
ar
X

iv
:1

50
2.

04
22

1v
1

 [c
s.

A
R

]
14

 F
eb

 2
01

5

A Row-parallel 8×8 2-D DCT Architecture Using Algebraic
Integer Based Exact Computation

A. Madanayake∗ R. J. Cintra† D. Onen‡ V. S. Dimitrov‡ N. T. Rajapaksha∗

L. T. Bruton‡ A. Edirisuriya∗

Abstract

An algebraic integer (AI) based time-multiplexed row-parallel architecture and two final-reconstruction step
(FRS) algorithms are proposed for the implementation of bivariate AI-encoded 2-D discrete cosine transform (DCT).
The architecture directly realizes an error-free 2-D DCT without using FRSs between row-column transforms, leading
to an 8×8 2-D DCT which isentirely free of quantization errorsin AI basis. As a result, the user-selectable accuracy
for each of the coefficients in the FRS facilitates each of the64 coefficients to have its precision set independently of
others, avoiding the leakage of quantization noise betweenchannels as is the case for published DCT designs. The
proposed FRS uses two approaches based on (i) optimized Dempster-Macleod multipliers and (ii) expansion factor
scaling. This architecture enables low-noise high-dynamic range applications in digital video processing that requires
full control of the finite-precision computation of the 2-D DCT. The proposed architectures and FRS techniques are
experimentally verified and validated using hardware implementations that are physically realized and verified on
FPGA chip. Six designs, for 4- and 8-bit input word sizes, using the two proposed FRS schemes, have been designed,
simulated, physically implemented and measured. The maximum clock rate and block-rate achieved among 8-bit
input designs are 307.787 MHz and 38.47 MHz, respectively, implying a pixel rate of 8×307.787≈2.462 GHz if
eventually embedded in a real-time video-processing system. The equivalent frame rate is about 1187.35 Hz for the
image size of 1920×1080. All implementations are functional on a Xilinx Virtex-6 XC6VLX240T FPGA device.

Keywords

DCT, Algebraic Integer Quantization, FPGA design

1 INTRODUCTION

High-quality digital video in multimedia devices and video-over-IP networks connected to the Internet are under expo-

nential growth and therefore the demand for applications capable of high dynamic range (HDR) video is accordingly

increasing. Some HDR imaging applications include automatic surveillance [1–4], geospatial remote sensing [5], traf-

fic cameras [6], homeland security [4], satellite based imaging [7–9], unmanned aerial vehicles [10–12], automotive

industry [13], and multimedia wireless sensor networks [14]. Such HDR video systems operating at high resolutions

require an associate hardware capable of significant throughput at allowable area-power complexity.

∗A. Madanayake, N. T. Rajapaksha and A. Edirisuriya are with the Department of Electrical and Computer Engineering, University of Akron,
Akron, OH, USA Email: arjuna@uakron.edu

†R. J. Cintra is with the Signal Processing Group, Departamento de Estatı́stica, Universidade Federal de Pernambuco. E-mail:
rjdsc@stat.ufpe.org

‡D. Onen, V. S. Dimitrov and L. T. Bruton are with Department ofElectrical and Computer Engineering, University of Calgary, Calgary, AB,
Canada.

1

http://arxiv.org/abs/1502.04221v1
arjuna@uakron.edu
rjdsc@stat.ufpe.org

Efficient codec circuits capable of both high-speeds of operationandhigh numerical accuracy are needed for next-

generation systems. Such systems may process massive amounts of video feeds, each at high resolution, with minimal

noise and distortion while consuming as little energy as possible [15].

The two-dimensional (2-D) discrete cosine transform (DCT)operation is fundamental to almost all real-time video

compression systems. The circuit realization of the DCT directly relates to noise, distortion, circuit area, and power

consumption of the related video devices [15]. Usually, the2-D DCT is computed by successive calls of the one-

dimensional (1-D) DCT applied to the columns of an 8×8 sub-image; then to the rows of the transposed resulting

intermediate calculation [16]. The VLSI implementation oftrigonometric transforms such as DCT and DFT is indeed

an active research area [17–33].

An ideal 8-point 1-D DCT requires multiplications by numbers in the formc[n] = cos(nπ/16), n = 0,1, . . . ,7.

These constants impose computational difficulties in termsof number binary representation since they are not rational.

Usual DCT implementations adopt a compromise solution to this problem employing truncation or rounding off [34,

35] to approximate such quantities. Thus, instead of employing the exact valuec[n], a quantized value is considered.

Clearly, this operation introduces errors.

One way of addressing this problem is to employ algebraic integer (AI) encoding [36, 37]. AI-encoding philos-

ophy consists of mapping possibly irrational numbers to array of integers, which can be arithmetically manipulated

without errors. Also, depending on the numbers to be encoded, this mapping can be exact. For example, all 8-point

DCT multipliers can be given an exact AI representation [38]. Eventually, after computation is performed, AI-based

algorithms require a final reconstruction step (FRS) in order to map the resulting encoded integer arrays back into

usual fixed-point representation at a given precision [36].

Besides the numerical representation issues, error propagation also plays a role. In particular, when considering

the fixed-point realization of the multiplication operation, quantization errors are prone to be amplified in the DCT

computation [39, 40]. Quantization noise at a particular 2-D DCT coefficient can have significant correlation with

noise in other coefficients depending on the statistics of the video signal of interest [31, 33, 39, 40]. Combating noise

injection, noise coupling, and noise amplification is a concern in a practical DCT implementation [31,33–35,39,40].

In [41, 42], AI-based procedures for the 2-D DCT are proposed. Their architecture was based on the low-

complexity Arai algorithm [43], which formed the building-block of each 1-D DCT using AI number representa-

tion. The Arai algorithm is a popular algorithm for video andimage processing applications because of its relatively

low computational complexity. It is noted that the 8-point Arai algorithm only needs five multiplications to generate

the eight output coefficients. Thus, we naturally choose this low complexity algorithm as a foundation for proposing

optimized architectures having lower complexity and lower-noise. However, such design required the algebraically en-

coded numbers to be reconstructed to their fixed-point format by the end of column-wise DCT calculation by means of

an intermediate reconstruction step. Then data are re-coded to enter into the row-wise DCT calculation block [41,42].

This approach is not ideal because it introduces both numerical representation errors and error propagation from the

intermediate FSR to subsequent blocks.

We propose a digital hardware architecture for the 8×8 2-D DCT capable of (i) arbitrarily high numeric accuracy

and (ii) high-throughput. To achieve these goals our designmaintains the signal flow free of quantization errors in all

its intermediate computational steps by means of a novel doubly AI encoding concept. No intermediate reconstruc-

tion step is introduced and the entire computation truly occurs over the AI structure. This prevents error propagation

throughout intermediate computation, which would otherwise result in error correlation among the final DCT coeffi-

cients. Thus errors are totally confined to a single FRS that maps the resulting doubly AI encoded DCT coefficients

2

into fixed-point representations [36]. This procedure allows the selection of individual levels of precision for each of

the 64 DCT spectral components at the FRS. At the same time, such flexibility does not affect noise levels or speed of

other sections of the 2-D DCT.

This works extends the 8-point 1-D AI-based DCT architecture [37, 41, 42] into a fully-parallel time-multiplexed

2-D architecture for 8×8 data blocks. The fundamental differences are (i) the absence of any intermediate reconstruc-

tion step; (ii) a new doubly AI encoding scheme; and (iii) theutilization of a single FRS. The proposed 2-D 8×8 ar-

chitecture has the following characteristics: (i) independently selectable precision levels for the 2-D DCT coefficients;

(ii) total absence of multiplication operations; and (iii)absence of leakage of quantization noise between coefficient

channels. The proposed architectures aim at performing theFRS operation directly in the bi-variate encoded 2-D AI

basis. We introduce designs based on (i) optimized Dempster-Macleod multipliers and on (ii) the expansion factor

approach [44]. All hardware implementations are designed to be realized on field programmable gate arrays (FPGAs)

from Xilinx [45].

This paper unfolds as follows. In Section 2 we review existing designs and the main theoretical points of number

representation based on AI. We keep our focus on the core results needed for our design. Section 3 brings a description

of the proposed circuitry and hardware architecture in block level detail. In Section 4 strategies for obtaining the

FRS block are proposed and described. Simulation results and actual test measurements are reported in Section 5.

Concluding remarks are drawn in Section 6.

2 REVIEW

The AI encoding was originally proposed for digital signal processing systems by Cozzens and Finkelstein [46].

Since then it has been adapted for the VLSI implementation ofthe 1-D DCT and other trigonometric transforms by

Julienet al. in [47–51], leading to a 1-D bivariate encoded Arai DCT algorithm by Wahid and Dimitrov [37, 41, 42,

52]. Recently, subsequent contributions by Wahidet al. (using bivariate encoded 1-D Arai DCT blocks for row and

column transforms of the 2-D DCT) has led to practical area-efficient VLSI video processing circuits with low-power

consumption [53–55]. We now briefly summarize the state-of-the-art in both 1-D and 2-D DCT VLSI cores based on

conventional fixed-point arithmetic as well as on AI encoding.

2.1 SUMMARY AND COMPARISON WITH L ITERATURE

2.1.1 FIXED-POINT DCT VLSI CIRCUITS

A unified distributed-arithmetic parallel architecture for the computation of DCT and the DST was proposed in [24]. A

direct-connected 3-D VLSI architecture for the 2-D prime-factor DCT that does not need a transpose memory (buffer)

is available in [25]. A pioneering implementation at a clockof 100 MHz on 0.8µm CMOS technology for the 2-D

DCT with block-size 8×8 which is suitable for HDTV applications is available in [17].

