
1

Peer-to-Peer Streaming of Layered Video:
Efficiency, Fairness and Incentive

Hao Hu†, Yang Guo∗, and Yong Liu†
†Electrical & Computer Engineering, Polytechnic Institute of NYU, Brooklyn, NY 11201

∗ Research and Innovation, Technicolor, Princeton, NJ 08540

Abstract—Recent advance in scalable video coding (SVC)
makes it possible for users to receive the same video with
different qualities. To adopt SVC in P2P streaming, two key
design questions need to be answered: 1) layer subscription:
how many layers each peer should receive? 2) layer scheduling:
how to deliver to peers the layers they subscribed? From the
system point of view, the most efficient solution is to maximize the
aggregate video quality on all peers, i.e., the social welfare. From
individual peer point of view, the solution should be fair. Fairness
in P2P streaming should additionally take into account peer
contributions to make the solution incentive-compatible. In this
paper, we first develop utility maximization models to understand
the interplay between efficiency, fairness and incentive in layered
P2P streaming. We show that taxation mechanisms can be devised
to strike the right balance between social welfare and individual
peer welfare. We then develop practical taxation-based P2P
layered streaming designs, including layer subscription strategy,
chunk scheduling policy, and mesh topology adaptation. Exten-
sive trace-driven simulations show that the proposed designs can
effectively drive layered P2P streaming systems to converge to
the desired operating points in a distributed fashion.

I. INTRODUCTION

P2P live video streaming has recently emerged as a cost-
efficient IPTV solution on the Internet. It has attracted sub-
stantial attentions in research community and industry. Several
widely deployed commercial P2P live streaming systems [1]–
[3] routinely attract hundreds of thousands of users to watch
live video broadcast online. Extensive research [4]–[10] has
studied various aspects of system design, ranging from P2P
overlay construction, data sharing strategy, adoption of ad-
vanced video coding, to the application of network coding
technique. In-depth measurement [11]–[13] study further al-
lows us to observe the working systems in the field.

The success of P2P computing hinges on the underlying
principle that participants shall contribute their resources (in
terms of bandwidth, storage space, or computational power)
while enjoying the service. Most existing P2P streaming
systems assume the cooperation of peers and deliver the
same video quality to all peers. With scalable video coding
(SVC) [14], it is possible for users to receive the same video
with different qualities. SVC encodes video into correlated
layers. The base layer can be independently decoded, while
higher layers are decodable only if layers beneath have been
decoded. The video quality perceived by a user increases as
the number of decoded layers increases. While multiple-layer
coded video incurs coding overhead, recent advance in SVC
coding has brought down the overhead to 10% [15]. It is now

practical to adopt SVC into P2P video streaming to extend its
design space.

The adoption of SVC into P2P streaming faces two key
design challenges: 1) layer subscription: how many layers
each peer should receive; and 2) layer scheduling: how to
deliver to peers the layers they subscribed. From the system
point of view, the most efficient solution is to maximize
the aggregate video quality perceived by all peers, i.e, to
optimize the social welfare. From individual peer point of
view, the solution should be fair. However, in P2P streaming,
due to the dual server-consumer role of peers, the notion of
fairness is much more subtle than that in the traditional server-
client systems, where clients are only considered as resource
consumers. A solution allocating the same video quality to all
peers regardless of their contributions would not be considered
as fair, and therefore would not provide incentives for peers to
contribute. A good layered P2P streaming solution has to strike
the right balance between efficiency, fairness and incentive.

In this paper, we develop analytical models and practical
streaming designs to understand and control the interplay
between efficiency, fairness and incentive in layered P2P
streaming. Specifically, we develop network-coding based util-
ity maximization models to obtain the most efficient layered
streaming solution. The choice of peer utility function reflects
the target fairness among peers when they are considered only
as video consumers. To incorporate contribution-awareness,
we adopt taxation as a peer-incentive mechanism and augment
the utility maximization models to make the solution incentive-
compatible. Taxation based incentive mechanism [16], [17]
offers a flexible framework that allows the tradeoff between
individual users’ fairness/welfare and the system-wide social
welfare (see Fig. 1). Let ud be the upload bandwidth con-
tributed by user d. Under a tax rate 0 ≤ t ≤ 1, the target
received video rate of user d is rd = (1− t)ud + t

N

∑N
i=1 ui,

where N is the total number of peers in the system. The
received video rate on a peer consists of two parts: a fraction
of its own contribution, and a fair share from the pool of taxed
bandwidth. The tax rate t adjusts the balance between indi-
vidual peers’ welfare and the social welfare. As t approaches
zero, the received video rate approaches the contributed rate,
mimicking the ‘tit-for-tat’ strategy. As t approaches one, the
received video rate is the same for all peers, thus achieve the
social optimum as described in Section II.

Our contribution can be summarized as follows:
• We develop utility maximization models to study the

interplay between efficiency, fairness and incentive in lay-
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Fig. 1: Social welfare vs. personal welfare. The tax rate t
determins the balance between social welfare and personal
welfare.

ered P2P streaming. The models enable us to numerically
investigate the impact of peering strategies and chunk
scheduling polices on the fundamental trade-offs between
the three.

• We adopt taxation mechanism to adjust the balance
between the social welfare and individual peer welfare.
We develop practical taxation-based P2P layered stream-
ing designs, including layer subscription strategy, chunk
scheduling policy, and mesh topology adaptation.

• We evaluate our system designs with extensive trace
driven simulations. The results show that the proposed
layered streaming designs can effectively drive P2P
streaming systems to the desired operating points in a
distributed fashion.

The remaining of the paper is organized as follows. We briefly
go through the related work in the following section. Utility-
maximization models and numerical studies are presented
in Section II. Taxation-based layered streaming designs are
presented in Section III. The performance of the proposed
designs are evaluated in Section IV. The paper is concluded
in Section V.

