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Abstract

An algebraic integer (Al) based time-multiplexed row-plelaarchitecture and two final-reconstruction step
(FRS) algorithms are proposed for the implementation cdiiiate Al-encoded 2-D discrete cosine transform (DCT).
The architecture directly realizes an error-free 2-D DCihaiit using FRSs between row-column transforms, leading
to an 8x8 2-D DCT which isentirely free of quantization erroiig Al basis. As a result, the user-selectable accuracy
for each of the coefficients in the FRS facilitates each obéheoefficients to have its precision set independently of
others, avoiding the leakage of quantization noise betweannels as is the case for published DCT designs. The
proposed FRS uses two approaches based on (i) optimized damiacleod multipliers and (ii) expansion factor
scaling. This architecture enables low-noise high-dycaamge applications in digital video processing that nesgi
full control of the finite-precision computation of the 2-DCD. The proposed architectures and FRS technigques are
experimentally verified and validated using hardware imm@etations that are physically realized and verified on
FPGA chip. Six designs, for 4- and 8-bit input word sizesngshe two proposed FRS schemes, have been designed,
simulated, physically implemented and measured. The maxirdock rate and block-rate achieved among 8-bit
input designs are 307.787 MHz and 38.47 MHz, respectiveiplying a pixel rate of &307.78%2.462 GHz if
eventually embedded in a real-time video-processing Bysighe equivalent frame rate is about 1187.35 Hz for the
image size of 19201080. All implementations are functional on a Xilinx Virté&XC6VLX240T FPGA device.
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1 INTRODUCTION

High-quality digital video in multimedia devices and videwer-IP networks connected to the Internet are under expo-
nential growth and therefore the demand for applicatiopsbke of high dynamic range (HDR) video is accordingly
increasing. Some HDR imaging applications include autansatrveillancel[1=4], geospatial remote sensing [5];traf
fic camerasl[6], homeland security [4], satellite based in@a{i/+9], unmanned aerial vehicles [10+12], automotive
industry [13], and multimedia wireless sensor networkg.[Buch HDR video systems operating at high resolutions
require an associate hardware capable of significant thimutgat allowable area-power complexity.
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Efficient codec circuits capable of both high-speeds of afp@nand high numerical accuracy are needed for next-
generation systems. Such systems may process massivetarabvideo feeds, each at high resolution, with minimal
noise and distortion while consuming as little energy asiodes [15].

The two-dimensional (2-D) discrete cosine transform (D@ération is fundamental to almost all real-time video
compression systems. The circuit realization of the DCE&ally relates to noise, distortion, circuit area, and power
consumption of the related video devices|[15]. Usually,2He DCT is computed by successive calls of the one-
dimensional (1-D) DCT applied to the columns of ar@8sub-image; then to the rows of the transposed resulting
intermediate calculation [16]. The VLSI implementatiortiijonometric transforms such as DCT and DFT is indeed
an active research area [17+-33].

An ideal 8-point 1-D DCT requires multiplications by num&eén the formc[n] = cognmr/16), n=0,1,...,7.
These constants impose computational difficulties in texfimsimber binary representation since they are not rational
Usual DCT implementations adopt a compromise solution igptoblem employing truncation or rounding dff [34,
35] to approximate such quantities. Thus, instead of enipipthe exact value[n], a quantized value is considered.
Clearly, this operation introduces errors.

One way of addressing this problem is to employ algebra&gieit (Al) encoding [36, 37]. Al-encoding philos-
ophy consists of mapping possibly irrational numbers tayaof integers, which can be arithmetically manipulated
without errors. Also, depending on the numbers to be encdtiedmapping can be exact. For example, all 8-point
DCT multipliers can be given an exact Al representation [I]entually, after computation is performed, Al-based
algorithms require a final reconstruction step (FRS) in otdemap the resulting encoded integer arrays back into
usual fixed-point representation at a given precision [36].

Besides the numerical representation issues, error patipacalso plays a role. In particular, when considering
the fixed-point realization of the multiplication operatjaquantization errors are prone to be amplified in the DCT
computation([[3€, 40]. Quantization noise at a particuld BCT coefficient can have significant correlation with
noise in other coefficients depending on the statistics @fiteo signal of interest [31, 53,139,40]. Combating noise
injection, noise coupling, and noise amplification is a @ndn a practical DCT implementatiaon [31]33H35/39, 40].

In [41,[42], Al-based procedures for the 2-D DCT are propos@&dtheir architecture was based on the low-
complexity Arai algorithm[[4B], which formed the buildingeck of each 1-D DCT using Al number representa-
tion. The Arai algorithm is a popular algorithm for video ainthge processing applications because of its relatively
low computational complexity. It is noted that the 8-poimbAalgorithm only needs five multiplications to generate
the eight output coefficients. Thus, we naturally chooslttww complexity algorithm as a foundation for proposing
optimized architectures having lower complexity and loweise. However, such design required the algebraically en
coded numbers to be reconstructed to their fixed-point fobrp#he end of column-wise DCT calculation by means of
an intermediate reconstruction step. Then data are reddodmter into the row-wise DCT calculation block[41],42].
This approach is not ideal because it introduces both nwalegpresentation errors and error propagation from the
intermediate FSR to subsequent blocks.

We propose a digital hardware architecture for the@2-D DCT capable of (i) arbitrarily high numeric accuracy
and (i) high-throughput. To achieve these goals our desigmtains the signal flow free of quantization errors in all
its intermediate computational steps by means of a novdblgiaAi encoding concept. No intermediate reconstruc-
tion step is introduced and the entire computation trulyuosover the Al structure. This prevents error propagation
throughout intermediate computation, which would othseariesult in error correlation among the final DCT coeffi-
cients. Thus errors are totally confined to a single FRS tlegdsthe resulting doubly Al encoded DCT coefficients



into fixed-point representations [36]. This procedurevadiche selection of individual levels of precision for ea¢h o
the 64 DCT spectral components at the FRS. At the same tirok flxibility does not affect noise levels or speed of
other sections of the 2-D DCT.

