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Abstract—Unlike H.264/advanced video coding, where par-
allelism was an afterthought, High Efficiency Video Coding
currently contains several proposals aimed at making it more
parallel-friendly. A performance comparison of the different pro-
posals, however, has not yet been performed. In this paper, we will
fill this gap by presenting efficient implementations of the most
promising parallelization proposals, namely tiles and wavefront
parallel processing (WPP). In addition, we present a novel ap-
proach called overlapped wavefront (OWF), which achieves higher
performance and efficiency than tiles and WPP. Experiments
conducted on a 12-core system running at 3.33 GHz show that
our implementations achieve average speedups, for 4k sequences,
of 8.7, 9.3, and 10.7 for WPP, tiles, and OWF, respectively.

Index Terms—High Efficiency Video Coding (HEVC), parallel
programming, video coding.

I. Introduction

R ECENT DEMANDS on video coding support for even
higher resolutions such as 4k or UHD in consumer

devices are driving the video coding development further. To
meet these demands, the Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T and ISO/IEC Moving Pictures
Experts Group has started a new project to develop a new
video coding standard, called High Efficiency Video Coding
(HEVC) [1]. The HEVC project aims at reducing the bitrate
compared to H.264/AVC [2] by another 50%.

The price to be paid for higher coding efficiency is higher
computational complexity. While state-of-the-art single-core
processors are capable of decoding a 1080p H.264/AVC video
sequence in real time, it is very unlikely that single-core
processor performance will increase to a point where they can
decode a 2160p50 HEVC video in real time. While Interna-
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tional Technology Roadmap for Semiconductors [3] predicts
the transistor speed will continue to improve by 25% per tech-
nology node, Borkar and Chien [4] predict only 15% improve-
ments due to energy constraints, forcing cores to operate at
low frequency and near threshold voltage. Furthermore, in low
power devices state-of-the-art high-performance cores cannot
be employed, and simpler cores clocked at a lower frequency
must be used. Therefore, to obtain real-time HEVC decoding
performance, parallelism is no longer an option but a necessity.

Unlike H.264/AVC, where parallelism was an afterthought,
the current HEVC draft contains several proposals aiming at
making the codec better parallelizable. H.264/AVC supports
slices, which were introduced mainly to prevent loss of quality
in the case of transmission errors, but they can also be used
to parallelize the decoder. Employing slices for parallelism,
however, has several problems [5]. First and foremost, using
many slices to increase parallelism incurs significant coding
losses. Second, the number of slices is determined by the
encoder and if the decoder relies on slices to obtain real-time
performance, it may not achieve this if it receives a video
sequence with only one or a few slices per frame. The main
parallelization approaches currently included in the HEVC
draft [Tiles and wavefront parallel processing (WPP)], on the
other hand, allow creation of picture partitions that can be
processed in parallel without incurring high coding losses. A
detailed performance comparison of different proposals has
not yet been performed, however, and this paper fills the gap.
Although these tools can be used for both parallel encoding
and decoding, we mainly focus here on the parallel decoding
capabilities, but the scalability results presented in this paper
are also indicative for parallel encoding.

The main contributions of this paper can be summarized as
follows.

1) We present a novel approach called overlapped wave-
front (OWF) that achieves higher performance than the
approaches currently included in the HEVC draft.

2) We present efficient parallel implementations of the tiles,
WPP, and OWF methods that strike a good balance be-
tween design effort, amount of parallelism, data locality,
and synchronization overhead.

3) We present experimental results on a parallel system
with 12 cores running at 3.33 GHz for 1080p, 1600p,
and 2160p video sequences. We compare the paralleliza-
tion approaches in terms of speedup, scalability, and
parallelization efficiency.
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This paper is organized as follows. Section II describes
the parallelization approaches currently included in the HEVC
draft. Section III presents an analysis of the coding efficiency
of the different parallelization methods. In Section IV, the par-
allel implementations are described. Experimental results and
their analysis are presented in Section V. Finally, conclusions
are drawn in Section VI.

II. Video Codec Parallelization Approaches

A. Previous Parallelization Strategies

Previous video codecs, in particular H.264/AVC, have
been parallelized using either frame-level, slice-level, or
macroblock-level parallelism. Each of these approaches, how-
ever, has some limitations such as limited scalability, signifi-
cant coding losses, or high memory requirements.

1) Frame-Level Parallelism: Frame-level parallelism con-
sists of processing multiple frames at the same time provided
that the motion compensation dependences are satisfied [6].
Frame-level parallelism is sufficient for multicore systems with
just a few cores. Because it is relatively simple to implement
and does not incur coding losses, it has been employed in
popular H.264/AVC encoders and decoders [7], [8]. However,
frame-level parallelism has a number of limitations. First,
the parallel scalability is determined by the lengths of the
motion vectors. If, due to fast motion, motion vectors are
long, there is little parallelism. Second, the workload of each
core may be imbalanced because the frame decoding time can
vary significantly. Finally, frame-level parallelism increases the
frame rate but does not improve the frame latency.

