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Stereo Visual Tracking Within Structured
Environments for Measuring Vehicle Speed
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Abstract—We present a novel visual tracking method for
measuring the speed of a moving vehicle within a struc-
tured environment using stationary stereo cameras. In the pro-
posed method, visual stereo tracking and motion estimation in
3-D are integrated within the framework of particle filtering.
The visual tracking processes in the two views are coupled
with each other since they are dependent upon the same 3-D
motion and correlated in the observations. Considering that the
vehicle’s motion is physically constrained by the environment,
we further utilize the path constraint reconstructed from stereo
views to reduce the uncertainty about the vehicle’s motion and
improve the accuracy for both tracking and speed measuring.
The proposed method overcomes the challenges arising from
the limitation of depth accuracy in a long-range stereo, and
the experiments on the synthetic and real-world sequences have
demonstrated its effectiveness and accuracy in both the tracking
performance and the speed measurement.

Index Terms—Object tracking, particle filtering, stereo vision,
structured environments.

I. Introduction

MEASURING the speed of a moving vehicle plays an
important role in both civilian and military applica-

tions. Today, active sensor-based solutions, such as RADAR
and LIDAR, are widely in use. Despite their popularity, there
are two major issues in reality.

1) Detectable energy is emitted into the surrounding, which
is not desirable for stealth operations.

2) Only the line-of-sight motion, i.e., the motion compo-
nent along the incident direction affects the Doppler
effect for RADAR and the time of flight for LIDAR.
The speed measurement when the object is not moving
directly toward the observer and/or in curved motion is
not accurate.

With the recent advancement of vision systems and visual
tracking technologies [1]–[8] (see the detailed review in the
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next section), vision-based solutions can now provide an im-
portant alternative to active sensors. A camera emits no energy
and is not easily detectable by the target. A vehicle’s 3-D
location can be calculated given its corresponding projections
in the views of calibrated stereo cameras. By continuously
tracking the vehicle in stereo video streams, the speed of a
moving vehicle can be measured.

Using stereo vision for speed measurement faces a great
challenge, i.e., the depth accuracy is critical since the speed is
the derivative of the depth with respect to time. Unfortunately,
the depth error εz grows quadratically as the distance between
the object and the cameras increases [9]

εz ≈ z2

bf
· εd

where z, b, f , εd are the distance, the stereo baseline, the
focal length in pixels, and the pixel error, respectively. Since
the baseline and focal length cannot be very large due to
practical restrictions, the depth accuracy deteriorates at the
far range and can be very noisy. Reducing the pixel error εd

appears to be the only effort one can make to improve the
depth accuracy, which has not been effectively studied before.
Tracking corresponding feature points, applying triangulation
to the points, and then filtering the noisy triangulation results
are commonly done by the existing methods [1], [2], [10]–[12]
(see the detailed review in the next section). There are two
drawbacks associated with such methods. First, the stability
of feature points on 3-D objects decreases significantly as
the view angle changes [13]. The accuracy of feature point
tracking is thus reduced when an object undergoes large
rotation and translation in the 3-D. Second, the long-range
stereo triangulation is subject to a range-dependent statistical
bias, and directly applying filtering techniques to the 3-D
coordinates obtained from stereo triangulation results in over-
estimated ranges [14].

In this paper, we propose a novel approach that integrates
visual tracking and 3-D motion estimation under the frame-
work of particle filtering [15], for accurate speed measurement
with stereo vision. The cameras are assumed to be static in this
paper. The proposed new method has a number of advantages.
First, the capability of particle filtering for nonlinear models
and non-Gaussian noises enables our stereo tracking method to
handle nonlinearities arising from perspective projections and
observations. As a result, accuracy and robustness of vehicle
tracking in each of the stereo views are improved. Second,
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both 2-D and 3-D information is included into the state space
model to jointly estimate the 2-D tracks of the vehicle in each
of the two views, as well as the 3-D location and motion.
The 2-D visual tracking in the two views is now dependent
upon the vehicle’s 3-D motion, and is also correlated across
the two views. This improves the tracking accuracy compared
with conventional tracking methods using only one view, and
does not require explicit stereo triangulation at each step
after initialization since the correspondences between 2-D
and 3-D locations are embedded in the state update. Finally,
considering that the vehicle’s movement is constrained by its
path in reality, and the stereo vision enables us to extract the
3-D reconstruction of the path, we further include the path
constraint into the particle filtering as the prior information
about the vehicle’s motion. This reduces the uncertainty about
the vehicle’s motion significantly as well as the dimension of
the feasible state space, and therefore improves the accuracy
of visual tracking and speed measurement.

The rest of this paper is organized as follows. Section II
reviews previous works related to our work. Section III
introduces our formulation of stereo tracking using particle
filtering. Section IV studies the vehicle’s 3-D motion under the
path constraints for both straight and curved paths. Section V
describes our tracking and speed measuring results on both
synthetic and real-world sequences. Section VI concludes this
paper.

II. Related Work

Estimating the 3-D motion of an object from stereo vision
has been studied in the past [10]–[12], [16]. Reference [10]
is one of the earliest works that addressed this problem. The
motion parameters of a set of points are estimated from the
noisy observations of their 3-D locations by an extended
Kalman filter (EKF) or an iterated extended Kalman filter with
a motion model assuming constant acceleration in translational
motion and constant precession in rotational motion. Reference
[11] studied the problem of computing the 3-D path of
a moving rigid object by calibrated stereo vision. Feature
points are detected and tracked in stereo views and their 3-D
coordinates are calculated by linear triangulation. Reference
[12] studied the equivalent problem of estimating the relative
camera motion by tracking feature points in stereo views from
a static scene. All the above methods rely on low level features,
such as feature points, edges, and are targeted at close range
applications.

Stereo motion estimation over long ranges has been studied
in the intelligent transportation community for the applications
in advanced driver assistance. In [1], the relative speed of an
object with respect to the moving vehicle is estimated from
stereo vision. The disparity and motion field are first obtained
for each frame, and an EKF is applied to track the points over
time and provide estimations about their velocity. The esti-
mated velocities show large initial errors and slow convergence
on simulation results, and the results on real sequences are not
accurate. Barth and Franke [2] studied estimating the motions
of oncoming vehicles using stereo vision. The point cloud
associated with a vehicle is tracked using an extended Kalman

filter to estimate the velocity and yaw rate of the vehicle. Their
test results on synthetic data with a static ego-vehicle showed a
total RMSE in the velocity of 2.2538 m/s for distance between
50 and 15 m and 0.4934 m/s thereafter, which are equivalent
to about 5 miles per hour (mph) and 1.1 mph, respectively.
The filtered depth appears to be overestimated. The results
on real-world sequences taken from moving vehicles need the
inputs from radar for initialization, and otherwise are slow in
convergence and have large errors.

