 3 from the COST value point of view to the 

Predictive MV accuracy point of view.  

The basic idea of the PAC algorithm is described as follows:   

(1) If the motion pattern of a MB can be predicted accurately 
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(i.e., if PMV is accurate), then only a small local search is 

needed to find the final MV (i.e., the MV of COST_final). In this 

case, no matter how large the COST is, additional search points 

after the small local search are not needed because the final MV 

has already been found by the small local search. This 

corresponds to Class 3 MBs. 

(2) On the other hand, if the motion pattern of a MB cannot be 

accurately predicted, a small local search will not be able to find 

the final MV. In this case, a large area search (i.e., the Lower 

Path) after the small local search is needed to find the final MV 

with a lower COST value. This corresponds to Class 2 MBs. 

Since the MV_final (MV for COST_final) cannot be obtained 

before going through the Lower Path, the final MV of the 

co-located MB in the previous frame is used instead to measure 

the accuracy of motion-pattern prediction. Therefore, the 

proposed PAC algorithm can be described as: 
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where |PMVcur_MB-MVpre_final| is the measure of the motion- 

pattern-prediction accuracy, PMVcur_MB is the PMV [7] of the 

current MB, MVpre_final is the final MV of the co-located MB in 

the previous frame, and Th is the threshold to check whether the 

PMV is accurate or not. Th can be defined based on different 

small local search patterns. In the case of SHS, Th can be set as 

1 in integer pixel resolution. According to Eqn. (4), Class 1 

includes MBs that can find good matches from the previous 

frames. MBs with irregular or unpredictable motion patterns 

will be classified as Class 2. Class 3 MBs will include areas with 

complex textures but similar motion patterns to the previous 

frames. 

It should be noted that the classification using Eqn. (4) is very 

tight (in our case, any MV difference larger than 1 integer pixel 

will be classified as Class 2 and a large area search will be 

performed). Furthermore, by including MVpre_final for 

classification, we also take the advantage of including the 

temporal motion-smoothness information when measuring 

motion-pattern-prediction accuracy. Therefore, it is reasonable 

to use MVpre_final to take the place of MV_final. This will be 

demonstrated in Table 2 and Fig. 3 in the following and will be 

further demonstrated in the experimental results. 

 
Table 2 The detection rates of the PAC algorithm. 

Sequence Class 2 Detection Rate Class 3 Detection Rate 

Mobile Qcif 80% 82% 

Football_Cif 71% 90% 

Foreman_Qcif 75% 76% 

 

Table 2 shows the detection rates for Class 2 and Class 3 MBs 

with our PAC algorithm for some sequences, where the class 

definition in Eqn. (3) is used as the ground truth and c in Eqn. (3) 

is set to be 0. Table 2 shows that our PAC algorithm has high 

MB classification accuracy.  

     
(a)                                                           (b)   

      
                  (c)                                                          (d) 

     
(e)                                                         (f)   

     
                   (g)                                                       (h) 

Fig. 3. The original frames (a, e) and the distributions of Class 1 (b, f), Class 2 

(c, g), and Class 3 (d, h) MBs for Mobile_Cif and Bus_Cif. 

 

Fig. 3 shows the distribution of MBs for each class of two 

example frames by using our PAC algorithm. Fig. 3 (a) and (e) 

are the original frames. Blocks labeled grey in (b) and (f) are 

MBs belonging to Class 1. Blocks labeled black in (c) and (g) 

and blocks labeled white in (d) and (h) are MBs belonging to 

Class 2 and Class 3, respectively. 

Fig. 3 shows the reasonableness of the proposed PAC 

algorithm. From Fig. 3, we can see that most Class 1 MBs 

include backgrounds or flat areas that can find good matches in 

the previous frames ((b) and (f)). Areas with irregular or 

unpredictable motion patterns are classified as Class 2 (for 

example, the edge between the calendar and the background as 

well as the bottom circling ball in (c), and the running bus as 

well as the down-right logo in (g)). Most complex-texture areas 

are classified as Class 3, such as the complex background and 

calendar in (d) as well as the flower area in (h).  

C.  The MB Importance Measure 

Based on the discussion above and the definition of MB 

classes in Eqn. (4), we can describe our proposed CIM method 

as follows: 
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(1) MBs in Class 1 will always be allocated a fixed small 

number of SPs. 

