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Abstract— In this paper, a new heat-map-based (HMB) 

algorithm is proposed for group activity recognition. The 

proposed algorithm first models human trajectories as series of 

“heat sources” and then applies a thermal diffusion process to 

create a heat map (HM) for representing the group activities. 

Based on this heat map, a new key-point based (KPB) method is 

used for handling the alignments among heat maps with different 

scales and rotations. And a surface-fitting (SF) method is also 

proposed for recognizing group activities. Our proposed HM 

feature can efficiently embed the temporal motion information of 

the group activities while the proposed KPB and SF methods can 

effectively utilize the characteristics of the heat map for activity 

recognition. Experimental results demonstrate the effectiveness of 

our proposed algorithms. 

I. INTRODUCTION  

etecting group activities or human interactions has 

attracted increasing research interests in many 

applications such as video surveillance and 

human-computer interaction  [1-6]. 

Many algorithms have been proposed for recognizing group 

activities or interactions [1-6, 24-25]. Zhou et al. [2] propose to 

detect pair-activities by extracting the causality, mean, variance 

features from bi-trajectories. Ni et al. [3] further extend the 

causality features into three types of individuals, pairs and 

groups. Besides, Chen et al. [5] detect group activities by 

introducing the connected active segmentations for 

representing the connectivity among people. Cheng et al. [4] 

propose the Group Activity Pattern for representing group 

activities as Gaussian processes and extract Gaussian 

parameters as features. However, most of the existing 

algorithms extract the overall features from the activities’ entire 

motion information (e.g., the statistical average of the motion 

trajectory). These features cannot suitably embed activities’ 

temporal motion information (e.g., fail to indicate where a 

person is in the video at a certain moment). Thus, they will have 

limitations when recognizing more complex group activities. 

Although some methods [6, 29] incorporate the temporal 

information with chain models such as the Hidden Markov 

Models (HMM), they have the disadvantage of requiring 

large-scale training data [17]. Besides, other methods try to 

include the temporal information by attaching time stamps with 

trajectories and perform recognition by associating these time 

stamp labels [18-19]. However, these methods are more 

suitable for scenarios with only one trajectory or trajectories 
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with fixed correspondence. They will become less effective or 

even infeasible when describing and differentiating the 

complicated temporal interactions among multiple trajectories 

in group activities. Furthermore, [24] and [25] give more 

extensive survey about the existing techniques used in group 

activity recognition and crowd analysis. 

In another part, handling motion uncertainties is also an 

important issue in group activity recognition. Since the motions 

of people vary inherently in group activities, the recognition 

accuracy may be greatly affected by this uncertain motion 

nature. Although some methods utilize Gaussian processes 

estimation or filtering to handle this uncertain problem [3, 4], 

they do not simultaneously consider the issue for reserving the 

activities’ temporal motion information. 

Furthermore, the recognition method is a third key issue for 

recognizing group activities. Although the popularly-used 

models such as Linear Discriminative Analysis and HMM [6] 

show good results in many scenarios, their training difficulty 

and the requirement of the training data scale will increase 

substantially when the feature vector length becomes large or 

the group activity becomes complex. Therefore, it is also 

non-trivial to develop more flexible recognition methods for 

effectively handling the recognition task. 

In this paper, we propose a new heat-map-based (HMB) 

algorithm for group activity recognition. The contributions of 

our work can be summarized as follows: 

(1) We propose a new heat map (HM) feature to represent 

group activities. The proposed HM can effectively catch 

the temporal motion information of the group activities. 

(2) We propose to introduce a thermal diffusion process to 

create the heat map. By this way, the motion uncertainty 

from different people can be efficiently addressed.  

(3) We propose a key-point based (KPB) method to handle the 

alignments among heat maps with different scales and 

rotations. By this way, the heat map differences due to 

motion uncertainty can be further reduced and the 

follow-up recognition process can be greatly facilitated.  

(4) We also propose a new surface-fitting (SF) method to 

recognize the group activities. The proposed SF method 

can effectively catch the characteristics of our heat map 

feature and perform recognition efficiently. 

The remainder of this paper is organized as follows. Section 

II describes the basic ideas of our proposed HM feature as well 

as the KPB and SF methods. Section III presents the details of 

our HMB algorithm. The experimental results are shown in 

Section IV and Section V concludes the paper.  

II. BASIC IDEAS 

A.  The heat-map feature 

As mentioned, given the activities’ motion information 

(i.e., motion trajectory in this paper), directly extracting the 
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global features will lose the useful temporal information. In 

order to avoid such information loss, we propose to model the 

activity trajectory as a series of heat sources. As shown in 

Figure 1, (a) is the trajectory of one person. In order to transfer 

the trajectories into heat source series, we first divide the entire 

video scene into small non-overlapping patches (i.e., the small 

squares in (b)). If the trajectory goes through a patch, this patch 

will be defined as one heat source. By this way, a trajectory can 

be transferred into a series of heat sources, as in Figure 1 (b). 

Furthermore, in order to catch the temporal information of the 

trajectory, we also introduce a decay factor on different heat 

sources such that the thermal energies of the “older” heat 

sources (i.e., patches closer to the stating point of the trajectory) 

are smaller while the “newer” heat sources will have larger 

thermal energies. By this way, the thermal values of the heat 

source series can be arranged increasingly according to the 

direction of the trajectory and the temporal information can be 

effectively embedded.  
 

 
(a)                                                         (b)  

 
                  (c)                                                         (d) 

Figure 1. (a): The activity trajectory; (b) The corresponding heat source series; 
(c) The heat map (HM) diffused from the heat source series in (b); (d) The HM 

surface of (c) in 3D. 

 

Finally, since people’s trajectories may have large 

variations, directly using the heat source series as features will 

be greatly affected by this motion fluctuation. Therefore, in 

order to reduce the motion fluctuation, we further propose to 

introduce a thermal diffusion process to diffuse the heats from 

the heat source series to the entire scene. We call this diffusion 

result as the heat map (HM). With our HM feature, we can 

describe the activities’ motion information by 3D surfaces. 

Figure 1 (c) and (d) show the HM of the trajectory in Figure 1 (a) 

in 2D format and in 3D surface format, respectively. Several 

points need to be mentioned about the HM in our paper: 

(1) Note that although the heat diffusion was introduced in 

object segmentation in some works [8], the mechanism and 

utilization of HM in our algorithm is far different from 

them. And to the best of our knowledge, this is the first 

work to introduce HM into group activity recognition.  

(2) The definition of “heat map” in this paper is also different 

from the ones used in some activity recognition methods 

[11-12]. In those methods [11-12], the heat maps are 

defined to reflect the number of translations among 

different regions without considering the order during 

passes. Thus, they are more focused on reflecting the 

“popularity” of regions (i.e., whether some regions are 

more often visited by people) while neglecting the 

temporal motion information as well as the interactions 

among trajectories.  

