
 1

Abstract—In this paper, a new Computation-Control Motion

Estimation (CCME) method is proposed which can perform

Motion Estimation (ME) adaptively under different computation

or power budgets while keeping high coding performance. We first

propose a new class-based method to measure the Macroblock

(MB) importance where MBs are classified into different classes

and their importance is measured by combining their class

information as well as their initial matching cost information.

Based on the new MB importance measure, a complete CCME

framework is then proposed to allocate computation for ME. The

proposed method performs ME in a one-pass flow. Experimental

results demonstrate that the proposed method can allocate

computation more accurately than previous methods and thus has

better performance under the same computation budget.

Index Terms—Computation-Control Video Coding, Motion

Estimation, MB Classification

I. INTRODUCTION AND RELATED WORK

OMPLEXITY-Scalable Video Coding (CSVC) (or

Computational-Scalable/Power-aware video coding) is of

increasing importance to many applications [1-5,11,13,14,18],

such as video communication over mobile devices with limited

power budget as well as real-time video systems which require

coding the video below a fixed number of processor

computation cycles.

The target of the CSVC research is to find an efficient way to

allocate the available computation budget for different Video

Parts (e.g., Group of Pictures (GOPs), frames, and Macroblocks

(MBs)) and different Coding Modules (e.g., Motion Estimation

(ME), Discrete Cosine Transform (DCT), and Entropy Coding)

so that the resulting video quality is kept as high as possible

under the given computation budget. Since the available

computation budget may vary, the CSVC algorithm should be

able to perform video coding under different budget levels.

Since ME occupies the major portion of the whole coding

complexity [6,12], we will focus on the computation allocation

for the ME part in this paper (i.e., Computation-Control Motion

Estimation (CCME)). Furthermore, since the computation often

can be roughly measured by the number of Search Points (SPs)

in ME, we will use the term SP and Computation

Weiyao Lin is with the Institute of Image Communication and Information

Processing, Shanghai Jiao Tong University, Shanghai, China (e-mail:

hellomikelin@gmail.com).

Krit Panusopone and David M. Baylon are with the Advanced Technology

Department, CTO Office, Home & Networks Mobility, Motorola Inc.

Ming-Ting Sun is with the Department of Electrical Engineering, University

of Washington, Seattle, USA (e-mail: mts@u.washington.edu).

interchangeably.

Many algorithms have been proposed for CCME [1-5,14].

They can be evaluated by two key parts of CCME: (1) the

computation allocation, and (2) the MB importance measure.

They are described as follows.

(1) The computation allocation order. Two approaches can be

used for allocating the computations: one-pass flow and

multi-pass flow. Most previous CCME methods [2-4] allocate

computation in a multi-pass flow, where MBs in one frame are

processed in a step-by-step fashion based on a table which

measures the MB importance. At each step, the computation is

allocated to the MB that is measured as the most important

among all the MBs in the whole frame. The table is updated

after each step. Since the multi-pass methods use a table for all

MBs in the frame, they can have a global view of the whole

frame while allocating computation. However, they do not

follow the regular coding order and require the ME process to

jump between MBs, which is less desirable for hardware

implementations. Furthermore, since the multi-pass methods do

not follow the regular coding order, the neighboring MB

information cannot be used for prediction to achieve better

performance. Compared to the multi-pass flow approach,

one-pass methods [5,14] allocate computation and perform ME

in the regular video coding order. They are more favorable for

hardware implementation and can also utilize the information

from neighboring MBs. However, it is more difficult to develop

a good one-pass method since (a) a one-pass method lacks a

global view of the entire frame and may allocate unbalanced

computations to different areas of the frame, and (b) it is more

difficult to find a suitable method to measure the importance of

MBs.

(2) The MB importance measure. In order to allocate

computation efficiently to different MBs, it is important to

measure the importance of the MBs for the coding performance,

so that more computation will be allocated to the more

important MBs (i.e., MBs with larger importance measure

values). Tai et al. [2] use the current Sum of Absolute

Difference (SAD) value for the MB importance measure. Their

assumption is that MBs with large matching costs will have

more room to improve, and thus more search points will be

allocated to these MBs. Chen et al. [5,14] use a similar measure

in their one-pass method. However, the assumption that larger

current SAD will lead to bigger SAD decrease is not always

guaranteed, which makes the allocation less accurate. Yang et

al. [3] use the ratio between the SAD decrease and the number

of SPs at the previous ME step to measure the MB importance.

Weiyao Lin, Krit Panusopone, David M. Baylon, and Ming-Ting Sun

A Computation Control Motion Estimation Method for

Complexity-Scalable Video Coding

C

 2

Kim et al. [4] use a similar measure except that they use

Rate-Distortion Cost Decrease [4] instead of the SAD decrease.

However, their methods can only be used in multi-pass methods

where the allocation is performed in a step-by-step fashion and

cannot be applied to one-pass methods.

In this paper, a new one-pass CCME method is proposed. We

first propose a Class-based MB Importance Measure (CIM)

method where MBs are classified into different classes based on

their properties. The importance of each MB is measured by

combining its class information as well as its initial matching

cost value. Based on the CIM method, a complete CCME

framework is then proposed which first divides the total

computation budget into independent sub-budgets for different

MB classes and then allocates the computation from the class

budget to each step of the ME process. Furthermore, the

proposed method performs ME in a one-pass flow, which is

more desirable for hardware implementation. Experimental

results demonstrate that the proposed method can allocate

computation more accurately than previous methods while

maintaining good quality.

The rest of the paper is organized as follows: Section II

describes our proposed CIM method. Based on the CIM method,

Section III describes the proposed CCME algorithm in detail.

The experimental results are given in Section IV. Section V

gives some discussions, and Section VI concludes the paper.