An efficient VLSI linear-array for bothN-point DCT and IDCT using a subband decomposition algorithmthat

results in computational- and hardware-complexity ofO(5N/8) with FPGA realization is reported in [20]. Recently,

VLSI linear-array 2-D architectures and FPGA realizationshaving computation complexityO(5N/8) (for forward

DCT) was reported in [21].

An efficient adder-based 2-D DCT core on 0.35µm CMOS using cyclic convolution is described in [29]. A

high-performance video transform engine employing a space-time scheduling scheme for computing the 2-D DCT in

real-time has been proposed and implemented in 0.18µm CMOS [22]. A systolic-array algorithm using a memory

3

based design for both the DCT and the discrete sine transformwhich is suitable for real-time VLSI realization was

proposed in [18]. An FPGA-based system-on-chip realization of the 2-D DCT for 8× 8 block size that operates at

107 MHz with a latency of 80 cycles is available in [28]. A low-complexity IP core for quantized 8×8/4×4 DCT

combined with MPEG4 codecs and FPGA synthesis is available in [30]. “New distributed-arithmetic (NEDA)” based

low-power 8× 8 2-D DCT is reported in [31]. A reconfigurable processor on TSMC 0.13 µm CMOS technology

operating at 100 MHz is described in [32] for the calculationof the fast Fourier transform and the 2-D DCT. A

high-speed 2-D transform architecture based on NEDA technique and having unique kernel for multi-standard video

processing is described in [33].

2.1.2 AI-BASED DCT VLSI CIRCUITS

The following AI-based realizations of 2-D DCT computationrelies on the row- and column-wise application of

1-D DCT cores that employ AI quantization [47–51]. The architectures proposed by Wahidet al. rely on the low-

complexity Arai Algorithm and lead to low-power realizations [41, 42, 52–54]. However, these realizations also are

based on repeated application along row and columns of an fundamental 1-D DCT building block having an FRS

section at the output stage. Here, 8×8 2-D DCT refers to the use of bivariate encoding in the AI basis and not to the

a true AI-based 2-D DCT operation.

A 4×4 approximate 2-D-DCT using AI quantization is reported in [56]. Both FPGA implementation and ASIC

synthesis on 90 nm CMOS results are provided. Although [56] employs AI encoding, it is not an error-free architecture.

The low complexity of this architecture makes it suitable for H.264 realizations.

2.2 PRELIMINARIES FOR ALGEBRAIC INTEGERENCODING AND DECODING

In order to prevent quantization noise, we adopt the AI representation. Such representation is based on a mapping

function that links input numbers to integer arrays.

This topic is a major and classic field in number theory. A famous exposition is due to Hardy and Wright [57,

Chap. XI and XIV], which is widely regarded as masterpiece onthis subject for its clarity and depth. Pohst also brings

a didactic explanation in [58] with emphasis on computational realization. In [59, p. 79], Pollard and Diamond devote

an entire chapter to the connections between algebraic integers and integral basis. In the following, we furnish an

overview focused on the practical aspects of AI, which may beuseful for circuit designers.

Definition 1 A real or complex number is called an algebraic integer if it is a root of a monic polynomial with integer

coefficients [38,57].

The set of algebraic integers have useful mathematical properties. For instance, they form a commutative ring,

which means that addition and multiplication operations are commutative and also satisfies distribution over addition.

A general AI encoding mapping has the following format

fenc(x;z) = a,

wherea is a multidimensional array of integers andz is a fixed multidimensional array of algebraic integers. It can

be shown that there always exist integers such that any real number can be represented with arbitrary precision [46].

Also there are real numbers that can be representedwithouterror.

4

Decoding operation is furnished by

fdec(a;z) = a• z,

where the binary operation• is the generalized inner product — a component-wise inner product of multidimensional

arrays. The elements ofz constitute the AI basis. In hardware, decoding is often performed by an FRS block, where

the AI basisz is represented as precisely as required.

As an example, let the AI basis be such thatz=
[
1 z1

]T
, wherez1 is the algebraic integer

√
2 and the superscriptT

denotes the transposition operation. Thus, a possible AI encoding mapping isfenc(x;z) = a=
[
a0 a1

]T
, wherea0

anda1 are integers. Encoded numbers are then represented by a 2-point vector of integers. Decoding operation is

simply given by the usual inner product:x= a• z= a0+a1z1. For example, the number 1−2
√

2 has the following

encoding:

fenc

(
1−2

√
2;

[
1√
2

])
=

[
1

−2

]
,

which is anexactrepresentation.

In principle, any number can be represented in an arbitrarily high precision [46, 60]. However, within a limited

dynamic range for the employed integers, not all numbers canbe exactly encoded. For instance, considering the real

number
√

3, we havefenc(
√

3;
[
1

√
2
]T

) =
[
88 −61

]T
, where integers were limited to be 8-bit long. Although

very close, the representation is not exact:

fdec

([
88

−61

]
;

[
1√
2

])
−
√

3≈ 9.21×10−4.

In a similar way, the multipliers required by the DCT could beencoded into 2-point integer vectors:fenc(c[n];z) =[
a0[n] a1[n]

]T
. Given that the DCT constants are algebraic integers [38], an exact AI representation can be de-

rived [61]. Thus, the integer sequencesa0[n] anda1[n] can be easily realized in VLSI hardware.

The multiplication between two numbers represented over anAI basis may be interpreted as a modular polynomial

multiplication with respect to the monic polynomial that defines the AI basis. In the above particular illustrative

example, consider the multiplication of the following pairof numbersa0+a1z1 with b0+b1z1, whereb0 andb1 are

integers. This operation is equivalent to the computation of the following expression:

(a0+a1x) · (b0+b1x) (mod x2−2).

Thus, existing algorithms for fast polynomial multiplication may be of consideration [62, p. 311].

In practical terms, a good AI representation possesses a basis such that: (i) the required constants can be repre-

sentedwithouterror; (ii) the integer elements provided by the representation are sufficiently small to allow a simple

architecture design and fast signal processing; and (iii) the basis itself contains few elements to facilitate simple

encoding-decoding operations.

Other AI procedures allow the constants to be approximated,yielding much better options for encoding, at the cost

of introducing error within the transform (before the FRS) [38].

5

Table 1: 2-D AI encoding of Arai DCT constants

c[4] c[6] c[2]− c[6] c[2]+ c[6][
0 0
0 1

] [
0 1
−1 0

] [
0 0
2 0

] [
0 2
0 0

]

2.3 BIVARIATE AI ENCODING

Depending on the DCT algorithm employed, only the cosine of afew arcs are in fact required. We adopted the Arai

DCT algorithm [43]; and the required elements for this particular 1-D DCT method are only [37,41,42]:

c[4] = cos
4π
16

, c[6] = cos
6π
16

,

c[2]− c[6] = cos
2π
16

− cos
6π
16

,

c[2]+ c[6] = cos
2π
16

+ cos
6π
16

.

These particular values can be conveniently encoded as follows. Consideringz1 =
√

2+
√

2+
√

2−
√

2 and

z2 =
√

2+
√

2−
√

2−
√

2, we adopt the following 2-D array for AI encoding:

z=

[
1 z1

z2 z1z2

]
.

This leads to a 2-D encoded coefficients of the form (scaled by4):

fenc(x;z) = a=

[
a0,0 a1,0

a0,1 a1,1

]
.

Such encoding is referred to as bivariate. For this specific AI basis, the required cosine values possess an error-free and

sparse representation as given in Table 1 [37,41,42]. Also we note that this representation utilizes very small integers

and therefore is suitable for fast arithmetic computation.Moreover, these employed integers are powers of two, which

require no hardware components other than wired-shifts, being cost-free.

Encoding an arbitrary real number can be a sophisticated operation requiring the usage of look-up tables and greedy

algorithms [63]. Essentially, an exhaustive search is required to obtain the most accurate representation. However,

integer numbers can be encoded effortlessly:

fenc(m;z) =

[
m 0

0 0

]
, (1)

wherem is an integer. In this case, the encoding step is unnecessary. Our proposed design takes advantage of this

property.

For a given encoded numbera, the decoding operation is simply expressed by:

fdec(a;z) = a• z= a0,0+a1,0z1+a0,1z2+a1,1z1z2.

6

c3

c0

c2

c6

c5

c7

6d

d7

d2

d5

d3

d1

x7,k

6,kx

x5,k

x2,k

X0,k
(a)

X4,k
(a)

X6,k
(d)

X6,k
(a)

X2,k
(a)

X2,k
(d)

3,k
(b)X

3,k
(c)X

X3,k
(a)

X3,k
(d)

5,k
(c)X

5,k
(b)X

X5,k
(a)

X5,k
(d)

X7,k
(c)

X7,k
(b)

X7,k
(a)

X7,k
(d)

X1,k
(c)

X1,k
(b)

X1,k
(a)

X1,k
(d)

x3,k

b0

b5

b4

b1

b2x4,k

b6

b3

b7

c1

c4

d0

<<1

<<1

d4

d8

1,kx

<<n

0,kx

Addition

Negation

Left shift by n

Figure 1: 1-D AI Arai DCT block used in Fig. 3 [41].

In terms of circuitry design, this operation is usually performed by the FRS.

In order to reduce and simplify the employed notation, hereafter a superscript notation is used for identifying the

bivariate AI encoded coefficients. For a given realx, we have the following representation

[
x(a) x(b)

x(c) x(d)

]
≡ x= x(a)+ x(b)z1+ x(c)z2+ x(d)z1z2, (2)

where superscripts(a), (b), (c), and(d) indicate the encoded integers associated to basis elements1, z1, z2, andz1z2,

respectively. We denote this basis asz4 = {1,z1,z2,z1z2}.

It is worth to emphasize that in the 2-D AI encoding the equivalence between the algebraic integer multiplication

and the polynomial modular multiplication does not hold true. Thus, a tailored computational technique to handle this

operation must be developed.