(2) MBs in Class 2 will have high importance. They will be 

allocated more SPs, and each Class 2 MB will have a guaranteed 

minimum SPs for coding performance purposes. If two MBs 

both belong to Class 2, their comparative importance is 

proportional to their init_COST value and the SPs will be 

allocated accordingly.  

(3) MBs in Class 3 will have lower importance than MBs in 

Class 2. Similar to Class 2, we make the comparative 

importance of MBs within Class 3 also proportional to their 

init_COST value. By allowing some Class 3 MBs to have more 

SPs rather than fixing the SPs for each MB, the possible 

performance decrease due to the mis-classification of MBs from 

Eqn. (4) can be avoided. This will be demonstrated in the 

experimental results. 

With the CIM method, we can have a more accurate MB 

importance measure by differentiating MBs into classes and 

combining the class and the COST information. Based on the 

CIM method, we can develop a more efficient CCME algorithm. 

The proposed CCME algorithm will be described in detail in the 

following section.  

III. THE CCME ALGORITHM 

The framework of the proposed CCME algorithm is 

described in Fig. 4.  

From Fig. 4, the proposed CCME algorithm has four steps: 

(1) Frame Level computation Allocation (FLA). Given the 

available total computation budget for the whole video 

sequence, FLA allocates a computation budget to each frame.  

(2) Class Level computation Allocation (CLA). After one frame 

is allocated a computation budget, CLA further divides the 

computation into three independent sub-budgets (or class 

budgets) with one budget for each class defined in Eqn. (4). 

(3) MB Level computation Allocation (MLA). When performing 

ME, each MB will first be classified into one of the three classes 

according to Eqn. (4). MLA then allocates the computation to 

the MB from its corresponding class budget.  

(4) Step Level computation Allocation (SLA). After an MB is 

allocated a computation budget, SLA allocates these 

computations into each ME step.  

It should be noted that the CLA step and the MLA step are the 

key steps of the proposed CCME algorithm where our proposed 

CIM method is implemented. Furthermore, we also investigated 

two strategies for computation allocation for CLA and MLA 

steps: the tight strategy and the loose strategy. For the tight 

strategy, the actual computation used in the current frame must 

be lower than the computation allocated to this frame. Due to 

this property, the FLA step is sometimes not necessary for the 

tight strategy. In some applications, we can simply set the 

budget for all frames as a fixed number for performing the tight 

strategy. For the loose strategy, the actual computation used for 

some frames can exceed the computation allocated to these 

frames but the total computation used for the whole sequence 

must be lower than the budget. Since the loose strategy allows 

frames to borrow computation from others, the FLA step is 

needed to guarantee that the total computation used for the 

whole sequence will not exceed the available budget. 
 

 
Fig. 4 The framework for the proposed CCME algorithm. 

 

Since the performances of the loose-strategy algorithm and 

the tight-strategy algorithm are similar based on our 

experiments, we will only describe our algorithm based on the 

tight strategy in this paper. It should be noted that since the basic 

ideas of the CLA and MLA processes are similar for both the 

tight and loose strategies, a loose-strategy algorithm can be 

easily derived from the description in this paper. Furthermore, 

as mentioned, the FLA step is sometimes unnecessary for the 

tight strategy. In order to prevent the effect of frame level 

allocation and to have a fair comparison with other methods, we 

also skip the FLA step by simply fixing the target computation 

budget for each frame in this paper. In practice, various 

frame-level allocation methods [2-5] can be easily incorporated 

into our algorithm. 

A. Class Level computation Allocation (CLA) 

The basic ideas of the CLA process can be summarized as 

follows: 

(a) In the CLA step, the computation budget for the whole frame 

CF is divided into three independent class budgets (i.e. CClass(1), 

CClass(2) and CClass(3)). MBs from different classes will be 

allocated computation from their corresponding class budget 

and will not affect each other. 

(b) Since the CLA step is based on the tight strategy in this paper, 

the basic layer BLClass(i) is first allocated to guarantee that each 

MB has a minimum number of SPs. The remaining SPs are then 

allocated to the additional layer ALClass(i). The total budget for 

each class consists of the basic layer plus the additional layer. 

Furthermore, since the MBs in class 1 only performs a local 

search, the budget for class 1 only contains the basic layer (i.e. 

CClass(1)= BLClass(1) and ALClass(1)=0).  

