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Abstract—This paper presents a novel strategy for high-fidelity 

image restoration by characterizing both local smoothness and 

nonlocal self-similarity of natural images in a unified statistical 

manner. The main contributions are three-folds. First, from the 

perspective of image statistics, a joint statistical modeling (JSM) 

in an adaptive hybrid space-transform domain is established, 

which offers a powerful mechanism of combining local smooth-

ness and nonlocal self-similarity simultaneously to ensure a more 

reliable and robust estimation. Second, a new form of minimiza-

tion functional for solving image inverse problem is formulated 

using JSM under regularization-based framework. Finally, in 

order to make JSM tractable and robust, a new Split-Bregman 

based algorithm is developed to efficiently solve the above severely 

underdetermined inverse problem associated with theoretical 

proof of convergence. Extensive experiments on image inpainting, 

image deblurring and mixed Gaussian plus salt-and-pepper noise 

removal applications verify the effectiveness of the proposed al-

gorithm. 

 
Index Terms—Image restoration, statistical modeling, optimi-

zation, image inpainting, image deblurring 

 

I. INTRODUCTION 

s a fundamental problem in the field of image processing, 

image restoration has been extensively studied in the past 

two decades [1]–[12]. It aims to reconstruct the original high 

quality image x  from its degraded observed version y , which 

is a typical ill-posed linear inverse problem and can be gener-

ally formulated as: 

, Hy x n                                              (1) 

where ,yx  are lexicographically stacked representations of 

the original image and the degraded image, respectively, H  is 

a matrix representing a non-invertible linear degradation oper-

ator and n  is usually additive Gaussian white noise. When H  

is identity, the problem becomes image denoising [4], [5], [11]; 

when H  is a blur operator, the problem becomes image 

deblurring [14], [21]; when H  is a mask, that is, H  is a di-
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agonal matrix whose diagonal entries are either 1 or 0, keeping 

or killing the corresponding pixels, the problem becomes image 

inpainting [22], [35]; when H  is a set of random projections, 

the problem becomes compressive sensing [16], [17]. In this 

paper, we focus on image inpainting, image deblurring and 

image denoising. 

In order to cope with the ill-posed nature of image restoration, 

one type of scheme in literature employs image prior 

knowledge for regularizing the solution to the following min-

imization problem [14], [15]:  

   ,
2

2
1
2argmin ( ) x Hx y xλ                      (2) 

where 
2

2
1
2 Hx y  is the 2  data-fidelity term, ( )x  is called 

the regularization term denoting image prior and λ  is the reg-

ularization parameter. In fact, the above regularization-based 

framework (2) can be strictly derived from Bayesian inference 

with some image prior possibility model. Many optimization 

approaches for regularization-based image inverse problems 

have been developed [13]–[15], [41], [42]. 

It has been widely recognized that image prior knowledge 

plays a critical role in the performance of image restoration 

algorithms. Therefore, designing effective regularization terms 

to reflect the image priors is at the core of image restoration.  

Classical regularization terms utilize local structural patterns 

and are built on the assumption that images are locally smooth 

except at edges. Some representative works in the literature are 

total variation (TV) model [2], [14], half quadrature formula-

tion [18] and Mumford-Shah (MS) model [20]. These regular-

ization terms demonstrate high effectiveness in preserving 

edges and recovering smooth regions. However, they usually 

smear out image details and cannot deal well with fine struc-

tures, since they only exploit local statistics, neglecting non-

local statistics of images. 

In recent years, perhaps the most significant nonlocal statis-

tics in image processing is nonlocal self-similarity exhibited by 

natural images. The nonlocal self-similarity depicts the repeti-

tiveness of higher level patterns (e. g., textures and structures) 

globally positioned in images, which is first utilized to synthe-

size textures and fill in holes in images [19]. The basic idea 

behind texture synthesis is to determine the value of the hole 

using similar image patches, which also influences the image 

denoising task. Buades et al. [24] generalized this idea and 

proposed an efficient denoising model called nonlocal means 

(NLM), which takes advantage of this image property to con-

duct a type of weighted filtering for denoising tasks by means 

of the degree of similarity among surrounding pixels.  This 

simple weighted approach is quite effective in generating 

sharper image edges and preserving more image details.    