A. Related Work

The majority of existing P2P live streaming systems can be
classified into two groups: one group targeting at maximizing
the aggregate received video quality, namely social welfare;
the other striving for the fairness among peers, or individual
welfare. Fig. 1 depicts the relationship between these two
groups of strategies, which have contradicting goals that are
not attainable simultaneously.

Layered coding, such as SVC [14] or MDC [18], allows
users to receive the same video with different qualities. A
user’s perceived video quality is proportional to the number
of received video layers. SVC encodes a video into multiple
layers with nested dependency - an upper layer becomes
decodable only if all layers beneath it have been received
and decoded successfully. In contrast, MDC encodes a video
into layers that are independently decodable. Hence MDC is
more flexible than SVC. Our goal, however, is to design a
layered P2P protocol that can be implemented and deployed
in the field. The current designs of MDC still incur much

higher bandwidth overhead than that of SVC. We thus choose
SVC over MDC in this paper. We address the challenge of
supporting SVC type of inter-correlated layered video in P2P
streaming.

Layered coding has been applied to P2P streaming to
improve the social welfare over the traditional single layer
P2P streaming. For instance, [4] studies how to use layered
coding to fully utilize the available peer upload bandwidth in
a tree-based P2P overlay multicast. [19] proposes a 3-stage
chunk scheduling algorithm for mesh-based layered video
streaming to achieve high throughput and low video quality
jitter. In terms of achieving individual fairness/welfare, Cohen
advocated a tit-for-tat algorithm in the seminar paper [20].
[21] proposes a score-based incentive mechanism for P2P
live streaming. [22] proposes a service differentiated peer
selection algorithm that gives peers with higher contributions
more flexibility in choosing neighbors, thus obtain better
viewing quality. [23] and [10] utilize layered coding to achieve
fairness. Substreams/layers are traded among peers, and peers
contributing more are able to receive more in reciprocity. In
contrast, our paper develops taxation mechanisms to strike
the right balance between social welfare and individual peers’
welfare. The practical taxation-based P2P streaming protocol
is designed to drive the system converge to the desired
operating point.

The work in [16], [17] also employs taxation-based incen-
tive mechanism. A video is encoded into substreams using
multiple descriptions coding (MDC). Individual substreams
are distributed along trees formed by peers. The number
of trees joined by a peer is dynamically adjusted to reflect
the entitled video quality determined by the taxation policy.
However, tree-based streaming is more vulnerable to peer
churn than mesh-based streaming [6], [24]. In this paper,
we study mesh-based SVC P2P streaming with taxation. To
the best of our knowledge, the problem of applying taxation
to SVC type of layered P2P video streaming has not been
systematically studied before.

II. MODELING LAYERED P2P STREAMING

To gain insights into layered P2P streaming, we first de-
velop analytical models for layered P2P streaming systems
with arbitrary topologies. The models not only allow us to
analytically study the interplay between the efficiency, fairness
and incentive, but also offer us guidelines in designing the
practical system.

A. Maximizing Efficiency

When peers are cooperative, they are willing to contribute
their upload bandwidth without any incentive. The design
objective of the system is to maximize the aggregate video
quality on all peers. With layered coding, the perceived video
quality on a peer is an increasing function of the number
of video layers received. PSNR (Peak Signal-to-Noise Ratio)
is the standard objective metric to evaluate the quality of
a compressed video and thus can be adopted as the utility
function in layered video streaming. PSNR of a video coded
at rate rc can be approximated by a logarithmic function
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β log(rc) [25], where β is a constant related to the video
feature. This approximation is also valid in the SVC case [14].
Let rd be the total rate of received video layers on peer
d. If the aggregate uploading capacity of the server and
all peers is U , the aggregate receiving rate on all peers is
naturally bounded by

∑N
d=1 rd ≤ U . Since log(·) is a concave

function, the aggregate utility can be maximized when all peers
receive video at the same rate, i.e., rd = U

N . For single-layer
video streaming, it was shown in [26] that, if peers are fully
connected, a two-hop relay streaming can achieve this optimal
rate. The solution for layered video streaming naturally follows
if we let all peers subscribe to the same number of video layers
allowed by the rate U

N and deliver each layer to all peers
using the two-hop relay scheme. However, it is unrealistic to
have fully connected mesh in a large-scale streaming system.
For arbitrary streaming topology, the utility maximization in
layered streaming deserves more study.

1) Network Coding Model: We consider a SVC system
where the source server encodes a video stream into L layers
with nested dependency. Layer l can be decoded if all the
layers below l are received. A peer can subscribe up to k,
k ≤ L, layers. The server multicasts each layer to all peers
subscribed to it. There are L simultaneous multicast sessions,
one for each layer, in the P2P overlay network.

It is difficult to accurately model a mesh-based P2P stream-
ing system with arbitrary overlay topology due to the content
bottleneck [8]. Fortunately, by assuming network coding, we
can model the system as a closed-form optimization problem
for arbitrary topologies with peers’ uplink capacity as the
constraint. We allow the server and peers apply network coding
to video blocks. Network coding has been shown to achieve
the maximum multicast rate for single multicast session in
general network topology [27]. For multiple multicast sessions,
inter-session network coding might be needed to achieve the
maximal multicast rates. However, the complexity of inter-
session network coding is generally too high to be justified by
its additional performance gain on top of intra-session network
coding. In this paper, we only focus on intra-session network
coding. The server and peers apply network coding to video
blocks in the same layer.