(c) The actual computation used for each class in the previous 

frame ( pre

)i(classCA ) is used as the ratio parameter for class budget 

allocation for the additional layer. 

Therefore, the CLA process can be described as in Eqn. (5) 

and Fig. 5. 

 

1,2,3i                 ALBLC )i(class)i(class)i(class               (5) 

where pre

)i(class)i(class_MB)i(class NMBLBL    
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Cclass(i) is the computation allocated to class i, and BLclass(i) and 

ALclass(i) represent the computation allocation for the class i 

basic layer and additional layer, respectively. CF is the total 

computation budget for the whole frame, and BLF and ALF 

represent the basic-layer computation and the additional-layer 

computation for the whole frame, respectively. pre

)i(classNM  is the 

total number of MBs belonging to Class i in the previous frame 

and pre

)i(classCA  is the number of computation actually used for the 

Class i in the previous frame. BLMB_class(i) is the minimum 

number of computations guaranteed for each MB in the basic 

layer. In the case of SHS, we set BLMB_class(1) = BLMB_class(3) = 6 

SPs for Class 1 and Class 3, and BLMB_class(2) = 25 SPs for Class 

2. As mentioned, since Class 2 MBs have higher importance in 

our CIM method, we guarantee them a higher minimum SP. 

Furthermore, in order to avoid too many useless SPs allocated to 

Class 2 MBs, a maximum number of SPs (ALMB_max_class(2)) is set. 

SPs larger than ALMB_max_class(2) are likely wasted and therefore 

are allocated to Class 3 MBs (ALF –ALclass(2)).  

 

 
Fig. 5 The Tight-Strategy-Based CLA process. 

 

From Eqn. (5) and Fig. 5, we can summarize several features 

of our CLA process as follows: 

(a) Since Class is newly defined in this paper, the CLA step is 

unique in our CCME method and is not included in the previous 

CCME algorithms [1-5,14]. 

(b) When performing CLA, the information from the previous 

frame ( pre

)i(classNM and pre

)i(classCA ) is used. pre

)i(classNM  provides a 

global-view estimation of the MB class distribution for the 

current frame, and pre

)i(classCA  is used as a ratio parameter for 

class budget allocation for the additional layer.  

(c) The CIM method is implemented in the CLA process where 

(i) the CA for Class 2 is normally larger than other classes, and 

(ii) Class 2 MBs have a larger guaranteed minimum number of 

SPs (i.e., BLMB_class(2) in the Tight-SLA). 
 

B.  MB Level computation Allocation (MLA) 

The MLA process can be described in Eqn. (6). Similar to the 

CLA process, a basic layer (BLMB) and an additional layer (ALMB) 

are set. When allocating the additional layer computation, the 

initial COST of the current MB ( init

cur_MBCOST ) is used as a 

parameter to decide the number of computation allocated. The 

MLA process for Class 2 or Class 3 MBs is described as in Fig. 

6.  
 

 ALBLC MB_curMB_curMB_cur                                            (6) 
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Ccur_MB is the computation allocated to the current MB, 
init

cur_MBCOST  is the initial COST of the current MB as in Eqn. 

(2), init

class(i)Avg_COST  is the average of the initial COST for all 

the already-coded MBs belonging to Class i in the current frame. 

“abclass(i)” is the computation budget available in the additional 

layer for class i before coding the current MB and “ pre

)i(classnm ” is 

the estimated number of remaining–uncoded MBs for class i 

before coding the current MB.  BLCMB_class(2) is equal to 

BLMB_class(2) if either abclass(2)>0 or nmclass(2) >1, and equal to 

BLMB_class(3) otherwise. It should be noted that BLCMB_class(2) is 

defined to follow the tight strategy where a larger ML-BL 

budget (BLMB_class(2)) is used if the available budget is sufficient 

and a smaller ML-BL budget (BLMB_class(3)) is used otherwise. 