This works extends the 8-point 1-D Al-based DCT architex{87 41, 42] into a fully-parallel time-multiplexed
2-D architecture for 8 8 data blocks. The fundamental differences are (i) the ailgsefhany intermediate reconstruc-
tion step; (ii) a new doubly Al encoding scheme; and (iii) thiization of a single FRS. The proposed 2-Ix& ar-
chitecture has the following characteristics: (i) indegemtly selectable precision levels for the 2-D DCT coeffitie
(ii) total absence of multiplication operations; and (a)sence of leakage of quantization noise between coefficien
channels. The proposed architectures aim at performing@& operation directly in the bi-variate encoded 2-D Al
basis. We introduce designs based on (i) optimized Demjeteod multipliers and on (ii) the expansion factor
approachi[44]. All hardware implementations are desigodiktrealized on field programmable gate arrays (FPGAS)
from Xilinx [45].

This paper unfolds as follows. In Sectioh 2 we review exgstilesigns and the main theoretical points of number
representation based on Al. We keep our focus on the corktseseded for our design. Sectldn 3 brings a description
of the proposed circuitry and hardware architecture in lolegel detail. In Sectionl4 strategies for obtaining the
FRS block are proposed and described. Simulation resultsaatual test measurements are reported in Selction 5.
Concluding remarks are drawn in Sectidn 6.

2 REVIEW

The Al encoding was originally proposed for digital signabgessing systems by Cozzens and Finkelstein [46].
Since then it has been adapted for the VLSI implementatidh@fl-D DCT and other trigonometric transforms by
Julienet al. in [47-H51], leading to a 1-D bivariate encoded Arai DCT altfon by Wahid and Dimitrov([3[7,41,42,
572]. Recently, subsequent contributions by Wadtiél. (using bivariate encoded 1-D Arai DCT blocks for row and
column transforms of the 2-D DCT) has led to practical arifiaient VLSI video processing circuits with low-power
consumption[[53-55]. We now briefly summarize the statéhefart in both 1-D and 2-D DCT VLSI cores based on
conventional fixed-point arithmetic as well as on Al encadin

2.1 SUMMARY AND COMPARISON WITHLITERATURE
2.1.1 HRXxeD-PoINT DCT VLSI CIRCUITS

A unified distributed-arithmetic parallel architecture fioe computation of DCT and the DST was proposed in [24]. A
direct-connected 3-D VLSI architecture for the 2-D prinaetbr DCT that does not need a transpose memory (buffer)
is available in[[25]. A pioneering implementation at a clafkL00 MHz on 0.8um CMOS technology for the 2-D
DCT with block-size 8« 8 which is suitable for HDTV applications is availablein [17

An efficient VLSI linear-array for bottN-point DCT and IDCT using a subband decomposition algorithat
results in computational- and hardware-complexitygbN/8) with FPGA realization is reported in [20]. Recently,
VLSI linear-array 2-D architectures and FPGA realizatibasing computation complexity’(5N/8) (for forward
DCT) was reported ir [21].

An efficient adder-based 2-D DCT core on 0.8 CMOS using cyclic convolution is described [n [29]. A
high-performance video transform engine employing a spiace scheduling scheme for computing the 2-D DCT in
real-time has been proposed and implemented in Qrh8CMOS [22]. A systolic-array algorithm using a memory



based design for both the DCT and the discrete sine transfdrich is suitable for real-time VLSI realization was
proposed in[[18]. An FPGA-based system-on-chip realinatibthe 2-D DCT for 8x 8 block size that operates at
107 MHz with a latency of 80 cycles is available in[28]. A lmemplexity IP core for quantized:88/4 x 4 DCT
combined with MPEG4 codecs and FPGA synthesis is availaljgd]. “New distributed-arithmetic (NEDA)” based
low-power 8x 8 2-D DCT is reported in [31]. A reconfigurable processor otMIZ50.13 um CMOS technology
operating at 100 MHz is described in_[32] for the calculatafnthe fast Fourier transform and the 2-D DCT. A
high-speed 2-D transform architecture based on NEDA teglenand having unique kernel for multi-standard video
processing is described in [33].

2.1.2 AI-BASEDDCT VLSI CIrRcUITS

The following Al-based realizations of 2-D DCT computatimies on the row- and column-wise application of
1-D DCT cores that employ Al quantization [47+51]. The atetiures proposed by Wahét al. rely on the low-
complexity Arai Algorithm and lead to low-power realizati®[41] 42, 52—54]. However, these realizations also are
based on repeated application along row and columns of atafuantal 1-D DCT building block having an FRS
section at the output stage. Herex 8 2-D DCT refers to the use of bivariate encoding in the Al basid not to the
a true Al-based 2-D DCT operation.

A 4 x 4 approximate 2-D-DCT using Al quantization is reported56]] Both FPGA implementation and ASIC
synthesis on 90 nm CMOS results are provided. Although [Bf]leys Al encoding, itis not an error-free architecture.
The low complexity of this architecture makes it suitableHo264 realizations.

2.2 PRELIMINARIES FORALGEBRAIC INTEGERENCODING AND DECODING

In order to prevent quantization noise, we adopt the Al repméation. Such representation is based on a mapping
function that links input numbers to integer arrays.

This topic is a major and classic field in number theory. A fasiexposition is due to Hardy and Wright [57,
Chap. Xl and XIV], which is widely regarded as masterpiecétugi subject for its clarity and depth. Pohst also brings
a didactic explanation in [58] with emphasis on computatleealization. In[[5D, p. 79], Pollard and Diamond devote
an entire chapter to the connections between algebraigargeand integral basis. In the following, we furnish an
overview focused on the practical aspects of Al, which maygeful for circuit designers.

Definition 1 A real or complex number is called an algebraic integer isitiroot of a monic polynomial with integer
coefficients[[38,57].

The set of algebraic integers have useful mathematicaleptieg. For instance, they form a commutative ring,
which means that addition and multiplication operatioms@mmutative and also satisfies distribution over addition
A general Al encoding mapping has the following format

fend(X;2) = @,

wherea is a multidimensional array of integers ands a fixed multidimensional array of algebraic integers.alh c
be shown that there always exist integers such that any ueabear can be represented with arbitrary precision [46].
Also there are real numbers that can be represemitaduterror.