Our work is built upon the framework of particle filter-
ing. Particle filtering, also known as sequential Monte Carlo
methods, has received attention in the computer vision area in
recent years [3]–[6], [17]–[20], since the seminal work of Isard
and Blake [3] which first applied particle filtering to visual
tracking. Only a few works [21]–[24] studied the stereo track-
ing using particle filtering. Reference [22] proposed a stereo
tracking method with the stereo cameras mounted on a moving
vehicle. Features are tracked using Lucas–Kanade optical flow,
and their corresponding 3-D coordinates are calculated. Parti-
cle filtering is then applied to refine the results from feature
point tracking, since the depth cannot be effectively estimated
using particle filtering alone in their method. Quantitative
results on the accuracy about the estimated motions are not
shown. The paper in [24] proposed an adaptive multimodal
stereo people tracking algorithm based on particle filtering.
Depth information obtained from the stereo disparity map is
used in addition to color and gradient cues for evaluating the
particle weights. A person under tracking is modeled as two
planar ellipsoidal surfaces, which correspond to the head and
torso, respectively, and are assumed to be parallel to the cam-
era. The method operates in real time and is able to track multi-
ple people between a 0.5–6 m range with errors around 0.25 m.

Vehicle tracking requires vehicle detection to initialize the
tracking process and/or recover from tracking failures. Vehicle
detection is itself an active research area and there are a num-
ber of recent works that showed good vehicle detection results
for different applications [7], [25], [26]. The paper in [25]
proposed an approach for moving-vehicle detection and cast
shadow removal in traffic monitoring videos using conditional
random field. Spatial and temporal constraints are considered
as contextual dependences for neighboring pixels, and each
pixel in the scene is classified as belonging to a moving
vehicle, cast shadow, or background based on the maximum a
posteriori estimation. The paper in [7] presented a vehicle de-
tection method based on dynamic background modeling. The
challenges in vehicle detection, such as illumination changes
and camera motions, are addressed by dynamically updating
the background representation. Although in our current work
we relied on manual input for detecting the vehicles in the
first frames, existing vehicle detection algorithms as discussed
above can be integrated for automated vehicle tracking and
speed measuring.

Compared with the existing tracking literature, our proposed
method differs in two important ways: 1) we integrate the
visual tracking in stereo views and the motion estimation
in 3-D within the particle filtering framework, and jointly
estimate the object’s 2-D tracks and 3-D motion, and 2) to
improve the tracking performance and the speed measurement
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accuracy for moving vehicles within structured environments,
we utilize the path constraint reconstructed from stereo views
to reduce the motion uncertainty and promote the accuracy.

III. Stereo Tracking With Particle Filtering

Measuring the speed of an object from stereo video is
essentially an estimation problem in which the state of the
object is estimated based on noisy video observations. The
object state includes the information about the object position
and motion, and is denoted by the state vector xt , where
t ∈ N is the time index. The observation represents the
available information from the video useful for estimating
the state at time t and is represented by zt . The system is
characterized by two models: the dynamics model p(xt|xt−1)
and the observation model p(zt|xt). From the Bayesian point
of view, the problem is equivalent to constructing the posterior
distribution p(xt|z0:t), where z0:t = {z0, . . . , zt−1, zt} denotes
all the available observations up to time t. When both the
dynamics and the observation models are linear and Gaussian,
Kalman filtering provides the closed-form representation of
the posterior distribution. However, in our application, both
the dynamics and the observation models are nonlinear as can
be seen in the following sections.

Particle filtering provides an approximate solution to the
problem by recursively updating a discrete approximation to
the posterior probability using weighted random samples, i.e.,
particles. The posterior distribution p(xt|z0:t) is approximated
by a set of N weighted random samples {xi

t , w
i
t}Ni=1 with∑N

i=1 wi
t = 1, that is

p(xt|z0:t) ≈
N∑
i=1

wi
t · δ(xt − xi

t) (1)

where δ(·) is the Dirac delta function. Random samples
are drawn from the proposal distribution q(xt|xt−1, zt). Since
the optimal proposal distribution requires the inclusion of
the current observation and is not always easy to be mod-
eled and sampled from, suboptimal distributions are often
used. The most common case is to use the dynamics model
p(xt|xt−1) [15], which is employed in this paper. In this case,
the computation of the particle weights is directly based on
the observation likelihood

wi
t ∝ wi

t−1p(zt|xi
t). (2)

The minimum mean-square-error estimation of the object state
is the posterior mean, which is given by

x̂t =
N∑
i=1

wi
t · xi

t . (3)

Particles are resampled to avoid the degeneracy problem, and
the weight calculation is further simplified to wi

t ∝ p(zt|xi
t).

A. Dynamics Model for Stereo Tracking

The state vector x in particle filtering contains the informa-
tion about the underlying dynamic process, and is recursively
updated and estimated upon the arrival of new observations.

Fig. 1. Graphic model of the proposed algorithm.

For our problem, we construct the state vector xt as a com-
bination of 2-D and 3-D substates, i.e., xt = {sl

t , sr
t , St}. sl,r

t

are the 2-D substates, which represent the 2-D tracks of the
object of interest in the left and right views respectively. St

is the 3-D substate, which contains the information about
the object’s location and motion in 3-D. Since we need to
estimate the object’s 3-D motion and measure its speed, the
3-D information is included into the filtering state and directly
estimated in the filtering process, instead of being calcu-
lated from the stereo triangulation based on the independent
2-D tracking results from stereo views. This utilizes the prior
information about the object’s motion and also correlates the
visual tracking processes in both views, as will be made clear
in the following discussions. Introducing the 2-D substates
provides us with the flexibility to track salient regions in each
view, which may not exactly cover the same part of the object,
and allows independent feature updates between consecutive
frames in each view. Although one alternative way is to use
only the 3-D state by estimating the object’s width and height
in the 3-D and by including the width and height into the
state vector, we have chosen the 2-D–3-D state configuration
because of two reasons.

1) Due to the inherent noise with long range stereo triangu-
lation, the estimated dimensions of the object will have
large uncertainty. Since the triangulated 3-D coordinates
of the vertices have significant triangulation noises, and
the estimates involve taking the difference between the
noisy coordinates which are statistically independent, the
uncertainty in the estimates of the width and height is
large.

2) For a distant object, the detailed feature cannot be
exactly matched in the videos due to the limitations in
the resolution and quality of the image. Initial feature
pairs may be projected onto different image locations
as the object approaches, and cause mismatched regions
in the stereo views. Although including 2-D substates
increases the dimension of the state vector, it does not
increase the searching space and computational com-
plexity. The 2-D substates are dependent variables and
are only propagated depending on the change of the
3-D substate, and no uncertainty and dynamics noise
are added in the 2-D state update.

To prevent the stereo tracking from diverging, we employ the
cross-likelihood between two views in the measurement model
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to ensure that the corresponding regions of interests are being
continuously tracked in both views, which will be discussed
in detail in Section III-B. The graphical model of the state and
the observation is shown in Fig. 1.

For our tracking approach, we choose a plane attached to
the object of interest as the entity to be continuously tracked.
Since the object under tracking is rigid, tracking the plane is
equivalent to tracking the 3-D motion and pose change of the
object itself. It overcomes the difficulty for reconstructing a
full 3-D model of the object when it is far away, and also
reduces the computational cost. For vehicle objects, the front
of the vehicle is approximated by a plane and tracked by our
algorithm. The plane is considered to be perpendicular to the
motion direction. Note that although not all types of vehicles
have a flat front, we consider that at extended distances, such
geometric details cannot be distinguished and a plane can be
used as a good approximation.