Let a directed graph G = (V,E) be the overlay topology
of the P2P streaming system under study. Let S be the video
source server, and R = V \S be the set of peers interested in
receiving the video. Let ~xd = (x1

d, x
2
d, · · · , xL

d ) be the binary
vector of layers received by peer d: xl

d equals to 1 if peer
d received layer l, 0 otherwise. The video rate for layer l is
rl. To model network coding, we introduce gl,d

ij to denote the
information flow of layer l on link 〈i, j〉 ∈ E to destination
peer d. For a given peer d and layer l, {gl,d

ij , 〈i, j〉 ∈ E} form a
legitimate flow with rate rl from the source S to d and satisfy
the flow conservation on all nodes in the network. Denote by
f l

ij , maxd g
l,d
ij the maximum information flow on 〈i, j〉 for

all receivers of layer l. According to the theory of intra-session
network coding [27], [28], the multicast session for layer l is
supportable if and only if a bandwidth of f l

ij is allocated to
layer l on link 〈i, j〉.

We are interested in seeking the optimal P2P streaming so-
lution to maximize the aggregate video experience of all peers.

TABLE I: Notations

Notation Description
V set of nodes in the system
E set of overlay links
S video source server
R = V \S receiving peers
L number of layers
rl rate of layer l
~xd = {xl

d} layers received by peer d

gl,d
ij information flow of layer l on link 〈i, j〉

to peer d
f l

ij bandwidth needed for layer l on link 〈i, j〉
Ud peer d’s uplink capacity
Fd( ~xd) utility function of peer d

P1: Utility Maximization
Variables:

gl,d
ij continuous non-negative variable

fij continuous non-negative variable
xl

d binary variable

Objective:

max
X
d∈R

log(

LX
l=1

xl
drl) (1)

Constraints:

X
〈i,j〉∈E

gl,d
ij −

X
〈j,i〉∈E

gl,d
ji =

8><>:
xl

drl, i = S

−xl
drl, i = d

0, otherwise

∀d ∈ R, ∀l ≤ L (2a)

gl,d
ij ≤ f l

ij , ∀l ≤ L,∀d ∈ R, ∀〈i, j〉 ∈ E (2b)

xl+1
d ≤ xl

d, ∀l ≤ L, d ∈ R (2c)X
l

X
〈i,j〉∈E

f l
ij ≤ Ui, ∀i ∈ V (2d)

By adopting the PSNR-Rate model, we quantify a user’s video
experience by a utility function: Fd( ~xd) = β log(

∑L
l=1 x

l
dr

l).
With notations summarized in Table I, the optimal streaming
solution can be found by solving the utility maximization
problem P1.

Constraint (2a) of P1 guarantees the information flow
conservation on each peer. In (2b), f l

ij corresponds to the
maximum information flow on 〈i, j〉 for all receivers of layer
l. In SVC bitstream, higher layers depend on lower layers,
and so peer d may request l + 1 layer only if it has received
all layers up to l. (2c) captures this dependency among layers.
(2d) is the uplink capacity constraint for all layers on all peers
and the server .

B. Achieving Fairness

In the traditional resource allocation problems, utility max-
imization achieves different notions of fairness between com-
peting resource consumers. In P2P video streaming, each peer
plays a dual-role of server and consumer. We ignore peer’s
server role in the contribution-oblivious utility maximization.
The obtained optimal solution can also be interpreted as
fairness among peers without considering their contributions.
Within the fairness context, it is straightforward to show that
the solution of the utility maximization problem P1 achieves
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the proportional fairness [29] among peers under the given
overlay topology G and node upload capacity profile U .

Another commonly used fairness measure is the weighted
fairness. In the context of layered streaming, because of the
layer dependency in SVC encoding, peers have to first retrieve
lower layers. A solution achieving weighted fairness should
give priority to streaming lower layers to peers. Weighted fair
streaming solution can be obtained by replacing the PSNR-
rate utility function in P1 with a weighted-sum function. We
assign weights to layers in a decreasing order. Let wl be the
weight assigned to layer l. We have wi > wj , if i < j.
Instead of using PSNR-rate model, the video experience of
a peer is characterized by the summation of the weights of all
the received layers: Fd( ~xd) =

∑L
l=1 x

l
dw

l. The marginal gain
of receiving a lower layer outweighs that of receiving higher
layers. As a result, the optimal solution with the weighted-
sum utility function will easily satisfy the constraint (2c). If
we further relax the binary variables xl

d in P1 to continuous
variables within [0, 1], the optimal solution will naturally have
the property that xl

d > 0 only if xk
d = 1,∀k < l. Formally,

the original non-linear mixed integer programming problem is
relaxed into the following linear programming problem.

P2: Linear Approximation
Variables:

gl,d
ij continuous non-negative variable

f l
ij continuous non-negative variable

xl
d ∈ [0, 1], continuous variable

Objective:

max
X
d∈R

LX
l=1

xl
dwl (3)

Constraints: (2a), (2b), (2d)

The solution of the linear programming problem P2 gives
weighted priority for peers to receive lower layer video.
Another commonly employed fairness criterion is the max-min
fairness. Similar to the max-min network flow allocation [30],
the max-min fairness in layered streaming can be achieved
using the following “onion-peeling” solution.

1) set iteration counter k = 1; Initialize network topology
G(1) = G, receiving peers R(1) = R, and node upload
capacity profile U(1) = U ; Initialize the layer counter
to l = 1 and the receiving vector xl

d = 0,∀d, l.
2) for a given P2P streaming system {G(k), R(k), U(k)},

find the maximum supportable single-layer multicast
rate r∗(k) by solving the linear programing prob-
lem P3(G(k), R(k), U(k)), record the consumed upload
bandwidth {A∗d(k), d ∈ R(k)} in this iteration according
to output (5).