(3) With the HM features, we can perform offline activity 

recognition by creating HMs for the entire trajectories. 

This off-line recognition is important in many applications 

such as video retrieval and surveillance video investigation 

[6, 15]. Furthermore, the HM features can also be used to 

perform on-line (or on-the-fly) recognition by using 

shorter sliding windows. This point will be further 

discussed in Section IV.   

      After the calculation of HM features, we can use them for 

recognizing group activities. However, two problems need to 

be solved for perform recognition with HM features. They are 

described in the following. 

B.  The alignments among heat maps  

       Although the thermal diffusion process can reduce the 

motion fluctuation effect due to motion uncertainty or tracking 

biases, the resulting HM will still differ a lot due to the various 

motion patterns for different activities. For example, in Figure 2 

(a), since the trajectories of human activities take varying 

directions and lengths, the heat maps for the same type of group 

activity show large differences in scales and rotations. 

Therefore, alignments are necessary to reduce these HM 

differences for facilitating the follow-up recognition process.  

        In this paper, we propose a new key-point based (KPB) 

method to handle the alignments among heat maps. Since our 

heat maps are featured with peaks (i.e., local maxima in HM as 

in Figure 1 (d)), the proposed KPB method extracts the peaks 

from HMs as the key points and then performs alignments 

according to these key points in an iterative manner. By this 

way, the scale and rotation variations among heat maps can be 

effectively removed. Figure 2 (b) shows the alignment results 

of the heat maps in (a) by our KPB method. More details about 

the KPB method will be described in the next section.    

 

 
(a) Heat maps for the group activity “gather” performed by different people. 

 
(b) The alignment results of the heat maps in (a) by our KPB method. 

Figure 2. The alignments among heat maps. 

C.  Recognition based on the heat maps  

Since the HM feature includes rich information, the 

problem then comes to the selection of a suitable method for 

performing recognition based on this HM feature. In this paper, 

we further propose a surface-fitting (SF) method for activity 

recognition. In our SF method, a set of standard surfaces are 

first identified for representing different activities. Then, the 

similarities between the surface of the input HM and the 

standard surfaces are calculated. And finally, the best matched 
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standard surface will be picked up and its corresponding 

activity will become the recognized activity for the input HM. 

The process of our SF method is shown in Figure 3.  

       With the basic ideas of the HM feature, the KPB and the SF 

methods described above, we can propose our heat-map-based 

(HMB) group activity recognition algorithm. It is described in 

detail in the following section. 

 

 
Figure 3. The process of the surface-fitting (SF) method. 

III. THE HMB ALGORITHM 

The framework of our HMB algorithm can be described by 

Figure 4. In Figure 4, the input group activities’ trajectories are 

first transferred into heat source series, then the thermal 

diffusion process is performed to create the HM feature for 

describing the input group activity. After that, the KPB method 

is used for aligning HMs and finally the SF method is used for 

recognizing the group activities. As mentioned, the heat source 

series transfer, the thermal diffusion, the KPB method, and the 

SF method are the four major contributions of our proposed 

algorithm. Thus, we will focus on describing these four parts in 

the following. 
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Figure 4. The process of the HMB algorithm. 

A. Heat source series transfer 

Assume that we have in total j trajectories in the current 

group activity. The thermal energy Ei of the heat source patch i 

can be calculated by: 

 

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j
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 is the time decay term [10], kt is the 

temporal decay coefficient, tcur is the current frame number, and 

tid,j is the frame number when the j-th trajectory leaves patch i. 

ji,E is the accumulated thermal energy for trajectory j in patch 

i and it can be calculated by Eq. (2). From Eq. (1), we can see 

that “newer” heat sources of the trajectory have more thermal 

energies than the “older” heat sources. 
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where tis,j and tid,j are the frame number when the j-th trajectory 

enters and leaves patch i, respectively. kt is the temporal decay 

coefficient as in Eq. (1), and C is a constant. In the experiments 

of our paper, C is set to be 1. From Eq. (2), we can see that the 

accumulated thermal energy is proportional to the stay length of 

trajectory j at patch i. If j stays in i for longer time, more thermal 

energy will be accumulated in patch i. On the other hand, if no 

trajectory goes through patch i, the accumulated thermal energy 

of patch i will be 0, indicating that patch i is not a heat source 

patch. 

B. Thermal diffusion  

After getting the heat source series by Eq. (1), the thermal 

diffusion process will be performed over the entire scene to 

create the HM. The HM value Hi at patch i after diffusion [10] 

can be calculated by: 
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                          (3) 

where El is the thermal energy of the heat source patch l, N is 

the total number of heat source patches. kp is the spatial 

diffusion coefficient, and d(i, l) is the distance between patches 

i and l.  

     The advantage of the thermal diffusion process can be 

described by Figure 5. In Figure 5, the left column lists two 

different trajectory sets for the group activity “gather”. Due to 

the variation of human activity or tracking biases, these two 

trajectory sets are obviously different from each other. And 

these differences are exactly transferred to their heat source 

series (the middle column). However, with the thermal 

diffusion process, the trajectory differences are suitably 

“blurred”, which makes their HMs (the right column) close to 

each other. At the same time, the temporal information of the 

two group activities is still effectively reserved in the HMs. 

Also, Figure 6 shows the example HM surfaces for different 

group activities defined in Table 1. From Figure 6, it is clear 

that our proposed HM can precisely catch the activities’ 

temporal information and show obviously distinguishable 

patterns among different activities. 

Furthermore, it should be noted that our proposed HMB 

algorithm is not limited to trajectories. More generally, as long 

as we can detect patches with motions, we can use these motion 

patches as the heat sources to create heat maps. Therefore, in 

practice, when reliable trajectories cannot be achieved, we can 

even skip the tracking process and use various low-level motion 

features (such as the optical flow [28]) to create the heat maps 

for recognition. This point will be further demonstrated in 

Section IV 
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Figure 5. Left column: two trajectory sets for group activity “Gather”; Middle 

column: the corresponding heat source series; Right column: the corresponding 
heat maps. 

 

 
Figure 6. The HM surfaces for different group activities. 

 

Table 1 Definitions of different human group activities 
Gather Two or more persons are gathering to a point. 

Follow One or one group of person is followed by one person. 

Wait One or one group of person is waiting for one person. 

Separate Two or more persons are separating from each other. 

Leave One person is leaving one or one group of unmoving person. 

Together Two or more persons are walking together. 

 

C. The key-point based (KPB) HM alignment method 

After generating the HM features, the alignment process is 

performed for removing the scale and rotation variations 

among HMs. In this paper, we borrow the idea of the active 

appearance model (AAM) used in face fitting [7, 13] and 

propose a key-point-based (KPB) HM alignment method.  The 

process of using our KPB method to align an input HM with a 

target HM can be described by Algorithm 1. 