The 3-D state St accounts for the equation of the plane and
its motion. Without loss of generality, the coordinate system
associated with the left camera is chosen as the reference
frame. At time t, the plane is parameterized by a 4-vector
πt = [nx, ny, nz, d]T, where n = [nx, ny, nz]T and d are the
normal vector and the perpendicular distance to the origin,
respectively. For any point P on the plane it satisfies the plane
equation nTP = d. As the object moves between times t and
t + 1, the plane undergoes the rotation �rt = [φt, θt, ψt]T and
the translation �tt = [�tx, �ty, �tz]T, where φt , θt , and ψt

are the Euler angles of the rotation, and �tx, �ty, and �tz are
the translations along x, y, and z axes, respectively. The 3×3
rotation matrix equivalent to �rt is represented by �Rt . The
homogeneous transformation, including both the rotation and
translation, is written as

�Tt =

[
�Rt �tt

0 1

]
.

The 2-D states sl,r
t correspond to the projections of the

planar regions in stereo views. We use quadrilaterals to delin-
eate the regions of interest in each view, i.e., s = {pT

i }i=1,... ,4,
where pi is the ith vertex’s coordinates and superscripts l, r are
omitted. Note that we do not require the quadrilaterals in stereo
views to cover exactly the same area on the tracked plane.

Consider that the plane moves from time t to t + 1. The
regions of interest in the stereo views undergo perspective
transforms and we need to track them in order to estimate
the plane’s motion. The stereo cameras are calibrated with
known intrinsic and extrinsic parameters. The intrinsic camera
matrices for the left and right cameras are denoted as Kl and
Kr, respectively, and the rotation matrix and translation vector
between them are written as R and t. The reference frame for
the object motion is chosen to be identical to the coordinate
system of the left camera, and therefore, for a given point
P = [X, Y, Z]T or its homogeneous form P = [X, Y, Z, 1]T,
it projects onto the left and right cameras by the camera
projection equations{

pl = MlP = Kl[I 0]P

pr = MrP = Kr[R t]P
(4)

where p = [x, y, 1]T denotes the homogeneous image coordi-
nates, M is the 3×4 projection matrix, and K is the camera
intrinsic matrix assuming zero skew [27].

For the left view, when the plane πt rotates and translates
by �Rt and �tt from time t to t + 1, its projection is subject
to a perspective transform or homography Hl as follows:

Hl = Kl(�R − �tTn
d

)Kl−1
(5)

where the temporal index t is omitted from the subscripts for
clarity. For the right view, the object’s motion needs to be
transformed into the coordinate system associated with the
right camera before the homography can be derived. Given
that the object is transformed by �Tt from time t to t + 1, or

Pt+1 = �TtPt (6)

and the rigid transformation between the left and right cameras

as T =

[
R t
0 1

]
such that the homogeneous coordinates Pr

t

with respect to the coordinate system of the right camera are

Pr
t = TPt (7)

the object’s motion with respect to the right camera can be
derived as

Pr
t+1 = �Tr

t P
r
t

= T �Tt T−1Pr
t .

(8)

The rotation matrix �Rr
t and the translation vector �tr

t with
respect to the right camera can now be decomposed from the
homogeneous transformation matrix �Tr

t = T �Tt T−1, and
the homography Hr for the right view is derived in the similar
way as for (5).

Based on the above derivations, the dynamics model for
stereo tracking can now be established in the following. For
the 3-D substate St = {�rt , �tt , πt}, we assume a 3-D motion
with constant rotational and translational velocity corrupted by
additive Gaussian white noises, that is[

�rt+1

�tt+1

]
= I6×6

[
�rt

�tt

]
+ N (0, 	r,t) (9)

where 	r,t = diag(σ2
φ, σ

2
θ , σ

2
ψ, σ2

tx
, σ2

ty
, σ2

tz
) is the covariance

matrix for the rotational and translational velocities. The plane
πt =

[
nT

t dt

]T
under tracking is updated as[
nt+1

dt+1

]
=

[
�Rt 0

−�tT
t �Rt 1

] [
nt

dt

]
. (10)

For the 2-D substate st = {pT
i,t}i=1,... ,4, each vertex pi,t is

transformed into its new location at time t + 1 by

p
i,t+1

= Hp
i,t

(11)

where p = [x, y, 1]T denotes the homogeneous image coordi-
nates, and H is the homography induced by the planar motion
in the form of (5), for which Hl and Hr are used for the
left and right views, respectively. The update of 2-D substate
st is random since the homography H is a random matrix
computed from the random rotation and translation in 3-D. The
above updating equations correspond to the dynamics model
p(xt+1|xt) for stereo tracking.
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B. Observation Model for Stereo Tracking

The design of the observation model is an important issue
for the particle filtering based tracking method. After a particle
is propagated between consecutive frames, the observation
model is responsible for determining its likelihood, which
reflects how well it is keeping track of the object. For our
stereo tracking method for speed measuring, the observation
is comprised of the individual observations from the stereo
views, i.e., zt = {zl

t , zr
t }. The stereo observations are correlated

with each other since they are the projections of the same
object. We utilize the stereo observations and their correlation
in the observation model to promote its discriminative power
and thus to improve the tracking accuracy. The observation
model p(zt|xt) is the product of three components

p(zt|xt) = l(zl
t)l(z

r
t )c(zl

t , zr
t ) (12)

where l(zl
t) and l(zr

t ) represent the single-view likelihood
function based on the individual observations from the left
and right views, respectively, and c(zl

t , zr
t ) models the cross

likelihood function with respect to the correlation between
the stereo observations. As the observation likelihood is the
product of the single-view likelihoods and the cross-view
likelihood, it provides better discriminative power and will be
less affected by occlusions or clutters in a single view. The
formulations of the likelihood functions are discussed in detail
as follows.

1) Single-View Likelihood: The single-view likelihood
function evaluates the likelihood of a given particle by com-
paring its extracted feature in a single view with the ref-
erence feature. It is similar to the conventional likelihood
function employed in the single-view visual tracking methods.
Considering that features, such as color histograms, gradient
orientation histograms, extracted for the entire particle with-
out utilizing spatial information do not meet the accuracy
requirement of our tracking application, we employ partwise
wavelet features to provide good discrimination power and
localization accuracy. The region of interest of a given particle
within a single view is divided into multiple parts, and wavelet
features are extracted for each part and then concatenated
to represent the combined feature, i.e., ft = {ft,i}i=1,... ,Np

,
where t is the temporal index, i is the part index, and Np

is the number of parts, respectively. We have chosen Np to
be 10 for the vehicle front by experiments such that each part
contains enough pixels, and meanwhile the neighboring parts
have different features to provide better spatial localization
capability. It should be noted that in this paper the regions of
interest are initialized by manual selection for the first frames
and continuously tracked afterward. We partition the region
of interest by mapping a regular grid onto the quadrilateral
area, i.e., by applying a perspective transform to the grid
to take its four corners into alignment with the vertices of
the quadrilateral region of interest. The grid’s dimensions are
predefined and kept fixed throughout the tracking process. For
a given part i, the feature vector ft,i is calculated by a set
of Haar-like wavelet features, the same as in [28] and [29].
Although the entire vehicle front has slightly more complex
geometries than a planar surface and undergoes perspective

Fig. 2. Haar feature extraction.