3) w(k) = 0; while (w(k) + rl < r∗(k))

{xl
d = 1,∀d ∈ R(k);w(k)+ = rl; l + +; }

4) if(w(k) == 0) exit;
5) update the remaining peer upload bandwidth

Ud(k + 1) = Ud(k)−A∗d(k)w(k)/r∗(k);

6) update topology G(k) and receiver set R(k) in the
following way:

a) for any peer d with zero remaining upload band-
width, Ud(k + 1) == 0, remove from G(k) all
egress links of d, 〈d, ·〉;

b) remove a peer from G(k) and R(k) if it has no
ingress link 〈·, d〉.

7) set k = k + 1, go back to step 2.

Essentially, we solve the problem iteratively. At each iteration,
we find the maximum multicast rate to all active receivers
(Step 2). The multicast rate is utilized to send the same number
of layers, starting from the lowest layer, to all receivers (Step
3 and 4). Peer upload bandwidth is updated (Step 5). A peer is
removed from the receiver set and streaming system if all its
neighbors have no upload bandwidth (Step 6). The remaining
peers can receive additional layers in the next iteration (Step
7). In such approach, we guarantee that, the receiver set for a
higher layer is always a subset of the receiver set of a lower
layer, and at each layer, the receiver set is maximized.

At each iteration, we only need to solve a linear program-
ming problem P3, which has much less variables than in P1
and P2. We will evaluate P2 and P3 in the following section.

P3(G, R, U)
Variables:

r supportable multicast rate
gd

ij information flow for peer d on link 〈i, j〉
fij physical flow on link 〈i, j〉
Ai consumed upload bandwidth on peer i

Objective:
max r

Constraints:

X
〈i,j〉∈V

gd
ij −

X
〈j,i〉∈V

gd
ji =

8><>:
r, i = S

−r, i = d

0, otherwise

∀d ∈ R, (4a)

gd
ij ≤ fij , ∀d ∈ R, ∀〈i, j〉 ∈ E (4b)X
〈i,j〉∈E

fij ≤ Ui, ∀i ∈ V (4c)

Output:
r∗; A∗i =

X
〈i,j〉∈E

max
d

g∗dij (5)

C. Providing Incentives

In the previous efficiency and fairness study, we do not con-
sider any incentive issues. This could cause serious problem in
reality. For example, if an Ethernet user with uplink capacity
of 2,000 Kbps and a DSL user with uplink capacity of 200
Kbps both receive video at rate of 500 Kbps, why would the
Ethernet user contribute more than 200 Kbps? If we assume
all peers are strategic, then the bandwidth contributed by peers
will decrease and everyone will get poor video quality. On the
other hand, if the DSL user uploads video at its full capacity,
he may deserve some “help” from Ethernet users to download
video at a rate higher than 200 Kbps.
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1) Taxation: It is well-known that, in social welfare theory,
taxation can help to improve the total utility of the whole
society while maintaining a certain level of fairness. An
optimal tax rate is usually non-linear and is complicated to
determine given that taxes distort user behaviors. Here, we
adopt the simple linear taxation method in [16], [17], that is

rd = (1− t)Ud +
t

N

∑
i

Ui, (6)

where t is the tax rate, N is the total number of peers. Unlike
the definition in [17], we define (1− t)Ud as peer d’s entitled
rate, and then map this rate to layers. All layers other than
the entitled layers are denoted as excess layers. The trade-
off between efficiency, fairness and incentive can be balanced
by adjusting the tax rate t. Higher tax rate introduces higher
system utility; smaller tax rate moves closer to tit-for-tat type
of fairness. When the tax rate equals 0, the taxation degrades
to the “tit-for-tat” or “bit-for-bit” strategy. In such a system,
the system utility is obviously the lowest. Some poor peers
can only receive a small portion of the video and thus obtain
a rather degraded quality even though they contribute all of
their uplink bandwidth. At the opposite side, when tax rate
is 1, all peers retrieve the same video rate regardless of their
contributions. Clearly, both scenarios are not desirable.

2) P2P Layered Streaming with Taxation: Two kinds of
P2P layered streaming designs can be considered under taxa-
tion: Equal share and Biased share.

Equal share: In this case, the taxation pool is equally
shared by all tax payers, i.e., participating peers in the system,
which is exactly following (6). To perfectly implement the
taxation scheme, one has to fully utilize the upload bandwidth
available on all peers in the system. A sophisticated scheduling
design is needed to meet this requirement by avoiding wasting
bandwidth as much as possible.

Biased share: We only require a peer to receive all its
entitled layers, i.e., rd ≥ (1 − t)Ud. The bandwidth in the
common taxation pool is distributed to maximize the system-
wide utility. Towards this goal, we augment the utility maxi-
mization models studied in the previous sections by imposing
an additional constraint on peer’s receiving rate. At a given
tax rate 0 < t ≤ 1, the utility maximization problem P2 can
be reformulated as P4 follows.

Constraint (8d) guarantees that every peer should at least
receive video at a rate proportional to its uploading contribu-
tion.