3 2-D AI DCT ARCHITECTURE

An 8×8 image blockA has its 2-D DCT transform mathematically expressed by [16]:

(
C · (C ·A)T)T

, (3)

whereC is the usual DCT matrix [44]. It is straightforward to noticethat this operation corresponds to the column-

wise application of the 1-D DCT to the input imageA, followed by a transposition, and then the row-wise application

of the 1-D DCT to the resulted matrix.

The 2-D DCT realizations in [41,42,64,65] use the AI encoding scheme with decoding sections placed in between

the row- and column-wise 1-D DCT operations. This intermediate reconstruction step leads to the introduction of

quantization noise and cross-coupling of correlated noisecomponents. In contrast, we employ a bivariate AI encoding,

maintaining the computation over AI arithmetic to completely avoid arithmetic errors within the algorithm [61].

The proposed architecture consists of five sub-circuits [61]: (i) an input decimator circuit; (ii) an 8-point AI-

7

AI Transpose Buffer Block

C
ol

um
n−

w
is

e
A

I A
ra

i D
C

T
 B

lo
ck

z−1 z−1 z−1 z−1 z−1 z−1 z−1

z−1 z−1 z−1 z−1 z−1z−1z−1

z−1 z−1 z−1 z−1 z−1z−1z−1z−2

z−1 z−1 z−1 z−1 z−1z−1z−1z−3

z−1 z−1 z−1 z−1 z−1z−1z−1z−4

z−1 z−1 z−1 z−1 z−1z−1z−1z−5

z−1 z−1 z−1 z−1 z−1z−1z−1z−6

z−1 z−1 z−1 z−1 z−1z−1z−1z−7

z−1

X0,k
(a)

X1,k
(a)

X2,k
(a)

X3,k
(a)

X4,k
(a)

X5,k
(a)

X6,k
(a)

X7,k
(a)

X7,k
(a)

X7,k−7
(a)

X6,k
(a)

X6,k−7
(a)

X5,k
(a)

X5,k−7
(a)

X4,k
(a)

X4,k−7
(a)

X3,k
(a)

X3,k−7
(a)

X2,k
(a)

X2,k−7
(a)

X1,k
(a)

X0,k−7
(a)

X0,k
(a)

X1,k−7
(a)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: 1-D AI transpose buffer used in Fig. 3.

8 output

FRS

88 input
ports

ports

Block D

8−point
AI

DCT

Block C

8−point
AI

DCT

Block B

8−point
AI

DCT

Block A

8−point
AI

DCT

8

8

8

8

8

AI DCT

176 output
ports

AI
Transpose

Buffer

Decimation block AI Arai DCT
AI Transposition and

Cross−connection blocks

connections

Cross−

FRSAI Arai DCT

ports
22 output

z−1

z−1

z−1

X1,k
(d)

X1,k
(c)

X1,k
(b)

X1,k
(a)

X0,k
(a)

X2,k
(a)

X2,k
(d)

X3,k
(b)

X3,k
(c)

X4,k
(a)

X5,k
(a)

X5,k
(b)

X5,k
(c)

X5,k
(d)

X6,k
(a)

X6,k
(d)

X3,k
(a)

X7,k
(a)

X7,k
(b)

X7,k
(c)

X7,k
(d)

x0,k

x7,k

x1,k

x2,k

x6,k

X0,k
(a)

X0,k−1
(a)

X0,k−7
(a)

X1,k
(a)

X1,k−1
(a)

X1,k−7
(a)

X1,k
(b)

X1,k−7
(b)

X7,k
(d)

X7,k−1
(d)

X7,k−7
(d)

X1,k−1
(b)

...

...

...

...

X(2D)
0,k

X(2D)
1,k

X
(2D)
2,k

X
(2D)
3,k

X
(2D)
4,k

X
(2D)
5,k

X
(2D)
7,k

X
(2D)
6,k

X3,k
(d)

Input Sequence @Fs

@Fclock

...
...

Figure 3: The 2-D AI-DCT consists of an input section having adecimation structure, 1-D 8-point AI-DCT block
for column-wise DCTs, a real-time AI-TB, four parallel 1-D 8-point AI-DCT blocks for row-wise DCTs, and an FRS
[61].

8

encoded 1-D DCT block shown in Fig. 1 which performs column-wise computation based on the Arai algorithm [43]

and furnishes the intermediate resultC ·A in the AI domain; (iii) an AI-based transposition buffer shown in Fig. 2 with

a wired cross-connection block for obtaining(C ·A)T ; (iv) four parallel instantiations of the same 8-point AI-based

Arai DCT block in Fig. 1 for row-wise computation of eight 1-DDCTs, which results inC · (C ·A)T ; and (v) an

FRS circuit for mapping the AI-encoded 2-D DCT coefficients to 2’s complement format. The last transposition (3) is

obtained via wired cross-connections. The proposed architecture is shown in Fig. 3.

Our implementation covers items (ii)–(v) listed above. We now describe in detail each of the system blocks.

3.1 BIT SERIAL DATA INPUT, SERDES, AND DECIMATION

We assume that the input video data, in raster-scanned format, has already been split into 8×8 pixel blocks. We further

assume that these blocks can be stacked to form an 8-column and (8× (number of blocks))-row data structure. This

leads to so-called “blocked” video frames, each of size 8×8 pixels. The blocking procedure leads to a raster-scanned

sequence of pixel intensity (or color) valuesxi,n, i = 0,1, . . . ,7, n= 0,1, . . . ,8× (number of blocks)−1, from an 8×8

blocked image. Notice that we use column-row order for the indexes, instead of row-column. Due to the 8×8 size of

the 2-D DCT computation, we find it quite convenient to consider the time indexn after a modular operationk ≡ n

(mod 8). Hereafter, we will refer to the time index as a modular quantity k= 0,1, . . . ,7,0,1, . . . ,7,0,1. . . ,7,

The video signal is serially streamed through the input portof the architecture at a rate ofFs. A bit serial port

connected to a serializer/deserializer (SerDes) is required to be fed using a bit rate of 8× Fs without considering

overheads. As an aside, we note that this input bit stream maybe typically derived from optical fiber transmission or

high throughput Ethernet ports driven at 9.6 Gbps. Following the SerDes, a decimation block converts the input byte

sequence into a row structure by means of delaying and downsampling by eight as shown in Fig. 3.

Therefore, the raster-scanned input is decimated in time into eight parallel streams operating rate ofFclock = Fs/8;

resulting in eight columns of the input block. It is important to emphasize that such input data consist of integer

values. Thus, they are AI coded without any computation as shown in (1). The obtained column data is submitted to

the column-wise application of the AI-based 1-D DCT.

3.2 AN 8-POINT AI-ENCODED ARAI DCT CORE

The column-wise transform operation is performed according to the 8-point AI-based Arai DCT hardware cores as

designed in [41,42] shown in Fig. 1. Here, this scheme is employed with theremovalof its original FRS. The proposed

2-D architecture employs an integer arithmetic entirely defined over the AI basisz4. This transformation step operates

at the reduced clock rate ofFclock.

Indeed, the resulting AI encoded data components are split in four channels according to theirz4 basis representa-

tion [61]. Such outputs are time-multiplexed mixed-domainpartially computed spectral components. We denote them

asXi,k
(a), Xi,k

(b), Xi,k
(c), Xi,k

(d), wherei = 0,1, . . . ,7 is the column index andk is the modular time index containing

the information of the row number.

In hardware, this means that the AI representation is contained in at most four parallel integer channels [61]. Some

quantities are known beforehand to require less than four AIencoded integers (cf. (2)). Thus, in some cases, less than

four connections are required. These channels are routed tothe proposed AI-based transpose buffer (AI-TB) shown in

Fig. 2, as a necessary pre-processing for the subsequent row-wise DCT calculation.

9

M
U
X

M
U
X

AI

DCT

Block

8−point

M
U
X

Mux Control

X1,0
(q)

X1,1
(q)

X1,7
(q)

...

X0,0
(q)

X0,1
(q)

X0,7
(q)

...

X7,0
(q)

X7,1
(q)

X7,7
(q)

...

x0,k
(q)

x1,k
(q)

x7,k
(q)

X0,k
(a) (q)

X1,k
(a) (q)

X1,k
(b) (q)

X1,k
(c) (q)

X1,k
(d) (q)

X2,k
(a) (q)

X2,k
(d) (q)

X3,k
(a) (q)

X3,k
(b) (q)

X3,k
(c) (q)

X3,k
(d) (q)

X4,k
(a) (q)

X5,k
(a) (q)

X5,k
(b) (q)

X5,k
(c) (q)

X5,k
(d) (q)

X6,k
(a) (q)

X6,k
(d) (q)

X7,k
(a) (q)

X7,k
(b) (q)

X7,k
(c) (q)

X7,k
(d) (q)

...

Figure 4: Row-wise DCT block that leads to the 2-D DCT of the 8×8 input blocks.

3.3 REAL-TIME AI- BASED TRANSPOSEBUFFER

Each partially computed transform componentXi,k
(q), q∈ {a,b,c,d}, from the column-wise DCT block is represented

in z4. Such encoded components are stored in the proposed AI-TB (shown in Fig. 2 only for channel(a)), which

computes an 8×8 matrix transposition operation in real-time every eight clock cycles.

The proposed AI-TB consists of a chain of clocked first-in-first-out (FIFO) buffers for each AI-based channel of

each component of the column-wise transformation [61]. Foreach parallel integer channelq, there are eight FIFO

taps clocked at rateFclock. Therefore, the set of FIFO buffers leads to 22×8= 176 output ports from the FIFO buffer

section.