II. THE CLASS-BASED MB IMPORTANCE MEASURE

In this section, we discuss some statistics of ME and describe

our Class-based MB Importance Measure method in detail. For

convenience, we use COST [10] as the ME matching cost in the

rest of the paper. The COST [10] is defined as in Eqn. (1):

)(MVRSADCOST MOTION   (1)

where SAD is the Sum of Absolute Difference for the block

matching error, R(MV) is the number of bits to code the Motion

Vector (MV), and MOTION is the Lagrange multiplier [19].

In this paper, the CIM method and the proposed CCME

algorithm is described based on the Simplified Hexagon Search

(SHS) [7] algorithm. However, our algorithms are general and

can easily be extended to other ME algorithms [9,10,15-17].

The SHS is a newly developed ME algorithm which can

achieve performance close to Full Search (FS) with

comparatively low SPs. The SHS process can be described as in

Fig. 1.

Before the ME process, the SHS algorithm first checks the

init_COST which is defined as:

 PMVCOSTCOSTCOSTinit ,min_)0,0( (2)

where COST(0,0) is the COST of the (0,0) MV, and COSTPMV is

the COST of the Predictive MV (PMV) [7]. If init_COST is

smaller than a threshold th1, the SHS algorithm will stop after

performing a small local search (search 4 points around the

position of the init_COST), which we call the Upper Path. If

init_COST is larger than the threshold, the SHS algorithm will

proceed to the steps of Small Local Search, Cross Search,

Multiple Hexagon Search, Small Hexagon Search and Small

Diamond Search [7], which we call the Lower Path. Inside the

lower path, another threshold th2 is used to decide whether or

not to skip the steps of Cross Search and Multi Hexagon

Search.

Fig 1. The SHS process.

A. Analysis of Motion Estimation Statistics

In order to analyze the relationship between the COST value

and the number of search points, we define two more COSTs:

COST_mid (the COST value right after the Small Local Search

step in the Lower Path) and COST_final (the COST value after

going through the entire ME process), as in Fig. 1. Three MB

classes are defined as:

















c|COST_finalCOST_mid| and thinit_COST if 3

c|COST_finalCOST_mid| and thinit_COST if 2

 thinit_COST if 1

Class

1

1

1

MB_cur

 (3)

where cur_MB is the current MB, th1 is the threshold defined in

the SHS algorithm [7] to decide whether the init_COST is large

or small [7], and c is another threshold to decide the significance

of the cost improvement between COST_mid and COST_final.

MBs in Class 1 are MBs with small current COST values. Class

2 represents MBs with large current COST values where

additional searches can yield significant improvement. Class 3

represents MBs with large current COST values but where

further searches do not produce significant improvement. If we

can predict Class 3 MBs, we can save computation by skipping

further searches for the Class 3 MBs. It should be noted that

since we cannot get COST_final before actually going through

the Lower Path, the classification method of Eqn. (3) is only

used for statistical analysis. A practical classification method

will be proposed later in this section. Furthermore, since MBs in

Class 1 have small current COST value, their MB importance

measure can be easily defined. Therefore, we will focus on the

analysis of Class 2 and Class 3 MBs.

Table 1 lists the percentage of Class 1, Class 2 and Class 3

MBs over the total MBs for sequences of different resolutions

and under different Quantization Parameter (QP) values where c

of Eqn. (3) is set to be different values of 0, 2% of COST_mid,

and 4% of COST_mid. It should be noted that 0 is the smallest

possible value for c. We can see from Table 1 that the number of

Class 3 MBs will become even larger if c is relaxed to larger

values.

 3

Table 1

Percentage of Class 1, Class 2, and Class 3 MBs over the total MBs (100 frames for Qcif and 50 frames for Cif and SD)

Sequence

QP=23 QP=28 QP=33

Class 1 MB Class 2 MB Class 3 MB Class 1 MB Class 2 MB Class 3 MB Class 1 MB Class 2 MB Class 3 MB

Q
ci

f
(1

7
6
x
1
4
4
)

Foreman_Qcif (c=0) 50% 5.5% 44.4% 33.8% 6.7% 59.4% 14.9% 8.2% 76.7%

Akiyo_Qcif (c=0) 96% 0% 4% 89% 0% 10% 68.7% 0% 31.2%

Mobile_Qcif (c=0) 6.9% 0.7% 92.2% 1.5% 0.8% 97.6% 0.6% 0.8% 98.4%

C
if

(3
5

2
x

2
8

8
)

Bus_Cif

c=0 21.6% 21.8% 56.8% 14.6% 22.2% 63.1% 4.2% 25.7% 70%

c=2%·Cost_mid 21.6% 20.5% 57.9% 14.6% 20.8% 64.6% 4.2% 22.9% 72.8%

c=4%·Cost_mid 21.6% 19.5% 58.9% 14.6% 19.4% 66% 4.2% 20.6% 75.1%

Football_Cif (c=0) 22.4% 53.1% 24.5% 15.3% 54.1% 30.5% 2.3$ 58% 39.7%

Container_Cif (c=0) 90.6% 0% 9.3% 65.6% 0.2% 34.2% 48.8% 2.6% 48.6%

Mobile_Cif

c=0 11% 8.1% 80.9% 7.2% 8.5% 84.3% 4.3% 9.7% 86%

c=2%·Cost_mid 11% 7.3% 81.7% 7.2% 7.7% 85.1% 4.3% 8.4% 87.3%

c=4%·Cost_mid 11% 6.6% 82.4% 7.2% 6.8% 86% 4.3% 7.3% 88.4%

Foreman_Cif (c=0) 61.6% 12% 26.4% 51.5% 13.3% 35.2% 32.9% 17.1% 50%

S
D

(7
2
0
x
5
7
6
)

Mobile_SD (c=0) 37.6% 7.4% 55% 22.5% 7.9% 69.6% 12% 9% 79%

Football_SD (c=0) 41.7% 29.4% 28.9% 32% 30% 38% 20.1% 32.1% 47.8%

Flower_SD (c=0) 28.7% 8.7% 62.6% 25.1% 9.6% 65.3% 22.7% 11.4% 65.9%

Fig. 2 shows the COST value distribution of Class 2 MBs and

Class 3 MBs where c of Eqn. (3) is set to be 0. We only show

results for Foreman_qcif with QP=28 in Fig. 2. Similar results

can be observed for other sequences and other QP values. In Fig.