Later, inspired by the success of nonlocal means (NLM) 

denoising filter, a series of nonlocal regularization terms for 
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inverse problems exploiting nonlocal self-similarity property of 

natural images are emerging [25]–[29]. Note that the 

NLM-based regularizations in [25] and [28] are conducted at 

pixel level, i.e., from one pixel to another pixel. In [9] and [39], 

block-level NLM based regularization terms were introduced to 

address image deblurring and super-resolution problems. Gil-

boa and Osher defined a variational framework based on non-

local operators and proposed nonlocal total variation (NL/TV) 

model in [25]. The connection between the filtering methods 

and spectral bases of the nonlocal graph Laplacian operator 

were discussed by Peyré in [27]. Recently, Jung et al. [29] 

extended traditional local MS regularizer and proposed a non-

local version of the approximation of MS regularizer (NL/MS) 

for color image restoration, such as deblurring in the presence 

of Gaussian or impulse noise, inpainting, super-resolution, and 

image demosaicking. 

Due to the utilization of self-similarity prior by adaptive 

nonlocal graph, nonlocal regularization terms produce superior 

results over the local ones, with sharper image edges and more 

image details [27]. Nonetheless, there are still plenty of image 

details and structures that cannot be recovered accurately. The 

reason is that the above nonlocal regularization terms depend 

on the weighted graph, while it is inevitable that the weighted 

manner gives rise to disturbance and inaccuracy [28]. Ac-

cordingly, seeking a method which can characterize image 

self-similarity powerfully is one of the most significant chal-

lenges in the field of image processing. 

Based on the studies of previous work, two shortcomings 

have been discovered. On one hand, only one image property 

used in regularization-based framework is not enough to obtain 

satisfying restoration results. On the other hand, the image 

property of nonlocal self-similarity should be characterized by 

a more powerful manner, rather than by the traditional 

weighted graph. In this paper, we propose a novel strategy for 

high-fidelity image restoration by characterizing both local 

smoothness and nonlocal self-similarity of natural images in a 

unified statistical manner. Part of our previous work has been 

published in [30]. Our main contributions are listed as follows. 

First, from the perspective of image statistics, we establish a 

joint statistical modeling (JSM) in an adaptive hybrid space and 

transform domain, which offers a powerful mechanism of 

combining local smoothness and nonlocal self-similarity sim-

ultaneously to ensure a more reliable and robust estimation. 

Second, a new form of minimization functional for solving 

image inverse problems is formulated using JSM under regu-

larization-based framework. The proposed method is a general 

model that includes many related models as special cases. 

Third, in order to make JSM tractable and robust, a new 

Split-Bregman based algorithm is developed to efficiently 

solve the above severely underdetermined inverse problem 

associated with theoretical proof of convergence. 

The remainder of the paper is organized as follows. Section 

II elaborates the design of joint statistical modeling. Section III 

proposes a new objective functional containing a data-fidelity 

term and a regularization term formed by JSM, and gives the 

implementation details of solving optimization. Extensive ex-

perimental results are reported in Section IV. In Section V, we 

summarize this paper. 

II. PROPOSED JOINT STATISTICAL MODELING IN 

SPACE-TRANSFORM DOMAIN 

As mentioned in Section I, to cope with the ill-posed nature 

of image inverse problems, the prior knowledge about natural 

images is usually employed, namely, image properties, which 

essentially play a key role to achieve high-quality images. 

Here, two types of popular image properties are considered, 

namely local smoothness and nonlocal self-similarity, as illus-

trated by image Lena in Fig. 1. The former type describes the 

piecewise smoothness within local region, as shown by circular 

regions, while the latter one depicts the repetitiveness of the 

textures or structures in natural images globally positioned 

image patches, as shown by block regions with the same color. 

The challenge is how to characterize and formulate these two 

image properties mathematically. Note that different formula-

tions of these two properties will lead to different results. 

 
Fig. 1. Illustrations for local smoothness and nonlocal self-similarity of natural 

images. 