2) Slice-level Parallelism: In H.264/AVC, as in most
current hybrid video coding standards, each frame can be
partitioned into one or more slices in order to add robustness
to the bitstream. Slices in a frame are completely independent
from each other [9] and therefore they can also be used for
parallel processing. Slice-level parallelism, however, also has
a number disadvantages. The first one is that the number
of slices is determined by the encoder and, in most cases,
encoders use only one slice per frame, resulting in bitstreams
with no slice-level parallelism at all. Second, although slices
are completely independent from each other, the H.264/AVC
deblocking filter can be applied across slice boundaries. Fi-
nally, slices reduce the coding efficiency significantly. Due to
the these disadvantages, exploiting slice-level parallelism is
only advisable when there are a few slices per frame [10].

3) Macroblock-level Parallelism: Independent mac-
roblocks inside a frame can be reconstructed in parallel using
a wavefront approach [11]. Furthermore, macroblocks from
different frames can be processed in parallel provided the
dependences due to motion compensation are handled cor-
rectly [6]. Entropy decoding, however, can only be parallelized
at the frame (slice) level and therefore it has to be decoupled
from macroblock reconstruction [12]. Although this approach
can scale to a many-core architecture [5], it has some limita-
tions too. First, the decoupling of entropy decoding (ED) and
reconstruction increases the memory usage. Furthermore, this
strategy only reduces the frame latency for the reconstruction
stage but not for the ED stage.

Fig. 1. Picture divided into nine tiles, showing the scanning order of the
CTBs.

B. Parallelization Strategies in HEVC

In order to overcome the limitations of the parallelization
strategies employed in H.264/AVC, two tools aiming at fa-
cilitating high-level parallel processing have been included in
the HEVC draft: WPP and tiles. Both of these tools allow
subdivision of each picture into multiple partitions that can
be processed in parallel. Each partition contains an integer
number of coding tree blocks (CTBs) that may or may not
have dependences on CTBs of other partitions. When WPP or
tiles are enabled, the bitstream contains entry point offsets (in
the slice header) that indicate the start position of each picture
partition. This is necessary for each core to immediately access
the partition it is assigned to decode.

1) Tiles: When tiles are enabled the picture is divided in
rectangular groups of CTBs separated by vertical and hori-
zontal boundaries [13]. The number of tiles and the location
of their boundaries can be defined for the entire sequence or
changed from picture to picture. Tile boundaries, similarly to
slice boundaries, break parse and prediction dependences so
that a tile can be processed independently, but the in-loop
filters (deblocking and SAO) can still cross tile boundaries.

Tiles change the regular CTB scan order to a tiles scan
order, of which an example is given in Fig. 1. Constraints are
set on the relationship between slices and Tiles. At least one
of the following conditions should be true for each slice and
tile in a picture: all CTBs in a slice belong to the same tile,
or all CTBs in a tile belong to the same slice.

Tiles do not require communication between processors for
CTB ED and reconstruction, but communication is needed if
the filtering stages operate in the crossing mode. Although a
noncrossing mode is specified in which data exchange is not
required between processors, it can result in visual artifacts.
Additionally, the tiles scan order complicates the raster scan
processing typically performed on single-core implementation.

Compared to slices, tiles have a better coding efficiency be-
cause tiles allow picture partition shapes that contain samples
with a potential higher correlation than slices, and because
tiles reduce slice header overhead. But, similar to slices, the
rate-distortion loss increases with the number of tiles, due to
the breaking of dependences along partition boundaries and
the resetting of CABAC probabilities at the beginning of each
partition.
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Fig. 2. WPP processes rows of CTBs in parallel, each row starting with the
CABAC probabilities available after processing the second CTB of the row
above.

2) Wavefront Parallel Processing (WPP): When WPP is
enabled, each CTB row of a picture is a separated parti-
tion [14]. Compared to slices and tiles, however, no cod-
ing dependences are broken at row boundaries. Additionally,
CABAC probabilities are propagated from the second CTB of
the previous row, to further reduce the coding losses (Fig. 2).
Also, WPP does not change the regular raster scan order.
Because dependences are not broken the rate-distortion loss of
a WPP bitstream is small compared to a nonparallel bitstream.
Furthermore, a WPP bitstream can be losslessly transcoded
to/from a nonparallel bitstream with only an entropy-level
conversion [15].

When WPP is enabled, a number of processors up to the
number of CTB rows can work in parallel to process the lines.
The wavefront dependences, however, do not allow all the
CTB rows to start decoding at the beginning of the picture.
Consequently, the CTB rows also cannot finish decoding at
the same time at the end of the picture. This introduces
parallelization inefficiencies (we will refer to them as ramping
inefficiencies) that become more evident when a high number
of processors is used.

3) Overlapped Wavefront (OWF): The ramping inefficien-
cies of WPP can be mitigated by overlapping the execution
of consecutive pictures. When a thread has finished a CTB
row in the current picture and no more rows are available, it
can start processing the next picture instead of waiting for the
current picture to finish. We call this nonnormative technique
OWF and it can be used for enhancing the implementation
efficiency of WPP [16].

To support overlapped wavefront execution, the motion
vectors must be constrained to ensure that when a coding unit
(CU) is decoded, all its reference area is available, without
requiring that the full reference picture is available. This can
be guaranteed by limiting only the maximum downward length
of the vertical component of the motion vector. This restriction
ensures that the reference area has been decoded, provided
the number of CTB row decoding threads is below a certain
limit [17]. Vertical motion vector restriction is usually part of
the profile and level definition of a video standard. At the time
of writing, however, these limits have not yet been defined for
the HEVC main profile [18].