)2(class_MB_maxAL  and 
)3(class_MB_maxAL  are the same as in Eqn. (5) 

and are set in order to avoid too many useless SPs allocated to 

the current MB. In the experiments of this paper, we set  

250BLAL )i(class_MB)i(class_MB_max   for a search range of 

32 pixels. It should be noted that since we cannot get the 

exact number of remaining MBs for each class before coding 

the whole frame, pre

)i(classnm  is estimated by the parameters of the 

previous frame. “abclass(i) ” and “ pre

)i(classnm ” are set as ALclass(i) and 

pre

)i(classNM  respectively at the beginning of each frame and are 

updated before coding the current MB as in Eqn. (7). 









i  class if                                  1nmnm

i     class if      LBCAabab

pre_MB

pre

iclass

pre

iclass

pre_MBpre_MBMBpreiclassiclass

)()(

_)()( )(      (7) 

where the definition of ALclass(i) and pre

)i(classNM  are the same as 

in Eqn. (5), and CApre_MB and BLpre_MB represent the actual 

computation consumed and the basic layer computation 

allocated for the MB right before the current MB, respectively. 

From Eqn. (5-7), we can see that the CLA and MLA steps are 

based on classification using our CIM method, where Class 1 

MBs are always allocated a fixed small number of SPs, and 

Class 2 and Class 3 MBs are first separated into independent 

        CF

FAL

)1(classBL )2(classBL )3(classBL )(2classAL )(3classAL

)(1classC )(2classC )(3classC

FBL
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class budgets and then allocated based on their init_COST value 

within each class budget. Thus, the proposed CCME algorithm 

can combine the class information and COST information for a 

more precise computation allocation.  

 

 
Fig. 6 The Tight-MLA process for Class 2 and Class 3 MBs. 

C.  Step Level computation Allocation (SLA) 

The SLA process will allocate the computation budget for an 

MB into each ME step. Since the SHS method is used to 

perform ME in this paper, we will describe our SLA step based 

on the SHS algorithm. However, our SLA method can easily be 

applied to other ME algorithms [9,10,15-17].  

The SLA process can be described as in Eqn. (8).  

 









































                             
1NS   if                     0

1NS   if        go it Let
C

     
1NSNS if                     0

1NSNS if        go it Let
C

                                       CSNSC

                                                         CSNSC

                                                                               CC 

chCross_Sear

chCross_Sear

SearchDiamondSmall

SearchHexMultichCross_Sear

SearchHexMultichCross_Sear

SearchHexSmall

SearchHexMultiSearchHexMultiSearchMulti_Hex

SearchCrosschCross_SearSearchCross

minStepSearchlSmall_Loca

__

__

__

__

_____

__

__

)(

)(

 (8) 

 

where
SearchLocalSmall_C _

, 
SearchCrossC _

, 
SearchHexMultiC __

, 
SearchHexSmallC __

and 

SearchDiamondSmallC __
are the computation allocated to the each ME 

step of the SHS algorithm. CStep_min is the minimum guaranteed 

computation for the Small Local Search Step. In the case of the 

SHS method, CStep_min is set to be 4. CSCross_Search and 

CSMulti_Hex_Search are the number of SPs in each sub-step of the 

Cross Search Step and the Multi Hexagon Search Step, 

respectively. For the SHS method, CSCross_Search and 

CSMulti_Hex_Search are equal to 4 and 16, respectively [7]. “Let it 

go” in Eqn. (8) means performing the regular motion search 

step. NSCross_Search and NSMulti_Hex_Search are the number of 

sub-steps in the Cross Search Step and the Multi Hexagon 

Search Step, respectively. They are calculated as in Eqn. (9). 
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where Ccur_MB is the computation budget for the whole MB as in 

Eqn. (6). RTCross_Search and RTMulti_Hex_Search are the pre-defined 

ratios by which the MB’s budget Ccur_MB is allocated to the 

Cross Search Step and the Multi Hexagon Search Step. In the 

case of SHS method, we set RTCross_Search to be 0.32 and 

RTMulti_Hex_Search to be 0.64. This means that 32% of the MB’s 

budget will be allocated to the Cross Search Step and 64% of 

the MB’s budget will be allocated to the Cross Search Step. We 

use the floor function (   ) in order to make sure that the integer 

sub-steps of search points are allocated.  