D. Numerical Studies

To gain insights on the interplay between efficiency, fairness
and incentive, we conducted numerical studies on example
systems with different topologies. For each system, we solve
P2 and P3 and P4 using AMPL [31]. The obtained numerical
results allow us to study the impact of streaming topology
on the system performance. We first solve P2 and P3 on a
streaming overlay topology with 40 peers. There is one server
and three types of peers with different upload bandwidth as
summarized in Table II. The server has degree of 8, and
only connects to Ethernet or Cable peers. We vary the degree

P4: Utility Maximization under Taxation
Variables:

gl,d
ij continuous non-negative variable

f l
ij continuous non-negative variable

xl
d ∈ [0, 1], continuous variable

Objective:

max
X
d∈R

LX
l=1

xl
dwl (7)

Constraints:

X
〈i,j〉∈E

gl,d
ij −

X
〈j,i〉∈E

gl,d
ji =

8><>:
xl

drl, i = S

−xl
drl, i = d

0, otherwise

∀d ∈ R, ∀l ≤ L (8a)

gl,d
ij ≤ f l

ij , ∀l ≤ L, ∀d ∈ R, ∀〈i, j〉 ∈ E (8b)X
l

X
〈i,j〉∈E

f l
ij ≤ Ui, ∀i ∈ V (8c)

X
l

xl
drl ≥ (1− t)

X
l

X
〈d,j〉∈E

f l
dj ∀d ∈ R (8d)

TABLE II: Nodes’ Settings

Type Uplink Capacity Number
Server 8000 Kbps 1

Ethernet peer 4000 Kbps 3
Cable peer 1000 Kbps 12
DSL peer 400 Kbps 25

of peers to investigate the impact of peer connectivity. The
maximum peer degree is 10. Peers can operate at two different
modes to select neighbors. One is the hierarchical mode in
which a peer prefers to connect to peers with the same type
(with 70% probability). The other is the random mode in
which peers randomly connect to other peers, regardless of
their types. The video stream is coded in 20 layers, each layer
is encoded at rate of 50 Kbps.

Fig. 2 shows the solutions of P2 under different average
peering degree. Fig. 2(a) compares the aggregated utility in
hierarchical and random cases. The Y-axe value is obtained
by dividing the aggregated utility by the maximum possible
utility (here it is the case when every receiver gets U

N ).
The system utility increases as peering degree increases. The
random mode gives better system wide utility. Fig. 2(b) and
2(c) compare the average receiving rate for each type of peers
under the two peering modes. The hierarchical mode gives
higher service differentiation. In the protocol design described
at Section III-C, we introduce mesh topology adaptation to
ensure the topology suits the taxation strategy.

In Fig. 3, we compares the aggregated utility, average
received rate for each type of peers in both hierarchical
and random modes by solving P3. The system-wide utility
also increases as peering degree increases. And hierarchical
mode again gives higher service differentiation. The service
differentiations in both modes are less than those in Fig. 2.
This is because max-min fairness put strict priority on sending
lower layers to all peers.

To investigate the impact of taxation, we study a numerical
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Fig. 2: Weighted fairness in hierarchical and random topologies. (a) System-wide utility under hierarchical and random
topologies with different peer connectivity; (b) Averaged received bitrate for heterogeneous peers under hierarchical topology
with different peer connectivity; (c) Averaged received bitrate for heterogeneous peers under random topology with different
peer connectivity.
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Fig. 3: Max-min fairness in hierarchical and random topologies. (a) System-wide utility under hierarchical and random
topologies with different peer connectivity; (b) Averaged received bitrate for heterogeneous peers under hierarchical topology
with different peer connectivity; (c) Averaged received bitrate for heterogeneous peers under random topology with different
peer connectivity.
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Fig. 4: Impact of taxation on fairness and system utility.
(a) Averaged received layers for heterogeneous peers under
different tax rate; (b) Achieved system-wide utility under
different tax rate.

example as shown in Fig. 4. The system has 15 cable peers
with uploading capacity of 1000 Kbps and 25 DSL peers with
400 Kbps and they are hierarchically connected with degree 6.
The video source is coded in 10 layers, each with 100 Kbps.
The layer weight wl is set as 2(10−l). We vary the tax rate from
0.05 to 0.95. As can be seen from Fig. 4(a), when the tax rate

is small, Cable peers with higher upload capacity obtain more
layers. The service differentiation provides good incentives for
them to participate in P2P sharing. As the tax rate increases,
the differences between Cable peers and DSL peers decrease.
On the other hand, system-wide utility increases with tax rate.

From the numerical results, we obtained the following
guidelines for taxation-based P2P layered streaming design.
1) When the tax rate is small and thus the system is geared
towards high service differentiation, hierarchical topology is
preferred. 2) When the tax rate increases and the resulting
system operates on a high utilization point, a more random
topology is preferred. 3) Receiving entitled layers should be
guaranteed for all peers and the uplink bandwidth should not
be devoted to excess layers unless there is no more request
for entitled layers.

III. LAYERED P2P STREAMING PROTOCOL DESIGN

While the analytical models allow us to understand the
the trade-offs in taxation-based layered video streaming, our
ultimate goal is to design distributed mesh-based streaming
protocols to dynamically balance the needs of fairness, incen-
tive and system efficiency. In our design, peers form a mesh
over which the video is distributed. A tracker serves as the
bootstrapping node for the system. The key design issues for
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such a layered P2P streaming protocol are layer subscription,
chunk scheduling, and mesh topology adaptation.

As shown in Fig. 5, multiple virtual streaming overlays, one
for each SVC video layer, are formed among participating
peers. Due to the dependency among video layers, upper
streaming overlays must have fewer peers than lower overlays.
A peer uses layer subscription scheme to determine how many
layers to subscribe to. The chunk scheduling algorithms on
peers allocate bandwidth among different overlays to balance
the streaming needs of different layers. Finally, the mesh
topologies need to be dynamically adjusted to adapt to the
changing layer subscription due to peer churn and/or other
network dynamics.

f

b

e

da
c

Virtual overlay 1

Physical layer

Virtual overlay 2

Virtual overlay 3

Fig. 5: Taxation based SVC P2P live streaming: virtual
overlays and bandwidth allocation.