Fig. 3 illustrates overlapped frame decoding as well as
the relation between the maximum motion vector length and

Fig. 3. Frames can be overlapped with a restricted motion vector size,
because the reference area is fully decoded.

TABLE I

Comparison of Parallelization Approaches

Properties Slices Tiles WPP/OWF
Coding losses Very high High Low
Boundary artifacts Yes Yes No
Single-core issues No Yes No
Parallel scalability Medium Medium Medium/high
Region of interest No Yes No

the admissible number of CTB row decoding threads. In this
example there are nine CTB rows in a frame and the vertical
component of the motion vector is constrained to 1/4th of
the picture height. Then, provided there are fewer than six
decoding threads, it is ensured that when an CTB is decoded,
its reference area is available, before the entire reference
picture fully decoded.

4) Application Use Cases: It is clear from the previous
sections that tiles and WPP have different merits and disad-
vantages. Table I presents a summary of the main properties
of the parallelization approaches.

WPP is generally well suited for the parallelization of the
encoder and decoder because it allows a high number of
picture partitions with low compression losses. Additionally,
it does not introduce artifacts at partition boundaries as is the
case for slices and tiles [19]. WPP can also be used for low-
delay applications, especially those requiring subpicture delay
(also called ultralow delay). In such scenarios, it is needed for
the encoder to transmit a picture partition as soon as it has
been encoded. This can be achieved by combining WPP with
multiple slices or dependent slices [20]. Dependent slices are
similar to slices except that no dependences are broken along
slice boundaries and the header is much smaller (it inherits
most of its characteristics from the parent slice).

Tiles can also be used for a general parallelization of
encoder and decoder. The amount of parallelism is not fixed,
as in WPP, allowing the encoder to adjust the number of tiles
according to its computing resources. Because tiles can be
used to divide the picture into multiple rectangles spanning
the picture horizontally and vertically, they are better suited for
region of interest (ROI) coding. In conversational applications,
for example, tiles in combination with a tracking algorithm can
be used to dynamically adjust the size and error protection of
the ROIs.

In order to simplify the implementation, the HEVC standard
does not allow use of tiles and WPP simultaneously in the
same compressed video sequence. It may be interesting, how-
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Fig. 4. Coding losses (using weighted YUV-BDBR) of different tile configurations for 1080 videos. (a) Total coding losses. (b) Coding losses per partition.

ever, to allow some combination of these tools in the future.
For instance, it could be necessary to divide an ultrahigh-
resolution video into subpictures using tiles with WPP inside
each subpicture, to enable real-time encoding/decoding.

III. Coding Efficiency Analysis

The parallelization approaches considered in HEVC rely on
creating picture partitions. Coding losses may appear due to
breaking dependences for prediction, CABAC context mod-
eling, and/or slice header overhead. In general, having more
partitions leads to higher compression losses. In this section
we present a quantitative analysis of the coding efficiency of
the different parallelization tools.

A. Choosing the Number of Picture Partitions

For slices and tiles, the number of partitions can be freely
chosen by the encoder. For WPP they are fixed to one
partition per CTB row. In order to have a common baseline for
slices and WPP, we selected a configuration with one picture
partition per CTB row. This approach results in 17, 25, and
34 picture partitions for 1080p, 1600p, and 2160p resolutions,
respectively.

For OWF the same picture partitioning configuration as
WPP is used. Additionally, a restriction in the maximum length
of the vertical motion vector is applied. This limit is defined
as 1/4th of the picture height.

In the case of tiles, there is more freedom since tiles can
have row and column partitions. We evaluated tiles configura-
tions with different number of rows and columns (N columns
× M rows) in order to find the best partitions in terms of
amount of parallelism and coding losses.

For tractability, we performed the tiles analysis only for
1080p resolution. Fig. 4 shows the coding losses for the
different tiles configurations. (The details of the input videos
are presented in Section III-B.) The coding losses increase
with the total number of tiles, but there are configurations that
have more coding losses than others, especially those with only
row partitions (1×7 and 1×17). To better appreciate the coding

losses of different tiles shapes, in Fig. 4 we show the coding
losses per partition. According to these results, tiles shapes
that are as square as possible have less coding losses. Square
tiles have the lowest perimeter to area ratio and, therefore,
break less dependences than nonsquare Tiles.

For the performance evaluation we selected the tiles con-
figurations with the closest matching degree of parallelism
compared to slices and WPP. The selected tiles configurations
are 6 × 3, 6 × 4 and 7 × 5 for 1080p, 1600p, and 2160p
resolutions, respectively.

B. Coding Efficiency

Because support for parallelism will be useful mainly for
HD resolutions, we selected videos for 1080p (1920 × 1080),
1600p (2500 × 1600p), and 2160p (3840 × 2160p) resolutions.
For 1080p and 1600p, we used the test sequences described in
the HEVC common conditions [21]. For 2160p resolution, we
use two videos from the SVT High Definition Multi Format
Test Set [22].

From the HEVC, common conditions we selected the ran-
dom access high-efficiency (RA-HE) settings, which achieves
the highest compression efficiency and includes, among others,
CABAC entropy coding, SAO filter, and ALF [21]. For the
encoder we used HM-4.1, which is the same version of HM
used later for the experiments described in Section V.