From Eqn. (8), we can see that the SLA process will first 

allocate the minimum guaranteed computation to the Small 

Local Search step. Then most of the available computation 

budget will be allocated to the Cross Search Step (32%) and the 

Multi Hexagon Search Step (64%). If there is still enough 

computation left after these two steps, the regular Small 

Hexagon Search and Small Diamond Search will be performed 

to refine the final MV. If there is not enough budget for the 

current MB, some motion search steps such as the Small 

Hexagon Search and Small Diamond Search will be skipped. In 

the extreme case, for example, if the MB’s budget only has 6 

SPs, then all the steps after the Small Local Search will be 

skipped and the SLA process will end up with only performing a 

Small Local Search. It should be noted that since the SLA is 

proceeded before the ME process, the computation will be 

allocated to the Cross Search and the Multi Hexagon Search 

Steps no matter whether these steps are skipped in the later ME 

process (i.e., skipped by th2 in Fig. 1). 

IV. EXPERIMENTAL RESULTS 

We implemented our proposed CCME algorithm on the 

H.264/MPEG-4 AVC reference software JM10.2 version [8]. 

Motion search was based on Simplified Hexagon Search (SHS) 

[7] where th1 and th2 in Fig. 1 is set to be 1000 and 5000, 

respectively.  For each of the sequences, 100 frames were coded, 

and the picture coding structure was IPPP….  It should be noted 

that the first P frame was coded by the original SHS method [7] 

to obtain initial information for each class. In the experiments, 

only the 16x16 partition was used with one reference frame 

coding for the P frames. The QP was set to be 28, and the search 

range was 32 pixels.  

A.  Experimental results for the CCME Algorithm 

In this section, we show experimental results for our 

proposed CCME algorithm. We fix the target computation (or 

SP) budget for each frame. The results are shown in Table 3 and 

Fig. 7. 

Table 3 shows PSNR, Bit Rate, the average number of search 

points actually used per frame (Actual SP) and the average 

number of search points per MB (Actual SP/MB) for different 

sequences. The Budget columns in the table represent the target 

SP budget for performing ME where 100% in the Scale column 

represents the original SHS [7]. Since we fix the target SP 

budget for each frame, the values in the Scale column are 

measured in terms of the number of SPs per frame (e.g., 40% in 

the Scale column means the target SP budget for each frame is 

40% of the average-SP-per-frame value of the original SHS [7]). 

)(iclassab
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Similarly, the values in the Budget SP column represent the 

corresponding number of SPs per frame for the budget scale 

levels indicated by the Scale column. Fig. 7 shows the number 

of SPs used for each frame as well as the target SP budgets for 

each frame under 60% budget levels for Football_Cif. Similar 

results can be found for other sequences. 

 
Table 3 

Experimental results for the Tight Strategy when fixing the target budget for 

each frame (note: the Budget SP and the Actual SP columns are measured in 

terms of the number of SPs per frame) 

Sequence Budget Actual 

SP 

PSNR 

(dB) 

Bit Rate 

(kbps) 

Actual 

SP/MB Scale Budget SP 

 

Football_Cif 

100% 22042 22042 35.96 1661.62 55 

60% 13225 10692 35.96 1678.38 27 

40% 8816 8615 35.96 1682.57 21 

 

Mobile_Cif 

100% 9871 9871 33.69 2150.60 24 

60% 5922 5785 33.69 2152.56 15 

40% 3948 3825 33.68 2165.31 10 

 

 
Fig. 7 The number of SPs used for each frame vs. the target frame-level budgets 

for the tight strategy for Football_Cif. 

 

Comparing the Actual SP column with the Budget SP column 

in Table 3, we can see that the number of SPs actually used is 

always smaller than the target SP budget for all target budget 

levels. This demonstrates that our CCME algorithm can 

efficiently perform computation allocation to meet the 

requirements of different target computation budgets. From 

Table 3, we can also see that our CCME algorithm has good 

performance even when the available budget is low (40% for 

Football and Mobile). This demonstrates the allocation 

efficiency of our algorithm. Furthermore, from Fig. 7, we can 

see that since the CCME algorithm is based on the tight strategy 

which does not allow computation borrowing from other frames, 

the number of SPs used in each frame is always smaller than the 

target frame-level budget. Thus, the average SPs per frame for 

the tight strategy is always guaranteed to be smaller than the 

target budget.  

B. Comparison with other methods 

In the previous sections, we have shown experimental results 

for our proposed CCME algorithm. In this section, we will 

compare our CCME methods with other methods.  

Similar to the previous seciton, we fixed the target 

computation budget for each frame to prevent the effect of 

frame level allocation. The following three methods are 

compared. It should be noted that all these three methods use 

our step-level allocation method for a fair comparison. 