In this study, we characterize these two properties from the 

perspective of image statistics and propose a joint statistical 

modeling (JSM) for high fidelity of image restoration in an 

adaptive hybrid space-transform domain. Specifically, JSM is 

established by merging two complementary models– local 

statistical modeling (LSM) in two-dimensional space domain 

and nonlocal statistical modeling (NLSM) in three-dimensional 

transform domain. That is 

( ) ( )   ( )u u uNLSMJSM LSM
λτ ,             (3) 

where ,τ λ  are regularization parameters, which control the 

trade-off between two competing statistical terms. LSM   
cor-

responds to the above local smoothness prior and keeps image 

local consistency, suppressing noise effectively, while NLSM  
corresponds to the above nonlocal self-similarity prior and 

maintains image nonlocal consistency, retaining the sharpness 

and edges effectually. More details on how to design JSM to 

characterize the above two properties will be provided below. 

A. Local Statistical Modeling for Smoothness in Space 

Domain 

Local smoothness describes the closeness of neighboring 

pixels in the two-dimensional space domain of images, which 

means the intensities of the neighboring pixels are quite similar. 

To characterize the smoothness of images, there exist many 

models. Here, we mathematically formulate a local statistical 

modeling for smoothness in two-dimensional space domain. 

From the view of statistics, a natural image is preferred when its 



 

responses for a set of high-passing filters are as small as pos-

sible [23], which intuitively implies that images are locally 

smooth and their derivatives are close to zero. 

            
                       (a)                                                  (b) 

Fig. 2. Illustrations for local statistical modeling for smoothness in space 

domain at pixel level. (a) Gradient picture in horizontal direction of image 

Lena; (b) Distribution of horizontal gradient picture of Lena, i.e., histogram of 
Fig. 2(a). 

In practice, the widely-used filters are vertical and horizontal 

finite difference operators, denoted by 
v

[1 -1]
T

D
 
and 

h
[1 -1]D , respectively. Fig. 2 shows the gradient picture in 

horizontal direction of image Lena and its histogram. It is ob-

vious to see that the distribution is very sharp and most pixels 

values are near zero. In literatures, the marginal statistics of 

outputs of the above two filters are usually modeled by gener-

alized Gaussian distribution (GGD) [43], which is defined as 

[ ( ) / ]

/
,GGD

x

vxv x( ) 1
( )

2 (1 )

v v
v

x ep  


 




               (4) 

where / /( ) (3 ) (1 )v v v   and 
0

1u t( )t e


    u du is 

gamma function, x  is the standard deviation, and v  is the 

shape parameter. The distribution GGD( )xp  is a Gaussian dis-

tribution function if 2v , and a Laplacian distribution func-

tion if .1v If 0 1v  , GGD( )xp
 
is named as hy-

per-Laplacian distribution . More discussions about the value of 

v  can be found in [23].  

In this section, we choose Laplacian distribution to model the 

marginal distributions of gradients of natural images by making 

a trade-off between modeling the image statistics accurately 

and being able to solve the ensuing optimization problem effi-

ciently. Thus, let 
v h

[ ]；D D D
 
and set v  to be 1 in Eq. (4) to 

obtain the local statistical modeling (LSM) in space domain at 

pixel level, with corresponding regularization term LSM  
de-

noted by 

     1 1 1v h
,|| || || || || ||( )u u u uD D DLSM         

 (5) 

which clearly indicates that the formulation is convex and fa-

cilitates the theoretical analysis.  

Note that LSM  
has the same expression as anisotropic TV 

defined in [14], [44], and can be regarded as a statistical inter-

pretation of anisotropic TV. It is important to emphasize that 

local statistical modeling is only used for characterizing the 

property of image smoothness. The regularization term Eq. (5) 

has the advantages of convex optimization and low computa-

tional complexity. There is no need to design a very complex 

regularization term, since the task of retaining the sharp edges 

and recovering the fine textures will be accomplished by the 

following nonlocal statistical modeling. More details for solv-

ing LSM regularized problems will be given in the next section. 