Decoding operation is furnished by
faec(a;z) = aez,

where the binary operatianis the generalized inner product — a component-wise inreaymeet of multidimensional
arrays. The elements afconstitute the Al basis. In hardware, decoding is oftenqreréd by an FRS block, where
the Al basisz is represented as precisely as required.

T
As an example, let the Al basis be such that {1 21} , wherez; is the algebraic integar2 and the superscript

T
denotes the transposition operation. Thus, a possible édading mapping idenc(X;z) =a= {ao al} , Whereag
anda; are integers. Encoded numbers are then represented by iat2spctor of integers. Decoding operation is
simply given by the usual inner product:= ae z = ag+ a;z;. For example, the number-12/2 has the following

encoding:
1 1
fonc | 1—2V/2; = ,
( lﬁD H
which is anexactrepresentation.

In principle, any number can be represented in an arbiraigh precision([48, 60]. However, within a limited
dynamic range for the employed integers, not all numberseaexactly encoded. For instance, considering the real

T T . o )
numbery/3, we havefenc(\/§; [1 \/E} )= [88 —61} , where integers were limited to be 8-bit long. Although
very close, the representation is not exact:

(e

In a similar way, the multipliers required by the DCT coulddreoded into 2-point integer vectorigid(c[n]; z) =

) —v3~9.21x10%

ap[n] al[n]r. Given that the DCT constants are algebraic inteders [38fxact Al representation can be de-
rived [61]. Thus, the integer sequenegf| anda; [n] can be easily realized in VLSI hardware.

The multiplication between two numbers represented ové &rasis may be interpreted as a modular polynomial
multiplication with respect to the monic polynomial thatfides the Al basis. In the above particular illustrative
example, consider the multiplication of the following pafrnumbersay + a;z; with bg + byz;, whereby andb; are
integers. This operation is equivalent to the computatidgh@following expression:

(a0 +a1X) - (bo+b1x) (modx? —2).

Thus, existing algorithms for fast polynomial multiplizat may be of consideration [62, p. 311].

In practical terms, a good Al representation possessesig fissh that: (i) the required constants can be repre-
sentedwithouterror; (ii) the integer elements provided by the repregsentare sufficiently small to allow a simple
architecture design and fast signal processing; and [ié) asis itself contains few elements to facilitate simple
encoding-decoding operations.

Other Al procedures allow the constants to be approximatetiling much better options for encoding, at the cost
of introducing error within the transform (before the FR3J].



Table 1: 2-D Al encoding of Arai DCT constants
cl4 c[6] c[2] —c[6] c[2]+c[6]

by 5 Bd b3

2.3 BIVARIATE Al ENCODING

Depending on the DCT algorithm employed, only the cosine fefraarcs are in fact required. We adopted the Arai
DCT algorithm [43]; and the required elements for this mautar 1-D DCT method are only [37,41,142]:

4m 6
cl4] = cosE, cl6] = cosﬁ,
2 6
c[2] —cl6] = COS- & — COS &,
2n 6
c[2] +c[6] = COS- & +COS &

These particular values can be conveniently encoded aswv®ll Consideringy = \/2+ V2+ \/2— V2 and
= V24+v2-12-v2,we adopt the following 2-D array for Al encoding:

1 VAl
Z= .
> 12

This leads to a 2-D encoded coefficients of the form (scaled) by

a0 aA10
do1 A1

fend(X2) =a= [

Such encoding is referred to as bivariate. For this specifltasis, the required cosine values possess an error-fdee an
sparse representation as given in Table 1[13[7, 41, 42]. Alsaote that this representation utilizes very small integer
and therefore is suitable for fast arithmetic computatMoreover, these employed integers are powers of two, which
require no hardware components other than wired-shiftagtmost-free.

Encoding an arbitrary real number can be a sophisticatedbtpe requiring the usage of look-up tables and greedy
algorithms[63]. Essentially, an exhaustive search isirequo obtain the most accurate representation. However,
integer numbers can be encoded effortlessly:

fendM;z) = lm O‘| ) 1)

wherem is an integer. In this case, the encoding step is unnecesSanyproposed design takes advantage of this

property.
For a given encoded numbarthe decoding operation is simply expressed by:

fiec(@,2) =aez=ago+ a1 021 +ag 12> + a11212.
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Figure 1: 1-D Al Arai DCT block used in Fi§] 3T41].

In terms of circuitry design, this operation is usually penfied by the FRS.
In order to reduce and simplify the employed notation, hit¢eea superscript notation is used for identifying the
bivariate Al encoded coefficients. For a given realve have the following representation

x@  x(b)
NG

] =x=x® 4 xPz + X9z + XDz 2z, 2)

where superscript®), ® (9 and(@ indicate the encoded integers associated to basis elethentsz,, andz,
respectively. We denote this basiszas= {1,21,2,212}.

It is worth to emphasize that in the 2-D Al encoding the eqernae between the algebraic integer multiplication
and the polynomial modular multiplication does not holcetrirhus, a tailored computational technique to handle this
operation must be developed.

3 2-D AIDCT ARCHITECTURE

An 8x8 image blockA has its 2-D DCT transform mathematically expressed by [16]:
™T
(C-(c-AT), 3)

whereC is the usual DCT matrix]44]. It is straightforward to notittet this operation corresponds to the column-
wise application of the 1-D DCT to the input image followed by a transposition, and then the row-wise apfilica
of the 1-D DCT to the resulted matrix.

The 2-D DCT realizations in[41,42,64,/65] use the Al encgdiopheme with decoding sections placed in between
the row- and column-wise 1-D DCT operations. This interratglreconstruction step leads to the introduction of
guantization noise and cross-coupling of correlated nmseponents. In contrast, we employ a bivariate Al encoding,
maintaining the computation over Al arithmetic to complgtevoid arithmetic errors within the algorithni _[61].