(I) Perform the proposed CCME algorithm with the tight 

strategy (Proposed in Table 4). 

(II) Do not classify the MBs into classes and allocate 

computation only based on their Init_COST [5,14] (COST only 

in Table 4).  

(III) First search the (0,0) points of all the MBs in the frame, 

and then allocate SPs based on (0,0) SAD. This method is the 

variation of the strategy for many multi-pass methods [2-3] ((0,0) 

SAD in Table 4). 

Table 4 compares PSNR (in dB), Bit Rate (BR, in kbps), and 

the average number of search points per MB (SPs). The 

definition of the Budget Scale column of the table is the same as 

in Table 3. Fig. 8 shows the BR Increase vs. Budget Level for 

these methods where the BR Increase in defined by the ratio 

between the current bit-rate and its corresponding 100% Level 

bit-rate. 

From Table 4 and Fig. 8, we can see that our proposed CCME 

method can allocate SPs more efficiently than the other methods 

at different computation budget levels. This demonstrates that 

our proposed method, which combines the class and the COST 

information of the MB, can provide a more accurate way to 

allocate SPs.  

Table 4 

Performance Comparison for CCME algorithms (all sequences are Cif) 

  
  

  
  

 

Budget 

Proposed COST Only (0,0) SAD 

PSNR BR SPs PSNR BR SPs PSNR BR SPs 

  
  

 B
u

s 

100% 34.31 1424 35 34.31 1424 35 34.31 1424 35 

60% 34.31 1459 20 34.29 1484 19 34.29 1482 20 

40% 34.29 1524 13 34.25 1628 12 34.27 1642 13 

M
o
b
il

e 100% 33.69 2151 24 33.69 2151 24 33.69 2151 24 

50% 33.68 2153 12 33.69 2187 12 33.69 2196 11 

30% 33.68 2167 7 33.66 2276 7 33.66 2283 7 

S
te

fa
n

 100% 35.12 1354 22 35.12 1354 22 35.12 1354 22 

50% 35.11 1369 11 35.09 1404 10 35.09 1394 11 

35% 35.10 1376 7 34.98 1703 7 35.05 1642 7 

D
an

ce
r 100% 39.09 658 16 39.09 658 16 39.09 658 16 

60% 39.10 701 9 39.12 746 9 39.11 732 8 

50% 39.10 717 8 39.11 768 7 39.12 756 7 

F
o
re

m
an

 

100% 36.21 515 16 36.21 515 16 36.21 515 16 

70% 36.21 520 11 36.21 519 10 36.22 520 10 

50% 36.22 522 8 36.21 522 7 36.22 523 8 

F
o
o
tb

al
l 100% 35.96 1662 55 35.96 1662 55 35.96 1662 55 

60% 35.96 1678 27 35.96 1681 29 35.97 1689 28 

40% 35.96 1682 21 35.95 1719 21 35.96 1711 21 

 

For a further analysis of the result, we can compare the 

bit-rate performance of the Mobile sequence (i.e., Fig. 8 (b)) 

with its MB classification result (i.e., Fig. 3 (b)-(d)). When the 

budget level is low, our proposed algorithm can efficiently 

extract and allocate more SPs to the more important Class 2 

MBs (Fig. 3 (c)) while reducing the unnecessary SPs from Class 

3 (Fig. 3 (d)). This keeps the performance of our method as high 

as possible. Furthermore, since the number of extracted Class 2 

MBs is low (Fig. 3 (c)), our proposed algorithm can still keep 

high performance at very low budget levels (e.g., 5% budget 

level in Fig. 8 (b)). Compared to our method, the performances 
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of the other methods will significantly decrease when the budget 

level becomes low.  

 

 
                (a) Bus_Cif                                             (b) Mobile_Cif 

 
(c) Stefan_Cif                                         (d) Dancer_Cif 

 
 (e) Foreman_Cif                                     (f) Football_Cif 

Fig. 8 Performance comparison for different CCME algorithms. 

 

However, the results in Table 4 and Fig. 8 also show that for 

some sequences (e.g., Foreman and Football), the advantage of 

our CCME algorithm are not so obvious from the other methods. 

This is because: 

(1) For some sequences such as Football, the portion of Class 2 

MBs is large. In this case, the advantages of our CCME method 

from MB classification become less obvious. In extreme cases, 

if all MBs are classified into Class 2, our proposed CCME 

algorithm will be the same as the COST only algorithm).  