For comparing coding losses we computed the Bjφntegaard
Delta Bit Rate (BDBR) using a weighted average for luma
and chroma components (0.75Y + 0.125U + 0.125V) for all the
videos [23]. As a baseline we used a configuration without
picture partitions (i.e., one slice and one tile per picture, no
WPP). All the videos were encoded for four quantization
parameter (QP) values (22, 27, 32, and 37). Table II shows
the main properties of the test sequences, including resolution,
frame rate, number of frames and the resulting bitrate (in kb/s)
and the combined YUV-PSNR (in dB).

Table III shows the coding losses for each one of the
three picture partition strategies. One slice per CTB row
(1 slice/row) exhibits the largest coding penalty, 7.99% on
average for the three resolutions, as slices break ED and



CHI et al.: PARALLEL SCALABILITY AND EFFICIENCY OF HEVC PARALLELIZATION APPROACHES 1831

TABLE II

Bitrate (in kb/s) and Weighted PSNR (in dB) for All the Encoded Video Sequences

Video Resolution Frames QP22 QP27 QP32 QP37
Bitrate YUV-PSNR Bitrate YUV-PSNR Bitrate YUV-PSNR Bitrate YUV-PSNR

BasketballDrive 1080p50 500 17 846 40.69 6244 39.03 2933 37.28 1539 35.50
BQTerrace 1080p60 500 40 238 39.15 8263 37.22 2823 35.88 1295 34.36
Cactus 1080p50 500 18 965 39.47 6181 37.94 2934 36.23 1514 34.37
Kimono 1080p24 241 4741 42.57 2184 40.73 1068 38.65 537 36.60
ParkScene 1080p24 240 7398 40.99 3199 38.56 1463 36.18 678 34.03
NebutaFestival 1600p60 300 220 079 39.52 95 871 34.74 29 830 31.48 8133 30.06
PeopleOnStreet 1600p30 150 32 978 41.62 15 839 38.96 8326 36.37 4666 34.01
SteamLocomotive 1600p60 302 24 477 43.04 6747 41.78 2980 40.64 1475 39.25
Traffic 1600p30 150 13 005 42.19 5291 39.84 2546 37.55 1322 35.29
CrowdRun 2160p50 500 152 516 38.23 48 316 36.33 21 986 34.63 11 340 32.84
ParkJoy 2160p50 500 193 158 38.14 69 015 35.73 29 866 33.60 13 931 31.64

TABLE III

Comparison of Picture Partition Approaches

VIDEO 1 SLICE/ROW WPP/OWF (COLS×ROWS) TILES
Partitions BDBR Partitions BDBR Partitions BDBR

BasketballDrive 17 11.483 17 1.732 6×3 4.62
BQTerrace 17 6.878 17 0.942 6×3 3.544

1080p Cactus 17 8.135 17 1.663 6×3 3.295
Kimono 17 10.756 17 1.763 6×3 5.094
ParkScene 17 6.936 17 1.006 6×3 2.968
Nebuta 25 5.279 25 0.99 6×4 4.157

1600p PeopleOnStreet 25 4.308 25 1.049 6×4 2.004
SteamLocomotive 25 22.229 25 1.827 6×4 11.299
Traffic 25 7.011 25 1.023 6×4 3.056

2160p CrowdRun 34 6.043 34 0.538 7×5 2.176
ParkJoy 34 4.83 34 0.621 7×5 2.155

Numbers on the table represent coding losses compared to having one slice per picture (1 tile, and no WPP) using average YUV-BDBR.

prediction dependences, and have a complete slice header per
partition. Tiles, with an average of 3.73% coding losses, are
more efficient than slices. WPP, with an average of 1.07%, has
the lowest coding losses of all the partition strategies. Because
WPP allows crossing partitions for both ED and prediction,
the small remaining losses are due to the entry points and the
reduced CABAC contexts training. In the case of OWF no
additional coding losses compared to WPP were observed for
any of the tested sequences. Some coding losses may appear
in videos that exhibit fast vertical motion due to the restriction
of the vertical motion vectors size.

IV. Implementation

For tiles, WPP, and OWF, a pipelined decoder organization
is used as illustrated in Fig. 5. It consists of three pipeline
stages: parse, issue, and output. Each of these stages is
performed by a different thread. The parse thread performs
emulation prevention, high-level syntax parsing, and allocates
an entry in the decoded picture buffer. When it detects a
slice network abstraction layer (NAL) unit [9], the NAL
unit payload is sent to the input queue of the issue thread.
The issue thread creates for each picture partition in the
payload a work unit and sends this to the shared input
queue of the decoding threads, indicated by Di in the fig-
ure. The output thread reorders the pictures and manages
the picture buffer. With such an organization of the parallel
decoder, the parsing and issuing of the next picture can

Fig. 5. General decoder architecture.

be performed in parallel with the processing of the current
picture.

When a decoding thread Di is free, it tries to acquire a work
unit from the shared queue and starts processing. In the case
of tiles and WPP, the issue thread waits until all work issued
to the queue has been processed and the decoding threads
have signaled completion. Thereafter, the issue thread informs
the output thread of completion. In the OWF approach, on
the other hand, the decoding thread that finishes the last CTB
row of a picture signals the output thread. This allows the
issue thread to fill the decoder queue with partitions of the
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next picture to allow overlapping the execution of consecutive
frames.