Furthermore, several points need to be mentioned about our 

KPB method: 

(1) When HMs with different peak numbers are aligned, only 

the peaks available in both HMs are used for alignment 

(e.g., when an HM with n1 peaks is aligning with an HM 

with n2 peaks and n1 < n2, we only use n1 peaks as the key 

points for alignment).  

(2) For HM with only one peak, we will add an additional key 

point for alignment. That is, we first pick up the points 

whose heat values are half of that of the peak point, and 

then the one which is farthest to the peak will be selected as 

the second key point for alignment, as shown in Figure 7. 

Since the direction from the peak to the additional key 

point represents the slowest-descending slope of the HM 

surface, the HMs can then be suitably aligned by matching 

this slope.   

(3) It should be noted that in the steps 2, 3, and 4 in Algorithm 

1, the key points are shifted, scaled, and rotated coherently 

(i.e., by the same parameter) in order to keep the overall 

shape of HM during alignment. 

(4) In Algorithm 1, the key points Gi of the target HM are 

assumed to be already shifted and scaled properly. In our 

HMB algorithm, we perform clustering on the HMs in the 

training data and perform alignment within each cluster. 

After that, the mean of the aligned HMs in each cluster is 

used as the standard surface (i.e., the target HM) for 

representing the cluster during recognition. The process of 

clustering the HMs and calculating the mean HM for each 

cluster is performed in an iterative manner as described by 

Algorithm 2. And this point will be further discussed in 

detail in the next section.   

 

 

     

 

 
           (a) The HM in 2d view                     (b) The HM of (a) in 3D view 
Figure 7. The selection of the second key point for single-peak HM cases (the 

pink point is the selected second key point, the blue point is the peak point, and 

the red line is the contour line whose corresponding point values are all equal to 
the half of the peak value, best view in color). 

 

Algorithm 1 The KPB Method 

1. For the input HM, extract the n largest peak points and use the locations 
of these peak points as the key points in later alignment steps: (P1, P2, 

P3, ... Pn), where Pi=[xi, yi] is the location of the i-th key point with xi and 

yi being its x and y coordinates in the HM.  

2. Organize the key points Pi for each input HM in an descending order 

according to their heat values in HM (i.e., H(Pi)>H(Pj) for i > j). 

3. Shift the key points (P1, P2, P3, ... Pn) such that the gravity center of these 

points is in the center of the HM. 

4. Scale the key points (P1, P2, P3, ... Pn) such that 

  1nyx
n

1i

2

i

2

i  
. 

5. Align the key points of the input HM with the target HM such that 
















  

2

1
||minarg

n

i
TPG iiT , where T is a 2×2 matrix for aligning the 

key points of Pi, and Gi are the key points for the target HM. T can be 
achieved by linear regression. 

6. Apply the final shift, rotation, and scaling operation derived from 2-4 on 

the entire input HM for achieving the final aligned version.  
 

D. The surface-fitting (SF) method for activity recognition 

With the HM feature and the KPB alignment method, we can 

then perform recognition based on our surface-fitting (SF) 

method. The surface-fitting process can be described by Eq. 

(4): 







  ||||minminargm m

*

m

SD,mHM
Tm

SST               (4) 
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where m
*
 is the final recognized activity. SHM is the HM surface 

of the input activity, SSD,m is the standard surface for activity m. 

Tm is the alignment operator derived by Algorithm 1 for 

aligning with SSD,m. And || · || is the absolute difference between 

two HM surfaces. From Eq. (4), we can see that the SF method 

includes two steps. In the first step, the input HM is aligned to 

fit with each standard surface. And then in the second step, the 

standard surface that best fits the input HM surface will be 

selected as the recognized activity. 

 

Algorithm 2 Clustering the HMs and calculating the mean HM 

key points for each cluster in the training set 

1. Cluster the HMs in the training set according to their activity labels. 

2. for each HM v in the training set do 

3.         Shift the key points (P1,v, P2,v, P3,v, ... Pn,v) of HM v such that the 
gravity center of these point is in the center of the HM. 

4.         Scale the key points (P1,v, P2,v, P3,v, ... Pn,v) of HM v such that 

  1nyx
n

1i

2

vi,

2

vi,  
. 

5. end  for 

6. for each cluster u do 

7.         Randomly select an HM in cluster u as the initial mean HM and 

define the key points for this mean HM as  (G1
u, G2

u, G3
u, ... Gn

 u) 

8.         for each HM v in cluster u do 

9.                 Scale the key points (P1,v, P2,v, P3,v, ... Pn,v) of HM v such that 

  1nyx
n

1i

2

vi,

2

vi,  
. 

10.               Align the key points of the HM v with the current mean HM 

such that 














  

2

1
||minarg

n

i vvi,

u

iT TPG
v , where Tv is the 

alignment matrix for v.  

11.               Move the key points of the HM v to the aligned places, i.e., 

vvi,, TPP new

vi
. 

12.       end for 

13.      Update the key points of the mean HM of cluster u by: 

  NUM
NUM

v
/

1

new

vi

new  
 ,

u,

i PG , where NUM is the number of HMs 

in cluster u. 

14.       If not converged and iteration time≤ 1000, return to 8. 

15.       Align all the HMs in cluster u to the calculated key points of the 
mean HM. And the final mean HM can be achieved by averaging or 

selecting the most fitted one among these aligned HMs. 

16. end for 

 

 

As shown in Algorithm 2, the standard surface can be 

achieved by clustering the training HMs and taking the mean 

HM for each cluster. However, since the HMs may still vary 

within the same activity, it may still be less effective to use one 

fixed HM as the standard surface for recognition. Therefore, in 

this paper, we further propose an adaptive surface-fitting (ASF) 

method which selects the standard surface in an adaptive way. 

The proposed ASF method can be described by Eq. (5): 

 



















  

 HM
trSS

mHMtr
Tm

SST
wmtr, N

 tr,

* minGAmaxargm    (5) 

 

where SHM is the HM surface for the input activity. Str,m is the 

HM surface for activity m in the training data. Ttr is the 

alignment operator for aligning with Str. Nw(SHM) is set 

containing the w most similar HM surfaces to SHM. GA(·) is the 

Gaussian kernel function as defined by Eq. (6): 

)
2

||
exp()(GA

2

2



x
x                               (6) 

where σ controls the steepness of the kernel. 

From Eq. (5), we can see that the proposed ASF method 

adaptively select the most similar HM surfaces as the standard 

surfaces for recognition. By this way, the in-class HM surface 

variation effect can be effectively reduced. Furthermore, by 

introducing the Gaussian kernel, different training surfaces Str,m 

can be allocated different importance weights according to their 

similarity to the input HM SHM during the recognition process.  

Furthermore, several things need to be mentioned about the 

ASF method: 

(1) When w>1 in Nw,m(SHM), the ASF method can be viewed as 

an extended version of the k-nearest-neighbor (KNN) 

methods [14] where the kernel-weighted distance between 

points is calculated by the absolution difference between 

the aligned HM surfaces.  