In the theoretic framework developed in Section II, network
coding is adopted to achieve the optimum multicast efficiency
in general overlay topology. The gain of adopting network
coding in real P2P systems is still an open question [28].
In layered P2P streaming systems, applying network coding
to individual layers incurs extra coding/decoding overhead,
increases video playback delays, and makes the protocol
design more complex. Recent study [32] showed that when
peers are fully connected and peer uplinks are the only
bottlenecks, network coding is not needed. Even though we
don’t assume peers are fully connected, our distributed design
does not employ network coding. We will show through
simulations that the performance of the proposed mesh-based
P2P streaming design is very close to the performance bound
allowed by network coding.

A. Dynamic Layer Subscription

Under linear tax rate t, the target video download rate of
peer d is rd = (1− t)Ud + t

N

∑
i Ui, where (1− t)Ud is peer

d’s entitled rate and t
N

∑
i Ui is peer d’s excess rate. Entitled

and excess rates are then mapped to the number of entitled and
excess layers. Tax rate t is a global configuration parameter
and is known to all peers. Therefore peers can compute the
number of entitled layers locally. However, the calculation
of the number of excess layers needs global information -
all active peers’ uplink bandwidth. The number of excess
layers on a peer also varies as other peers join and leave the
system. We develop a distributed algorithm that probes peers’
number of excess layers and dynamically adjusts peers’ layer

subscriptions. The algorithm allows the system to approach the
utility maximization under taxation, and adapt to peer churn
and network dynamics nicely.

Let Li denote peer i’s entitled layers, and li denote the high-
est layer it is subscribed to. Motivated by the distributed utility
maximization achieved by TCP in congestion control [33],
we propose a distributed layer subscription algorithm with
Additive Increase Additive Decrease (AIAD) and exponential
backoff. Upon joining the streaming session, peer i sets its
initial layer subscription, li, to be Li, the number of its entitled
layers. It also starts a retry timer, ti = rand(1, T ), where
T is the retry time period. Upon the expiration of the retry
timer, if all currently subscribed layers can be received and
at least one neighbor peer possesses chunks of layer li + 1,
peer i increases its subscribed layer by one, li = li + 1,
and enters a trial period of T ′. Peer i sends out requests
for chunks in the newly added layer. If peer i is able to
successfully obtain most of requested chunks of the new layer
at the end of the trial period, it passes the test and the new
layer subscription is accepted. Otherwise, peer i reverts back
to original subscription, and enters an exponential back-off
stage. The retry timers is set to be ti = rand(1, 2kT ), where
k is number of consecutive failures. Meanwhile, peer i runs
a parallel subscription decrease process to ensure that it can
receive all subscribed layers. Subscription decrease process
periodically monitors the status of received layers. If the top
subscribed layer, li, becomes undecodable, and peer is not in
the aforementioned trial period, peer i reduces the number of
subscribed layers to li = max(li − 1, Li).

B. Chunk Scheduling

Each peer maintains a downloading window that moves
forward periodically. Peers periodically exchange chunk avail-
ability with their neighbors using buffer-maps. Neighbors help
each other retrieve missing chunks. Chunk scheduling decides
how to issue chunk requests to neighbor peers, and how to
serve the chunk requests from neighbor peers. The goal is to
properly utilize peers’ uplink bandwidths so that peers always
receive the entitled layers and receive the subscribed excess
layers with high probability. In the following, we present the
peer chunk requesting and chunk serving algorithms.

1) Chunk requesting: In SVC coded video, lower layer
bit-stream is more important than higher layer bit-stream.
Hence in principle, lower layer chunks should be requested
before higher layer chunks. In order to increase the data
chunk diversity and improve the chance that two peers always
have chunks to exchange, we further assume that data chunks
belonging to the entitled layers are equally important. This is
reasonable because the aggregated upload bandwidth in the
system is sufficient to deliver the entitled layers to all peers.
There is no need to distinguish different entitled layers. The
chunks are requested in the order of their importance: from
entitled layer chunks to excess layer chunks. A peer selects
one neighbor peer that owns the missing chunk to request
for the chunk. The probability of choosing a specific peer is
proportional to its serving rate to that peer. For example, if
requester R serves neighbors A, B and C with 20Kbps, 50Kbps



8

R

A B C

20Kbps 50Kbps 30Kbps

0.2 0.5 0.3

Fig. 6: Peer requests missing chunk from neighbor. Requester
R sends the request to A, B or C with probability 0.2, 0.5 and
0.3 respectively.

and 30Kbps respectively, it then sends the chunk request to
A, B and C with probability 0.2, 0.5, and 0.3 respectively, as
shown in Fig. 6.

2) Chunk serving: Chunk serving is more sophisticated.
Individual peers maintain two FIFO queues for each neighbor
(see Fig. 7). One queue is called entitled queue and the other
is called excess queue. Entitled queue holds chunk requests for
entitled layers, while excess queue holds chunk requests for
excess layers. The chunk requests in excess queues are sorted
in ascending order of video layers, with lowest layer chunk
requests at the head. The entitled queues have strict priority
over the excess queues. Excess queues would not be served
unless all entitled queues become empty. If entitled queues
become empty, the leftover bandwidth serves the requests in
excess queues in a round robin fashion. The requests that have
passed their playback deadlines are cleared out of the queues
and won’t be served.

: High Priority chunk : Low Priority chunk

bandwidth

leftover
bandwidth

To neighborsIn
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m
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g
Re
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Fig. 7: Peer serves neighbors. Low priority chunks will be
served only if high priority queues are empty.

C. Mesh Topology Adaptation

As discussed in Section II, hierarchical mesh topology is
more favorable than random topology in providing differen-
tiated services while random mesh is better for maximizing
the system-wide utility. In this section, we consider how
to efficiently adapt the mesh topology to achieve different
design goals. Mesh topology adaptation is achieved through
neighbor adaptation. A peer periodically contacts the tracker
to retrieve a list of candidate neighbors. It then applies the
adaptation strategy described below to ensure the overlay
topology converge to the desired topology.