The proposed architecture consists of five sub-circliit}: [@] an input decimator circuit; (i) an 8-point Al-
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Figure 2: 1-D Al transpose buffer used in Hig. 3.
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Figure 3: The 2-D AI-DCT consists of an input section havindegimation structure, 1-D 8-point AI-DCT block
for column-wise DCTSs, a real-time Al-TB, four parallel 1-Dp®int AI-DCT blocks for row-wise DCTs, and an FRS
[67].



encoded 1-D DCT block shown in Figl. 1 which performs columisexcomputation based on the Arai algoritim|[43]
and furnishes the intermediate re<DHA in the Al domain; (iii) an Al-based transposition buffer sirin Fig.[2 with
a wired cross-connection block for obtainit@ - A)T; (iv) four parallel instantiations of the same 8-point Adsed
Arai DCT block in Fig.[1 for row-wise computation of eight 1dDCTs, which results irC - (C-A)T; and (v) an
FRS circuit for mapping the Al-encoded 2-D DCT coefficiemt®s complement format. The last transpositian (3) is
obtained via wired cross-connections. The proposed aathite is shown in Fid.] 3.

Our implementation covers items (ii)—(v) listed above. Vidvrdescribe in detail each of the system blocks.

3.1 BIT SERIAL DATA INPUT, SERDES, AND DECIMATION

We assume that the input video data, in raster-scanned fonamalready been split into® pixel blocks. We further
assume that these blocks can be stacked to form an 8-colutn{8an(number of blocky)-row data structure. This
leads to so-called “blocked” video frames, each of siz&®ixels. The blocking procedure leads to a raster-scanned
sequence of pixel intensity (or color) valugg, i =0,1,...,7,n=0,1,...,8 x (number of blocks— 1, from an 88
blocked image. Notice that we use column-row order for tliexes, instead of row-column. Due to the@size of

the 2-D DCT computation, we find it quite convenient to coesithe time indexn after a modular operatiok= n
(mod 8. Hereafter, we will refer to the time index as a modular qitght=0,1,...,7,0,1,...,7,0,1...,7,....

The video signal is serially streamed through the input pbthe architecture at a rate 8f. A bit serial port
connected to a serializer/deserializer (SerDes) is reduin be fed using a bit rate of>8Fs without considering
overheads. As an aside, we note that this input bit streambmaypically derived from optical fiber transmission or
high throughput Ethernet ports driven at 9.6 Gbps. Followire SerDes, a decimation block converts the input byte
sequence into a row structure by means of delaying and doaplsay by eight as shown in Fifj] 3.

Therefore, the raster-scanned input is decimated in tinoegiight parallel streams operating rateFgfck = Fs/8;
resulting in eight columns of the input block. It is importda emphasize that such input data consist of integer
values. Thus, they are Al coded without any computation asvetin (1). The obtained column data is submitted to
the column-wise application of the Al-based 1-D DCT.

3.2 AN 8-POINTAI-ENcODED ARAI DCT CORE

The column-wise transform operation is performed accagrdinthe 8-point Al-based Arai DCT hardware cores as
designed in[411,42] shown in Figl 1. Here, this scheme is eygal with theremovalof its original FRS. The proposed
2-D architecture employs an integer arithmetic entireffirsel over the Al basig,. This transformation step operates
at the reduced clock rate Bfjock.

Indeed, the resulting Al encoded data components are sfbiuir channels according to theiy basis representa-
tion [61]. Such outputs are time-multiplexed mixed-donpantially computed spectral components. We denote them
asXi k@, Xix®, X @, X @, wherei = 0,1,...,7 is the column index anklis the modular time index containing
the information of the row number.

In hardware, this means that the Al representation is coatkin at most four parallel integer channels![61]. Some
guantities are known beforehand to require less than fownabded integers (cf](2)). Thus, in some cases, less than
four connections are required. These channels are routhad firoposed Al-based transpose buffer (Al-TB) shown in
Fig.[d, as a necessary pre-processing for the subsequentiseADCT calculation.
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Figure 4: Row-wise DCT block that leads to the 2-D DCT of theB8dnput blocks.

3.3 REAL-TIME Al-BASED TRANSPOSEBUFFER

Each partially computed transform componkm@, g e {a,b,c,d}, from the column-wise DCT block is represented
in z4. Such encoded components are stored in the proposed Alfidv(sin Fig.[2 only for channe€P)), which
computes an 88 matrix transposition operation in real-time every eigbtk cycles.

The proposed Al-TB consists of a chain of clocked first-istfiout (FIFO) buffers for each Al-based channel of
each component of the column-wise transformation [61]. dawh parallel integer channgl there are eight FIFO
taps clocked at rate,ock. Therefore, the set of FIFO buffers leads tox28 = 176 output ports from the FIFO buffer
section.

Hard wired cross-connections are used that physicallyzeetiie required transpose matrix for the next row-wise
DCT section. These physical connections are encapsulatiaicross-connection block in F[d. 3 for brevity. The
AI-TBis clocked at a rate df¢jock and yields a new 88 block of transposed data every 64 clock periods of the maste
clock Fs. Subsequently, the transposed Al-encoded elements aneitsedh to four 1-D Al DCT cores operating in
parallel.

3.4 Row-wise DCT COMPUTATION

After route cross-connection, the output taps from thespasition operation are connected to 32 parallel 8:1 mul-
tiplexers. Each multiplexer commutes continuously andeseach partially computed DCT component by cycling
through its 3-bit control codes such that #pehannel inputs of each of the four row-wise Al-based DCT sae
provided with a new set of valid input vectors at r&@ck.

The cores are set in parallel being able to compute an 8-pdirit every eight clock cycles of the master clock
signal. This operation performs the required row-wise D@Mputation in order to complete the 2-D DCT evaluation,
resulting in a doubly encoded Al representat)(p’n@(p), p,q € {a,b,c,d}. Fig.[4 shows the above described block.
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3.5 HNAL RECONSTRUCTIONSTEP

The output channels for the 64 2-D DCT coefficients are patismeaigh the proposed FRS for decoding the Al-

encoded numbers back into their fixed-point, binary repriedin, in 2's complement format. Two different architec-
tures are proposed for the FRS.