(2) When w=1 in Nw,m(SHM), the ASF method is simplified to 

finding a Str,m in the training set that can best represent the 

input SHM.  

IV. EXPERIMENTAL RESULTS 

In this section, we show experimental results for our 

proposed HMB algorithm. The ASF method is used for 

recognition in our experiments. And the patch size is set to be 

10×10 based on our experimental statistics, in order to achieve 

satisfactory resolution of the HM surface while maintaining the 

efficiency of computation. Furthermore, for each input video 

clip, the heat map is created for the entire clip. 

A. Experimental results on the BEHAVE dataset 

    In this sub-section, we perform five different sets of 

experiments on the BEHAVE dataset to evaluate our proposed 

algorithm. 

First of all, we change the values of the temporal decay 

parameter kt and the thermal diffusion parameter kp in Eqs (1) 

and (3) to see their effects in recognition performances. We 

select 200 video clips from the BEHAVE dataset [1] and 

recognize six group activities defined in Table 1. The sample 

number for each group activity is shown in Table 2. Each video 

clip includes 2-5 trajectories. In order to examine the 

algorithm’s performance against tracking fluctuation and 

tracking bias, we perform 5 rounds of experiments where in 

each round, different fluctuation and biases effects are added on 

the ground-truth trajectories. The final results are averaged over 

the five rounds. The recognition results under 75%-training and 

25%-testing are shown in Tables 3 and 4.  

Table 2 The sample number for different group activities for the 

experiments in Tables 3-4 and Figures 8-9 
Gather Follow Wait Separate Leave Together Total 

33 33 34 33 33 34 200 

 

Table 3 The TER rates of HMB algorithm under different spatial 

diffusion coefficient kp values (when kt =0.125) 
 kp=0.1 kp =1 kp =2 kp =3 kp =4 kp =5 kp =∞ 

HMB (w=1) 42% 16% 13% 15% 17% 19% 38% 

 



 6 

Table 4 TER rates of HMB algorithm under different temporal 

diffusion coefficient kt values (when kp =2) 
 kt=0.025 kt =0.125 kt =0.25 kt =0.5 kt =1 kt =∞ 

HMB (w=1) 25% 13% 15% 17% 20% 45% 

 

Tables 3-4 show the total error rate (TER) for different kt and 

kp values. The TER rate is calculated by Nt_miss/Nt_f where Nt_miss 

is the total number of misdetection activities for both normal 

and abnormal activities and Nt_f is the total number of activity 

sequences in the test set [6, 15]. TER reflects the overall 

performance of the algorithm in recognizing all activity types 

[6, 15]. In Tables 3-4, our HMB algorithm is performed where 

w in Eq. (5) is set to be 1 (i.e., selecting only the most similar 

HM surface in the training set during recognition). Furthermore, 

the example HM surfaces under different kt and kp values are 

shown in Figures 8 and 9, respectively.   
 

 

 

 
       (a) kp=0.0001                       (b) kp=0.25                            (c) kp=1000 

Figure 8. Example HM surfaces for activity “together” with different kp values. 

 
        (a) kt=0                                (b) kt=0.03                         (c) kt=1000 

Figure 9. Example HM surfaces for activity “together” with different kt values. 

     

From Table 3 and Figure 8, we can see that: (1) When kp is 

set to be a very small number (such as Figure 8 (a)), the thermal 

diffusion effect is too strong that the HM is close to a flat 

surface. In this case, the effectiveness of the HM cannot fully 

work and the recognition performances will be decreased. (2) 

On the contrary, if kp is set to be extremely large (such as Figure 

8 (c)), few thermal diffusion is performed and the HM surfaces 

are only concentrated on the heat source patches. In these cases, 

the recognition performance will also reduce. (3) The results 

for kp =2 and kp =∞ in Table 3 can also show the usefulness of 

our proposed thermal diffusion process. Since no diffusion 

process is applied on the HM when kp =∞, it is more vulnerable 

to tracking fluctuation or tracking biases, resulting in lower 

recognition results. Comparatively, by the introduction of our 

thermal diffusion process, the tracking fluctuation effects can 

be greatly reduced and the performances can be obviously 

improved. (4) If taking a careful look at Figure 8 (c), we can see 

that there is a needle-like peak in the middle of the HM. It is 

created because both trajectories traverse the same patch, thus 

making the heat source value greatly amplified at this patch 

location. If we directly use this HM for recognition, this 

“noisy” peak will affect the final performance. However, by 

using our heat diffusion process, this noisy peak can be blurred 

or deleted (such as Figure 8 (b)) and the coherence among HMs 

can be effectively kept. (5) Except for extremely small or large 

values, kp can achieve good results within a wide range.  

From Table 4 and Figure 9, we can see the effects of the 

temporal decay parameter kt. (1) For an extremely small kt 

value (such as Figure 9 (a)), most heat sources will show the 

same values. In this case, the temporal information of the 

trajectory will be lost in the HM and the performance will be 

reduced. (2) For an extremely large kt value (such as Figure 9 

(c)), the “old” heat sources will decay quickly such that the HM 

is only concentrated on the “newest” hear source. In this case, 

the trajectory’s temporal information will also be lost and 

leading to low performances. (3) Except for extremely small or 

large values, kt can also achieve good results within a wide 

range.  

Based on the above discussion, kt and kp in Eqs (1) and (3) are 

set to be 0.125 and 2 respectively throughout our experiments.   

Secondly, we compare our HMB algorithm with the other 

algorithms. In order to include more activity samples, we 

further increase the sample number and select 325 video clips 

for six activities (as in Table 1) from the BEHAVE dataset [1]. 

The sample number distributions for different activities are 

shown in Table 5. Each video clip includes 2-5 trajectories. 

Figure 10 show some examples of the six activities. The 

following 6 algorithms are compared: 

(1) The WF-SVM algorithm which utilizes causalities 

between trajectories for group recognition [2] (WF-SVM). 

(2) The LC-SVM algorithm which includes the individual, 

pair, and group correlations for recognition [3] (LC-SVM).  

(3) The GRAD algorithm which uses Markov chain models 

for modeling the temporal information for performing 

recognition [6] (GRAD). 

(4) Using our proposed HM as the input features and our KPB 

method for HM alignments. After that, using Principle 

Component Analysis (PCA) for reducing the HM feature 

vector length and use Support Vector Machine (SVM) for 

activity recognition [16, 17] (HM-PCASVM). 

(5) Using the entire version of our proposed HMB algorithm 

and w in Eq. (5) is set to be 1 (HMB(w=1)).     

(6) Using the entire version of our proposed HMB algorithm 

and w in Eq. (5) is set to be 3 (HMB(w=3)). 