transformations, by partitioning it into small parts, each part
can be considered as approximately planar and Haar-like
feature can still be a good representation. Three types of Haar-
like features (up-down, left-right, and diagonal) are extracted
at two resolution levels, and a feature vector with a dimension
of 16 is extracted for each block since we operate on gray-
scale images in this paper. The Haar-like features are shown
in Fig. 2. The extracted feature ft is compared with the
reference feature gt for the Euclidean distance between them,
i.e., D = ‖ft − gt‖E, and the likelihood function is given
by

l = exp(−λDD2) (13)

where λD is the evaluation parameter. The reference feature
gt is initially extracted in the first frame and updated in each
frame, that is

gt = εgt−1 + (1 − ε)f̂t−1 (14)

where ε ∈ (0, 1) controls the updating rate, and f̂t−1 is the
extracted feature corresponding to the estimated state at time
t−1. Because the likelihood is evaluated by taking the product
of the single-view likelihoods from both views and the cross
likelihood, only the particles which keep good track of the
object in both views and have accurate stereo correspondences
can have significant weights and large contribution to the
estimated state; f̂t−1 will not have large deviations from the
correct feature. Since we recursively update the feature in each
frame and the view angle and scale changes between consec-
utive frames are not significant, linear update is sufficient for
robust tracking and causes little feature drift and accumulative
errors as justified in the experiments.

2) Cross Likelihood: In addition to utilizing the visual
observation in each view independently for evaluating the
single-view likelihood, we further make use of the correlation
between the observations across the stereo views to achieve
more discriminative power for accurate tracking. Given the
calibration parameters of the stereo rig and the 3-D state of the
object, the mapping between the object’s projections between
the stereo views can be established. By warping the object’s
projection in one view into the other using the established
mapping, the matching pixels from two views should corre-
spond to the same point on the object if the assumed 3-D
state is accurate, and the pixel values are therefore correlated.
Such a correlation between the pixel values across the stereo
views can be utilized for evaluating the cross likelihood, and
the detailed formulation is discussed as follows.
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Let the intensity image patches in the stereo views be
I1(p), ∀p ∈ R1 and I2(p), ∀p ∈ R2, where R1 and R2

are the regions of interest as defined by the 2-D states of
a given particle. Given the camera intrinsic matrices Kl, Kr

and the relative rotation and translation R, t between the
stereo cameras, the projections of the plane π = [n, d]T under
tracking are related by a cross-view homography Hc

Hc = Kr

(
R − tTn

d

)
Kl−1

. (15)

By applying the homography Hc to the image patch I1 in
the left view, the image patch after warping is denoted as
I ′

1(p), ∀p ∈ R′
1, where R′

1 is the warped region of interest.
Should the warping be perfect, the matching pixels in I ′

1 and
I2 are projected from the same object point, and the intensity
values should be identical given the same camera settings for
stereo views, that is [18]

I2(p) = I ′
1(p) + ε(p) p ∈ R∩ (16)

where ε(·) is the imaging noise with zero mean, and R∩ is
the intersected region between the warped image region R′

1
and the region of interest in the right view R2. We use the
normalized cross-correlation (NCC) between I ′

1 and I2 as the
measure of the correlation between stereo observations

NCC(I ′
1, I2) =

1

N − 1

∑
p∈R∩

(I ′
1(p) − Ī ′

1)(I2(p) − Ī2)

σI ′
1
σI2

(17)

where the intensity means Ī ′
1, Ī2 and standard deviations

σI ′
1
, σI2 are calculated within R∩ of N pixels. The cross

likelihood c(zl
t , zr

t ) is calculated by

c(zl
t , zr

t ) ∝ exp (−λcD
2
c) (18)

where Dc = 1 − NCC(I ′
1, I2).

In summary, the stereo observation model employed in our
work is comprised of three likelihood terms: the single-view
likelihoods in the left and right views, and the cross likelihood
which models the correlation of the two observations. Only
the particles that have their underlying states accurately depict
the actual location and motion of the object can have large
values in all the three terms and thus a large value in the
overall likelihood. In other words, taking the product of the
likelihood terms creates a more peaked likelihood function,
and thus provides better localization accuracy.

IV. Path Constraints for 3-D Motion

Visual tracking in the stereo views is dependent upon the
object’s 3-D motion, as discussed in the previous section. In
general, an object going with unconstrained motion in 3-D
space has six degrees of freedom. The large uncertainty in
object motion results in large searching space for tracking.
Meanwhile, different spatial configurations of an object may
result in similar projections in the videos when it is far away,
which results in ambiguities in recovering the 3-D motion to
undermine the accuracy in the speed measurement. In many
daily applications, an object of interest moves along a certain
path that can be extracted from stereo views and reconstructed

in 3-D. The information about the path can then be integrated
into the stereo tracking as the constraint upon object motions
to help reduce the motion uncertainty. In the remainder of this
section, we will discuss how we can take advantage of the
path information to improve the efficiency of stereo tracking
and stereo measurement. We will first discuss the case when
an object moves along a straight path, and then generalize the
constraint to the curved path. The formulations for the curved
case are also applicable to generic path motions. We base our
discussion on the constant velocity model in both cases since
it is most common in vehicle tracking applications. It can be
extended to the constant acceleration model and other higher
order motion models for more complex vehicle motions, which
are beyond the scope of this paper and we refer the reader
to [30] for a comprehensive survey.

A. Constraint With Straight Path

The case for which an object of interest moves along a
straight path is common and important in reality such as
measuring the speed of a vehicle on the freeway. Consider
a straight path with its projections in the left and right views
as ll and lr, respectively. Given the camera projection matrices
Ml and Mr, the image lines back project to two planes Ql and
Qr {

Ql = MlTll

Qr = MrTlr.
(19)

The intersection of these two planes corresponds to the 3-D
line defining the straight path. The Plücker representation of
the 3-D line L by the intersection of two plane equations is
written as

L = QlQrT − QrQlT (20)

which is a 4 × 4 matrix. Let the entry at the ith row and
jth column of L be lij , the direction of the 3-D line k =
[k1 k2 k3]T is written as

k =
[−l23 l13 −l12

]T
/‖ [−l23 l13 −l12

]T ‖. (21)

For an object of interest moving along the straight path, it
involves only the translation in the direction of k and no
rotation, i.e., �R = I3×3 and �t = vtk, where vt is the
translational velocity. Substitute them into (5) and (11), the
2-D state update equation can now be written as

p
t+1

= K
(

I − vt

d
knT

)
K−1p

t

=

⎡
⎢⎢⎢⎢⎣

xt − vt

Zt + vtk3
[αk1 + (u0 − xt)k3]

yt − vt

Zt + vtk3
[βk1 + (v0 − yt)k3]

1

⎤
⎥⎥⎥⎥⎦

(22)

or equivalently in the nonhomogeneous form

pt+1 = pt − vt

Zt + vtk3

[
α 0 u0 − xt

0 β v0 − yt

]
k (23)

where α, β, u0, and v0 are the horizontal and vertical focal
lengths, the x and y coordinates of the principle point in the
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Fig. 3. Examples of curved path constraints for synthetic and actual traffic
sequences. (a) Synthetic sequence. (b) Real sequence.

camera matrix K, and Zt is the depth of the given point pt

by back projecting the point to the plane πt . Since the tracked
plane undergoes pure translation and the normal vector n is
fixed, only the perpendicular distance d from the plane to the
origin and velocity v need to be updated for the 3-D substate,
for which we assume a constant velocity model with additive
Gaussian noises[

dt+1

vt+1

]
=

[
1 −1
0 1

] [
dt

vt

]
+ N (0, 	m) (24)

where 	m = diag(σ2
d , σ

2
v ) is the covariance matrix for the

distance and velocity. Compared with the unconstrained case
that has six degrees of freedom in 3-D rotation and translation,
the dimensionality and the uncertainty of the state space is
greatly reduced.