(2) For some sequences such as Foreman, the performance will 

not decrease much even when very few points are searched for 

each MB (e.g., our experiments show that the performance for 

Foreman_Cif will not decrease much even if we only search 6 

points for each MB). In this case, different computation 

allocation strategies will not make much difference. 

Table 5 shows the results for sequences with different 

resolutions (Mobile_Qcif and Mobile_SD) or using different 

QPs (Bus with QP =23 or 33). Table 5 shows the efficiency of 

our algorithm under different resolutions and different QPs. 

Furthermore, we can also see from Table 5 that the performance 

of our algorithm is very close to the other methods for 

Mobile_Qcif. The reason is similar to the case of Foreman_Cif 

(i.e., a local search for each MB can still get good performance 

and thus different computation allocation strategies will not 

make much difference).  

Table 5 

Experimental results for sequences with different resolutions or different QPs. 

 

 

Budget 

Proposed COST Only (0,0) SAD 

PSNR BR SPs PSNR BR  SPs PSNR BR  SPs 

B
u
s 

C
if

 

  
Q

P
=

2
3

 

100% 38.28 2639 33 38.28 2639 33 38.28 2639 33 

50% 38.26 2762 14 38.23 2912 13 38.24 2896 14 

B
u
s 

C
if

 

  
Q

P
=

3
3

 

100% 30.47 722 40 30.47 722 40 30.47 722 40 

50% 30.46 789 16 30.41 902 15 30.41 879 15 

  
 M

o
b
il

e 
 

Q
ci

f 

  
Q

P
=

2
8
 

100% 32.90 545 16 32.90 545 16 32.90 545 16 

50% 32.90 545 7 32.90 546 7 32.90 545 7 

  
M

 o
b
il

e 

S
D

 

  
Q

P
=

2
8
 

100% 34.07 7766 24 34.07 7766 24 34.07 7766 24 

30% 34.07 7776 7 34.06 8076 7 34.05 8124 7 

V. DISCUSSION AND ALGORITHM EXTENSION 

The advantages of our proposed CCME algorithm can be 

summarized as follows: 

(1) The proposed algorithm uses a more suitable way to 

measure MB importance by differentiating MBs into different 

classes. When the available budget is small, the proposed 

method can save unnecessary SPs from Class 3 MBs so that 

more SPs can be allocated to the more important Class 2 MBs, 

which keeps the performance as high as possible. When the 

available target budget is large, the method will have more spare 

SPs for Class 3 MBs, which can overcome the possible 

performance decrease from MB mis-classification and further 

improve the coding performance. 

(2) The proposed algorithm can reduce the impact of not having 

a global view of the whole frame for one-pass methods by (i) 

setting the basic and the additional layers, (ii) using previous 

frame information as the global view estimation, (iii) 

guaranteeing Class 2 MBs a higher minimum SPs, and (iv) using 

three independent class budgets so that an unsuitable allocation 

in one class will not affect other classes.   

Furthermore, we also believe the framework of our CCME 

algorithm is general and can easily be extended. Some possible 

extensions of our algorithm can be described as follows: 

(1) As mentioned, other FLA or SLA methods [1-5,14] can 

easily be implemented into our CCME algorithm. For example, 

in some time-varying motion sequences, an FLA algorithm may 

be very useful to allocate more computation to those 

high-motion frames and further improve the performance. 

(2) In this paper, we only perform experiments on the 16x16 

partition size and the IPPP… picture type. Our algorithm can 

easily be extended to ME with multiple partition sizes as well as 

multiple reference frames such as in H.264|AVC [12] as well as 

other picture types. 

(3) In this paper, we define three MB classes and perform 

CCME based on these three classes. Our method can also be 

extended by defining more MB classes and developing different 

CLA and MLA steps for different classes. 

VI. CONCLUSION 

In this paper, we propose a more accurate MB Importance 

Measure method by introducing the definition of class. A new 

one-pass CCME is then proposed based on the new measure 

method. The four computation allocation steps of FLA, CLA, 

MLA, and SLA in the proposed CCME algorithm are 
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introduced in the paper. Experimental results demonstrate that 

the proposed method can allocate computation more accurately 

and efficiently than previous methods to achieve better coding 

performance. 
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