 

Table 5 The video-clip number for different group activities for the 

experiments in Tables 6-7 
Gather Follow Wait Separate Leave Together Total 

45 40 76 40 58 66 325 

 

Similarly, we split the dataset into 75% training-25% 

testing parts and perform recognition on the testing part [6]. Six 

independent experiments are performed and the results are 

averaged. Furthermore, we use the ground-truth trajectories in 

this experiment. However, note that in practice, various object 

detection and tracking algorithms [9, 26, 30, 31] can be utilized 

to achieve trajectories. And even in cases when reliable 

trajectories cannot be achieved, other low-level features [28] 

can be used in our algorithm to take the place of the trajectories. 

This point will be further discussed in Section IV-C later. Table 

6 shows the Miss, False Alarm (FA), and Total Error Rates 

(TER) [6] for different algorithms. The miss detection rate is 
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defined by Nθ 
fn

/Nθ
+
 where Nθ 

fn
 is the number of false negative 

(misdetection) sequences for activity θ, and Nθ
+
  is the total 

number of positive sequences of activity θ in the test data [6, 

15]. And the FA rate is defined by Nθ 
fp

/Nθ
 

where Nθ 
fp

 is the 

number of false positive (false alarm) video clips for activity θ, 

and Nθ

  is the total number of negative video clips except 

activity θ in the test data [6]. 

 

 
Figure 10. Examples of human group activities in the BEHAVE dataset [1]. 

 

From Table 6, we can have the following observations: 

(1) Due to the complexity and uncertainty of human activities, 

the WF-SVM, LC-SVM, and GRAD algorithms still 

produce unsatisfactory results for some group activities 

such as “Gather”. Compared to these algorithms, 

algorithms based on our HM features (HMB (w=1), HMB 

(w=3), and HM-PCASVM) have better performances. This 

demonstrates that our HM features are able to precisely 

catch the characteristics of activities.  

(2) Comparing the HMB algorithms (HMB (w=1), HMB 

(w=3)) and the HM-PCASVM, we can see that the HMB 

algorithms have improved results than that of the 

HM-PCASVM algorithm. This demonstrates the 

effectiveness of our surface-fitting recognition methods. 

Note that the improvement of our HMB algorithm will 

become more obvious in another dataset, as will be shown 

later.  

(3) The performance of the HMB (w=1) algorithm is close to 

the HMB (w=3) algorithm. And similar observations can 

be achieved for other datasets and for other w values (when 

w < 5). Therefore, in practice, we can simply set w=1 when 

implementing the ASF methods.     

  

Thirdly, in order to evaluate the influence of trajectory 

qualities to the algorithm performances, we perform another 

experiment by adding Gaussian noises with different strength 

on the ground-truth trajectories and perform recognition on 

these “noisy” trajectories. The results are shown in Table 7.  

 

Table 6 The Miss, FA, and TER rates for different algorithms on the 

BEHAVE dataset 
  HMB 

(w=3) 

HMB 

(w=1) 

HM- 

PCASVM 

WF- SVM 
[2] 

LC- SVM 
[3] 

GRAD 
[6] 

Gather Miss 6.9% 7.1% 6.7% 12.0% 22.2% 11.3% 

FA 0.0% 0.7% 1.4% 0.3% 4.3% 1.6% 

Follow Miss 0.2% 2.5% 6.4% 8.3% 17.5% 16.2% 

FA 0.4% 0.7% 1.1% 2.3% 2.9% 1.3% 

Wait Miss 4.3% 2.6% 7.2% 9.0% 22.4% 14.3% 

FA 0.8% 1.1% 0.4% 2.0% 6.4% 1.8% 

Separate Miss 0.0% 0.0% 0.1% 5.0% 7.5% 8.2% 

FA 0.1% 0.3% 0.2% 0.4% 1.4% 1.0 % 

Leave Miss 2.9% 4.1% 3.0% 4.8% 15.2% 9.6% 

FA 1.5% 0.8% 1.9% 1.4% 1.5% 2.5% 

Together Miss 3.5% 3.9% 3.7% 2.9% 3.5% 2.6% 

FA 1.9% 2.3% 1.5% 1.8% 1.9% 0.8% 

TER 3.6% 4.0% 5.2% 7.0% 13.9% 10.9% 

 
Table 7 Comparison of TER rates with different trajectory qualities (m is the 

noise strength parameter which measures the average pixel-level deviation 

from the ground-truth trajectories). 

 m=0 m=1 m=2 m=3 m=4 m=5 m=25 

HMB(w=3) 3.6% 3.4% 4.0% 3.7% 4.3% 4.3% 10.8% 

WF-SVM 7.0% 7.2% 8.3% 9.7% 10.4% 10.7% 15.1% 

 

Table 7 compares the Total Error Rates (TER) of our HMB 

algorithm and the WF-SVM algorithm [2]. We select to 

compare with WF-SVM because it has the best performance 

among the compared methods in Table 6. The noise strength 

parameter m in Table 7 is the average pixel-level deviation 

from the ground-truth trajectory. For example, m=5 means that 

in average, the noisy trajectory is 5-pixel deviated from the 

ground truth trajectory. Note that m only reflects the “average” 

deviation while the actual noisy trajectories may have more 

fluctuation effects, for example, fluctuating with different 

deviation strength around the ground-truth trajectory and 

deviating with large magnitudes from the ground-truth. 

 From Table 7, we can see that:  

(1) Our HMB algorithm can still achieve pretty stable 

performances when the qualities of the trajectories 

decrease (i.e., when the noise strength m increases). 

Comparatively, the performance decrease by the 

WF-SVM algorithm is more obvious. For example, when 

m=5, the TER rate of WF-SVM will be increased by more 

than 3% while our HMB is only increased by less than 1%. 

This further demonstrates that the heat thermal diffusion 

process in our algorithm can effectively reduce the 

possible trajectory fluctuations. 

(2) When the noise strength is extremely large (e.g., m=25 in 

Table 7), the performance of our HMB algorithm will also 

be decreased. This is because when the trajectories are 

extremely noisy and deviated, they will become far 

different from the standard ones and appear more like a 

different activity. This will obviously affect the 

recognition performance. However, from Table 7, we can 

also see that, even in large noise situations, our HMB 

algorithm can still achieve better performance than the 

WF-SVM method. 

(3) More importantly, note that our HMB algorithm is not 

limited to trajectories. Instead, various low-level motion 

features such as the optical flow [28] can also be included 

into our algorithm to create heat maps for recognition. 
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Therefore, in cases when reliable trajectories cannot be 

achieved (such as the m=25 case in Table 7), our algorithm 

can also be extended by skipping the tracking step and 

directly utilizing other low-level motion features for 

performing group activity recognition. This point will be 

further discussed in Section IV-C later.  

 

 
(a)                                                            (b) 

 
                                              (c) 

Figure 11. (a) The trajectories for the two complex activities; (b) The major 
feature values for the WF-SVM algorithm [2]; (c) The HMs for the two 

complex activities.  