B. Constraint With Curved Path

We represent a curved path by a space curve, which is
defined as follows [31].

Definition 1: Let I be an interval of R. A space curve
C is a continuous function C : I → R

3 where C(τ) =
[X(τ), Y (τ), Z(τ)]T for all τ ∈ I.

With calibrated cameras, a space curve can be recon-
structed from its projections across two or more views. Earlier
works [32] and [27] studied the reconstruction of low order
planar curves, such as lines, conic sections, and the reconstruc-
tion of higher-order general space curves has also been studied
recently [33]. Since the reconstruction of space curves from
multiple views is an intensively studied topic and beyond the
scope of this paper, we refer the reader to [33] for a thorough
study. In our work, road structures, such as road boundaries
and lane markings, are first extracted from the images and
the corresponding 3-D curves are then reconstructed using the
methods in [32] and [33]. The curved path constraints for indi-
vidual lanes are then obtained by translating the reconstructed
boundary curves in the 3-D. Considering the radius of practical
road curves, the small offset of the vehicle from the center
of the lane does not cause notable difference in its traveled
distance. Fig. 3 shows the examples of the re-projections of
curved path constraints in stereo views.

Due to safety considerations and other engineering issues,
roads are always designed to have smooth transitions using
arcs, clothoids, and so on. Therefore, we further assume that
the object’s motion path is continuous to the second order.
Based on such assumptions, the Frenet frame is used to
facilitate the modeling of the object motion.

Definition 2: The Frenet frame F is a local orthonormal
basis (
T , 
P, 
B) attached to each point on the space curve C,
given that C is a continuous space curve of class C2.

Fig. 4. 3-D motion with a curved path.

The vectors 
T , 
P , and 
B represent the tangent vector,
principle normal vector, and binormal vector, respectively, as
shown in Fig. 4, They can be derived from the parametric
form of the space curve C as discussed in [31]. Consider
the case for which we keep track of the front plane of a
vehicle. The plane passing through the vehicle front intersects
with the space curve C at a point C(τ), at which the current
Frenet frame is constructed. In order to follow the path, the
instantaneous velocity of the vehicle needs to be in the same
direction as the tangent vector 
T . The normal vector n of
the plane can be considered as parallel to 
T , and the plane
contains the principle normal and binormal vectors 
P and 
B.
In other words, the tangent, principle normal, and binormal
vectors are aligned with the vehicle’s moving direction, its
horizontal, and vertical axes, respectively. Note that when the
object is maneuvering, for example when a car is changing
its lane, the above analysis does not hold strictly. However,
when the object is moving at a high speed within a limited
path, the maneuvering direction may not deviate much from
the tangent direction and the maneuvering is usually transient.
Therefore, we consider such a motion constraint to be useful
most of the time and can help reduce the uncertainty about
the object motion.

Based on the motion constraint imposed by the motion path,
we can now formulate the object’s 3-D motion model. When
the object moves along the space curve C, it undergoes both
rotation and translation. Consider the object of interest at time
t with its frontal plane intersecting the space curve at the point
C(τt) = [X(τt), Y (τt), Z(τt)]T, as shown in Fig. 4. Suppose that
it is traveling at speed vt , at time t+1 it moves to a new location
C(τt+1) = [X(τt+1), Y (τt+1), Z(τt+1)]T with the arc length from
τt to τt+1 being vt , i.e., vt =

∫ τt+1

τt
‖C′(τ)‖dτ. Considering that

it is not always easy to solve for τt+1 from the integral form
and the time difference between the two frames is small, we
use the chord length to approximate the arc length in order to
calculate the object’s location at time t + 1. In this case, τt+1

is obtained by solving the equation

‖C(τt+1) − C(τt)‖ = vt s.t. τt+1 > τt (25)

which is equivalent to finding the intersection point between
the sphere centered at τt with radius vt and the space curve C.
In general, there may be two solutions for τt+1, the constraint
τt+1 > τt ensures that the point along the forward direction is
kept.
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After the object’s new location C(τt+1) is determined given
its motion speed vt , the Frenet frame at τt+1 can now be
constructed as Ft+1 = (
Tt+1, 
Pt+1, 
Bt+1). Since the Frenet frame
is aligned with the object body as discussed in the previous
subsection, the relative transformation between Ft+1 and Ft

corresponds to the transformation of the object of interest. For
the object’s rotation �Rt between times t and t + 1, it takes
Ft into the same orientation with Ft+1, that is[
Tt+1 
Pt+1 
Bt+1

]
= �Rt

[
Tt

Pt


Bt

]
. (26)

For the translation of the object between times t and t + 1, it
can be ideally written as �t0

t = C(τt+1) − �RtC(τt). However,
in reality, it may not always strictly follow the exact path
and the deviations need to be modeled for accurate tracking.
Firstly, the object may have horizontal drift along the principle
normal direction 
Pt+1. Second, there is vertical fluctuation
along the binormal direction 
Bt+1, which may be resulted from
uneven surfaces, and so on. Therefore, in addition to the ideal
translation �t0

t , we model the translations from horizontal drift
and vertical fluctuation as �tPB

t , which is zero mean white
Gaussian with standard deviations σP and σB along 
Pt+1 and

Bt+1 axes, respectively. Since the horizontal drift caused by the
driver’s behavior is usually greater than the vertical fluctuation
due to uneven pavement, σP is given a larger value than σB.
Note that �tPB

t also helps account for the difference in the
translation when the reconstructed curve does not pass exactly
through the central axis of the vehicle. The translation �tt as
the composition of �t0

t and �tPB
t , that is

�tt = �t0
t + �tPB

t . (27)

Since tPB
t only introduces a translation within the plane

spanned by 
Pt+1 and 
Bt+1, it does not affect the intersection
point τt+1 between the object’s plane and the space curve, and
the rotation �Rt derived above needs no change.

In summary, for the case with a curved path constraint, the
rotation �Rt and translation �tt and the plane equation πt

are dependent upon the current location τt of the object on
the space curve C(τ) and the velocity vt . Only two scalars
τt and vt need to be updated in the 3-D substate as compared
with the unconstrained case in (9) and (10). We also assume
a constant velocity model with additive Gaussian noise for
the curved case.

V. Experiment Results

A. Experiment Setup

Our algorithm is implemented mainly using the Python
scripting language. Since the major bottleneck of our algorithm
lies in the feature extraction and evaluation, we have offloaded
the feature computation to the graphical processing unit (GPU)
using PyCUDA [34]. All the tests are performed on a laptop
with a 2.4 GHz Intel Core 2 Duo processor with 2 GB RAM
and an Nvidia GeForce 8600M GT GPU with 256 MB VRAM.
Currently, we have an average processing time around 400 ms
for each pair of stereo frames with 400 particles. Consider
the computation overhead involved with the scripting language
and the use of more powerful hardware, it is possible to bring
the computation to 5 frames per second (f/s), which is the

typical video acquisition rate in our application in order to
obtain enough image displacements for tracking and speed
measuring of a distant object.