Hard wired cross-connections are used that physically realize the required transpose matrix for the next row-wise

DCT section. These physical connections are encapsulated in the cross-connection block in Fig. 3 for brevity. The

AI-TB is clocked at a rate ofFclock and yields a new 8×8 block of transposed data every 64 clock periods of the master

clock Fs. Subsequently, the transposed AI-encoded elements are submitted to four 1-D AI DCT cores operating in

parallel.

3.4 ROW-WISE DCT COMPUTATION

After route cross-connection, the output taps from the transposition operation are connected to 32 parallel 8:1 mul-

tiplexers. Each multiplexer commutes continuously and routes each partially computed DCT component by cycling

through its 3-bit control codes such that theq channel inputs of each of the four row-wise AI-based DCT cores are

provided with a new set of valid input vectors at rateFclock.

The cores are set in parallel being able to compute an 8-pointDCT every eight clock cycles of the master clock

signal. This operation performs the required row-wise DCT computation in order to complete the 2-D DCT evaluation,

resulting in a doubly encoded AI representationXi,k
(q)(p), p,q∈ {a,b,c,d}. Fig. 4 shows the above described block.

10

3.5 FINAL RECONSTRUCTIONSTEP

The output channels for the 64 2-D DCT coefficients are passedthrough the proposed FRS for decoding the AI-

encoded numbers back into their fixed-point, binary representation, in 2’s complement format. Two different architec-

tures are proposed for the FRS.

4 FINAL RECONSTRUCTIONSTEP

The proposed FRS architectures differ from the one in [64] byhaving individualized circuits to compute each output

value at possibly different precisions.

Indeed, no FRS circuits are employed in any intermediate 1-DDCT block. This prevents quantization noise cross-

coupling between DCT channels. Any quantization noise is injected only at the final output. Therefore noise signals

are uncorrelated, which further allows the noise for each output to be independently adjustable and made as low as

required.

4.1 FRSBASED ON DEMPSTER-MACLEOD METHOD

In this method the doubly encoded elements can be decoded according to:

Xi,k
(q) =Xi,k

(q)(a)+Xi,k
(q)(b)z1+Xi,k

(q)(c)z2+

Xi,k
(q)(d)z1z2, q∈ {a,b,c,d},

(4)

which are then submitted to (2). The result is thekth row of the final 2-D DCT dataXi,k, i = 0,1, . . . ,7.

Therefore, for eachq, (4) unfolds into a particular mathematical expression as shown below:

Xi,k
(a) =Xi,k

(a)(a)+Xi,k
(a)(b)z1+

Xi,k
(a)(c)z2+Xi,k

(a)(d)z1z2,
(5)

Xi,k
(b)z1 =Xi,k

(b)(a)z1+Xi,k
(b)(b)z2

1+

Xi,k
(b)(c)z1z2+Xi,k

(b)(d)z2
1z2,

(6)

Xi,k
(c)z2 =Xi,k

(c)(a)z2+Xi,k
(c)(b)z1z2+

Xi,k
(c)(c)z2

2+Xi,k
(c)(d)z1z2

2,
(7)

Xi,k
(d)z1z2 =Xi,k

(d)(a)z1z2+Xi,k
(d)(b)z2

1z2+

Xi,k
(d)(c)z1z2

2+Xi,k
(d)(d)z2

1z2
2.

(8)

The summation of above quantities returnsXi,k (cf. (2)). Terms depending onz1 andz2 may not be rational numbers.

11

Indeed, they are given by

z1 =

√
2+

√
2+
√

2−
√

2= 2.613125929752. . .

z2 =

√
2+

√
2−
√

2−
√

2= 1.082392200292. . .

z2
1 = 4+2

√
2= 6.828427124746. . .

z2
2 = 4−2

√
2= 1.171572875253. . .

z1z2 = 2
√

2= 2.82842712474619. . .

z1z2
2 = 4

√
2−

√
2= 3.061467458920. . .

z2
1z2 = 4

√
2+

√
2= 7.391036260090. . .

z2
1z2

2 = 8.

(9)

Multiplier z2
1z2

2 = 8 is a power of two and can be represented exactly. Remaining constants require a binary approxi-

mation.

Closest signed 12-bit approximations can be employed to approximate the above listed numbers. Such approach

furnished the quantities below:

z̃1 =
669
28 = 2.61328125, z̃2 =

2217
211 = 1.08251953125,

z̃2
1 =

437
26 = 6.828125, z̃2

2 =
2399
211 = 1.17138671875,

z̃1z2 =
181
26 = 2.828125, z̃1z2

2 =
3135
210 = 3.0615234375,

z̃2
1z2 =

473
26 = 7.390625.

Consequently, the 12-bit approximation expressions related toXi,k
(q) are given by:

Xi,k
(a) ≈Xi,k

(a)(a)+
669
28 ·Xi,k

(a)(b)+

2217
211 ·Xi,k

(a)(c)+
181
26 ·Xi,k

(a)(d),

(10)

Xi,k
(b)z1 ≈

669
28 ·Xi,k

(b)(a)+
437
26 ·Xi,k

(b)(b)+

181
26 ·Xi,k

(b)(c)+
473
26 ·Xi,k

(b)(d),

(11)

Xi,k
(c)z2 ≈

2217
211 ·Xi,k

(c)(a)+
181
26 ·Xi,k

(c)(b)+

2399
211 ·Xi,k

(c)(c)+
3135
210 ·Xi,k

(c)(d),

(12)

12

Xi,k
(a)
(a)

Xi,k
(a)
(b)

Xi,k
(a)
(c)

Xi,k
(a)
(d)

Xi,k
(a)+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

2
1

-2
3

-1

-2
5

2
-8

+

+

+ D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

2
1

2
6

-1

2
3

2
-6

+ +

+

D Q
clk

D Q
clk

D Q
clk D Q

clk
D Q

clk

D Q
clk

2
4

2
3

2
7

2
1

2
-11

+

+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

(a)

Xi,k
(b)

(a)
!

Xi,k
(b)

(b)
!

Xi,k
(b)

(c)
!

Xi,k
(b)

(d)
!

2
2 2

4
2

5

2
-6

+ +

+

D Q
clk

D Q
clk

D Q
clk D Q

clk
D Q

clk

D Q
clk

2
1

2
6

-1

2
3

2
-6

+ +

+

D Q
clk

D Q
clk

D Q
clk D Q

clk
D Q

clk

D Q
clk

-1

+ D Q
clk

+ D Q
clk

2
2

- 2
3

2
9

2
-6

+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

2
1

-2
3

-1

-2
5

2
-8

+

+

+ D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

+ D Q
clk Xi,k

(b) z1!
~!

(b)

Figure 5: Final reconstruction step blocks with multi-level pipelining, for (10) and (11), respectively.

Xi,k
(d)z1z2 ≈

181
26 ·Xi,k

(d)(a)+
473
26 ·Xi,k

(d)(b)+

3135
210 ·Xi,k

(d)(c)+8 ·Xi,k
(d)(d).

(13)

Finally, considering the above quantities and applying (2), the sought fixed-point representations are fully recov-

ered. Hardware implementation of the multiplier circuits,required by the 12-bit approximations above, is accom-

plished by using the method of Dempster and Macleod [66, 67].This method is known to be optimal for constant

integer multiplier circuits.

In this multiplierless method, the minimum number of 2-input adders are used for each constant integer multiplier.

Wired shifts that perform “costless” multiplications by powers of two are used in each constant integer multiplier. Here,

an enhancement to the Dempster-Macleod method is made for the constant integer multiplier circuits: the number of

adder-bits is minimized, rather than the number of 2-input adders, yielding a smaller overall design.

Accordingly, the multiplications by non powers of two shownin expressions (10)-(13) can be algorithmically

implemented as described in Table 2. Fig. 5 and 6 depict the corresponding pipeline implementation. Here, the

various stages of the pipelined FRS architectures are shownby having FIFO registers (consisting of parallel delay

flip-flops (D-FFs)) vertically aligned in the figures. Vertically aligned D-FFs indicate the same computation point in a

pipelined constant coefficient multiplication within the FRS.

13

Xi,k
(c)

(a)
!

Xi,k
(c)

(b)
!

Xi,k
(c)

(c)
!

Xi,k
(c)

(d)
!

2
4

2
3

2
7

2
1

2
-11

+

+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

2
1

2
6

-1

2
3

2
-6

+ +

+

D Q
clk

D Q
clk

D Q
clk D Q

clk
D Q

clk

D Q
clk

2
2

2
9

-1

2
-11

+ +

+

D Q
clk

D Q
clk

D Q
clk D Q

clk
D Q

clk

D Q
clk 2

5

2
1

-1

-2
6

2
-10

+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk 2

10

+ D Q
clk

+ D Q
clk

+ D Q
clk Xi,k

(c) z2!
~!

(a)

Xi,k
(d)

(a)
!

Xi,k
(d)

(b)
!

Xi,k
(d)

(c)
!

Xi,k
(d)

(d)
!

2
1

2
6

-1

2
3

2
-6

+ +

+

D Q
clk

D Q
clk

D Q
clk D Q

clk
D Q

clk

D Q
clk

2
2

- 2
3

2
9

2
-6

+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk

2
1

-1

-2
6

2
-10

+

+

+

D Q
clk

D Q
clk

D Q
clk

D Q
clk

D Q
clk 2

10

D Q
clk

D Q
clk

D Q
clk

D Q
clk

+ D Q
clk

+ D Q
clk

+ D Q
clk

2
3

Xi,k
(d) z1z2!
~

(b)

Figure 6: Final reconstruction step blocks with multi-level pipelining, for (12) and (13), respectively.