Table 8 Miss and TER rates for the complex activities 
  HMB (w=1) MF-SVM 

Exchange Miss 5.9% 50.0% 

Return Miss 11.6% 43.8% 

TER 8.8% 46.9% 

 

  

  
Figure 12. The example frames of the “Exchange” and “Return” sequences and 

the qualitative results of on-line sub-activity recognition by using a 
30-frame-long sliding window. The bars represent labels of each frame, red 

represents Approach, green represents Stay, and blue represents Separate. 

Fourthly, in order to further demonstrate our HM features, 

we perform another experiment for recognizing two complex 

activities: “Exchange” (i.e. two people first approach each 

other, stay together for a while and then separate) and “Return” 

(i.e., two people first separate and then approach to each other 

later). In this experiment, we extract 32 pair-trajectories from 

the BEHAVE dataset for the two complex activities and 

perform 75% training-25% testing. Some example frames are 

shown in Figures 11-12. In Figure 11, (a) shows the trajectories 

of the two complex activities, (b) shows the values of the major 

features in the WF-SVM algorithm [2], and (c) shows the HM 

surfaces. From Figure 11 (b), we can see that the features in the 

WF-SVM algorithm cannot show much difference between the 

two complex activities. Compared to (b), our HMs in (c) are 

obviously more distinguishable. The recognition results for the 

WF-SVM algorithm and our HMB algorithm are shown in 

Table 8. The results in Table 8 further demonstrate the 

effectiveness of our HM features in representing complex 

group activities. 

Finally, we evaluate our algorithm in recognizing the 

sub-activities. Note that our algorithm can be easily extended to 

recognize the sub-activities by using shorter sliding windows to 

achieve the short-term trajectories instead of the entire 

trajectories. By this way, we can also achieve on-the-fly 

activity recognition at each time instant [6, 29]. In order to 

demonstrate this point, Figure 12 shows the results by applying 

a 30-frame-long sliding window to automatically recognize the 

sub-activities inside the complex “Exchange” and “Return” 

video sequences. From Figure 12, we can see that our HMB 

algorithm can also achieve satisfying recognition results for the 

sub-activities inside the long-term sequences. Besides, our 

algorithm is also able to recognize both the long-term activities 

and the short-term activities by simultaneously introducing 

multiple sliding windows with different lengths. By this way, 

both the sub-activities of the current clip and the complex 

activities of the long-term clip can be automatically recognized.  

B. Experimental results for the traffic dataset 

In this sub-section, we perform two experiments on the 

traffic datasets.  

Firstly, we perform an experiment on a traffic dataset for 

recognizing group activities among vehicles in the crossroad. 

The dataset is constructed from 20 long surveillance videos 

taken by different cameras. Seven vehicle group activities are 

defined as in Table 9 and some example activities are shown in 

Figure 13. We select 245 video clips from the dataset where 

each activity includes 35 video clips and each clip includes two 

trajectories. In this dataset, the trajectories are achieved by first 

using our proposed object detection method [26] to detect the 

vehicles and then using the particle-filtering-based tracking 

method [9, 31] to track the detected vehicles. The Miss, FA, 

and TER of different algorithms are shown in Table 10. 

Table 9 Definitions of the vehicle group activities 
Turn A car goes straight and a car in another lane turns right. 

Follow A car is followed by a car in the same lane. 

Side Two cars go side-by-side in two lanes. 

Pass A car passes the crossroad and a car in the other direction waits for 

green light. 

Overtake A car is overtaken by a car in a different lane. 

Confront Two cars in opposite directions go by each other. 

Bothturn Two cars in opposite directions turn right at the same time. 

 

From Table 10, we can see that the LC-SVM algorithm 

produces less satisfactory results. This is because the group 

activities in this dataset contain more complicated activities 

that are not easily distinguishable by the causality and feedback 

features [3]. Also, the performance of the WF-SVM and the 

GRAD algorithms are still unsatisfactory in several activities 
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such as “Follow”, “Overtake”, and “Pass”. Compared to these, 

the performances of our HM algorithms (HMB (w=1) and 

HM-PCASVM) are obviously improved. Besides, the 

performance of the HMB (w=1) is also improved from the 

HM-PCASVM algorithm. These further demonstrate the 

effectiveness of our proposed HM feature as well as our SF 

recognition method.  

 
Figure 13. Examples of the defined vehicle group activities. 

 

Table 10 Miss, FA, and TER for different algorithms on the vehicle 

group activity dataset 
  HMB  

(w=1) 

HM-  

PCASVM 

WF-  

SVM [2] 

LC-  

SVM [3] 

GRAD 

[6] 

Turn Miss 2.9% 4.7% 2.0% 16.9% 10.7% 

FA 0.5% 1.4% 0.5% 5.4% 4.1% 

Follow Miss 11.4% 9.6% 22.9% 38.1% 15.4% 

FA 0.5% 1.0% 4.4% 15.1% 5.9% 

Side Miss 1.9% 0.1% 0.2% 16.5% 7.1% 

FA 1.0% 1.9% 0.3% 1.0% 0.3% 

Pass Miss 0.0% 5.7% 11.7% 17.6% 15.5% 

FA 0.1% 0.0% 2.4% 1.5% 3.1% 

Overtake Miss 5.7% 11.4% 47.1% 61.7% 36.6% 

FA 0.5% 0.2% 4.9% 11.7% 3.8% 

Confront Miss 5.6% 9.5% 3.9% 19.6% 12.4% 

FA 1.9% 2.9% 1.5% 10.7% 8.3% 

Bothturn Miss 2.9% 3.0% 1.2% 2.9% 4.2% 

FA 1.0% 1.4% 0.5% 1.0% 2.9% 

TER 4.5% 7.8% 12.1% 21.5% 14.6% 

 

Furthermore, it should be noted that there are two important 

challenging characteristics for the traffic dataset: (1) The 

videos in the dataset are taken from different cameras (as in 

Figure 13). This makes the trajectories vary a lot for the same 

activity. (2) Within each video, there are also large scale 

variations (i.e., the object size is much larger at the front region 

than that in the far region, as shown in Figure 13).  Because of 

this, same activities from different regions may also have large 

variations and are difficult to be differentiated. These 

challenging characteristics partially lead to the low 

performance in the compared algorithms (WF-SVM, LC-SVM, 

and GRAD). However, comparatively, these variations in scale 

and camera view are much less obvious in our HM algorithms 

(HMB (w=1) and HM-PCASVM) by utilizing the proposed 

KPB alignment method for eliminating the scale differences 

and utilizing the proposed HM for effectively catching the 

common characteristics of activities.    

 

Secondly, we also perform another experiment with 

different camera settings. In this experiment, we use the traffic 

dataset in Figure 13 to train the HMs and then directly use these 

HMs to recognize the activities from a new dataset as in Figure 

14. The new dataset in Figure 14 includes 65 video clips taken 

from a camera whose height, angle, and zoom are largely 

different from the ones in Figure 13. The results are shown in 

Table 11. 

 

 
Figure 14. Examples of vehicle group activities in the new dataset. 