We have used both synthetic and real-world video sequences
in our experiments. The synthetic sequences are created using
Autodesk 3ds Max software. The videos are rendered at a res-
olution of 1024×768 at 5 f/s. The real-world video sequences
are recorded using our custom-built stereo rig consisting of
two ImagingSource DFK41BU02.H cameras fixed on a 0.5
m horizontal bar. The two cameras are synchronized using a
hardware timer trigger. The videos are recorded at resolutions
of 1280×960 with frames rates of 5 f/s. The reference speed
reading is obtained from GPS measurements and the calibrated
speedometer. Since it is difficult to obtain accurate reference
readings for time-varying speed due to the limitation of GPS
and speedometer, for both straight and curve cases, we have
assumed a constant velocity model for the vehicle motion
and used the sequences with constant speed for testing. The
test vehicles travel under cruise control over a long range to
minimize the errors and variations in the reference readings.
The standard deviation for the constant velocity model is
chosen to be 0.05 m/s for the synthetic sequences. For the real
sequences, the standard deviation is chosen to be 0.15 m/s, i.e.,
0.33 mph, and we consider it to be sufficient for our tests since
the vehicles in our tests were under cruise control. σP and σB

for the horizontal and vertical drifts in the curved case are
0.10 m and 0.03 m, respectively. The observation parameters
λD, λc, and ε are chosen to be 15, 20, and 0.3, respectively. Our
tracking method is robust throughout the sequences, except
having slightly degraded accuracy in the lane change cases.

For performance comparison, we have included the results
obtained from feature point triangulation, Kalman filtering,
and multimodal stereo tracking [24]. Feature point triangu-
lation has been tested on the synthetic sequences, which
have no imaging noises or compression artifacts. SIFT feature
points [35] are matched across the stereo views, and the
optimal triangulation scheme [27] is used to compute their
3-D locations. The centroid of all the triangulated 3-D points
is computed, and the displacement of the centroid between
consecutive frames is considered as the velocity. A Kalman
filter is used to obtain a better estimation based on the raw
triangulation results. For the dynamics model, we include the
3-D location and velocity into the filtering state and assume a
constant velocity motion model. For the measurement model,
we use the triangulated position as the measurement of the 3-D
location with a Gaussian measurement noise. The covariance
matrix for the measurement noise is determined using the
image Jacobian as discussed in [36], for which we assume
a 0.5 pixel standard deviation in the feature point matching.
The computed interframe velocities from the raw triangulation
results are not included in the measurement model. We have
implemented the multimodal stereo tracking algorithm in [24]
with two minor modifications to suit our application.

1) The vehicle front is modeled as a quadrangle bounding
box instead of two ellipsoidal regions that were designed
for person tracking.

2) Since the original method assumes the object to be
parallel to the cameras, which is not the case in our
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application, we transform the depth map using the
known rotation angle between the camera and the
straight path.

We have tested the method on the sequences with straight
paths, since it is not directly applicable to the cases with
curved paths where the orientation of the vehicle is varying
and unknown.

B. Results on Synthetic Sequences

We first test our method on the synthetic sequences to verify
its performance. Fig. 5 illustrates the stereo tracking on one
of the synthetic straight sequences with the vehicle traveling
at an actual speed of 55 mph. The results from both the
unconstrained or constrained cases of our method, as well as
the results from multimodal stereo tracking are shown for com-
parison. The number of particles is fixed to be 800 to compare
the performances of different approaches. At the beginning,
the constrained and unconstrained cases show similar tracking
performance as shown for frames 1, 3, and 5. However,
when the object further approaches, the unconstrained case
shows inaccurate tracking results while the tracking of the
constrained case is still reliable. The degraded performance of
the unconstrained tracker is due to the higher degrees of free-
dom in the motion and thus a larger state space. The particle
distributions for the constrained and unconstrained cases are
shown in Fig. 5(a) and (b), where only the results for one view
are shown since the results for the other view are similar. One
can see that in the unconstrained case, particles are distributed
in a larger area [Fig. 5(b)] than the constrained case [Fig. 5(a)].
The latter is therefore more accurate. For the multimodal stereo
tracking, we have applied equivalent dynamics noises as the
constrained case for a better comparison. Since the object has
distinctive color compared with the background and strong
gradient cues along the edges, the qualitative tracking results
from multimodal stereo tracking are quite satisfactory.

Fig. 6(a) shows the results on speed estimates for the same
sequence. We have also included the raw speed estimates
computed from the triangulation of feature points, as well
as the Kalman filtered speed estimates. The raw results from
triangulation have large noises. The temporal smoothing of
Kalman filtering provides a smoother speed trace; however,
the results are still higher than the actual values. In spite of its
satisfactory qualitative tracking performance, the quantitative
speed estimates obtained from the multimodal stereo tracking
method are not accurate and have considerable fluctuations.
This is primarily due to the limitation to the subpixel accuracy
of the stereo disparity algorithms for long-range applications,
which is still a research issue in itself [37]. Note that even
for the synthetic sequence that has no imaging noises, the
disparity maps are not perfect as shown in Fig. 5(c). In
addition, the method only uses the depth map as measurement
information and takes the mean depth for evaluating the
depth likelihood at each time step, the inherent noises in the
individual depth map cannot be effectively filtered through
the recursive state update. Our method without path constraint
converges to a smaller value of velocity. Our method with a
path constraint gives the best speed estimates among all the
results. Because the differences in the image motions caused

Fig. 5. Stereo tracking results on the synthetic straight sequence with the
vehicle traveling at 55 mph. Frames shown: 1, 3, 5, 7, 9. (a), (b) Top rows
show the tracking results and the bottom rows show the particle distribution.
(c) Results from multimodal stereo tracking [24]. Top row: tracked locations.
Center row: particle distributions. Bottom row: disparity maps. This figure is
best viewed with magnification.

Fig. 6. Speed and depth estimates for the synthetic 55 mph sequence. For
clarity, only the results from three methods are shown for the depth estimates.
800 particles are used for the constrained, unconstrained, and multimodal
tracking. (a) Speed estimates. (b) Depth estimates.

by different motion speeds when the object is far away are not
significant, particles with inaccurate speed values may still get
considerable weights in the first few steps. Therefore, it takes
a few steps for the constrained case to converge to the actual
value, and the subsequent measurements are quite accurate and
have little fluctuation.

Fig. 6(b) shows the depth estimates for this sequence. For
clarity, only the results from our method with path constraint,
Kalman filtered triangulation, and multimodal stereo tracking
are shown. The Kalman filtered triangulation results have
slightly larger depths, which are consistent with the analysis
in [14] that the long-range stereo triangulation is biased toward
larger distances. The multimodal stereo tracking has larger
depths before frame 5 and lower depths thereafter. The depth
estimates from our method have an almost constant slope
except for the first frame.
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Fig. 7. Comparison of tracking results with different numbers of parts Np

in the single-view likelihood. The partition grids are overlaid on the tracking
results. Top/middle/bottom rows: Np = 4/10/16, respectively. This figure is
best viewed with magnification.