2, 20 frames are coded. The experimental setting is the same as

that described in Section 5. In order to have a complete

observation, all the three COST values are displayed in Fig. 2,

where Fig. 2(a), Fig. 2(b) and Fig. 2(c) show the distributions of

init_COST, COST_mid, and COST_final respectively.

From Fig. 2 and Table 1, we can observe that (a) a large

portion of MBs with large current COST values can be

classified as Class 3 where only a few SPs are needed and

additional SPs do not produce significant improvement, and (b)

The distribution of all the three COSTs for Class 2 and Class 3

are quite similar. This implies that Class 2 or Class 3 cannot be

differentiated based on their COST value only.

Based on the above observations, we can draw several

conclusions for the computation allocation as follows:

(1) The number of SPs needed for keeping the performance for

each MB is not always related to its current COST value.

Therefore, using the COST value only as the MB importance

measure, which is used by many previous methods [3,5,14],

may not allocate SPs efficiently.

(2) Further experiments show that for Class 2 MBs, the number

of SPs needed for keeping the performance is roughly

proportional to their init_COST value (although it is not true if

Class 2 and Class 3 MBs are put together).

These imply that we can have a better MB importance

measure if we use the class and COST information together.

As mentioned, since we cannot get COST_final before going

through the Lower Path, Class 2 and Class 3 cannot be

differentiated by their definition in Eqn. (3) in practice.

Furthermore, since the COST distribution of Class 2 and Class 3

is similar, the current COST value cannot differentiate between

these two classes. Therefore, before describing our MB

Importance Measure method, we first propose a practical MB

classification method which we call the Predictive-

MV-Accuracy-based Classification (PAC) algorithm. The PAC

algorithm will be described in the following section.

(a) Init_COST Distribution Comparison

(b) COST_mid Distribution Comparison

(c) COST_final Distribution Comparison

Fig 2. COST value distribution for class 2 and class 3 MBs for Foreman_qcif

sequence (Left: Class 2, right: Class 3).

B. The Predictive-MV-Accuracy-based Classification

Algorithm

The proposed PAC algorithm converts the definition of Class

2 and Class 3 from the COST value point of view to the

Predictive MV accuracy point of view.

The basic idea of the PAC algorithm is described as follows:

(1) If the motion pattern of a MB can be predicted accurately

 4

(i.e., if PMV is accurate), then only a small local search is

needed to find the final MV (i.e., the MV of COST_final). In this

case, no matter how large the COST is, additional search points

after the small local search are not needed because the final MV

has already been found by the small local search. This

corresponds to Class 3 MBs.

(2) On the other hand, if the motion pattern of a MB cannot be

accurately predicted, a small local search will not be able to find

the final MV. In this case, a large area search (i.e., the Lower

Path) after the small local search is needed to find the final MV

with a lower COST value. This corresponds to Class 2 MBs.

Since the MV_final (MV for COST_final) cannot be obtained

before going through the Lower Path, the final MV of the

co-located MB in the previous frame is used instead to measure

the accuracy of motion-pattern prediction. Therefore, the

proposed PAC algorithm can be described as:

















Th|MVPMV| and thinit_COST if 3

Th|MVPMV| and thinit_COST if 2

 thinit_COST if 1

Class

final_precur_MB

final_precur_MBMB_cur

 (4)

where |PMVcur_MB-MVpre_final| is the measure of the motion-

pattern-prediction accuracy, PMVcur_MB is the PMV [7] of the

current MB, MVpre_final is the final MV of the co-located MB in

the previous frame, and Th is the threshold to check whether the

PMV is accurate or not. Th can be defined based on different

small local search patterns. In the case of SHS, Th can be set as

1 in integer pixel resolution. According to Eqn. (4), Class 1

includes MBs that can find good matches from the previous

frames. MBs with irregular or unpredictable motion patterns

will be classified as Class 2. Class 3 MBs will include areas with

complex textures but similar motion patterns to the previous

frames.

It should be noted that the classification using Eqn. (4) is very

tight (in our case, any MV difference larger than 1 integer pixel

will be classified as Class 2 and a large area search will be

performed). Furthermore, by including MVpre_final for

classification, we also take the advantage of including the

temporal motion-smoothness information when measuring

motion-pattern-prediction accuracy. Therefore, it is reasonable

to use MVpre_final to take the place of MV_final. This will be

demonstrated in Table 2 and Fig. 3 in the following and will be

further demonstrated in the experimental results.

Table 2 The detection rates of the PAC algorithm.

Sequence Class 2 Detection Rate Class 3 Detection Rate

Mobile Qcif 80% 82%

Football_Cif 71% 90%

Foreman_Qcif 75% 76%

Table 2 shows the detection rates for Class 2 and Class 3 MBs

with our PAC algorithm for some sequences, where the class

definition in Eqn. (3) is used as the ground truth and c in Eqn. (3)

is set to be 0. Table 2 shows that our PAC algorithm has high

MB classification accuracy.

(a) (b)

 (c) (d)

(e) (f)

 (g) (h)

Fig. 3. The original frames (a, e) and the distributions of Class 1 (b, f), Class 2

(c, g), and Class 3 (d, h) MBs for Mobile_Cif and Bus_Cif.

Fig. 3 shows the distribution of MBs for each class of two

example frames by using our PAC algorithm. Fig. 3 (a) and (e)

are the original frames. Blocks labeled grey in (b) and (f) are

MBs belonging to Class 1. Blocks labeled black in (c) and (g)

and blocks labeled white in (d) and (h) are MBs belonging to

Class 2 and Class 3, respectively.