Table 2: Fast algorithms for required integer multipliers
m Input: x; Output:y, wherey= m·x

669 v1 = (1+2) ·x ; v2 = (1−23) ·v1 ; y=−v1−25 ·v2

2217 v1 = (1+24) ·x ; v2 = (1+2) ·x ; v3 = v1+23 ·v2 ;
y= 27 ·v1+ v3

181 v1 = (1+2) ·x ; v2 = 23 ·x+ v1 ; y= 26 ·v1− v2

3135 v1 = (1+2) ·x ; v2 = (1−26) ·x ; y= 210 ·v1− v2

473 v1 = (1+22) ·x ; v2 = x−23 ·v1 ; y= 29 ·x+ v2

437 v1 = (1+22) ·x ; v2 = 25 ·x− v1 ; y= v1+24 ·v2

2399 v1 = (1+22) ·x ; v2 = x+25 ·v1 ; y= 29 ·v1− v2

8 y= 23 ·x

14

4.2 FRSBASED ON EXPANSION FACTOR SCALING

The set of exact values given in (9) suggests further relations among those quantities. Indeed, it may be established

the following relations:

z2
1 = 4+ z1z2, z2

2 = 4− z1z2,

z2
1z2 = 2 · (z1+ z2), z1z2

2 = 2 · (z1− z2),

z2
1z2

2 = 8.

These identities indicate that a new design can be fostered.In fact, by substituting the above relations into (5)–(8), we

have the following expressions:

Xi,k
(a) =Xi,k

(a)(a)+Xi,k
(a)(b)z1+

Xi,k
(a)(c)z2+Xi,k

(a)(d)z1z2,

Xi,k
(b)z1 =4 ·Xi,k

(b)(b)+
(

2 ·Xi,k
(b)(d)+Xi,k

(b)(a)
)

z1+

2 ·Xi,k
(b)(d)z2+

(
Xi,k

(b)(b)+Xi,k
(b)(c)

)
z1z2,

Xi,k
(c)z2 =4 ·Xi,k

(c)(c)+2 ·Xi,k
(c)(d)z1+

(
Xi,k

(c)(a)−2 ·Xi,k
(c)(d)

)
z2+

(
Xi,k

(c)(b)−Xi,k
(c)(c)

)
z1z2,

Xi,k
(d)z1z2 =8 ·Xi,k

(d)(d)+2 ·
(

Xi,k
(d)(b)+Xi,k

(d)(c)
)

z1+

2 ·
(

Xi,k
(d)(b)−Xi,k

(d)(c)
)

z2+Xi,k
(d)(a)z1z2.

Notice that the output valueXi,k is the summation of the above quantities. Therefore, by grouping the terms on

{1,z1,z2,z1z2}, we can expressXi,k by the following summation:

Xi,k =Yi,k
(a)+Yi,k

(b)z1+Yi,k
(c)z2+Yi,k

(d)z1z2, (14)

where

Yi,k
(a) =Xi,k

(a)(a)+4 ·
(

Xi,k
(b)(b)+Xi,k

(c)(c)
)
+

8 ·Xi,k
(d)(d),

(15)

15

Yi,k
(b) =Xi,k

(a)(b)+Xi,k
(b)(a)+2 ·

(
Xi,k

(b)(d)+

Xi,k
(c)(d)+Xi,k

(d)(b)+Xi,k
(d)(c)

)
,

(16)

Yi,k
(c) =Xi,k

(a)(c)+Xi,k
(c)(a)+2 ·

(
Xi,k

(b)(d)−

Xi,k
(c)(d)+Xi,k

(d)(b)−Xi,k
(d)(c)

)
,

(17)

Yi,k
(d) =Xi,k

(a)(d)+Xi,k
(b)(b)+Xi,k

(b)(c)+

Xi,k
(c)(b)−Xi,k

(c)(c)+Xi,k
(d)(a).

(18)

QuantitiesYi,k
(q), q∈ {a,b,c,d}, require extremely simple arithmetic to be computed. Theseoperations are represented

by the combinational block in Fig. 7. We now turn to the problem of efficiently evaluate (14), which depends onz1,

z2, andz1z2.

A possibility is to employ an expansion factor that could simultaneously scale the quantitiesz1, z2, andz1z2 into

integer values. This would facilitate the usage of integer arithmetic. Such approach has been often employed by

integer transform designers [68,69]. A good exposition on this method and related schemes is found in [44, Ch. 5].

In mathematical terms, we have the following problem. Let the quantitiesz1, z2, andz1z2 form a vectorζ =[
z1 z2 z1z2

]T
. An expansion factor [44, p. 274] is the real numberα∗ > 1 that satisfies the following minimization

problem:

α∗ = argmin
α>1

‖α ·ζ− round(α ·ζ)‖, (19)

where‖ · ‖ is a given error measure and round(·) is the rounding function. We adopt the Euclidean norm as the error

measure. The presence of the rounding function introduces several algebraic difficulties. A closed-form solution

for (19) is a non-trivial manipulation. Thus, we may resort to computational search. Clearly, additional restrictions

must be imposed: a limited search space and a given precisionfor α.

In the rangeα ∈ [1,256] with a precision of 10−4, we could find the optimal valueα∗ = 167.2309. Thus, we have

the following scaling:

α∗ ·




z1

z2

z1z2


=




436.995521744185. . .

181.009471802748. . .

473.00054429861. . .


≈




437

181

473


 .

The error norm is approximately 10−2, which is very low for this type of problem.

However, notice that small values ofα are desirable, since they could scaleζ into small integers, which require

a simple hardware design. An analysis on the sub-optimal solutions for (19) shows thatα ′ = 4.5961 furnishes the

16

Table 3: Booth encoding of the expansion factorsα
α Representation

4.5961 22+2−1+2−4+2−5+2−9

167.2309 27+25+23−20+2−2−2−6−2−8

following scaling:

α ′ ·




z1

z2

z1z2


=




12.01031370924931. . .

4.97483482672658. . .

12.99986988195626. . .


≈




12

5

13


 .

In this case, the resulting integers are relatively small and the error norm is in the order of 10−2.

Now we are in position to address the computation of (14). Considering a given expansion factorα, we can write:

Xi,k =
1
α

(
α ·Xi,k

(a)+m1 ·Xi,k
(b)+

m2 ·Xi,k
(c)+m3 ·Xi,k

(d)
)
,

(20)

wherem1, m2, andm3 are the integer constants implied by the expansion factorα. In particular, these constants are

{437,181,473}, for α = α∗, and{12,5,13}, for α = α ′. Notice that (20) consists of a linear combination.

Because constantsm1, m2, andm3 are integers, associate multiplications can be efficientlyimplemented in hard-

ware. Considering common subexpression elimination (CSE), these multiplications are reduced to additions and shift

operations, requiring minimal amount of hardware resources. For the set{437,181,473}, we have the following CSE

manipulation:

437·Yi,k
(b)+181·Yi,k

(c)+473·Yi,k
(d) =

473·
(
Yi,k

(b)+Yi,k
(c)+Yi,k

(d)
)
−

36·
(
Yi,k

(b)+Yi,k
(c)
)
−

256·Yi,k
(c).

This computation requires only eight additions. Analogously, for the set{12,5,13}, CSE yields:

12·Yi,k
(b)+5 ·Yi,k

(c)+13·Yi,k
(d) =

8 ·
(
Yi,k

(b)+Yi,k
(d)
)
+

4 ·
(
Yi,k

(b)+Yi,k
(c)+Yi,k

(d)
)
+

Yi,k
(d)+Yi,k

(c).

Five additions are necessary. Above calculations are represented by the integer coefficient block in Fig. 7.

The remaining multiplication in (20) is the one byα, which can be implemented according to the Booth encoding

representation. Table 3 brings the required Booth encodingfor α∗ = 167.2309 andα ′ = 4.5961.

The global multiplication by 1/α is not problematic. Indeed, it can be embedded into subsequent signal processing

17

C
om

bi
na

tio
na

l C
irc

ui
tr

y

In
te

ge
r

C
oe

f.
Li

ne
ar

 C
om

bi
na

tio
n

Xi,k
(a)(a)

Xi,k
(a)(b)

Xi,k
(a)(c)

Xi,k
(a) (d)

Xi,k
(b)(a)

Xi,k
(b)(b)

Xi,k
(b)(c)

Xi,k
(b) (d)

Xi,k
(c) (a)

Xi,k
(c) (b)

Xi,k
(c) (c)

Xi,k
(c) (d)

Xi,k
(d) (a)

Xi,k
(d) (b)

Xi,k
(d)(c)

Xi,k
(d) (d)

α ·Xi,k

Booth

encoded

α

Yi,k
(a)

Yi,k
(b)

Yi,k
(c)

Yi,k
(d)

Figure 7: Block diagram of the proposed AI decoding based on expansion factors.

Table 4: Success rates of the DCT coefficient computation forvarious fixed-point bus widthsL and tolerance levels
Percentage Tolerance

Design FRS Method L 10% 5% 1% 0.1% 0.05% 0.01% 0.005%
1

Dempster-Macleod
4 99.9672 99.9203 99.6422 96.3563 92.7109 64.8406 42.1719

2 8 99.9719 99.9344 99.6047 96.3250 92.7031 64.7313 41.9016
3

Expansion
factor

{12,5,13} 4 99.1844 98.2944 91.6822 55.1811 45.0667 30.6922 22.8633
4 8 99.1289 98.2944 91.4978 55.0900 45.0289 30.7122 22.8844
5 {437,181,473} 4 99.9900 99.9822 99.9178 99.1111 98.2000 91.0667 83.1244
6 8 99.9589 99.9511 99.8733 99.0389 98.1278 90.9867 83.1767

stages after the DCT operation. Typically, it is absorbed into the quantizer. This approach has been employed in several

DCT architectures [69–71].