  6:00 10:00 14:00 18:00 22:00   2:00
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Fig. 9: PPlive Online Users

Every peer has a preset peer out-degree. If the number
of neighbors falls below the preset out-degree, a peer in-
creases the number of neighbors by adding neighbors ran-
domly selected from the candidate list. If the current number
of neighbors is ok, a peer still selects one peer with low
contribution and replaces it with a new peer from the candidate
list. Specifically, a peer uses a replacement index to determine
which peer to be replaced. Suppose peer i needs to adapt
its neighbors. Let clj be the number of retrieved chunks of
layer l from peer j, and wl be the weight associate with
layer l. The replacement index for peer j is defined to be∑

l∈i′s entitled layers c
l
jwl. In addition, the layer weights w

are set such that wl > wk if l > k. The neighbor with the
smallest replacement index is selected and swapped out. The
length of the adaptation period is chosen as ten seconds in our
design. The philosophy behind this design is two-fold.
• Layer Level: a neighbor offering high level layers up to

the entitled layers should stay. There are fewer peers in
the higher virtual overlay. Peers who can offer high layer
chunks are more precious and are more likely of the same
class (with the same entitled layers).

• Chunk Level: among all neighbors offering chunks at the
same layer, those uploading more chunks should stay.

Simulation results in Section IV indicate that the mesh
topology will converge to desired structures. At a small tax
rate, which emphasizing differentiated services, hierarchical
topology is achieved. At a large tax rate, which optimizing
the system-wide utility, more random topology is realized.

IV. PERFORMANCE EVALUATION

We conduct extensive trace-driven simulations to evaluate
the performance of the proposed taxation-based P2P layered
streaming design. Specifically, we investigate the following
issues: (1) the effectiveness of taxation-based incentive mecha-
nism; (2) peer uplink bandwidth utilization; (3) the mesh topol-
ogy adaptation; (4) user/peer perceived video quality; and (5)
the convergence and optimality of AIAD layer subscription.

A. Simulation Setup

A flow-level event-driven simulator is developed in C++.
Unless stated otherwise, the simulations are driven by a trace
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Fig. 8: Received video layers for different types of peers under various tax rates. (a) Cumulative distribution of received
layers for different peers under tax rate 0; (b) Cumulative distribution of received layers for different peers under tax rate 0.5;
(c) Cumulative distribution of received layers for different peers under tax rate 0.95.

collected from the measurement study of PPlive [11], a real-
world P2P live streaming system. The trace was collected from
Nov 22nd 17:43, 2006 to Nov 23rd 17:43, 2006. All peer
arrivals and departures are recorded during this time. More
than 100,000 participants are observed and the number of
concurrent peers varies from 100 to more than 9,000. Fig. 9
shows the evolution of the number of concurrent peers.

The video is encoded into ten layers with layer rate of
100 Kbps. A ten layers SVC coded video can be created by
combining hierarchical B structure [34] coding and coarse-
grain scalability (CGS) [14] coding with acceptable overhead.
More layers give the framework larger operational region and
more room to adjust the balance between social welfare and
individual welfare. More layers also impose more challenges
on the underlying P2P system to properly handle the layer
subscription, chunk scheduling, and overlay adaption.

There are three types of peers: DSL peers (400 Kbps), Cable
peers (800 Kbps) and Ethernet peers (1500 Kbps). The fraction
of individual peer types and their respective uplink bandwidths
are summarized in Table III. In our simulation, there is one
video server with upload capacity of 10 Mbps.

TABLE III: Peer upload bandwidth distribution

Peer Type Uplink Bandwidth Percentage
DSL 400 Kbps 45%
Cable 800 Kbps 40%

Ethernet 1500 Kbps 15%

The peer download window is set to 30 seconds. Peers
exchange buffer-maps every second to calculate the missing
chunk downloading schedule. Mesh topology adaptation is
conducted every ten seconds. The values of T and T ′ in AIAD
layer subscription algorithm are set to be 5 seconds and 10
seconds, respectively.

B. Simulation Results

1) Effectiveness of Taxation Based Incentive Mechanism:
To reduce the randomness introduced by short-lived peers,
only peers with life time greater than one minute are counted

in this experiment. In taxation based P2P streaming, a peer’s
received video quality, or the number of layers, reflects its
bandwidth contribution and the system-wide tax rate. In ad-
dition, the peers with similar bandwidth contributions receive
similar video quality. Both are true as shown in Fig. 8, which
depicts the Cumulative Distribution Functions (CDFs) of the
numbers of received layers for different types of peers at
different tax rates. The peers from the same class consistently
receive a similar number of layers, while the numbers of
video layers received by different peer classes are close to
the optimum values–(5,9,10) under tax rate 0; (6,8,10) under
tax rate 0.5 and (7,7,8) under tax rate 0.95.

2) Bandwidth Utilization Efficiency: Peers’ uplink band-
width utilization is a key performance metric for any P2P
streaming system design. If the system is not well designed,
the so-called “content bottleneck” lowers down the uplink
bandwidth utilization, and degrades the average peers’ re-
ceived video quality.

Table IV lists the uplink bandwidth utilization (UBU)
and the wasted bandwidth ratio (WBR). Overall, the uplink
bandwidth utilization is consistently over 90%, indicating
that the protocol can efficiently alleviate content bottleneck
even without network coding. Interestingly, UBU is worse
at larger tax rates. As tax rate increases, the peers become
more altruistic, which requires more bandwidth sharing among
different types of peers. Due to the peer churn and mesh
topology constraint, the bandwidth sharing may not be always
possible, thus lower the utilization.