Fig. 3 shows the reasonableness of the proposed PAC

algorithm. From Fig. 3, we can see that most Class 1 MBs

include backgrounds or flat areas that can find good matches in

the previous frames ((b) and (f)). Areas with irregular or

unpredictable motion patterns are classified as Class 2 (for

example, the edge between the calendar and the background as

well as the bottom circling ball in (c), and the running bus as

well as the down-right logo in (g)). Most complex-texture areas

are classified as Class 3, such as the complex background and

calendar in (d) as well as the flower area in (h).

C. The MB Importance Measure

Based on the discussion above and the definition of MB

classes in Eqn. (4), we can describe our proposed CIM method

as follows:

 5

(1) MBs in Class 1 will always be allocated a fixed small

number of SPs.

(2) MBs in Class 2 will have high importance. They will be

allocated more SPs, and each Class 2 MB will have a guaranteed

minimum SPs for coding performance purposes. If two MBs

both belong to Class 2, their comparative importance is

proportional to their init_COST value and the SPs will be

allocated accordingly.

(3) MBs in Class 3 will have lower importance than MBs in

Class 2. Similar to Class 2, we make the comparative

importance of MBs within Class 3 also proportional to their

init_COST value. By allowing some Class 3 MBs to have more

SPs rather than fixing the SPs for each MB, the possible

performance decrease due to the mis-classification of MBs from

Eqn. (4) can be avoided. This will be demonstrated in the

experimental results.

With the CIM method, we can have a more accurate MB

importance measure by differentiating MBs into classes and

combining the class and the COST information. Based on the

CIM method, we can develop a more efficient CCME algorithm.

The proposed CCME algorithm will be described in detail in the

following section.

III. THE CCME ALGORITHM

The framework of the proposed CCME algorithm is

described in Fig. 4.

From Fig. 4, the proposed CCME algorithm has four steps:

(1) Frame Level computation Allocation (FLA). Given the

available total computation budget for the whole video

sequence, FLA allocates a computation budget to each frame.

(2) Class Level computation Allocation (CLA). After one frame

is allocated a computation budget, CLA further divides the

computation into three independent sub-budgets (or class

budgets) with one budget for each class defined in Eqn. (4).

(3) MB Level computation Allocation (MLA). When performing

ME, each MB will first be classified into one of the three classes

according to Eqn. (4). MLA then allocates the computation to

the MB from its corresponding class budget.

(4) Step Level computation Allocation (SLA). After an MB is

allocated a computation budget, SLA allocates these

computations into each ME step.

It should be noted that the CLA step and the MLA step are the

key steps of the proposed CCME algorithm where our proposed

CIM method is implemented. Furthermore, we also investigated

two strategies for computation allocation for CLA and MLA

steps: the tight strategy and the loose strategy. For the tight

strategy, the actual computation used in the current frame must

be lower than the computation allocated to this frame. Due to

this property, the FLA step is sometimes not necessary for the

tight strategy. In some applications, we can simply set the

budget for all frames as a fixed number for performing the tight

strategy. For the loose strategy, the actual computation used for

some frames can exceed the computation allocated to these

frames but the total computation used for the whole sequence

must be lower than the budget. Since the loose strategy allows

frames to borrow computation from others, the FLA step is

needed to guarantee that the total computation used for the

whole sequence will not exceed the available budget.

Fig. 4 The framework for the proposed CCME algorithm.

Since the performances of the loose-strategy algorithm and

the tight-strategy algorithm are similar based on our

experiments, we will only describe our algorithm based on the

tight strategy in this paper. It should be noted that since the basic

ideas of the CLA and MLA processes are similar for both the

tight and loose strategies, a loose-strategy algorithm can be

easily derived from the description in this paper. Furthermore,

as mentioned, the FLA step is sometimes unnecessary for the

tight strategy. In order to prevent the effect of frame level

allocation and to have a fair comparison with other methods, we

also skip the FLA step by simply fixing the target computation

budget for each frame in this paper. In practice, various

frame-level allocation methods [2-5] can be easily incorporated

into our algorithm.

A. Class Level computation Allocation (CLA)

The basic ideas of the CLA process can be summarized as

follows:

(a) In the CLA step, the computation budget for the whole frame

CF is divided into three independent class budgets (i.e. CClass(1),

CClass(2) and CClass(3)). MBs from different classes will be

allocated computation from their corresponding class budget

and will not affect each other.

(b) Since the CLA step is based on the tight strategy in this paper,

the basic layer BLClass(i) is first allocated to guarantee that each

MB has a minimum number of SPs. The remaining SPs are then

allocated to the additional layer ALClass(i). The total budget for

each class consists of the basic layer plus the additional layer.

Furthermore, since the MBs in class 1 only performs a local

search, the budget for class 1 only contains the basic layer (i.e.

CClass(1)= BLClass(1) and ALClass(1)=0).

(c) The actual computation used for each class in the previous

frame (pre

)i(classCA) is used as the ratio parameter for class budget

allocation for the additional layer.

Therefore, the CLA process can be described as in Eqn. (5)

and Fig. 5.

1,2,3i ALBLC)i(class)i(class)i(class  (5)

where pre

)i(class)i(class_MB)i(class NMBLBL 

 6






































 3i if ALAL

2i if NMAL
CACA

CA
AL

1i if 0

AL

2classF

pre

iclass2classMBpre

3class

pre

2class

pre

2lassc

Ficlass

)(

)()(max__

)()(

)(
)(,min

)()()()(3class2class1classF BLBLBLBL  ,
FFF BLCAL  ,

Cclass(i) is the computation allocated to class i, and BLclass(i) and

ALclass(i) represent the computation allocation for the class i

basic layer and additional layer, respectively. CF is the total

computation budget for the whole frame, and BLF and ALF

represent the basic-layer computation and the additional-layer

computation for the whole frame, respectively. pre

)i(classNM is the

total number of MBs belonging to Class i in the previous frame

and pre

)i(classCA is the number of computation actually used for the

Class i in the previous frame. BLMB_class(i) is the minimum

number of computations guaranteed for each MB in the basic

layer. In the case of SHS, we set BLMB_class(1) = BLMB_class(3) = 6

SPs for Class 1 and Class 3, and BLMB_class(2) = 25 SPs for Class

2. As mentioned, since Class 2 MBs have higher importance in

our CIM method, we guarantee them a higher minimum SP.