We have also evaluated the performance of our constrained
tracking approach with different numbers of particles, as well
as different numbers of parts Np for the single-view likelihood
on this synthetic sequence. Each test is repeated for 20 times
with the same initial conditions. For the tests with different
numbers of particles, we fix the standard deviation of the
constant velocity model to 0.05 m/s and Np = 10. The average
estimated speed, maximum error, and the average computa-
tional time are shown in Table I(a). With 200 particles, the
average speed from the constrained tracking method is close to
the actual value and the maximum error in the speed estimates
is small. Further increasing the number of particles does not
improve the results much. Because for the synthetic sequences,
the simulated vehicle strictly follows the path constraint with
constant speed and there is no imaging noise, our constrained
tracking method does not need a large number of particles to
cover the state space still providing reliable tracking. There-
fore, we fix the number of particles to 200 for the remaining
tests on the synthetic sequences in this paper. The average
computational time increases approximately linearly with the
number of particles. Table I(b) shows the average estimated
speed and maximum error with different Np values. Fig. 7
shows the qualitative tracking results from Np = 4, 10, and 16,
respectively. When Np = 4, the individual parts are relatively
large and particles with small offsets may still get considerable
weights. Therefore, the localization accuracy of the extract
feature is limited, which leads to inaccurate and unstable
tracking results as shown in the top row of Fig. 7. When Np is
increased to 10, the tracking performance is much improved,
as shown in the middle row of Fig. 7. Further increasing Np

does not improve the tracking performance. The results from
Np = 16 are slightly less accurate compared with those for
Np = 10. When the object is far away, its appearance details
are limited in the image and parts with reduced size may not
provide distinctive features. We have fixed Np to 10 in all the
remaining experiments in this paper.

We have also tested our stereo tracking algorithm using the
synthetic sequences with curved paths. Only the constrained
tracking results are shown here. Fig. 8 shows the constrained
tracking results and particle distributions on a sequence for
which a vehicle travels at 36 mph along a circular path.
The vehicle undergoes both rotation and translation while
traveling along the path, and its projections in the stereo
views show both scale changes and view angle variations.
Despite these challenges for visual tracking, the constrained

TABLE I

Error Analysis on the Synthetic 55 mph Sequence With

Different Numbers of Particles and Np Values

(a)
# Particles Avg. Speed Max Error Avg. Time

(mph) (mph) (ms/frame)
100 54.50 0.82 127.5
200 54.93 0.33 213.1
400 54.95 0.28 405.3
600 55.01 0.31 575.2
800 54.95 0.25 761.4

(b)

Np Avg. Speed Max Error
(mph) (mph)

4 54.01 2.72
6 54.24 1.33
8 54.71 0.65
10 54.93 0.33
12 54.95 0.35
16 55.05 0.52

(a) Results with different numbers of particles. Dynamics noise is 0.05 m/s
and Np = 10.
(b) Results with different Np values. Number of particles is fixed at 200.

Fig. 8. Stereo tracking results on the synthetic curved sequence with the
vehicle traveling at 36 mph. Frames shown: 1, 3, 5, 7, 9. Top and bottom
rows in each figure show the left and right views, respectively. This figure is
best viewed with magnification. (a) Tracking results for the constrained case.
(b) Particle distributions for the constrained case.

Fig. 9. Speed estimates for the synthetic curve sequence of 36 mph.
For the angular velocities, only the results from our method are shown.
(a) Translational velocities. (b) Angular velocities.

tracking manages to continuously keep track of the vehicle
front. Although when the vehicle comes close to the cameras
its front cannot be well approximated as a plane in a strict
sense, by recursively updating the reference features in each
frame and utilizing the correlations between stereo views, the
drifts of nonplanar feature locations do not cause significant
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tracking errors. The path constraint plays a central role in
providing reliable tracking results. With the path constraint,
the rotation and translation are dependent upon the velocity,
and the particles are propagated in such a way that they only
correspond to the plausible 3-D motions and poses of the
object within the current environment. This greatly reduces
the search space and thus the number of particles required
for effective tracking. As shown in Fig. 8(b), the particles
follow the motion path and are concentrated around the actual
locations of the vehicle.

Fig. 9(a) shows the speed estimates of the constrained
tracking alongside with the raw and filtered results from the
stereo triangulation of feature points. Because the vehicle’s
initial distance is smaller than those in the straight cases, the
speed estimate approaches the actual value at the first step. The
results are quite steady in the subsequent steps and are only
slightly below the actual values. The raw results calculated
from the feature point triangulation show large fluctuations,
and the results from Kalman filtering are still not very accurate.
Fig. 9(b) shows the estimations of angular velocities from
our method. The estimated angular velocities are close to the
actual value of 22.5°/s, although such a high angular velocity
is not practical in reality due to the physical constraints of
the ground vehicle. Since the simulated path is circular, we
can compute the error introduced in (25), which approximates
the arc using the chord length. At 5 f/s rate, the vehicle
turns about 4.5° between two frames and the chord length is
approximately 99.97% to the arc length. The modeling error
is thus negligible.

C. Results on Real-World Sequences

In addition to testing our proposed method on the syn-
thetic sequences, we further test it on real-world sequences.
We have determined the number of particles to be 400 for
our constrained tracking method by experiments and keep it
constant in the tests on the real-world sequences unless oth-
erwise stated. More particles are used in comparison with the
synthetic sequences since there are fluctuations in the actual
vehicle motions and imaging noises in the recorded videos.
Fig. 10 shows the tracking results and particle distributions
for a sequence with a straight path. The vehicle was traveling
at 36 mph. Compared with the synthetic sequence, the back-
ground is more complex and the road surface is slightly tilted.
Both our method with a path constraint and the multimodal
stereo tracking method are tested. Equivalent dynamics models
are applied to both methods for a meaningful comparison.
For our method, the translations and scale changes of the
vehicle in stereo views are tracked quite accurately throughout
the sequence and the particle distributions are concentrated
around the object’s actual locations, as shown in Fig. 10(a).
For the multimodal stereo tracking method, the tracking results
also with 400 particles, and the disparity maps are shown in
Fig. 10(b). Since our stereo rig is not in a parallel configu-
ration, the left and lower parts of the disparity maps do not
have valid values after stereo rectification. Compared with the
synthetic sequence, the disparity computation for this sequence
is more challenging and prone to errors. The tracking results
are good at the beginning and drift to the right later on. Since

Fig. 10. Experiment results on the real sequence of 36 mph with straight
path using 400 particles. (a) Results from our method. (b) Results from
multimodal stereo tracking [24]. Top row: tracking results. Center row: particle
distributions. Bottom row: the disparity maps.