Fig. 7 depicts the full block diagram of the discussed computing scheme. Eight separate instances of this block are

necessary to compute coefficientsXi,0 to Xi,7, for eachi.

5 ON-FPGA TEST AND MEASUREMENT

Six designs were implemented on Xilinx ML605 evaluation kitwhich is populated with a a Xilinx Virtex-6

XC6VLX240T device. The designs included the three implementations of the 2D 8×8 Arai AI DCT architecture

with the two types of FRS described in Section 4 for fixed-point 4- and 8-bit wordlengths. Two versions of the ex-

pansion factor FRSs are provided, corresponding to expansion factorsα ′ = 4.5941 andα∗ = 167.2309, resulting in 6

designs in total. The proposed designs are listed in Table 4.

The JTAG interface was used to input the test 8×8 2-D DCT arrays to the device from the MATLAB workspace.

Then the measured outputs were returned to the MATLAB workspace via the same interface. Hardware computed

coefficients were compared to its numerical evaluation furnished by MATLAB signal processing toolbox.

18

Slice registers

Design 1
Design 3
Design 5

Slice LUTs

Design 1
Design 3
Design 5

7104

9628

5767

7286

7784
8839

Slices

Design 1
Design 3
Design 5

2818
2377

2605

Frequency (MHz)

Design 1
Design 3
Design 5

Design 1
Design 3
Design 5

Quies. power (W)

Design 1
Design 3
Design 5

Dyn. power (W)

Design 1
Design 3
Design 5

Total power (W)

Design 1
Design 3
Design 5

Design 1
Design 3
Design 5

130.41
309.885
312.402

2.740
2.773

2.740

0.897
1.871

0.912

3.637
4.643

3.652

21.61
7.67
8.34

0.213
0.025
0.028

area× time (slices·µs)

area× time2 (slices·µs2)

Figure 8: Resource utilization, speed of operation, and power consumption of the DCT designs given in Table 4 on
Xilinx Virtex-6 XC6VLX240T FPGA for input fixed-point wordlengthL = 4.

19

Design 2
Design 4
Design 6

Slices
3618

3445

Design 2
Design 4
Design 6

Slice registers

Design 2
Design 4
Design 6

Slice LUTs
12794

10384
12007

7168
10216
10282

3144

Frequency (MHz)

Design 2
Design 4
Design 6

area× time (slices·µs)

Design 2
Design 4
Design 6

area× time2 (slices·µs2)

Design 2
Design 4
Design 6

Design 2
Design 4
Design 6

Quies. power (W)

Design 2
Design 4
Design 6

Total power (W)

Design 2
Design 4
Design 6

Dyn. power (W)

123.12
300.391
307.787

2.742
2.786
2.747

0.957
1.687

1.123

3.699
4.453

3.870

29.38
10.446
11.19

0.239
0.034
0.036

Figure 9: Resource utilization, speed of operation, and power consumption of the DCT designs given in Table 4 on
Xilinx Virtex-6 XC6VLX240T FPGA for input fixed-point wordlengthL = 8.

20

Table 5: Frame rates and block rates achieved by the implemented designs for a video of resolution 1920×1080
Design Freq.

(MHz)
Block
rate

(MHz)

Frame
rate (Hz)

1 130.410 16.30 503.08
2 123.120 15.39 475.00
3 309.855 38.73 1195.37
4 300.391 37.55 1158.95
5 312.402 39.05 1205.25
6 307.787 38.47 1187.35

5.1 ON-CHIP VERIFICATION USING SUCCESSRATES

As a figure of merit, we considered the success rate defined as the percentage of coefficients which are within the error

limit of ±e%. Fore= {0.005,0.01,0.05,0.1,1,5,10}, the success rates were measured as given in the Table 4. Input

wordlengthsL was set to 4 or 8 bits. The 8-bit size is the typical video processing configuration. The proposed AI

architectures enjoy overflow-free bit-growth at each stagethroughout the AI encoded structure thereby ensuring that

all sources of error are at the FRS and there only. Results show that the FRS based on the expansion factor approach

for {437,181,473} (Designs 5 and 6) offers a significant improvement in accuracy when compared to remaining FRS

architectures.

5.2 FPGA RESOURCECONSUMPTION

The resource consumption of the proposed architectures on Xilinx Virtex-6 XC6VLX240T device are shown in Fig. 8

for L = 4 bits. Fig. 9 brings analogous information forL = 8 bits. Here, FPGA resources are measured in terms of

slices, slice registers, and slice look-up-tables (LUTs).Designs 3 and 4, which use the FRS based on the expansion

factor approach for{12,5,13}, consumed the least resources in the device and has the worstaccuracy of the three de-

signs (Table 4). Moreover, even though Designs 5 and 6 (FRS based on expansion factor approach for{437,181,473})

possesses superior accuracy when compared to Designs 1 and 2(FRS based on Dempster-Macleod method), they con-

sume less hardware resources. Overall the FRS step of the proposed architectures require a considerable amount of

area when compared to the AI steps of the architecture.

5.3 CLOCK SPEED, BLOCK RATE, FRAME RATE

Frame rates and block rates achieved by the implemented designs for video at resolution 1920×1080 is shown in

Table 5. The design having the best throughput was Design 5, which operates on 4-bit inputs. In Design 5, the

maximum 8×8 2-D DCT block rate is 39.05 MHz for a 312.402 MHz clock. Assuming an input video resolution of

1920× 1080 pixels per frame, we obtained a real-time computation of the 2-D 8×8 DCT at 1205.25 frames per second.

In Design 6, we describe the common 8-bit input case, where the clock is now slightly reduced to 307.787 MHz,

yielding an 8×8 block rate of 38.787 MHz, and a frame rate of 1187.35 frames per second for the same image size as

above. In all cases, if the 2-D DCT core is eventually embedded in a real-time video processor, the pixel rate is eight

fold the clock frequency of the DCT core (due to the downsampling by eight in the signal flow graph). For example, a

potential pixel rate of≈2.499 GHz and≈2.462 GHz, for Designs 5 and 6, may be possible.

21

5.4 XILINX POWER CONSUMPTION AND CRITICAL PATH

The total power consumption of FPGA circuits consist of the sum of dynamic and quiescent power consumptions.

Both estimated dynamic and quiescent power consumptions obtained from the design tools for the Xilinx Virtex-6

XC6VLX240T device are provided in Fig. 8 and Fig. 9.

5.5 AREA-TIME COMPLEXITY METRICS

Estimates for VLSI area-time complexity metrics are provided for all designs are given in Fig. 8 (L = 4) and Fig. 9

(L = 8), respectively. In general, the area-time metric measures complexity of VLSI circuits where chip real-estate is

important over speed, while metric area-time2 is used often for VLSI circuits where speed is of paramount concern. We

provide both metrics to offer a broad overview of the area-time complexity levels present in the proposed architectures

as a function of input size and choice of FRS algorithm.

The architectures are free of general purpose multipliers.

5.6 OVERALL COMPARISON WITH EXISTING ARCHITECTURES

Fixed point VLSI implementations that are directly comparable to the proposed architecture are compared in detail

in Table 6. Table 7 brings comparisons to AI-based architectures. For brevity and without loss of generality, we

chose designs 2 and 6 for the purpose of comparison. These areaimed at 8-bit input signals and are examples of

the Dempster-Macleod and expansion factor FRS algorithms.A synopsis of both fixed-point and AI-based 2D-DCT

circuits under comparison in Tables 6 and 7 was provided in Section 2.

6 CONCLUSIONS

A time-multiplexed systolic-array hardware architectureis proposed for the real-time computation of the bivariate AI

encoded 2-D Arai DCT. The architecture is the first 2-D AI encoded DCT hardware that operates completely in the AI

domain. This not only makes the proposed system completely multiplier-free, but also quantization free up to the final

output channels.

Our architecture employs a novel AI-TB, which facilitates real-time data transposition. The 2-D separable DCT

operation is entirely performed in the AI domain. Indeed, the architecture does not have intermediate FRS sections

between the column- and row-wise AI-based Arai DCT operations. This makes the quantization noise only appear at

the final output stage of the architecture: the single FRS section.

The location of the FRS at the final output stage results in thecomplete decoupling of quantization noise between

the 64 parallel coefficient channels of the 2-D DCT. This factis noteworthy because it enables the independent selection

of precision for each of the 64 channels without having any effect on the speed, power, complexity, or noise level of

the remaining channels.

Two algorithms for the FRS are proposed, numerically optimized, analyzed, hardware implemented, and tested

with the proposed 2-D AI encoded section. The architecturesare physically implemented for input precision of 4

and 8 bits, and fully verified on-chip. Of particular relevance is the commonly required 8-bit realization, which is

operational at a clock frequency of 307.787 MHz on a Xilinx Virtex-6 XC6VLX240T FPGA device (see Design 6).

This implies a 8×8 block rate of 38.47 MHz and apotentialpixel rate of≈2.462 GHzif the proposed 2-D DCT core

is embedded in a real-time video processing system. The frame rate for standard HD video at 1920×1080 resolution

is≈1187.35 Hz assuming 8-bit input words and core clock frequency of 307.787 MHz.