Furthermore, in order to avoid too many useless SPs allocated to

Class 2 MBs, a maximum number of SPs (ALMB_max_class(2)) is set.

SPs larger than ALMB_max_class(2) are likely wasted and therefore

are allocated to Class 3 MBs (ALF –ALclass(2)).

Fig. 5 The Tight-Strategy-Based CLA process.

From Eqn. (5) and Fig. 5, we can summarize several features

of our CLA process as follows:

(a) Since Class is newly defined in this paper, the CLA step is

unique in our CCME method and is not included in the previous

CCME algorithms [1-5,14].

(b) When performing CLA, the information from the previous

frame (pre

)i(classNM and pre

)i(classCA) is used. pre

)i(classNM provides a

global-view estimation of the MB class distribution for the

current frame, and pre

)i(classCA is used as a ratio parameter for

class budget allocation for the additional layer.

(c) The CIM method is implemented in the CLA process where

(i) the CA for Class 2 is normally larger than other classes, and

(ii) Class 2 MBs have a larger guaranteed minimum number of

SPs (i.e., BLMB_class(2) in the Tight-SLA).

B. MB Level computation Allocation (MLA)

The MLA process can be described in Eqn. (6). Similar to the

CLA process, a basic layer (BLMB) and an additional layer (ALMB)

are set. When allocating the additional layer computation, the

initial COST of the current MB (init

cur_MBCOST) is used as a

parameter to decide the number of computation allocated. The

MLA process for Class 2 or Class 3 MBs is described as in Fig.

6.

 ALBLC MB_curMB_curMB_cur  (6)

where

















3class if BL

2class if BLC

 1class if BL

BL

cur_MB)MB_class(3

cur_MB)MB_class(2

cur_MB)1(class_MB

MB_cur















































































3class if AL0
nm

ba

Avg_COST

COST
maxmin

2class if AL0
nm

ab

Avg_COST

COST
maxmin

1class if 0

AL

cur_MB3classMB_maxpre

(3) class

(3) class

init

class(3)

init

cur_MB

cur_MB2classMB_maxpre

(2) class

(2) class

init

class(2)

init

cur_MB

cur_MB

MBcur

)(_

)(_

_

,,

,,

Ccur_MB is the computation allocated to the current MB,
init

cur_MBCOST is the initial COST of the current MB as in Eqn.

(2), init

class(i)Avg_COST is the average of the initial COST for all

the already-coded MBs belonging to Class i in the current frame.

“abclass(i)” is the computation budget available in the additional

layer for class i before coding the current MB and “ pre

)i(classnm ” is

the estimated number of remaining–uncoded MBs for class i

before coding the current MB. BLCMB_class(2) is equal to

BLMB_class(2) if either abclass(2)>0 or nmclass(2) >1, and equal to

BLMB_class(3) otherwise. It should be noted that BLCMB_class(2) is

defined to follow the tight strategy where a larger ML-BL

budget (BLMB_class(2)) is used if the available budget is sufficient

and a smaller ML-BL budget (BLMB_class(3)) is used otherwise.

)2(class_MB_maxAL and
)3(class_MB_maxAL are the same as in Eqn. (5)

and are set in order to avoid too many useless SPs allocated to

the current MB. In the experiments of this paper, we set

250BLAL)i(class_MB)i(class_MB_max  for a search range of

32 pixels. It should be noted that since we cannot get the

exact number of remaining MBs for each class before coding

the whole frame, pre

)i(classnm is estimated by the parameters of the

previous frame. “abclass(i) ” and “ pre

)i(classnm ” are set as ALclass(i) and

pre

)i(classNM respectively at the beginning of each frame and are

updated before coding the current MB as in Eqn. (7).









i class if 1nmnm

i class if LBCAabab

pre_MB

pre

iclass

pre

iclass

pre_MBpre_MBMBpreiclassiclass

)()(

_)()()((7)

where the definition of ALclass(i) and pre

)i(classNM are the same as

in Eqn. (5), and CApre_MB and BLpre_MB represent the actual

computation consumed and the basic layer computation

allocated for the MB right before the current MB, respectively.

From Eqn. (5-7), we can see that the CLA and MLA steps are

based on classification using our CIM method, where Class 1

MBs are always allocated a fixed small number of SPs, and

Class 2 and Class 3 MBs are first separated into independent

 CF

FAL

)1(classBL)2(classBL)3(classBL)(2classAL)(3classAL

)(1classC)(2classC)(3classC

FBL

 7

class budgets and then allocated based on their init_COST value

within each class budget. Thus, the proposed CCME algorithm

can combine the class information and COST information for a

more precise computation allocation.

Fig. 6 The Tight-MLA process for Class 2 and Class 3 MBs.

C. Step Level computation Allocation (SLA)

The SLA process will allocate the computation budget for an

MB into each ME step. Since the SHS method is used to

perform ME in this paper, we will describe our SLA step based

on the SHS algorithm. However, our SLA method can easily be

applied to other ME algorithms [9,10,15-17].

The SLA process can be described as in Eqn. (8).









































1NS if 0

1NS if go it Let
C

1NSNS if 0

1NSNS if go it Let
C

 CSNSC

 CSNSC

 CC

chCross_Sear

chCross_Sear

SearchDiamondSmall

SearchHexMultichCross_Sear

SearchHexMultichCross_Sear

SearchHexSmall

SearchHexMultiSearchHexMultiSearchMulti_Hex

SearchCrosschCross_SearSearchCross

minStepSearchlSmall_Loca

__

__

__

__

__

__

)(

)(

 (8)

where
SearchLocalSmall_C _

,
SearchCrossC _

,
SearchHexMultiC __

,
SearchHexSmallC __

and

SearchDiamondSmallC __
are the computation allocated to the each ME

step of the SHS algorithm. CStep_min is the minimum guaranteed

computation for the Small Local Search Step. In the case of the

SHS method, CStep_min is set to be 4. CSCross_Search and

CSMulti_Hex_Search are the number of SPs in each sub-step of the

Cross Search Step and the Multi Hexagon Search Step,

respectively. For the SHS method, CSCross_Search and

CSMulti_Hex_Search are equal to 4 and 16, respectively [7]. “Let it

go” in Eqn. (8) means performing the regular motion search

step. NSCross_Search and NSMulti_Hex_Search are the number of

sub-steps in the Cross Search Step and the Multi Hexagon

Search Step, respectively. They are calculated as in Eqn. (9).