Fig. 11. Speed and depth estimates for the real straight sequence of 36 mph.
N represents the number of particles. (a) Speed estimates. (b) Depth estimates.

the drifted particles have strong gradient responses along the
top and bottom edges that are much longer than the side edges,
the gradient likelihood values are not very low. Due to the
subpixel accuracy limitation of the stereo disparity map, the
side pixels cannot be effectively distinguished from the frontal
ones, as shown in the bottom row in Fig. 10(b). The kernel
smoothing employed in the method may play an adverse role
in accurate tracking in this case. The particles appear slightly
more dispersed compared with our method, although the same
initial distribution and equivalent dynamics model are applied.
Fig. 11(a) shows the comparison of speed estimates. Although
the initial speed value is away from the actual value by over
10%, our method manages to approach the actual speed in
two steps, and the subsequent values have small fluctuations.
The speed estimates from multimodal stereo tracking with
400, 800, and 1200 particles show similar patterns that have
abrupt drops at frame 7, and are not able to get close to the
actual value thereafter. The results from 1200 particles have
slightly lower fluctuations among the three. Fig. 11(b) shows
the depth estimates. The depth estimates from our method are
approximately along a straight line; however, the results from
multimodal tracking show sudden changes at frame 7 and do
not have a constant slope.

We have also tested the tracking algorithm on the sequences
with curved paths. Fig. 12 shows the tracking results, as well
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Fig. 12. Tracking results and particle distributions on the Neil sequence.
(a) Tracking results. (b) Particle distributions.

as the corresponding particle distributions for the sequence
Neil. The sequence was collected at a curved road segment on
the OSU campus. The vehicle was traveling at 28 mph. The
constrained stereo tracking shows good tracking results. The
particles in both tests are distributed along the curved path,
and effectively cover the motions of the vehicles. The speed
estimates and the angular velocities are shown in Fig. 13.
The speed estimates converge to the actual value after the
first frame and are quite stable as shown in Fig. 13(a). The
estimated angular velocities are shown in Fig. 13(b), which
are not constant due to the varying curvatures of the actual
path. Note that the angular velocity is not a state variable and
is calculated by taking the difference between the estimated
orientations of the vehicle between two frames, and therefore,
no value is shown for frame 0. We have also evaluated the
performance with different number of particles and different
choices of noise magnitudes on the Neil sequence. Each test
is repeated for 20 times with the same initial conditions, and
the average value of the final estimated speed as well as the
maximum error from 28 mph are calculated. For the tests with
different numbers of particles, we fix the standard deviation of
the constant velocity model to 0.15 m/s. The average estimated
speed, maximum error, and the average computational time
are shown in Table II(a). Since the initial speed value is much
lower than the actual speed, with only 100 or 200 particles, the
algorithm is not able to converge to the actual speed in some
runs, and therefore, the average speed is lower than actual and
the error is large. With more than 400 particles, the average
speed is close to the actual value and the maximum error
is reduced. The computational time increases approximately
linearly with respect to the number of particles. For the tests
with different dynamics noises, we fix the number of particles
to be 400, and the results are shown in Table II(b). The average
speed is not affected much by the increased dynamics noises.
However, the maximum error increases as the dynamics noise
gets larger.

Fig. 14 shows the tracking results with multiple vehicles
on the sequence OH-315. The sequence was collected on the
highway OH-315 near the OSU campus. Two independent par-
ticle filters are used for simultaneous tracking of both vehicles.
Results for one view are shown here since the performance
is similar in the other view. With the path constraints, the

TABLE II

Error Analysis on the Neil Sequence With Different

Numbers of Particles and Dynamics Noises

(a)
# Particles Avg. Speed Max Error Avg. Time

(mph) (mph) (ms/frame)
100 27.03 3.129 142.5
200 27.16 1.892 233.2
400 27.86 0.961 415.7
600 27.83 0.665 598.0
800 27.87 0.575 790.7

(b)
Noise Mag. Avg. Speed Max Error

(m/s) (mph) (mph)
0.05 27.63 0.601
0.10 27.71 0.731
0.15 27.86 0.961
0.20 27.69 1.409
0.25 27.89 1.513

(a) Results with different numbers of particles. Dynamics noise is fixed at
0.15 m/s.
(b) Results with different dynamic noises. Number of particles is fixed at
400.

Fig. 13. Speed estimates for the Neil sequence at 28 mph. (a) Translational
velocities. (b) Angular velocities.

Fig. 14. Tracking results and particle distributions with two vehicles on the
OH-315 sequence. The figure is best viewed in color with magnification.

particles for each tracker cover the motion paths of individual
vehicles and the tracking results are quite accurate. Although
the reference speed reading of 50 mph is only available for
our test vehicle on the left, we have also measured the speed
for the vehicle on the right. The speed estimates are shown
in Fig. 15(a), where the initial speeds are both chosen to
be the speed limit of 55 mph at this location. The speed
measurements for the left vehicle are slightly higher than the
reference speed reading.

In addition to testing our algorithm on the sequences with
vehicles undergoing regular motions, we have also tested
its performance for the lane change case. Fig. 16 illustrates
the tracking results on two sequences with different speeds
and lane change rates taken at the same location. For the
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Fig. 15. Speed estimates for (a) OH-315 sequence and (b) sequences with
lane change.

Fig. 16. Tracking results with lane change. Frames shown: 5, 10, 15, 25, 30.
Top rows: tracking results. Bottom rows: particle distributions. Only results
from one view are shown. (a) 35 mph sequence. (b) 30 mph sequence.

first sequence, the vehicle traveled at a constant speed of
35 mph and changed to the outer lane with a duration of
around 5 s. For the second sequence, the test vehicle was
instructed to travel at a lower speed of 30 mph but switch its
lane at a faster than normal rate within 3 s. For both cases,
the qualitative tracking results are quite good. The particle
distribution for the second case is more biased toward the
original path. With a lane width of 3.7 m, the horizontal drifts
for each frame are around 0.15 and 0.25 m for the first and
second sequences, respectively, which are still within the 3σP

range given σP = 0.10. Therefore, the generated particles are
still able to capture the vehicle’s motion. However, for the
quantitative speed estimates, they are not as accurate as those
obtained from the regular sequences. Since the horizontal drift
is no longer zero mean and the orientation of the vehicle front
is not parallel to the principle normal direction of the original
path constraint, the discrepancy between the assumed motion
model and the actual vehicle motion leads to a degraded
performance in the speed estimates.

VI. Conclusion

In this paper, we presented a novel stereo tracking method
for measurement of the speed of moving objects within struc-
tured environments. The stereo tracking and motion estimation
in 3-D were integrated within the particle filtering framework.
For the state space, the 3-D location and motion were modeled
using the 3-D substate and the 2-D tracks were represented by
2-D substates. By tracking a plane attached to the object of

interest instead of its full 3-D model, the projected motions of
the object in the stereo views were modeled by homographies.
The observation likelihood was taken to be the product of
individual observation likelihoods and cross likelihoods, and
therefore provided better localization accuracy compared with
single-view tracking. To further improve the accuracy in track-
ing and speed measurement, we utilized the path constraint
to reduce the uncertainty about object motion and limit the
dimension of the feasible state space. Both straight and curved
paths were considered. The tracking performance and speed
accuracy of our proposed method have been verified by the ex-
periments on both synthetic and real-world sequences. In par-
ticular, the path constraint was effective in limiting the distri-
bution of particles and was shown to be necessary for reliable
tracking and speed measurement. Although in this paper we
focused on the application to a vehicle traveling at a constant
speed, the stereo tracking method with path constraint can be
generalized to adaptive and time-varying speed measurement
by incorporating more sophisticated dynamics models.
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