4 FINAL RECONSTRUCTIONSTEP

The proposed FRS architectures differ from the oné_in [64h&ying individualized circuits to compute each output
value at possibly different precisions.

Indeed, no FRS circuits are employed in any intermediatellED block. This prevents quantization noise cross-
coupling between DCT channels. Any quantization noisejected only at the final output. Therefore noise signals

are uncorrelated, which further allows the noise for eadpututo be independently adjustable and made as low as
required.

4.1 FRSBASED ONDEMPSTERMACLEOD METHOD

In this method the doubly encoded elements can be decodeddaug to:

Xk @ =X @ 13, @2 4 @7,

4
Xi,k(q>(d)2122a qe {ab,c.d},
which are then submitted tbl(2). The result is ktierow of the final 2-D DCT dat&; x, i =0,1,...,7.
Therefore, for each, (4) unfolds into a particular mathematical expressiorhasve below:
Xk =X, @ Xi,k(a)(b>zl+
(2)© ()@ ©)
Xk "+ Xk 212y,
X2 =%, ¥z 4%, 0724 (6)
X kP © 22+ X kP (d>2522,
b
X925 =X, 2+ xi,k(c)( 2120+ (7
d
X924+ %022,
Xk V2120 =X (@ @ 22+ XK@ (b)ZfZZJF (8)

xi,k(d) © uz+ Xi,k(d) (d)ZfZ%-

The summation of above quantities retudg (cf. (2)). Terms depending an andz, may not be rational numbers.
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Indeed, they are given by

7= \/2+ V2+ \/2— V2 =12.613125929752 .

7= \/2+ V2 \/2— V2 =1.082392200292 .
Z =4+ 2\/2=6.828427124746 .
% =4-2V/2=1171572875253.

212, = 2V/2 = 2.82842712474619.

17 =4\/2—/2=3.061467458920..

Z2, = M4\/2+/2=7.391036260090.
324 =8.

9)

Multiplier zfz% = 8 is a power of two and can be represented exactly. Remainingtants require a binary approxi-
mation.

Closest signed 12-bit approximations can be employed tooappate the above listed numbers. Such approach
furnished the quantities below:

.. 669 . 2217
> 437 > 2399

7175 = %1 — 2828125 uB = 3’21—35 — 30615234375
2%22 = — =7.390625
Consequently, the 12-bit approximation expressionsedlmxi,k@ are given by:
669 (o
X® =, S @
2217 (c) 181 a)(d) (10)
W : xi,k 26 Xl k )
XDz ~ 62?39 X i P b 423;7 X P (b)
181 o (0, 473 o (@ (11)
-6 XiuP t 2 ST
2217 (a 181 b
X 92 N X9 X
2399 © 3135 o) (12)
=X (©) )(|
o1l Nk 210 K9
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(b)

Figure 5: Final reconstruction step blocks with multi-lgpigelining, for (10) and[(1l1), respectively.

181 (@) 473 (b)
X V212, 26 X+ =6 XD+
(13)
3135

d
W'xi,k(d)(q+8'xi,k(d)( !

Finally, considering the above quantities and applyidg % sought fixed-point representations are fully recov-
ered. Hardware implementation of the multiplier circuitsquired by the 12-bit approximations above, is accom-
plished by using the method of Dempster and Macléod [66, js method is known to be optimal for constant
integer multiplier circuits.

In this multiplierless method, the minimum number of 2-ihadders are used for each constant integer multiplier.
Wired shifts that perform “costless” multiplications bypers of two are used in each constant integer multipliereHer
an enhancement to the Dempster-Macleod method is madesfaotistant integer multiplier circuits: the number of
adder-bits is minimized, rather than the number of 2-inplatess, yielding a smaller overall design.

Accordingly, the multiplications by non powers of two shownexpressions (10]J-(13) can be algorithmically
implemented as described in Table 2. Fiy. 5 Bhd 6 depict thesmonding pipeline implementation. Here, the
various stages of the pipelined FRS architectures are slgwraving FIFO registers (consisting of parallel delay
flip-flops (D-FFs)) vertically aligned in the figures. Vedilty aligned D-FFs indicate the same computation pointin a
pipelined constant coefficient multiplication within thRS.
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(b)

Figure 6: Final reconstruction step blocks with multi-lepigelining, for (12) and[(113), respectively.

Table 2: Fast algorithms for required integer multipliers
m Input: x; Output:y, wherey = m- x

669 vi=(14+2)-x;Vo=(1-2°)-vi;y=-Vv1—2°-V»
2217 vi=(1+2%x;vo=(1+2)-x;va=v1 +22. vy ;

y=2"-vi+Vv3

181 vi=(1+2)-x;vo=2.x+vy;y=2.v; -V,
3135 vy =(1+2)-x;vo=(1-20-x;y=20vy —v,
473 vi=(1+2%) - x;Vo=x—25.v;;y=29-x+ v,
437 vi=(1+2°) - x;va=2-x—v;;y=v1+2* v
2399 vi=(1+2%)-x;Vo=x+22v;;y=2vi— v,

8 y=2.x
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4.2 FRSBASED ON EXPANSION FACTOR SCALING

The set of exact values given {0 (9) suggests further relataamong those quantities. Indeed, it may be established
the following relations:

4 =4+2n2, % =4-12,
Z2,=2 (z+2), 0Z=2-(z1-2),
Z% =8

These identities indicate that a new design can be fostérddct, by substituting the above relations irftb (5)—(8¢, w
have the following expressions:

Y@ =, @@ L x @O

Xi,k(a) © Z+ Xi,k(a) (d)2122,

X2 =00 4 (200 4,0 )2k

d b
2'Xi,k(b)( >22+ (Xi,k(b)( )+ Xi,k(b)(C)) 22,

X9z, =4- Xi,k(c)(C) +2: % (d)21+
d
(N,k(c)(a) — 200 >) 2+

(Xi,k@(b) - Xi,k@(C)) 22,

X V712, =8 XY 2. (Xi,k(d)(b) + Xi,k(d)(C)) 3+

b
2: (xi.,k(d)( = xi.,k(d)(C)) Z2"‘Xi,k(d)(a)2122-

Notice that the output valu¥; « is the summation of the above quantities. Therefore, by girauthe terms on
{1,21,20,212,}, we can expresX; i by the following summation:

Xik =Yk @ + Y Pz +Y 92 + ¥ Dz 25, (14)

where

(15)
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b d
Yi,k(b> :xi,k(a)( )+xi’k(b)(a)+2. (xi,k(b)( )+

(16)
d b
xi’k(c)( )+Xi,k(d)( )+Xi,k(d)(c)),
Yi’k(c) :X|k(a>(C)+X|k(C)(a>+2 (Xi’k(m(d)_
17)
d b
xi!k(c)( >+Xi,k(d>( )_)(i,k(d)(c>),
Yi,k(d) :Xi,k(a)(d) +Xi,k(b)(b) —I—Xi,k(b)(c)+
(18)

)(i,k(c>(b) - )(i,k(c>(C) + Xi,k(d>(a)-
Quantitie%,k@, ge {a,b,c,d}, require extremely simple arithmetic to be computed. Tlopsgations are represented
by the combinational block in Fi§] 7. We now turn to the problef efficiently evaluate[{14), which dependsan

2, andzlzz.

A possibility is to employ an expansion factor that could @itaneously scale the quantitieg z,, andz;z into
integer values. This would facilitate the usage of integéhmetic. Such approach has been often employed by
integer transform designels [68]69]. A good expositiontis nethod and related schemes is found.in [44, Ch. 5].

In mathematical terms, we have the following problem. Let tluantitiesz;, 2z, andzz form a vector{ =
[21 b2 zlzz]T. An expansion factof [44, p. 274] is the real numbér> 1 that satisfies the following minimization
problem:

a*:argor{r;iln||a~C—r0un0(a~C)H, (19)

where|| - || is a given error measure and roynds the rounding function. We adopt the Euclidean norm as ther e
measure. The presence of the rounding function introdueesral algebraic difficulties. A closed-form solution
for (I3) is a non-trivial manipulation. Thus, we may resarcomputational search. Clearly, additional restrictions
must be imposed: a limited search space and a given preéasion

In the rangex € [1,256 with a precision of 104, we could find the optimal value* = 167.2309. Thus, we have
the following scaling:

7 436995521744185. 437
a*- | z | =1181009471802748 .| ~ [181| .
72 47300054429861.. 473

The error norm is approximately 18, which is very low for this type of problem.
However, notice that small values afare desirable, since they could scéglento small integers, which require
a simple hardware design. An analysis on the sub-optimatisals for [19) shows that’ = 4.5961 furnishes the
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Table 3: Booth encoding of the expansion factors
a Representation
4.5961 2421424425429
167.2309 23+2°4+25-20422_2°_2"8

following scaling:

pal 12.01031370924931. 12
a-| z | =|497483482672658. | ~ | 5
712 12.99986988195626. 13

In this case, the resulting integers are relatively smalltae error norm is in the order of 18.
Now we are in position to address the computation of (14).9@teTting a given expansion factar we can write:

1
Xiso= = (%, +me X+

(20)
mp- X% + m3'xi,k(d>) ;

wherem,, mp, andmg are the integer constants implied by the expansion faxtdn particular, these constants are
{437,181,473}, for a = a*, and{12 5,13}, for a = a’. Notice that[[2D) consists of a linear combination.

Because constanis;, mp, andmg are integers, associate multiplications can be efficiantfylemented in hard-
ware. Considering common subexpression elimination (CBE¥e multiplications are reduced to additions and shift
operations, requiring minimal amount of hardware resaurEer the sef437,181 473}, we have the following CSE
manipulation:

437-Y, P +181- Y9 +473.Y,, (@) =
473. (Yi,k(b) Y +Yi,k(d)) -
36- (Yi,k(b> n Yi,k<c)) —
256-Y; 9.

This computation requires only eight additions. Analodpusr the set{12 5,13}, CSE yields:

12-Y, P45 Y@ +13-¥, (@ =
8. (Yi,k(b) +Yi,k(d)) n
4. (Yi’k(b) YO +Yi,k<">) "
Yk + i@
Five additions are necessary. Above calculations are septed by the integer coefficient block in Higy. 7.
The remaining multiplication if{20) is the one bry which can be implemented according to the Booth encoding

representation. Tab[é 3 brings the required Booth encdding* = 167.2309 anda’ = 4.5961.
The global multiplication by 1a is not problematic. Indeed, it can be embedded into subsggignal processing
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Figure 7: Block diagram of the proposed Al decoding basedxpamesion factors.

Table 4: Success rates of the DCT coefficient computatiomdaous fixed-point bus widthis and tolerance levels

Percentage Tolerance
Design FRS Method L 10% 5% 1% 0.1% | 0.05% | 0.01% | 0.005%
1 Dempster-Macleod 4 99.9672 99.9203 99.6422 96.3563 92.7109 64.8406 42.1714
2 8 99.9719 99.9344 99.60471 96.3250 92.7031 64.7313 41.9014
3 12,5,13) 4 99.1844 98.2944 91.6822 55.1811 45.06671 30.6922 22.8633
4 Expansi)ﬁ{ T 8 99.1289 98.2944 91.4978 55.0900 45.0289 30.7122 22.8844
5 factor (437,181,473 4 99.9900 99.9822 99.9178 99.1111 98.2000 91.0667 83.1244
6 ’ 18 99.9589 99.9511 99.8733 99.0389 98.1278 90.98671 83.1767

stages after the DCT operation. Typically, it is absorbéaline quantizer. This approach has been employed in several
DCT architectures [69-71].

Fig.[4 depicts the full block diagram of the discussed conmgutcheme. Eight separate instances of this block are
necessary to compute coefficieddg to X 7, for eachi.