 












 


Search_Hex_Multi

min_StepMB_rcuSearch_Multi_Hex

Search_Hex_Multi

Search_Cross

min_StepMB_rcuSearch_Cross

chCross_Sear

CS

)CC(RT
NS

CS

)CC(RT
NS (9)

where Ccur_MB is the computation budget for the whole MB as in

Eqn. (6). RTCross_Search and RTMulti_Hex_Search are the pre-defined

ratios by which the MB’s budget Ccur_MB is allocated to the

Cross Search Step and the Multi Hexagon Search Step. In the

case of SHS method, we set RTCross_Search to be 0.32 and

RTMulti_Hex_Search to be 0.64. This means that 32% of the MB’s

budget will be allocated to the Cross Search Step and 64% of

the MB’s budget will be allocated to the Cross Search Step. We

use the floor function ( ) in order to make sure that the integer

sub-steps of search points are allocated.

From Eqn. (8), we can see that the SLA process will first

allocate the minimum guaranteed computation to the Small

Local Search step. Then most of the available computation

budget will be allocated to the Cross Search Step (32%) and the

Multi Hexagon Search Step (64%). If there is still enough

computation left after these two steps, the regular Small

Hexagon Search and Small Diamond Search will be performed

to refine the final MV. If there is not enough budget for the

current MB, some motion search steps such as the Small

Hexagon Search and Small Diamond Search will be skipped. In

the extreme case, for example, if the MB’s budget only has 6

SPs, then all the steps after the Small Local Search will be

skipped and the SLA process will end up with only performing a

Small Local Search. It should be noted that since the SLA is

proceeded before the ME process, the computation will be

allocated to the Cross Search and the Multi Hexagon Search

Steps no matter whether these steps are skipped in the later ME

process (i.e., skipped by th2 in Fig. 1).

IV. EXPERIMENTAL RESULTS

We implemented our proposed CCME algorithm on the

H.264/MPEG-4 AVC reference software JM10.2 version [8].

Motion search was based on Simplified Hexagon Search (SHS)

[7] where th1 and th2 in Fig. 1 is set to be 1000 and 5000,

respectively. For each of the sequences, 100 frames were coded,

and the picture coding structure was IPPP…. It should be noted

that the first P frame was coded by the original SHS method [7]

to obtain initial information for each class. In the experiments,

only the 16x16 partition was used with one reference frame

coding for the P frames. The QP was set to be 28, and the search

range was 32 pixels.

A. Experimental results for the CCME Algorithm

In this section, we show experimental results for our

proposed CCME algorithm. We fix the target computation (or

SP) budget for each frame. The results are shown in Table 3 and

Fig. 7.

Table 3 shows PSNR, Bit Rate, the average number of search

points actually used per frame (Actual SP) and the average

number of search points per MB (Actual SP/MB) for different

sequences. The Budget columns in the table represent the target

SP budget for performing ME where 100% in the Scale column

represents the original SHS [7]. Since we fix the target SP

budget for each frame, the values in the Scale column are

measured in terms of the number of SPs per frame (e.g., 40% in

the Scale column means the target SP budget for each frame is

40% of the average-SP-per-frame value of the original SHS [7]).

)(iclassab

pre

(i) class

(i) class

nm

ab

pre

(i) class

(i) class

init

class(i)

init

cur_MB

nm

ab

Avg_COST

COST


MB_curC
cur_MBBL

+ =

cur_MBAL

 8

Similarly, the values in the Budget SP column represent the

corresponding number of SPs per frame for the budget scale

levels indicated by the Scale column. Fig. 7 shows the number

of SPs used for each frame as well as the target SP budgets for

each frame under 60% budget levels for Football_Cif. Similar

results can be found for other sequences.

Table 3

Experimental results for the Tight Strategy when fixing the target budget for

each frame (note: the Budget SP and the Actual SP columns are measured in

terms of the number of SPs per frame)

Sequence Budget Actual

SP

PSNR

(dB)

Bit Rate

(kbps)

Actual

SP/MB Scale Budget SP

Football_Cif

100% 22042 22042 35.96 1661.62 55

60% 13225 10692 35.96 1678.38 27

40% 8816 8615 35.96 1682.57 21

Mobile_Cif

100% 9871 9871 33.69 2150.60 24

60% 5922 5785 33.69 2152.56 15

40% 3948 3825 33.68 2165.31 10

Fig. 7 The number of SPs used for each frame vs. the target frame-level budgets

for the tight strategy for Football_Cif.

Comparing the Actual SP column with the Budget SP column

in Table 3, we can see that the number of SPs actually used is

always smaller than the target SP budget for all target budget

levels. This demonstrates that our CCME algorithm can

efficiently perform computation allocation to meet the

requirements of different target computation budgets. From

Table 3, we can also see that our CCME algorithm has good

performance even when the available budget is low (40% for

Football and Mobile). This demonstrates the allocation

efficiency of our algorithm. Furthermore, from Fig. 7, we can

see that since the CCME algorithm is based on the tight strategy

which does not allow computation borrowing from other frames,

the number of SPs used in each frame is always smaller than the

target frame-level budget. Thus, the average SPs per frame for

the tight strategy is always guaranteed to be smaller than the

target budget.

B. Comparison with other methods

In the previous sections, we have shown experimental results

for our proposed CCME algorithm. In this section, we will

compare our CCME methods with other methods.