 

Table 11 Miss, FA, and TER for different algorithms by using the 

HMs trained from the traffic dataset in Figure 13 to recognize the new 

dataset in Figure 14 
  HMB  

(w=1) 

HM-  

PCASVM 

WF-  

SVM[2] 

LC-  

SVM[5] 

GRAD 

[6] 

Turn Miss 0.0% 0.0% 0.0% 38.5% 15.2% 

FA 2.1% 3.6% 0.0% 13.5% 4.8% 

Follow Miss 8.3% 7.7% 32.1% 46.2% 20.1% 

FA 1.9% 0.0% 17.3% 13.5% 10.6% 

Side Miss 12.8% 18.2% 28.6% 30.8% 35.5% 

FA 4.1% 1.7% 0.0% 0.0% 0.0% 

Pass Miss 0.0% 0.0% 0.0% 0.0% 0.0% 

FA 0.0% 0.0% 9.2% 1.3% 3.1% 

Overtake Miss 9.7% 15.1% 53.8% 61.5% 46.9% 

FA 3.8% 7.2% 1.9% 7.7% 2.7% 

Confront Miss 6.2% 8.7% 23.1% 46.2% 16.2% 

FA 1.0% 0.0% 0.0% 3.8% 1.3% 

Bothturn Miss 0.0% 0.0% 0.0% 0.0% 0.0% 

FA 0.0% 1.5% 3.1% 9.2% 3.3% 

TER 6.9% 10.1% 27.7% 44.6% 32.9% 
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      From Table 11, we can see that when using the trained 

models to recognize the activities in a dataset with different 

camera settings, the performances of the compared algorithms 

(WF-SVM, LC-SVM, and GRAD) are obviously decreased. 

Comparatively, our HM algorithms (HMB (w=1) and 

HM-PCASVM) can still produce reliable results. This 

demonstrates that: (1) Our proposed key-point-based (KPB) 

heat-map alignment method can effectively handle the heat 

map differences due to different camera settings. (2) Our HMB 

algorithm has the flexibility of directly applying the HMs 

trained from one camera setting to the other camera settings. 

 

C. Experimental results for the UMN dataset 

Finally, in order to demonstrate that our algorithm can also 

be extended to other low-level motion features [28], we 

perform another experiment by using the optical flows for 

recognition.  

 

 

 
Figure 15. The qualitative results of using our HMB algorithm for abnormal 

detection in the UMN dataset. The bars represent the labels of each frame, 

green represents normal and red represents abnormal. 

 

The experiment is performed on the UMN dataset [22] which 

contains videos of 11 different scenarios of an abnormal escape 

event in 3 different scenes including both indoor and outdoor. 

Each video starts with normal behaviors and ends with the 

abnormal behavior (i.e., escape). In this experiment, we first 

compute the optical flow between the current and the previous 

frames. Then patches with high optical-flow magnitudes will be 

viewed as the heat sources for creating the heat maps (HMs) 

and these heat maps will be utilized for activity recognition in 

our HMB algorithm. A sliding window of 30 frames is used as 

the basic video clip and one HM is generated from each clip. By 

this way, we can achieve 257 video clips. We randomly select 5 

normal behavior HMs and 5 abnormal behavior HMs as the 

training set to classify the rest 247 video clips. Furthermore, we 

set w in Eq. (5) as 1. 

Figure 15 shows some example frames of the UMN dataset 

and compares the normal/abnormal classification results of our 

algorithm with the ground truth. Furthermore, Figure 16 

compares the ROC curves between our algorithm (HMB+ 

Optical Flow) and three other algorithms: the optical flow only 

method (Optical Flow) [20, 28], the Social Force Model (SFM) 

[20], and the Velocity-Field Based method (VFB) [21]. 

From Figure 15 and 16, we can have the following 

observations: 

(1) From Figure 15, we can see that the UMN dataset includes 
high density of people where reliable tracking is difficult. 

However, our HMB algorithms can still achieve satisfying 

normal/abnormal classification results by using the optical 

flow features. This demonstrates the point that when 

reliable trajectories cannot be achieved, our algorithm can 

be extended by skipping the tracking step and directly 

utilizing the low-level motion features to perform group 

activity recognition. 

(2) From Figure 15, we can see that our algorithm can perform 

online normal/abnormal activity recognition for each time 

instant by using a 30-frame-long sliding window. This 

further demonstrates that our algorithm is extendable to 

on-the-fly and sub-activity recognitions.   

(3) Our HMB algorithm can achieve similar or better results 

than the existing social-force-based methods [20-21] when 

detecting the UMN dataset. This demonstrates the 

effectiveness of our HMB algorithm. Although other 

social-force-based methods [23] may have further 

improved results on the UMN dataset, the performance of 

our HMB algorithm can also be further improved by: (a) 

using more reliable motion features (such as the 

trajectories of the local spatio-temporal interest points [23]) 

to take the place of the optical flow, (b) including more 

training samples (note that in this experiment, only five 

normal clips and five abnormal clips are used for training 

in our algorithm).  

(4) More importantly, compared with the social-force-based 

methods [20, 21, 23], our HMB algorithm also has the 

following advantages:  

(a) Most social-force-based methods [20, 21, 23] are 

more focused on the relative movements among the 

objects (e.g., whether two objects are approaching or 

splitting) while the objects’ absolute movements in 

the scene are neglected (e.g., whether an object is 

stand still or moving in the scene). Thus, these 

methods will have limitations in differentiating 

activities with similar relative movements but 

different absolute movements (such as “Wait” and 

“Gather” in Figure 10 or “Confront” and “Bothturn” 

in Figure 13). Comparatively, the heat map features 

in our HMB algorithm can effectively embed both the 

relative and absolute movements of the objects.  

(b) Since the interaction forces used in the 

social-force-based methods [20, 21, 23] cannot 

effectively reflect the correlation changes over time 

(e.g., two objects first approach and then split), they 

also have limitations in differentiating activities with 
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complex correlation changes such as “Return” and 

“Exchange”. Comparatively, since our HM features 

include rich information about the temporal 

correlation variations among objects, these complex 

activities can be effectively handled by our algorithm.  

(c) Since our HM features can effectively distinguish the 

motion patterns between the normal and abnormal 

behaviors, our algorithm can achieve good 

classification results with only a small number of 

training samples (in this experiment, only five 

30-frame-long normal clips and five 30-frame 

abnormal clips are needed for training in our 

algorithm). Comparatively, more training samples are 

required to construct reliable models for the 

social-force-based methods [20, 21, 23].  
 

  
Figure 16. ROC curves of different methods in abnormal detection in the UMN 

dataset. 

IV. CONCLUSION 

In this paper, we propose a new heat-map-based (HMB) 

algorithm for group activity recognition. We propose to create 

the heat map (HM) for representing the group activities. 

Furthermore, we also propose to use a key-point-based method 

for aligning different HMs and a surface-fitting method for 

recognizing activities. Experimental results demonstrate the 

effectiveness of our algorithm. 