5 ON-FPGA TEST AND MEASUREMENT

Six designs were implemented on Xilinx ML605 evaluation Wihich is populated with a a Xilinx Virtex-6
XC6VLX240T device. The designs included the three impletatons of the 2D &8 Arai Al DCT architecture
with the two types of FRS described in Sectidn 4 for fixed-pdinand 8-bit wordlengths. Two versions of the ex-
pansion factor FRSs are provided, corresponding to expafactorsa’ = 4.5941 andor* = 167.2309, resulting in 6
designs in total. The proposed designs are listed in Table 4.

The JTAG interface was used to input the test832-D DCT arrays to the device from theAvViLAB workspace.
Then the measured outputs were returned to thgMB workspace via the same interface. Hardware computed
coefficients were compared to its numerical evaluationifimed by MATLAB signal processing toolbox.
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Slices

Design 1 2818
Design 3 2377
Design 5 2605
Slice registers
Design 1 5767
Design 3 7104
Design 5 7286
Slice LUTs
Design 1 9628
Design 3 7784
Design 5 8839
Frequency (MHz)
Design 1 130.41
Design 3 309.885
Design 5 312.402
Quies. power (W)
Design 1 2.740
Design 3 2.773
Design 5 2.740
Dyn. power (W)
Design 1 0.897
Design 3 1871
Design 5 0.912
Total power (W)
Design 1 3.637
Design 3 4.643
Design 5 3.652

areax time (slices us)

Design 1 |21.61
Design 3 7.67
Design 5 8.34

areax timé? (slices us?)

Design 1 | 0.213
Design 3 0.025
Design 5 0.028

Figure 8: Resource utilization, speed of operation, andgra@ensumption of the DCT designs given in Tdble 4 on
Xilinx Virtex-6 XC6VLX240T FPGA for input fixed-point wordingthL = 4.
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Slices

Design 2 3618

Design 4 3144

Design 6 3445
Slice registers

Design 2 7168

Design 4 10216

Design 6 10282
Slice LUTs

Design 2 12794

Design 4 10384

Design 6 12007
Frequency (MHz)

Design 2 123.12

Design 4 300.391

Design 6 307.787

Quies. power (W)

Design 2 2.742
Design 4 2.786
Design 6 2.747

Dyn. power (W)

Design 2 0.957

Design 4

Design 6 1.123
Total power (W)

3.699

Design 2
Design 4 4.453
Design 6 3.870

areax time (slices us)

Design 2 ]29.38
Design 4 10.446
Design 6 11.19

areax timé? (slices ps?)
Design 2 ]0.239
Design 4 0.034
Design 6 0.036

Figure 9: Resource utilization, speed of operation, andgn@ensumption of the DCT designs given in Tdble 4 on
Xilinx Virtex-6 XC6VLX240T FPGA for input fixed-point wordingthL. = 8.
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Table 5: Frame rates and block rates achieved by the implemeesigns for a video of resolution 1920080

Design Freq. Block Frame

(MH2z) rate rate (Hz)
(MHz)

1 130.410| 16.30 503.08

2 123.120| 15.39 475.00
3 309.855| 38.73 | 1195.37
4 300.391| 37.55 | 1158.95
5 312.402| 39.05 | 1205.25
6 307.787| 38.47 | 1187.35

5.1 ON-CHIP VERIFICATION USING SUCCESSRATES

As a figure of merit, we considered the success rate definéegetcentage of coefficients which are within the error
limit of +e%. Fore= {0.0050.01,0.05,0.1,1,5,10}, the success rates were measured as given in the[Table 4. Inpu
wordlengthd. was set to 4 or 8 bits. The 8-bit size is the typical video pssiey configuration. The proposed Al
architectures enjoy overflow-free bit-growth at each stageughout the Al encoded structure thereby ensuring that
all sources of error are at the FRS and there only. Results giat the FRS based on the expansion factor approach
for {437,181 473} (Designs 5 and 6) offers a significant improvement in acguvdten compared to remaining FRS
architectures.

5.2 FPGA RESOURCECONSUMPTION

The resource consumption of the proposed architecturesliox Xirtex-6 XC6VLX240T device are shown in Fig] 8

for L = 4 bits. Fig[® brings analogous information for= 8 bits. Here, FPGA resources are measured in terms of
slices, slice registers, and slice look-up-tables (LUT®signs 3 and 4, which use the FRS based on the expansion
factor approach fof12 5,13}, consumed the least resources in the device and has theagotstcy of the three de-
signs (Tablgl). Moreover, even though Designs 5 and 6 (FR&an expansion factor approachfdB87,181 473})
possesses superior accuracy when compared to Designs {BR& dased on Dempster-Macleod method), they con-
sume less hardware resources. Overall the FRS step of theg®d architectures require a considerable amount of
area when compared to the Al steps of the architecture.

5.3 (QLoCK SPEED, BLoCK RATE, FRAME RATE

Frame rates and block rates achieved by the implementedraefir video at resolution 19201080 is shown in
Table[3. The design having the best throughput was Designhighwoperates on 4-bit inputs. In Design 5, the
maximum 8<8 2-D DCT block rate is 39.05 MHz for a 312.402 MHz clock. Assagnan input video resolution of
1920x 1080 pixels per frame, we obtained a real-time computatitimeo2-D 8x8 DCT at 1205.25 frames per second.
In Design 6, we describe the common 8-bit input case, whereclibck is now slightly reduced to 307.787 MHz,
yielding an 8x 8 block rate of 38.787 MHz, and a frame rate of 1187.35 franees@cond for the same image size as
above. In all cases, if the 2-D DCT core is eventually embddde real-time video processor, the pixel rate is eight
fold the clock frequency of the DCT core (due to the downsamgddy eight in the signal flow graph). For example, a
potential pixel rate 0f2.499 GHz and=2.462 GHz, for Designs 5 and 6, may be possible.
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5.4 XILINX POWER CONSUMPTION AND CRITICAL PATH

The total power consumption of FPGA circuits consist of thexsf dynamic and quiescent power consumptions.
Both estimated dynamic and quiescent power consumptiotasngld from the design tools for the Xilinx Virtex-6
XC6VLX240T device are provided in Fig] 8 and Hig. 9.