Similar to the previous seciton, we fixed the target

computation budget for each frame to prevent the effect of

frame level allocation. The following three methods are

compared. It should be noted that all these three methods use

our step-level allocation method for a fair comparison.

(I) Perform the proposed CCME algorithm with the tight

strategy (Proposed in Table 4).

(II) Do not classify the MBs into classes and allocate

computation only based on their Init_COST [5,14] (COST only

in Table 4).

(III) First search the (0,0) points of all the MBs in the frame,

and then allocate SPs based on (0,0) SAD. This method is the

variation of the strategy for many multi-pass methods [2-3] ((0,0)

SAD in Table 4).

Table 4 compares PSNR (in dB), Bit Rate (BR, in kbps), and

the average number of search points per MB (SPs). The

definition of the Budget Scale column of the table is the same as

in Table 3. Fig. 8 shows the BR Increase vs. Budget Level for

these methods where the BR Increase in defined by the ratio

between the current bit-rate and its corresponding 100% Level

bit-rate.

From Table 4 and Fig. 8, we can see that our proposed CCME

method can allocate SPs more efficiently than the other methods

at different computation budget levels. This demonstrates that

our proposed method, which combines the class and the COST

information of the MB, can provide a more accurate way to

allocate SPs.

Table 4

Performance Comparison for CCME algorithms (all sequences are Cif)

Budget

Proposed COST Only (0,0) SAD

PSNR BR SPs PSNR BR SPs PSNR BR SPs

 B
u

s

100% 34.31 1424 35 34.31 1424 35 34.31 1424 35

60% 34.31 1459 20 34.29 1484 19 34.29 1482 20

40% 34.29 1524 13 34.25 1628 12 34.27 1642 13

M
o
b
il

e 100% 33.69 2151 24 33.69 2151 24 33.69 2151 24

50% 33.68 2153 12 33.69 2187 12 33.69 2196 11

30% 33.68 2167 7 33.66 2276 7 33.66 2283 7

S
te

fa
n

 100% 35.12 1354 22 35.12 1354 22 35.12 1354 22

50% 35.11 1369 11 35.09 1404 10 35.09 1394 11

35% 35.10 1376 7 34.98 1703 7 35.05 1642 7

D
an

ce
r 100% 39.09 658 16 39.09 658 16 39.09 658 16

60% 39.10 701 9 39.12 746 9 39.11 732 8

50% 39.10 717 8 39.11 768 7 39.12 756 7

F
o
re

m
an

100% 36.21 515 16 36.21 515 16 36.21 515 16

70% 36.21 520 11 36.21 519 10 36.22 520 10

50% 36.22 522 8 36.21 522 7 36.22 523 8

F
o
o
tb

al
l 100% 35.96 1662 55 35.96 1662 55 35.96 1662 55

60% 35.96 1678 27 35.96 1681 29 35.97 1689 28

40% 35.96 1682 21 35.95 1719 21 35.96 1711 21

For a further analysis of the result, we can compare the

bit-rate performance of the Mobile sequence (i.e., Fig. 8 (b))

with its MB classification result (i.e., Fig. 3 (b)-(d)). When the

budget level is low, our proposed algorithm can efficiently

extract and allocate more SPs to the more important Class 2

MBs (Fig. 3 (c)) while reducing the unnecessary SPs from Class

3 (Fig. 3 (d)). This keeps the performance of our method as high

as possible. Furthermore, since the number of extracted Class 2

MBs is low (Fig. 3 (c)), our proposed algorithm can still keep

high performance at very low budget levels (e.g., 5% budget

level in Fig. 8 (b)). Compared to our method, the performances

 9

of the other methods will significantly decrease when the budget

level becomes low.

 (a) Bus_Cif (b) Mobile_Cif

(c) Stefan_Cif (d) Dancer_Cif

 (e) Foreman_Cif (f) Football_Cif

Fig. 8 Performance comparison for different CCME algorithms.

However, the results in Table 4 and Fig. 8 also show that for

some sequences (e.g., Foreman and Football), the advantage of

our CCME algorithm are not so obvious from the other methods.

This is because:

(1) For some sequences such as Football, the portion of Class 2

MBs is large. In this case, the advantages of our CCME method

from MB classification become less obvious. In extreme cases,

if all MBs are classified into Class 2, our proposed CCME

algorithm will be the same as the COST only algorithm).

(2) For some sequences such as Foreman, the performance will

not decrease much even when very few points are searched for

each MB (e.g., our experiments show that the performance for

Foreman_Cif will not decrease much even if we only search 6

points for each MB). In this case, different computation

allocation strategies will not make much difference.

Table 5 shows the results for sequences with different

resolutions (Mobile_Qcif and Mobile_SD) or using different

QPs (Bus with QP =23 or 33). Table 5 shows the efficiency of

our algorithm under different resolutions and different QPs.

Furthermore, we can also see from Table 5 that the performance

of our algorithm is very close to the other methods for

Mobile_Qcif. The reason is similar to the case of Foreman_Cif

(i.e., a local search for each MB can still get good performance

and thus different computation allocation strategies will not

make much difference).

Table 5

Experimental results for sequences with different resolutions or different QPs.

Budget

Proposed COST Only (0,0) SAD

PSNR BR SPs PSNR BR SPs PSNR BR SPs

B
u
s

C
if

Q

P
=

2
3

100% 38.28 2639 33 38.28 2639 33 38.28 2639 33

50% 38.26 2762 14 38.23 2912 13 38.24 2896 14

B
u
s

C
if

Q

P
=

3
3

100% 30.47 722 40 30.47 722 40 30.47 722 40

50% 30.46 789 16 30.41 902 15 30.41 879 15

 M

o
b
il

e

Q
ci

f

Q

P
=

2
8

100% 32.90 545 16 32.90 545 16 32.90 545 16

50% 32.90 545 7 32.90 546 7 32.90 545 7

M

 o
b
il

e

S
D

Q

P
=

2
8

100% 34.07 7766 24 34.07 7766 24 34.07 7766 24

30% 34.07 7776 7 34.06 8076 7 34.05 8124 7

V. DISCUSSION AND ALGORITHM EXTENSION

The advantages of our proposed CCME algorithm can be

summarized as follows:

(1) The proposed algorithm uses a more suitable way to

measure MB importance by differentiating MBs into different

classes. When the available budget is small, the proposed

method can save unnecessary SPs from Class 3 MBs so that

more SPs can be allocated to the more important Class 2 MBs,

which keeps the performance as high as possible. When the

available target budget is large, the method will have more spare

SPs for Class 3 MBs, which can overcome the possible

performance decrease from MB mis-classification and further

improve the coding performance.