 

REFERENCES 

[1] BEHAVE dataset: http://homepages.inf.ed.ac.uk/rbf/BEHAVE. 

[2] Y. Zhou, S. Yan, and T. Huang, “Pair-Activity Classification by 
Bi-Trajectory Analysis,” IEEE Conf. Computer Vision and Pattern 

Recogntion (CVPR), pp. 1-8, 2008. 

[3] B. Ni, S. Yan, and A. Kassim, “Recognizing Human Group Activity with 
Localized Causalities,” IEEE Conf. Computer Vision and Pattern 

Recogntion (CVPR), pp. 1470-1477, 2009. 
[4] Z. Cheng, L. Qin, Q. Huang, S. Jiang, and Q. Tian, “Group Activity 

Recognition by Gaussian Process Estimation,” Int’l Conf. Pattern 

Recognition (ICPR), pp. 3228-3231, 2010. 
[5] Y. Chen, W. Lin, H. Li, H. Luo, Y. Tao, and D. Liu, “A New 

Package-Group-Transmission-based Algorithm for Human Activity 
Recognition in Videos,” IEEE Visual Communications and Image 

Processing(VCIP),  pp. 1-4, 2011. 

[6] W. Lin, M.-T. Sun, R. Poovendran, and Z. Zhang, “Group event detection 
with a varying number of group members for video surveillance,” IEEE 

Trans. Circuits Syst. Video Technol., vol. 20, no. 8, pp. 1057-1067, 2010. 
[7] C. Goodall. “Procrustes Methods in the Statistical Analysis of Shape,” 

Journal of the Royal Statistical Society, vol. 53, no. 3, pp. 285-339, 1991. 

[8] Y. Fang, M. Sun, M. Kim, and K. Ramani, “Heat-Mapping: A Robust 

Approach toward Perceptually Consistent Mesh Segmentation,” IEEE 
Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2145-2152, 

2011. 
[9] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based Object Tracking,” 

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 

564–574, 2003. 
[10] H. Carslaw and J. Jaeger, Conduction of Heat in Solids, Oxford 

University Press, 1986. 
[11] A. Girgensohn, F. Shipman, and L. Wilcox, “Determining Activity 

Patterns in Retail Spaces through Video Analysis,” ACM Multimedia, pp. 

889-892, 2008. 
[12] W. A. Hoff and J. W. Howard, “Activity Recognition in a Dense Sensor 

Network,” Int’l Conf. Sensor Networks and Applications (SNA), 2009. 
[13] T. F. Cootes and C. J. Taylor, “Statistical Models of Appearance for 

Computer Vision,” Image Science and Biomedical Engineering, Univ. 

Manchester, Manchester, U.K.,Tech. Rep., 2004. 
[14] T. Hastie, R. Tibshirani, and J. H. Friedman, “The Elements of Statistical 

Learning,” Springer, 2003. 
[15] W. Lin, M.-T. Sun, R. Poovendran, and Z. Zhang, “Activity Recognition 

using a Combination of Category Components and Local Models for 

Video Surveillance,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, 

no. 8, pp. 1128-1139, 2008. 

[16] C. Chang and C. Lin, “LIBSVM: A Library for Support Vector 
Machines,” ACM Trans. Intelligent Syst. Tech., vol. 2, pp. 1-27, 2011. 

[17]  C. Wang, J. Zhang, J. Pu, X. Yuan, and L. Wang, "Chrono-Gait Image: A 

Novel Temporal Template for Gait Recognition," European Conference 
on Computer Vision (ECCV), pp. 257-270, 2010. 

[18] L. Bao and S. Intille, “Activity Recognition from User-Annotated 
Acceleration Data,” Int’l Conf. Pervasive Computing (PERVASIVE), vol. 

3001, pp. 1-17, 2004. 

[19] C. Rao, M. Shah, and T. Syeda-Mahmood, “Action Recognition based on 
View Invariant Spatio-Temporal Analysis,” ACM Multimedia, pp. 

518-527, 2003. 

[20] R. Mehran, A. Oyama, and M. Shah, “Abnormal Crowd Behavior 
Detection using Social Force Model,” IEEE Conf. Computer Vision and 

Pattern Recogntion (CVPR), pp. 935-942, 2009. 
[21] J. Zhao, Y. Xu, X. Yang, and Q. Yan, “Crowd Instability Analysis Using 

Velocity-Field Based Social Force Model,” Visual Communications and 

Image Processing (VCIP), pp. 1-4, 2011. 

[22] Unusual Crowd Activity Dataset: http://mha.cs.umn.edu/Movies/Crowd- 

Activity-All.avi 
[23] X. Cui, Q. Liu, M. Gao, and D. N. Metaxas, “Abnormal Detection Using 

Interaction Energy Potentials,” IEEE Conf. Computer Vision and Pattern 

Recogntion (CVPR), pp. 3161-3167, 2011. 
[24] B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin, and L. Xu, 

“Crowd Analysis: A Survey,” Machine Vision and Application, vol. 19, pp. 
345-357, 2008. 

[25] J. C. S. Jacques Junior, S. R. Musse, and C. R. Jung, “Crowd Analysis 

Using Computer Vision Techniques,” Signal Processing Magazine, vol. 
27, pp. 66-77, 2010. 

[26] X. Su, W. Lin, X. Zhen, X. Han, H. Chu, and X. Zhang, “A New 
Local-Main-Gradient-Orientation HOG and Contour Differences based 

Algorithm for Object Classification,” IEEE Int’l Symposium on Circuits 

and Systems (ISCAS), 2013. 
[27] H. Chu, W. Lin, J. Wu, X. Zhou, Y. Chen, and H. Li, "A New 

Heat-Map-based Algorithm for Human Group Activity Recognition", 
ACM Multimedia, 2012. 

[28] B. D. Lucas and T. Kanade, “An iterative image registration technique 

with an application to stereo vision,” Proceedings of Imaging 
Understanding Workshop, 1981.  

[29] S. Chiappino, P. Morerio, L. Marcenaro, E. Fuiano, G. Repetto, C.S. 
Regazzoni, "A multi-sensor cognitive approach for active security 

monitoring of abnormal overcrowding situations," Int’l Conf. Information 

Fusion (FUSION) , pp.2215-2222, 2012. 
[30] G. Wu, Y. Xu, X. Yang, Q. Yan, K. Gu, “Robust object tracking with 

bidirectional corner matching and trajectory smoothness algorithm,” Int’l 
Workshop on Multimedia Signal Processing, pp. 294-298, 2012. 

[31] R. Hess and A. Fern, “Discriminatively Trained Particle Filters for 

Complex Multi-Object Tracking,” IEEE Conf. Computer Vision and 
Pattern Recognition (CVPR), pp. 240-247, 2009.  

http://homepages.inf.ed.ac.uk/rbf/B-EHAVE