5.5 AREA-TIME COMPLEXITY METRICS

Estimates for VLSI area-time complexity metrics are preddor all designs are given in Figl 8 & 4) and Fig[®
(L = 8), respectively. In general, the area-time metric meastwenplexity of VLSI circuits where chip real-estate is
important over speed, while metric area-tigeused often for VLSI circuits where speed is of paramounteon. We
provide both metrics to offer a broad overview of the areaetcomplexity levels present in the proposed architectures
as a function of input size and choice of FRS algorithm.

The architectures are free of general purpose multipliers.

5.6 OVERALL COMPARISON WITHEXISTING ARCHITECTURES

Fixed point VLSI implementations that are directly comgmesto the proposed architecture are compared in detail
in Table[6. Tablé17 brings comparisons to Al-based architest For brevity and without loss of generality, we
chose designs 2 and 6 for the purpose of comparison. Thesenaeel at 8-bit input signals and are examples of
the Dempster-Macleod and expansion factor FRS algoriti#rs/nopsis of both fixed-point and Al-based 2D-DCT
circuits under comparison in Tablé$ 6 apd 7 was provided ai@#2.

6 CONCLUSIONS

A time-multiplexed systolic-array hardware architectisrproposed for the real-time computation of the bivariate A
encoded 2-D Arai DCT. The architecture is the first 2-D Al eatwd DCT hardware that operates completely in the Al
domain. This not only makes the proposed system completeliyptier-free, but also quantization free up to the final
output channels.

Our architecture employs a novel AlI-TB, which facilitatesktime data transposition. The 2-D separable DCT
operation is entirely performed in the Al domain. Indeed, #inchitecture does not have intermediate FRS sections
between the column- and row-wise Al-based Arai DCT operatid his makes the quantization noise only appear at
the final output stage of the architecture: the single FRSwsec

The location of the FRS at the final output stage results irctimeplete decoupling of quantization noise between
the 64 parallel coefficient channels of the 2-D DCT. This faaibteworthy because it enables the independent selection
of precision for each of the 64 channels without having afigotfon the speed, power, complexity, or noise level of
the remaining channels.

Two algorithms for the FRS are proposed, numerically optédj analyzed, hardware implemented, and tested
with the proposed 2-D Al encoded section. The architectaresphysically implemented for input precision of 4
and 8 bits, and fully verified on-chip. Of particular releearis the commonly required 8-bit realization, which is
operational at a clock frequency of 307.787 MHz on a Xilinxt®k-6 XC6VLX240T FPGA device (see Design 6).
This implies a 8x 8 block rate of 38.47 MHz andpotentialpixel rate of~2.462 GHzf the proposed 2-D DCT core
is embedded in a real-time video processing system. Theefrate for standard HD video at 1920080 resolution
is ~1187.35 Hz assuming 8-bit input words and core clock frequen307.787 MHz.
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Table 6: Comparison of the proposed implementation witHiphied fixed point implementations

Linetal. | Shams et dladisetti Guo etal] Tumeo efabun etal| Chen et gl.Proposed architecture,

[32] [31] etal.[17]] [29] [28] [30] [22] Design 2 | Design 6
Measured No No No No No No No Yes Yes
results
Sinale Two Single Single Single Two Single
svuewre | 2.0 1-D 1-D 1-D 1-D 1-D 1-D See See
DCT DCT DCT DCT DCT DCT DCT Fig.3 Fig.[3
+TMEMT| +TMEMT| +TMEMT| +TMEMT| +TMEMT| +TMEM
Multipliers 1 0 7 0 4 0 0 0 0
Operating
frequency 100 N/A 100 110 107 149 167 123.12 307.79
(MHz)
Siigé;’flk fa€15625 | N/A | 1562 | 3.4375 | 1.3375 | 2328 | 2.609 | 1539 | 38.625
F;"l‘géﬁe 100 N/A 100 220 85.6 149 167 | 984.96 | 2462.33
Implementatiod.13um N/A 0.8um | 0.35um | Xilinx Xilinx 0.18um xilinx Xilinx
technology | CMOS CMOS | CMOS | XC2VP3D XC2VP3D) CMOS | XC6VLX240T | XC6VLX240T
Coupled
qugg::za- Yes Yes Yes Yes Yes Yes Yes No No
noise
Independently
adjustable No No No No No No No Yes Yes
precision

TRow column transpose buffer. *Block rate= Fyock/8. ¥ Pixel rate= Fe.
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Table 7: Comparison of the proposed implementation witHiphied algebraic integer implemen-

tations
Nandietal.] Jullienetal] Wahidetal. Proposed architectures
58] [50] [B5] Design 2 Design 6
Measured No No No Yes Yes
results
S'”gng'D TwolD | Two1l-D
Structure +Mem DCT +Dual DCT See Fig[B See Fig[B
bank port RAM +TMEM
Multipliers 0 0 0 0 0
Exact 2D .AI No No No Yes Yes
computation
Operating
frequency N/A 75 194.7 123.12 307.79
(MHz)
8x8Block | 78125 1171 3.042 15.39 38.625
rate x 10Ps
Pixel rate 125 75 194.7 984.96 2462.33
x108s
Implementation  Xilinx 0.18um 0.18um Xilinx Xilinx
technology | XC5VLX30 CMOS CMOS XCBVLX240T XC6VLX2401]
Coupled
guantization Yes Yes Yes No No
noise
Independently]
adjustable No No No Yes Yes
precision
FRS between
row-column No Yes Yes No No
stages

T Row column transpose buffer. * Block rate= Felock/8-

24
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The proposed architecture achieves complete eliminafiqnantization noise coupling between DCT coefficients,
which is present in published 2-D DCT architectures basebath fixed-point arithmetic as well as row-column 8-
point Arai DCT cores that have FRS sections between row- ahahm-wise transforms. The proposed designs allows
each of the 64 coefficients to be computed at 64 differentigicatlevels, where each choice of precision only affects
that particular coefficient. This allows full control of t2eD DCT computation to any degree of precision desired by
the designer.
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