A. Tiles Decoding

Each tile can be entropy decoded and reconstructed in par-
allel. The filtering stages, however, can cross tile boundaries
and cannot be performed straightforwardly in the tile entropy
decode and reconstruction loop. Performing the filtering in the
tile decoding loop would require saving and restoring border
data, and complex control logic for detecting and handling tile
boundaries conditions when multiple filters are used.

An alternative is to perform the filters in separated passes.
In HEVC, the filtering stages themselves are parallel, meaning
that they can be applied in parallel for each CTB, but one
after the other, meaning that they have to be performed in
separate passes. The parallel tiles decoder is then implemented
in five parallel phases: 1) entropy decode and reconstruc-
tion; 2) vertical edge filtering; 3) horizontal edge filtering;
4) SAO; and 5) ALF. These phases are separated with barrier
synchronizations.

Barriers are implemented by letting the issue thread wait for
the work units issued to the shared input queue of the decoder
threads to complete. For the parallel filtering phases, instead of
issuing a work unit for each tile, only one work unit is submit-
ted to the shared queue for each decoding thread. The decoding
threads employ an atomic counter to distribute the CTBs that
need to be filtered. Using this scheme the filter task sizes are
independent of the tiles configuration and a smaller task size
can be chosen without increasing synchronization overhead. In
our implementation the atomic counter is incremented by eight
and the decoding threads process eight consecutive CTBs at
a time, starting from the previous CTB count of the atomic
counter. An exploration showed that processing eight CTBs at
a time strikes a good balance between parallelism, locality, and
synchronization overhead. When the atomic counter exceeds
the number of CTBs in a picture, the decoding threads signal
their completion.

B. Wavefront Decoding

In the wavefront decoders (WPP and OWF), each decoding
thread processes a CTB row of the picture. The wavefront
dependences are maintained between the decoding threads by
using a lock protected counter for each CTB row. This counter
indicates the number of CTBs that have been processed in
the associated CTB row. Each decoding thread checks the
progress of the thread processing the previous CTB row before
decoding the next CTB in its row. To maintain the wavefront
dependences, the thread processing the previous row must have
processed the CTB top-right of the current CTB. In other
words, at any time the thread processing the previous row must
have processed two CTBs more than the thread processing the
current row.

For both WPP and OWF, additional memory optimizations
can be applied. First, each decoding step can be performed
in a single CTB decoding pass for improving data locality.
Moreover, for OWF this is required in order to make the
reference area available directly after decoding a CTB. In

Fig. 6. Order and delay of filtering steps necessary due to dependences
between pixels. (a) Vertical edges. (b) Horizontal edges. (c) SAO. (d) ALF.

HEVC this means that, in addition to the entropy decode
and the reconstruction steps, all the filters (deblocking filter,
the SAO filter and the ALF) must also be performed in the
CTB decoding loop. Due to pixel dependences, however, the
filtering steps cannot be straightforwardly performed on the
current CTB, but must be delayed and performed in the order
depicted in Fig. 6.

First the vertical edges of the current CTB need to be
filtered. In contrast to H.264/AVC, the deblocking of the
horizontal edges cannot be performed on all edges of the
current CTB, because it requires filtered vertical edges as
input. To satisfy this dependency, horizontal edge filtering is
performed as the second step and, furthermore, delayed by half
a CTB, as illustrated in Fig. 6(b). In this figure the fact that the
vertical edges have been filtered is indicated by using a lighter
color than the color used in Fig. 6(a). In the next step the SAO
filter is performed on the deblocked pixels, and is delayed by
one full CTB horizontally and four pixels vertically to fulfill
the dependences. Technically, both the deblocking filter and
SAO filter can be postponed less, but this would introduce
additional overhead (more if-statements in the code). In the
final step the ALF is applied on the SAO filtered pixels. The
ALF employs two filter shapes for each pixel, an 11×5 cross
and a 9×5 snowflake filter shape. Because ALF uses the same
filter shapes for the chroma components and uses the same
filter coefficients, it has to be delayed by 10 pixels horizontally
and 4 pixels vertically, in the case of YCbCr 4:2:0. We choose
to delay the filter 12 pixels for implementation efficiency,
because (in HM 4.1) ALF uses the same coefficients for a
4 × 4 pixel block.

The second optimization consists in the removal of interme-
diate picture buffers for filtering without introducing complex
border exchange. In HEVC, the SAO filter and the ALF use
the output of the previous filter, and for each pixel adjacent
unfiltered pixels are used to derive the filtered pixel. Therefore,
the filtered pixel cannot overwrite the unfiltered pixel as it
is still required for filtering adjacent pixels. Typically this is
addressed by storing the filtered pixels in a different picture
buffer, illustrated in Fig. 7(a), at the cost of reduced cache
locality because the working set becomes at least twice as large
(Tiles reuse the deblock output picture for the ALF output
picture).
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Fig. 7. Intermediate picture buffers. (a) Separated for tiles. (b) Combined
for WPP and OWF.