TABLE IV: System Bandwidth Utilization

Tax rate UBU WBR
0 99.4% 0.4%

0.5 97.9% 0.1%
0.95 93.1% 0.6%

In layered video, received chunks become undecodable if
the lower layers are not fully decoded. Wasted bandwidth
ratio (WBR) defines the fraction of bandwidth that is used for
delivering undecodable chunks. Again, the wasted bandwidth
ratio is pretty small, pointing to an efficient protocol design.
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3) Mesh Overlay Adaptation: Mesh overlay topology plays
a key role in service differentiation. Table V and VI list the
peer neighborhood statistics with the tax rate of 0 and 0.95,
respectively. With tax rate 0, the optimal number of video
layers for Ethernet users, Cable users, and DSL users are 10, 9,
and 5, respectively. Around 76% of Ethernet peers’ neighbors
are either Ethernet or Cable users, and around 77% of Cable
peers’ neighbors are either Ethernet or Cable users. In contrast,
DSL users mainly connect with other DSL users (70%). The
strong bias towards connecting with similar type of peers leads
to a hierarchical mesh topology, which allows Ethernet and
Cable users to exchange higher video layers (from layer 6 to
layer 10) that are not available at DSL users.

With tax rate 0.95, all peers are supposed to receive a
similar number of video layers regardless of their individual
bandwidth contributions. Numerical results in Section II-D
suggest that random mesh topology is better at achieving high
social welfare. Our mesh topology adaption scheme is able to
reflect this requirement. For DSL users, the fraction of DSL
neighbors is reduced from 70% (with tax rate 0) to 44%. For
Ethernet users, the fraction of DSL neighbors is increased from
24% to 40%. Compared with the mesh topology constructed
at tax rate 0, this is a more randomized topology for the peer
distribution in Table III.

4) Smoothness of Received Video Quality: Video quality is
related to the number of received video layers. In addition,
viewing quality is affected by the variations of the received
video layers over time. Quality of experience (QoE) is de-
graded if the number of received video layers changes fre-
quently. We define the following smoothness index to quantify
the playback smoothness of the received video.

SI =
1
K

K∑
k=0

|v(k)− v(k − 1)|
v(k)

, (9)

where v(k) is the received decodable layers at time period k,
and K is peer’s total number of online time period. The time
period is one second. Large smoothness index indicates bad
viewing quality caused by constant layer increasing/droping.
Fig. 10 shows the CDFs of smoothness index under different
tax rates. Under all scenarios, peers contributing more enjoy
smoother video playback. We also observed that as tax rate
increases, the smoothness indexes for bandwidth-rich peers
increase, while the smoothness indexes for bandwidth-poor
peers decrease. We suspect this is caused by the peering
topology at different tax rates.

As discussed in Section IV-B3, a hierarchical topology is
formed at tax rate 0. DSL peers are mainly connected with
other DSL peers and have to actively look for bandwidth
resources, which causes more layer changes. In contrast, Ether-
net and Cable users are mainly connected with each other, and
have abundant bandwidth within the cluster. Thus fewer layer
changes. As tax rate increases, the overlay topology becomes
more randomized. Different peers have equal/similar access to
bandwidth, leads to similar smoothness index.

5) Layer Subscription Convergence: In order to examine
the behavior of the layer subscription algorithm without the
impact of peer churn, a static topology with 500 peers is used

TABLE V: Topology Statistics For tax rate 0

Neighbor Type Ethernet Cable DSL
Ethernet 28.4% 19.0% 9.0%

Cable 47.3% 58.1% 21.1%
DSL 24.3% 22.9% 69.9%

TABLE VI: Topology Statistics For tax rate 0.95

Neighbor Type Ethernet Cable DSL
Ethernet 21.1% 14.9% 14.5%

Cable 38.5% 39.9% 41.5%
DSL 40.4% 45.2% 44.0%

in this experiment. The peers’ uplink bandwidth follows the
distribution as stated in Table III. We randomly pick one peer
from each bandwidth category and plot the evolution of its
layer subscription. We also vary the tax rate to examine its
impact. Fig. 11 shows the layer subscription process over time
with tax rate of 0, 0.5, and 0.95, respectively. With tax rate
of zero, peers are entirely selfish. The Ethernet peers with
bandwidth of 1500 Kbps receive all ten layers. The leftover
bandwidth subsidizes other peers. As a result, the optimal
layer subscription for Cable and DSL peers are 9 layers and
5 layers, respectively. With tax rate of 0.5, the optimal layer
subscription for DSL, Cable, and Ethernet peers are 6 layers,
8 layers, and 10 layers, respectively. Finally, with tax rate
of 0.95, peers are altruistic and every peer should receive
700 Kbps except for the Ethernet peers (800 Kbps). Since
video is encoded at 100 Kbps per layer, there are more “free”
bandwidth in this case, introducing minor oscillations in layer
subscription. In all cases, AIAD algorithm is able to quickly
converge to the target subscription layer and peers stay in their
optimal layers for most of the time.

V. CONCLUSIONS

Designing an efficient P2P live streaming system that is fair
to all peers and offers strong incentive for them to contribute
is challenging. In this paper, we develop utility maximization
models to understand the interplay between efficiency, fairness
and incentive in layered P2P streaming. The models enable
us to numerically investigate the impact of peering strategies
and chunk scheduling policies on the fundamental trade-offs
between the above three factors. We further integrate taxation-
based incentive mechanism into P2P layered streaming, and
develop a practical streaming system. Taxation-based P2P
streaming allows us to freely adjust the balance between the
social welfare and individual peer welfare. Extensive trace-
driven simulations demonstrate that the proposed designs can
effectively drive layered P2P streaming systems to operating
points with the desired balance between efficiency, fairness
and incentive.
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