(2) The proposed algorithm can reduce the impact of not having

a global view of the whole frame for one-pass methods by (i)

setting the basic and the additional layers, (ii) using previous

frame information as the global view estimation, (iii)

guaranteeing Class 2 MBs a higher minimum SPs, and (iv) using

three independent class budgets so that an unsuitable allocation

in one class will not affect other classes.

Furthermore, we also believe the framework of our CCME

algorithm is general and can easily be extended. Some possible

extensions of our algorithm can be described as follows:

(1) As mentioned, other FLA or SLA methods [1-5,14] can

easily be implemented into our CCME algorithm. For example,

in some time-varying motion sequences, an FLA algorithm may

be very useful to allocate more computation to those

high-motion frames and further improve the performance.

(2) In this paper, we only perform experiments on the 16x16

partition size and the IPPP… picture type. Our algorithm can

easily be extended to ME with multiple partition sizes as well as

multiple reference frames such as in H.264|AVC [12] as well as

other picture types.

(3) In this paper, we define three MB classes and perform

CCME based on these three classes. Our method can also be

extended by defining more MB classes and developing different

CLA and MLA steps for different classes.

VI. CONCLUSION

In this paper, we propose a more accurate MB Importance

Measure method by introducing the definition of class. A new

one-pass CCME is then proposed based on the new measure

method. The four computation allocation steps of FLA, CLA,

MLA, and SLA in the proposed CCME algorithm are

 10

introduced in the paper. Experimental results demonstrate that

the proposed method can allocate computation more accurately

and efficiently than previous methods to achieve better coding

performance.

REFERENCES

[1] Z. He, Y. Liang, L. Chen, I. Ahmad and D. Wu, “Power-rate-Distortiioin

Analysis for Wireless video Communication Under Energy Constraints,”

IEEE Trans. Circuits Syst. Video Technol., pp.645-658, 2005.

[2] P. Tai, S. Huang, C. Liu and J. Wang, “Computational aware scheme for

software-based block motion estimation,” IEEE Trans. Circuits Syst.

Video Technol., vol.13, pp 901-913, 2003.

[3] Z. Yang, H. Cai and J. Li, “A framework for fine-granular

computational-complexity scalable motion estimation,” IEEE

International Symposium on Circuits and Systems, 2005.

[4] C. Kim, J. Xin and A. Vetro, “Hierarchical Complexity Control of Motion

Estimation for H.264/AVC,” SPIE Conference Visual Communications

and Image Processing, vol. 6077, pp. 109-120, 2006.

[5] C. Chen, Y. Huang, C. Lee and L. Chen, “One-pass computation-aware

motion estimation with adaptive search strategy,” IEEE Trans.

Multimedia, vol. 8, no. 4, pp. 698-706, 2006.

[6] J. Zhang, and Y. He, “Performance and complexity joint optimization for

H.264 video coding,” IEEE International Symposium on Circuits and

Systems, pp. 888- 891, 2003.

[7] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified fast

motion estimation for JM,” JVT-P021, Poznan, Poland, 24-29 July, 2005.

[8] JM 10.2, http://iphome.hhi.de/suehring/tml/download/old_jm/.

[9] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block

matching motion estimation,” IEEE Trans. Image Processing, vol. 9, no.

2, pp. 287-290, 2000.

[10] W. Lin, D. M. Baylon, K. Panusopone and M.-T. Sun, “Fast sub-pixel

motion estimation and mode decision for H.264,” IEEE International

Symposium on Circuits and Systems, pp. 3482-3485, 2008.

[11] W. Lin, M.-T. Sun, R. Poovendran and Z. Zhang, “Activity Recognition

using a Combination of Category Components and Local Models for

Video Surveillance,” IEEE Trans. Circuits Syst. Video Technol., vol. 18,

no. 8, pp. 1128-1139, 2008.

[12] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of

the H.264/AVC video coding standard,” IEEE Trans. Circuit System

Video Technology, vol. 13, pp. 560-576, 2003.

[13] W. Burleson, P. Jain and S.Venkatraman, “Dynamically Parameterized

Architectures for power-aware video coding: Motion Estimation and

DCT,” IEEE Workshop on Digital and Computational Video, pp. 4-12,

2001.

[14] Y. Huang, C. Lee, C. Chen and L. Chen, “One-pass computation-aware

motion estimation with adaptive search strategy,” IEEE International

Symposium on Circuits and Systems, vol. 6, pp. 5469- 5472, 2005.

[15] Z. Zhou, M.T. Sun and Y.F. Hsu, “Fast variable block-size motion

estimation algorithms based on merge and split procedures for

H.264/MPEG-4 AVC,” IEEE International Symposium on Circuits and

Systems, pp. 725-728, 2004.

[16] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for

block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol.

4, pp. 438–442, Aug. 1994.

[17] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block

motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp.

313–317, June 1996.

[18] X. Yi and N. Ling, “Scalable complexity-distortion model for fast motion

estimation,” IEEE Visual Communications and Image Processing, 2005.

[19] T. Weigand, H. Schwarz, A. Joch, F. Kossentini and G. Sullivan,

"Rate-Constrained Coder Control and Comparison of Video Coding

Standards", IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp.

688-703, 2003.

http://iphome.hhi.de/suehring/tml/download/old_jm/