TABLE IV

Experimental Setup

System Software
Processor Intel X5680 HEVC encoder HM-4.1-r1527
μarchitecture Westmere Boost C++ 1.46.1
Sockets 2 Compiler gcc 4.6.1
Cores/socket 6 Opt. level -O3
Frequency 3.33 GHz Kernel 3.0.0-16
L3-cache 12 MB/socket OS Kubuntu 11.10
SMT Disabled Measurement perf, PAPI
TurboBoost Disabled Tools taskset, time

In OWF and WPP, because of the wavefront order of
processing, intermediate picture buffers that are required for
storing the intermediate results of the filters can be combined
with the final picture. This combination of picture buffers is
illustrated in Fig. 7(b). Instead of using a separate picture
buffer, the intermediate picture buffers can point to the same
memory space but with an offset determined by the pixel filter
sizes. The filters can employ these virtual picture buffers as
if there were separate, using a larger stride. The additional
memory requirements are small, with only three extra pixel
lines in height and 6 pixels columns in width. To keep the
CTBs aligned to 16 bytes, however, a horizontal offset of 8
pixels is used per picture buffer.

V. Experimental Evaluation

The parallel HEVC decoders have been implemented using
the HM 4.1 codebase as the starting point. Multithreading has
been performed using the C++ Boost libraries, which offer a
convenient C++ wrapper around platform-dependent threading
libraries such as Pthreads. For the experiments, the sequences
encoded with 1 slice per frame are used as the baseline against
which speedup will be measured.

The system employed to measure performance is a cache-
coherent shared memory system with two Intel Xeon X5680
processors, each with six cores. More details of the hard-
ware/software environment are listed in Table IV.

A. Improved Baseline Implementation

To give a more realistic view of the scalability and memory
bandwidth requirements of HEVC for both the tiles and WPP

Fig. 8. Profiling of the sequential decoder using one slice per frame. Average
over all videos in each resolution. Baseline is QP 22 for each resolution.

approaches, two general optimizations have been applied.
First, the deblocking filter is made compliant to the one in
HM 6.0. In HM 6.0, the horizontal edge filter uses the pixels
produced by the vertical edge filter for the filter strength
decisions, instead of the unfiltered picture. This eliminates one
intermediate picture copy step. The second optimization has
been applied to the CTB data structure. For each CTB in a
picture and each picture in the reference picture buffer, the
transform coefficients (24 kb per CTB) and IPCM related data
structures (12 kB per CTB) are stored. The lifetime of these
data structures is only one CTB, and can be reused for each
CTB. Therefore, only one of each of these data structures is
allocated per decoding thread instead. This not only decreases
the memory requirements significantly, but also the memory
bandwidth requirements due to improved cache locality.

These optimizations improve the performance of the de-
coder by 11% on average for the three considered resolutions
compared to the HM 4.1 decoder. The performance of the
parallel decoders will be compared to the performance of this
improved sequential decoder.

For moving the ALF in the CTB decoding loop, described
in Section IV-B, the CTB-based ALF syntax [24], which
is accepted in HM 6.0 is required. We have implemented a
similar syntax on top of the HM 4.1 code base, in which we
limited the ALF on/off signaling to the CTB level.

B. Profiling Analysis

Fig. 8 breaks down the execution time of the sequential
HEVC decoder in time spent on ED, reconstruction (REC),
deblocking filter (DEB), the SAO filter, and the ALF. OTHER
consists mainly of initializing the CTB data structure, bit-
stream emulation prevention, and high-level syntax parsing.
An execution profile is provided for each combination of QP
and resolution, and have been normalized to that of QP 22 (so
QP 22 is 100%). The profiles show that most of the time, 44%,
is spent in the reconstruction stage, which includes coefficient
transform, intra prediction, and motion compensation. For all
resolutions, increasing the QP reduces the total execution
time, to around 55% for QP 37. Increasing the QP reduces
the execution time mainly for ED stage, but also for the



1834 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

Fig. 9. Speedup, CPU time increase, and CPU usage factor, for 1080p, 1600p, and 2160p. (a) Speedup for 1080p. (b) Speedup for 1600p. (c) Speedup for
2160p. (d) CPU time increase 1080p. (e) CPU time increase 1600p. (f) CPU time increase 2160p. (g) CPU usage factor 1080p. (h) CPU usage factor 1600p.
(i) CPU usage factor 2160p.

reconstruction stage. Of the three in-loop filters, the ALF is
the most time-consuming one. The SAO and the deblocking
filter have similar complexity at high QP, while the deblocking
filter is slightly more complex at low QP.

C. Parallel Scalability Analysis

In the experiments, we pin decoding threads to cores
to reduce the influence of the OS scheduling policy and
improve the reproducibility of the results. The experiments
are performed for all sequences that have been listed in
Table II and using 1 to 12 decoding threads. The speedup
as a function of the number of decoding threads is depicted in
Fig. 9(a)–(c).

The speedup results show that for each resolution, OWF
achieves the highest speedup followed by tiles and WPP. The
results also show that, in general, the speedup increases with

the resolution, albeit slightly more for tiles and WPP than
OWF. The speedup of OWF scales almost perfectly (linearly)
up to 12 cores for 2160p, and up to 6 cores for 1080p. WPP
scales worse because of the parallelism ramping inefficiencies.

The speedup of tiles, even though it has no dependences
in each parallel phase, is lower than the speedup achieved by
OWF at almost every core count. Furthermore, the difference
increases with the number of decoding threads. Fig. 10 shows
the speedup for the tiles decoder separated for each parallel
phase. The deblocking filter exhibits the lowest scalability
specially at 1080p and 1600p, mainly because of the small
amount of work in each filtering pass. The speedup of SAO is
limited for core counts bigger than 4 also because of its fine
granularity. Entropy decoding and reconstruction, and ALF,
exhibit the highest speedups, although with big differences be-
tween resolutions caused mainly by load unbalance issues. At



CHI et al.: PARALLEL SCALABILITY AND EFFICIENCY OF HEVC PARALLELIZATION APPROACHES 1835

Fig. 10. Speedup for each frame pass in tiles decoder. (a) 1080p. (b) 1600p. (c) 2160p.