22

Table 6: Comparison of the proposed implementation with published fixed point implementations

Lin et al.
[32]

Shams et al.
[31]

Madisetti
et al. [17]

Guo et al.
[29]

Tumeo et al.
[28]

Sun et al.
[30]

Chen et al.
[22]

Proposed architectures
Design 2 Design 6

Measured
results

No No No No No No No Yes Yes

Structure
Single
2-D
DCT

Two
1-D
DCT

+TMEM†

Single
1-D
DCT

+TMEM†

Single
1-D
DCT

+TMEM†

Single
1-D
DCT

+TMEM†

Two
1-D
DCT

+TMEM†

Single
1-D
DCT

+TMEM†

See
Fig. 3

See
Fig. 3

Multipliers 1 0 7 0 4 0 0 0 0
Operating
frequency

(MHz)
100 N/A 100 110 107 149 167 123.12 307.79

8×8 Block rate
×106s−1 1.5625 N/A 1.562 3.4375 1.3375 2.328 2.609 15.39∗ 38.625∗

Pixel rate
×106s−1 100 N/A 100 220 85.6 149 167 984.96‡ 2462.32‡

Implementation
technology

0.13µm
CMOS

N/A
0.8µm
CMOS

0.35µm
CMOS

Xilinx
XC2VP30

Xilinx
XC2VP30

0.18µm
CMOS

Xilinx
XC6VLX240T

Xilinx
XC6VLX240T

Coupled
quantiza-

tion
noise

Yes Yes Yes Yes Yes Yes Yes No No

Independently
adjustable
precision

No No No No No No No Yes Yes

† Row column transpose buffer. ∗ Block rate= Fclock/8. ‡ Pixel rate= Fs.

23

Table 7: Comparison of the proposed implementation with published algebraic integer implemen-
tations

Nandi et al.
[56]

Jullien et al.
[50]

Wahid et al.
[55]

Proposed architectures
Design 2 Design 6

Measured
results

No No No Yes Yes

Structure

Single 1-D
DCT

+Mem.
bank

Two 1-D
DCT +Dual
port RAM

Two 1-D
DCT

+TMEM†
See Fig. 3 See Fig. 3

Multipliers 0 0 0 0 0
Exact 2D AI
computation

No No No Yes Yes

Operating
frequency

(MHz)
N/A 75 194.7 123.12 307.79

8×8 Block
rate×106s−1 7.8125 1.171 3.042 15.39∗ 38.625∗

Pixel rate
×106s−1 125 75 194.7 984.96‡ 2462.32‡

Implementation
technology

Xilinx
XC5VLX30

0.18µm
CMOS

0.18µm
CMOS

Xilinx
XC6VLX240T

Xilinx
XC6VLX240T

Coupled
quantization

noise
Yes Yes Yes No No

Independently
adjustable
precision

No No No Yes Yes

FRS between
row-column

stages
No Yes Yes No No

† Row column transpose buffer. ∗ Block rate= Fclock/8. ‡ Pixel rate= Fs.

24

The proposed architecture achieves complete elimination of quantization noise coupling between DCT coefficients,

which is present in published 2-D DCT architectures based onboth fixed-point arithmetic as well as row-column 8-

point Arai DCT cores that have FRS sections between row- and column-wise transforms. The proposed designs allows

each of the 64 coefficients to be computed at 64 different precision levels, where each choice of precision only affects

that particular coefficient. This allows full control of the2-D DCT computation to any degree of precision desired by

the designer.

ACKNOWLEDGMENTS

This work was partially supported by CNPq and FACEPE.

REFERENCES

[1] H.-Y. Lin and W.-Z. Chang, “High dynamic range imaging for stereoscopic scene representation,” inProceedings of the 16th

IEEE International Conference on Image Processing (ICIP), Nov. 2009, pp. 4305–4308.

[2] W.-C. Kao, “High dynamic range imaging by fusing multiple raw images and tone reproduction,”IEEE Transactions on

Consumer Electronics, vol. 54, no. 1, pp. 10–15, Feb. 2008.

[3] P. Carrillo, H. Kalva, and S. Magliveras, “Compression independent reversible encryption for privacy in video surveillance,”

EURASIP Journal on Information Security, vol. 2009, pp. 1–13, 2009.

[4] C.-F. Chiasserini and E. Magli, “Energy consumption andimage quality in wireless video-surveillance networks,” in Proceed-

ings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 5, Sep. 2002,

pp. 2357–2361.

[5] E. Magli and D. Taubman, “Image compression practices and standards for geospatial information systems,” inProceedings

of the 2003 IEEE International Geoscience and Remote Sensing Symposium, vol. 1, Jul. 2003, pp. 654–656.

[6] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach, “Real-time video analysis on an embedded smart camera for traffic

surveillance,” inProceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, May 2004,

pp. 174–181.

[7] T. Tada, K. Cho, H. Shimoda, T. Sakata, and S. Sobue, “An evaluation of JPEG compression for on-line satellite images

transmission,” inProceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Aug. 1993, pp.

1515–1518.

[8] A. S. Dawood, J. A. Williams, and S. J. Visser, “On-board satellite image compression using reconfigurable FPGAs,” in

Proceedings of the IEEE International Conference on Field-Programmable Technology, Dec. 2002, pp. 306–310.

[9] J. Schiewe, “Effect of lossy data compression techniqeson geometry and information content of satellite imagery,”in Pro-

ceedings of the ISPRS Commission IV Symposium on GIS - Between isions and Applications, D. Fritsch, M. Englich, and

M. Sester, Eds., vol. 32, Stuttgart, Germany, 1998.

[10] B. Bennett, C. Dee, and C. Meyer, “Emerging methodologies in encoding airborne sensor video and metadata,” inProceedings

of the 2009 IEEE Military Communications Conference, Oct. 2009, pp. 1–6.

[11] J. Wang and Y. Song, “Hardware design of video compression system in the UAV based on the ARM technology,” inPro-

ceedings of the 2009 International Symposium on Computer Network and Multimedia Technology, Jan. 2009, pp. 1–4.

[12] B. Bennett, C. Dee, M.-H. Nguyen, and B. Hamilton, “Operational concepts of MPEG-4 H.264 for tactical DoD applications,”

in Proceedings of the IEEE Military Communications Conference, vol. 1, Oct. 2005, pp. 155–161.

25

[13] S. Marsi, G. Impoco, A. Ukovich, S. Carrato, and G. Ramponi, “Video enhancement and dynamic range control of HDR

sequences for automotive applications,”EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 1–9, 2007.

[14] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,”Computer Networks,

vol. 51, no. 4, pp. 921–960, 2007.

[15] R. Westwater and B. Furht,Real-time video compression: techniques and algorithms, ser. Kluwer international series in

engineering and computer science. Kluwer, 1997.

[16] T. Suzuki and M. Ikehara, “Integer DCT based on direct-lifting of DCT-IDCT for lossless-to-lossy image coding,”IEEE

Transactions on Image Processing, vol. 19, no. 11, pp. 2958–2965, Nov. 2010.

[17] A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8×8 DCT-IDCT processor for HDTV applications,”IEEE Transactions

on Circuits and Systems for Video Technology, vol. 5, no. 2, pp. 158–165, Apr. 1995.

[18] D. F. Chiper, M. Swamy, M. O. Ahmad, and T. Stouraitis, “Systolic algorithms and a memory-based design approach for a

unified architecture for the computation of DCT-DST-IDCT-IDST,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 52, no. 6, pp. 1125–1137, Jun. 2005.

[19] P. K. Meher and M. N. S. Swamy, “New systolic algorithm and array architecture for prime-length discrete Fourier transform,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 3, pp. 262–266, Mar. 2007.

[20] T.-Y. Sung, Y.-S. Shieh, and H.-C. Hsin, “An efficient VLSI linear array for DCT/IDCT using subband decomposition algo-

rithm,” Mathematical Problems in Engineering, vol. 2010, pp. 1–21, 2010.

[21] H. Huang, T.-Y. Sung, and Y.-S. Shieh, “A novel VLSI linear array for 2-D DCT-IDCT,” inProceedings of 2010 3rd Interna-

tional Congress on Image and Signal Processing (CISP’2010). IEEE, 2010, pp. 3686–3690.

[22] Y.-H. Chen and T.-Y. Chang, “A high performance video transform engine by using space-time scheduling stratergy,”IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Forthcoming in 2011.

[23] P. K. Meher, J. C. Patra, and A. P. Vinod, “A 2-D systolic array for high-throughput computation of 2-D discrete Fourier

transform,” inProceedings of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS’2006), 2006.

[24] P. K. Meher, “Unified DA-based parallel architecture for compting the DCT and the DST,” inProceedings of the 5th IEEE

International Conference on Information, Communications, and Signal Processing, 2005, pp. 1278–1282.

[25] S. Nayak and P. Meher, “3-dimensional systolic architecture for parallel VLSI implementation of the discrete cosine trans-

form,” IEE Proc.- Circuits Devices and Syst., vol. 143, no. 5, pp. 255–258, Oct. 1996.

[26] P. K. Meher, “Highly concurrent reduced-complexity 2-D systolic array for discrete Fourier transform,”IEEE Signal Process-

ing Letters, vol. 13, no. 8, pp. 481–484, Aug. 2006.

[27] P. K. Meher and J. Patra, “A new convolutional formulation of discrete cosine transform for systolic implementation,” in

Proceedings of IEEE International Conference on Information, Communications, and Systolic Implementation, 2007, pp.

1–4.

[28] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto, “A pipelined fast 2D-DCT accelerator for FPGA-based

SoCs,” inProceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI’07), 2007.

[29] J.-I. Guo, R.-C. Ju, and J.-W. Chen, “An efficient 2-D DCT/IDCT core design using cyclic convolution and adder-based

realization,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 4, pp. 416–428, Apr. 2004.

[30] C.-C. Sun, P. Donner, and J. Gotze, “Low-complexity multi-purpose IP core for quantized discrete cosin and integertrans-

form,” in In Proceedings of 2009 IEEE Intl. Symp. on Circuits and Systems (ISCAS’09), 2009, pp. 3014–3017.

[31] A. M. Shams, A. Chidanandan, W. Pan, and M. A. Bayoumi, “NEDA: A low-power high-performance DCT architecture,”

IEEE Trans on Signal Processing, vol. 3, no. 3, pp. 955–964, Mar. 2006.