2160p resolution there are 2.92 tiles per processor, compared
to 1.5 for 1080p.

The speedup results can be explained in more detail by
examining the CPU time increase and CPU usage factor results
shown in Fig. 9(d)–(i). The relation between the speedup, CPU
time increase, and CPU usage factor is given by

Speedup =
ST

PT

=
ST

ST ×CPUIF

CPUUF

=
CPUUF

CPUIF

(1)

where ST is the sequential execution time, PT is the parallel
execution time, CPUUF is the CPU usage factor, and CPUIF

is the CPU inefficiency factor. The CPU time increase is the
percentile form of the CPU inefficiency factor. We introduced
the CPUUF and CPUIF metrics, because they represent the
scalability and (in)efficiency of the parallel solution, and can
be easily derived from the CPU time (user + system time)
measured by the time command.

The CPU time increase corresponds to the increase in CPU
time compared to the baseline, using one decoding thread for
the sequences encoded with 1 slice per frame. The CPU time is
the aggregated active thread time spent. A thread is active only
when a thread is scheduled by the operating system. Ideally
this metric should stay constant when increasing the number
of threads as increases in CPU time represents inefficiencies
in the parallel hardware, algorithm, and/or implementation.
A higher CPU time indicates either increased number of
executed instructions or fewer instructions per cycle (IPC).
Extra instructions can be required, for example, due to polling
synchronization or excessive blocking and waking up of
threads. We have measured no significant increase in the
number of executed instructions, and therefore the increase in
CPU time is mainly caused by a decreasing IPC. With higher
number of threads, contention on shared resources, such as
shared caches and memory controllers, and cache coherence
misses result in IPC decreases. A more in-depth analysis of
IPC will be performed in Section V-E.

The CPU time results show that tiles have a much larger
CPU time increase compared to WPP and OWF. This is caused
by implementing the in-loop filters in separate picture passes
for Tiles. Having additional passes results in more requests to
the shared L3 cache and the off-chip memory controller as the
picture does not fit in the private L2 caches. Due to contention
on these resources when increasing the number of threads, the
individual requests take more time. For WPP and OWF all the

kernels are performed in one pass. Most of the pixels touched
in each kernel are almost immediately reused in the next stage,
and are highly likely to remain in the private caches. Although
it is possible to implement in-loop filters on a CTB basis for
tiles to reduce the memory bandwidth requirements, such an
implementation has high implementation cost and, especially,
complexity as mentioned previously in Section IV-A.

The CPU usage factor shows the average aggregated CPUs
used during execution. This factor is derived by dividing the
CPU time by the parallel execution time. Ideally this is equal
to the number of used threads and shows the scalability of
the parallel algorithm. The figures show that OWF in all
cases has the highest CPU usage factor, followed by tiles, and
finally WPP. With higher resolutions the scalability is higher
in general as there is more parallelism available.

The CPU usage factor is, however, not ideal for any of
the strategies. For OWF this is caused by dependency stalls.
Dependency stalls originate from the variability in the CTB
execution times. Wavefront execution must respect the depen-
dences to the top right CTB, which results in dependency
stalls when the difference in CTB execution times between
rows become too large. With higher resolutions there is more
tolerance to these execution time differences and, therefore,
have better scalability. WPP has in addition to the dependency
stalls also the ramping stalls, which occur at the beginning and
end of decoding a picture when not all decoding threads can
be active. Tiles, while having completely independent parallel
phases, also does not scale ideally. This originates from a load
balancing problem, in which not every decoding thread gets
the same amount of work to process. For instance in 1080p
there are 18 tiles for the entropy and reconstruction phase.
This does not divide evenly when there are, e.g., four decoding
threads. Furthermore, similar to CTBs, tiles vary in execution
time which exacerbates the problem.

D. Throughput

The throughput in frames per second (f/s) for each reso-
lution, QP, and parallelization approach is listed in Table V.
The performance is shown for 1, 6, and 12 decoding threads.
The table shows that 6 decoding threads are sufficient for
every parallelization approach to achieve real-time 1080p50 on
average, while OWF is also very close to achieving this for QP
22. The average performance for 2160p resolution sequences is
still significantly below the real-time requirements, even with



1836 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

TABLE V

Performance in Frames Per Second for Different QP Values

Res. Thr. QP22 QP27 QP32 QP37 AVG
WPP Tiles OWF WPP Tiles OWF WPP Tiles OWF WPP Tiles OWF WPP Tiles OWF