26

[32] C.-T. Lin, Y.-C. Yu, and L.-D. Van, “Cost-effective triple-mode reconfigurable pipeline FFT/IFFT/2-D DCT processor,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 8, pp. 1058–1071, Aug. 2008.

[33] C.-Y. Huang, L.-F. Chen, and Y.-K. Lai, “A high-speed 2-D transform architecture with unique kernel for multi-standard

video applications,” inProceedings of IEEE 2008 Intlernational Symposium on Circuits and Systems (ISCAS’2008), 2008,

pp. 21–24.

[34] A. V. Oppenheim and C. J. Weinstein, “Effects of finite register length in digital filtering and the fast Fourier transform,”

Proceedings of the IEEE, vol. 60, no. 8, pp. 957–976, Aug. 1972.

[35] K. Ihsberner, “Roundoff error analysis of fast DCT algorithms in fixed point arithmetic,”Numerical Algorithms, vol. 46, pp.

1–22, 2007. [Online]. Available: http://dx.doi.org/10.1007/s11075-007-9123-1

[36] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, “A new DCTalgorithm based on encoding algebraic integers,” inProceedings

of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, May 1998, pp. 1377–1380.

[37] K. Wahid, “Error-free implementation of the discrete cosine transform,” Ph.D. dissertation, University of Calgary, 2010.

[38] R. Baghaie and V. Dimitrov, “Systolic implementation of real-valued discrete transforms via algebraic integer quantization,”

Computers and Mathematics with Applications, vol. 41, pp. 1403–1416, 2001.

[39] H. A. Peterson, A. J. Ahumada, and A. B. Watson, “The visibility of DCT quantization noise,”SID International Symposium

Digest Of Technical Papers, vol. 24, p. 942, 1993.

[40] M. A. Robertson and R. L. Stevenson, “DCT quantization noise in compressed images,”IEEE Transactions on Circuits and

Systems for Video Technology, vol. 15, no. 1, pp. 27– 38, Jan. 2005.

[41] V. Dimitrov, K. Wahid, and G. Jullien, “Multiplication-free 8×8 2D DCT architecture using algebraic integer encoding,”IEE

Electronics Letters, vol. 40, no. 20, pp. 1310–1311, 2004.

[42] V. Dimitrov and K. Wahid, “On the error-free computation of fast cosine transform,”International Journal: Information

Theories and Applications, vol. 12, no. 4, pp. 321–327, 2005.

[43] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for images,”IEICE Transactions, vol. E71-E, no. 11, pp. 1095–

1097, 1988.

[44] V. Britanak, P. Yip, and K. R. Rao,Discrete Cosine and Sine Transforms. Academic Press, 2007.

[45] “Xilinx, inc. corporate website,” 2011. [Online]. Available: http://www.xilinx.com/

[46] J. H. Cozzens and L. A. Finkelstein, “Range and error analysis for a fast Fourier transform computed overZ[ω],” IEEE

Transactions on Information Theory, vol. IT-33, no. 4, pp. 582–590, Jul. 1987.

[47] M. Fu, V. S. Dimitrov, and G. Jullien, “An efficient technique for error-free algebraic-integer encoding for high performance

implementation of the DCT and IDCT,” inProceedings of the IEEE 2001 International Symposium on Circuits and Systems

(ISCAS’01), 2001.

[48] M. Fu, G. Jullien, V. S. Dimitrov, M. Ahmadi, and W. Miller, “Implementation of an error-free DCT using algebraic integers,”

in Proceedings of the Micronet Annual Workshop, 2002.

[49] ——, “The application of 2D algebraic integer encoding to a DCT IP core,” inProceedings of the 3rd IEEE International

Workshop on System-on-Chip for Real-Time Applications, Calgary, AB, CA, 2002, pp. 66–69.

[50] M. Fu, G. A. Jullien, V. S. Dimitrov, and M. Ahmadi, “A Low-Power DCT IP Core based on 2D Algebraic Integer Encoding,”

in Proceedings of the 2004 International Symposium on Circuits and Systems, 2004 (ISCAS ’04), vol. 2, May 2004, pp.

765–768.

[51] M. Fu, G. Jullien, and M. Ahmadi. (2004, Feb.) Algebraicinteger encoding and applications in discrete cosine

transform. Online. Gennum Presentation by Dept. ECE, University of Windsor, Canada. [Online]. Available:

http://www.docstoc.com/docs/74259941/Algebraic-Integer-Encoding-and-Applications-in-Discrete-Cosine

27

http://dx.doi.org/10.1007/s11075-007-9123-1
http://www.xilinx.com/
http://www.docstoc.com/docs/74259941/Algebraic-Integer-Encoding-and-Applications-in-Discrete-Cosine

[52] K. Wahid, S. B. Ko, and V. S. Dimitrov, “Area and power efficient video compressor for endoscopic capsules,” inProceedings

of 4th International Conference on Biomedical Engineering, Kuala Lumpur, Jun. 2008.

[53] K. Wahid, “An efficient IEEE-compliant 8×8 Inv-DCT architecture with 24 adders,”IEEE Transactions on Electronics,

Information and Systems, vol. 131, pp. 1081–1082, 2011.

[54] T. H. Khan and K. A. Wahid, “Lossless and low-power imagecompressor for wireless capsule endoscopy,”VLSI Design, vol.

2011, p. 12, 2011.

[55] K. A. Wahid, M. Martuza, M. Das, and C. McCrosky, “Efficient hardware implementation of 8×8 integer cosine transforms

for multiple video codecs,”Journal of Real-Time Processing, pp. 1–8, Jul. 2011.

[56] S. Nandi, K. Rajan, and P. Biswas, “Hardware implementation of 4× 4 DCT quantization block using multiplication and

error-free algorithm,” in2009 IEEE TENCON Region 10, 2009, pp. 1–5.

[57] G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 4th ed. London: Oxford University Press, 1975.

[58] M. E. Pohst,Computational Algebraic Number Theory. Basel, Switzerland: Birkhäuser Verlag, 1993.

[59] H. Pollard and H. G. Diamond,The Theory of Algebraic Numbers, 2nd ed., ser. The Carus Mathematical Monographs. The

Mathematical Association of America, 1975, no. 9.

[60] J. H. Cozzens and L. A. Finkelstein, “Computing the discrete Fourier transform using residue number systems in a ring of

algebraic integer,”IEEE Transactions on Information Theory, vol. IT-31, no. 5, pp. 580–588, Sep. 1985.

[61] A. Madanayake, R. J. Cintra, D. Onen, V. S. Dimitrov, andL. T. Bruton, “Algebraic integer based 8×8 2-D DCT archi-

tecture for digital video processing,” inProceedings of the IEEE 2011 International Symposium on Circuits and Systems

(ISCAS’2011), May 2011.

[62] R. E. Blahut,Fast Algorithms for Signal Processing, Cambridge, UK, 2010.

[63] V. Dimitrov, G. A. Jullien, and W. C. Miller, “Eisenstein residue number system with applications to DSP,” inProceedings of

the 40th Midwest Symposium on Circuits and Systems, 1997.

[64] K. Wahid, V. Dimitrov, and G. Jullien, “Error-free computation of 8×8 2D DCT and IDCT using two-dimensional algebraic

integer quantization,” inProceedings of the 17th IEEE Symposium on Computer Arithmetic. IEEE Computer Society, Jun.

2005, pp. 214–221.

[65] U. Meyer-Base and F. Taylor, “Optimal algebraic integer implementation with application to complex frequency sampling

filters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 11, pp. 1078–1082,

2001.

[66] A. G. Dempster and M. D. Macleod, “Constant integer multiplication using minimum adders,”IEE Proceedings - Circuits,

Devices and Systems, vol. 141, no. 5, pp. 407–413, Oct. 1994.

[67] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and L. Wanhammar, “Simplified design of constant coefficient

multipliers,” Circuits, Systems, and Signal Processing, vol. 25, no. 2, pp. 225–251, Apr. 2006.

[68] G. Plonka, “A global method for invertible integer DCT and integer wavelet algorithms,”Applied and Computational Har-

monic Analysis, vol. 16, no. 2, pp. 79–110, Mar. 2004.

[69] R. J. Cintra and F. M. Bayer, “A DCT approximation for image compression,”IEEE Signal Procesing Letters, vol. 18, no. 10,

pp. 579–583, Oct. 2011.

[70] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Low-complexity 8×8 transform for image compression,”Electronics

Letters, vol. 44, no. 21, pp. 1249–1250, Sep. 2008.

[71] ——, “A low-complexity parametric transform for image compression,” inProceedings of the 2011 IEEE International Sym-

posium on Circuits and Systems, 2011.

28

	1 Introduction
	2 Review
	2.1 Summary and Comparison with Literature
	2.1.1 Fixed-Point DCT VLSI Circuits
	2.1.2 AI-based DCT VLSI Circuits

	2.2 Preliminaries for Algebraic Integer Encoding and Decoding
	2.3 Bivariate AI Encoding

	3 2-D AI DCT Architecture
	3.1 Bit Serial Data Input, SerDes, and Decimation
	3.2 An 8-point AI-Encoded Arai DCT Core
	3.3 Real-time AI-based Transpose Buffer
	3.4 Row-wise DCT Computation
	3.5 Final Reconstruction Step

	4 Final Reconstruction Step
	4.1 FRS based on Dempster-Macleod method
	4.2 FRS based on expansion factor scaling

	5 On-FPGA Test and Measurement
	5.1 On-chip Verification using Success Rates
	5.2 FPGA Resource Consumption
	5.3 Clock Speed, Block Rate, Frame Rate
	5.4 Xilinx Power Consumption and Critical Path
	5.5 Area-Time Complexity Metrics
	5.6 Overall Comparison with Existing Architectures

	6 Conclusions