1080p 1 8.8 8.7 8.8 11.5 11.4 11.5 13.7 13.8 13.7 15.9 16.0 15.9 12.5 12.5 12.5
1080p 6 40.2 42.9 49.3 50.8 55.3 64.4 60.3 65.7 75.6 68.2 75.1 87.0 54.9 59.7 69.1
1080p 12 50.9 57.6 78.8 64.2 70.7 99.3 75.0 81.5 115.0 84.9 90.6 129.7 68.7 75.1 105.7
1600p 1 4.0 4.0 4.1 4.9 4.8 4.9 5.8 5.7 5.8 7.0 6.9 7.0 5.4 5.3 5.5
1600p 6 19.8 20.6 23.0 23.8 24.6 27.7 27.6 29.1 32.6 33.0 34.9 38.7 26.0 27.3 30.5
1600p 12 29.9 31.6 39.1 35.6 37.2 47.4 41.7 43.1 56.2 48.7 50.4 65.1 39.0 40.6 51.9
2160p 1 1.5 1.5 1.6 2.1 2.1 2.2 2.5 2.4 2.5 2.8 2.7 2.8 2.2 2.2 2.3
2160p 6 8.1 8.5 9.1 11.2 11.3 12.5 13.1 13.1 14.4 14.6 14.6 16.0 11.8 11.9 13.0
2160p 12 13.2 14.8 16.0 17.9 19.2 22.2 21.1 22.0 26.1 23.3 24.2 28.7 18.8 20.1 23.3

Fig. 11. Performance analysis for 2160p resolution: IPC for different kernels and LLC misses per thousand instructions. (a) ED. (b) REC. (c) DEB.
(d) SAO. (e) ALF. (f) LLC misses.

12 decoding threads for OWF. Single-threaded performance,
however, can be improved by performing platform independent
optimizations as well as using the SIMD extensions included
in almost all modern processors.

E. Performance Analysis

Finally, we have analyzed the effect of the parallelization
strategies on each individual kernel and the off-chip bandwidth
requirements. In Fig. 11(a)–(e) the IPC of each kernel is
plotted against the number of decoding threads. Fig. 11(f)
shows the last-level-cache (LLC) misses per thousand instruc-
tions. For up to six cores the number of LLC misses directly
translate in to memory bandwidth. For higher than six cores
this also includes the intersocket coherence traffic. For brevity,
the figures only shows the results for 2160p as the other
resolutions show similar results.

For ED the overall IPC is low due to the nature of the
CABAC algorithm. When increasing the number of decoding

threads the IPC for tiles stay constant while for OWF and
WPP it decreases slightly. This is because for tiles, ED is
completely independent, while for WPP and OWF contexts
are selected based on the entropy decoded syntax elements of
the top neighboring row. The extra latency of fetching this
data reduces the IPC, because this cannot be hidden with
other instructions due to the low amount of instruction-level
parallelism.

For reconstruction the three approaches are performing sim-
ilar. With higher number of decoding threads the IPC decreases
because of contention to the shared cache and memory con-
troller for reading the reference data. While the tiles approach
has better motion compensation bandwidth characteristics, this
will only be apparent in multicore architectures without a
shared cache and private cache to cache transfers.

The IPC of the three in-loop filters and the LLC misses
results show clearly the advantage of performing the filters in
the CTB decode loop. Because each filter kernel reuses the
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pixel data produced of the previous kernel, this data remains
in the private caches for OWF and WPP. For tiles, however,
each filter is implemented using a separate pass. This approach
has low cache locality as the entire picture must be processed
completely before the pixels can be reused. Because the data
cannot remain in the private caches more shared cache and
off-chip requests are required, leading to overall reduced
performance. By performing the tiles in-loop filtering on
the CTB decoding loop the LLC misses can be reduced
up to 45%.

VI. Conclusion

The upcoming video coding standard HEVC is targeting not
only even higher compression rates than current standards,
but also being designed with high-level parallel processing
capabilities. Different parallelization strategies were proposed
and are included in the current draft. The main proposals are
slices, WPP, and Tiles. All these techniques share in common
the idea of creating picture partitions that can be processed in
parallel by multiple threads/cores in a parallel system. They
differ, however, in terms of data dependences, rate-distortion
performance, and parallel scalability. Until now they were
compared only in terms of coding efficiency, but a detailed
performance comparison of all of them had not yet been
performed.

In this paper, we filled this void by presenting a detailed
performance comparison of the main approaches, namely WPP
and Tiles. We also presented a novel approach called OWF,
that can be implemented on top of WPP, and achieves higher
performance and scalability than both WPP and Tiles. For
implementing OWF it is only needed to restrict the downward
motion vector size, which would probably be present in the
specification of HEVC profiles and levels as it had happen
with H.264/AVC. OWF attains higher performance than WPP
because consecutive pictures can be decoded simultaneously,
which in turn implies that there is a constant amount of
parallelism.

We implemented a general parallel HEVC decoder that
supports multiple parallelization strategies and evaluated it on
a parallel platform with 12 cores (2 sockets with 6 cores
each) running at 3.33 GHz. Comparing WPP to tiles, our
experiments show that the tiles approach achieves slightly
higher performance than WPP (7% higher on average over
all resolutions at 12 cores). In the presented implementa-
tion, however, WPP has higher memory bandwidth efficiency
than Tiles. Implementing a memory bandwidth optimized
tiles decoder can reduce the memory bandwidth require-
ments significantly, but is paired with high implementation
complexity.

The proposed OWF decoder attains the highest performance
(28% higher on average than Tiles) and is able to achieve
real-time performance for 1080p50 videos, but only 25.4 f/s
for 2160p. It needs to be mentioned, however, that the sin-
gle threaded performance can be increased by using SIMD
instructions. This will allow achieving 4K real-time decoding
at 50 or 60 f/s, or, alternatively, using fewer cores to obtain
real-time performance for lower resolutions.
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