B. Nonlocal Statistical Modeling for Self-Similarity in 

Transform Domain 

Besides local smoothness, nonlocal self-similarity is another 

significant property of natural images. It characterizes the re-

petitiveness of the textures or structures embodied by natural 

images within nonlocal area, which can be used for retaining 

the sharpness and edges effectually to maintain image nonlocal 

consistency. However, the traditional nonlocal regularization 

terms as mentioned in Section I essentially adopt a weighted 

manner to characterize self-similarity by introducing nonlocal 

graph according to the degree of similarity among similar 

blocks, which often fail to recover finer image textures and 

more accurate structures. 

Recently, quite impressive results have been achieved in 

image and video denoising by conducting the operation of 

transforming a three-dimensional (3D) array of similar patches 

and shrinking the coefficients [4], [32]–[34]. It is worth em-

phasizing that Dabov et al. did excellent work in the image 

restoration field, especially their famous BM3D methods for 

image denoising and deblurring applications [4], [21], which 

have achieved great success. Our proposed statistical modeling 

for self-similarity is inspired by their success and significantly 

depends on their work. In this study, we mathematically char-

acterize the nonlocal self-similarity for natural images by 

means of the distributions of the transform coefficients, which 

are achieved by transforming the 3D array generated by 

stacking similar image patches. Accordingly, this type of model 

can be named as nonlocal statistical modeling (NLSM) for 

self-similarity in three-dimensional transform domain.  

More specifically, as illustrated in Fig. 3, the strict descrip-

tion on the proposed NLSM for self-similarity in transform 

domain can be obtained in the following five steps. First, divide 

the image u  with size N  into n  overlapped blocks iu  of 

size sb , , , ,1 2 ...i n . Second, for each block in red denoted by 
iu , we search c  blocks (such as nine in Fig. 3) that are best 

similar to it within the blue search window. Instead of using a 

tunable threshold to choose similar blocks in [4] for denoising, 

our choice with a fixed number is not only simple but also 

robust to the similarity criterion. Thus, for simplicity, the cri-

terion for calculating similarity between different blocks is 

Euclidean distance. Moreover, it enables solving the 

sub-problem associated with NLSM quite efficient (see The-

orem 2). Define iuS
 
the set including the c  best matched 

blocks to iu  in the searching window with size of L L , that 

is, , ,...,1 2{ }
  

i i i i cu u u uS S S S . Third, as to each iuS , stack the 

c  blocks belonging to iuS  into a 3D array, which is denoted 

by iuZ . Fourth, denote 3DT  the operator of an orthogonal 3D 

transform, and ( )i3D

uZT
 
the transform coefficients for iuZ . 

Let u  be the column vector of all the transform coefficients 

of image u  with size * *sK b c n
 
built from all the 

( )i3D

uZT
 
 arranged in the lexicographic order. Note that the 

orthogonality of 3D transform is momentous in solving NLSM, 

which will be discussed in the next section. Finally, we analyze 

the histogram of the transform coefficients, as shown in Fig. 3, 

which statistically demonstrates that the histogram is quite 

sharp, and the vast majority of coefficients are concentrated  
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Fig. 3. Illustrations for nonlocal statistical modeling for self-similarity in three-dimensional transform domain at block level. 

near the zero value. This is similar to the previous local mod-

eling of images, and is also very suitable to be characterized by 

GGD. Analogous to local statistical modeling (LSM) in space 

domain, by making a trade-off between accurate modeling and 

efficient solving, in this paper, the distribution of u  
is mod-

eled by Laplacian function. 

Therefore, the mathematical formulation of nonlocal statis-

tical modeling for self-similarity in three-dimensional trans-

form domain is written as 

   || || .
1 1 1

( ) ( )i
n

NLSM i   3D
u uT Zu           (6) 

Accordingly, the inverse operator NLSM  corresponding to 

NLSM  can be defined in the following procedures. After ob-

taining u , split it into n  3D arrays of 3D transform coeffi-

cients, which are then inverted to generate estimates for each 

block in the 3D array. The block-wise estimates are returned to 

their original positions and the final image estimate is achieved 

by averaging all of the above block-wise estimates. Forasmuch, 

if u  
is known, the new estimate for u  is expressed as 

ˆ ( )NLSM  uu . The convexity of NLSM in Eq. (6) can be 

technically justified as follows. To make it clear, define i
3DR  as 

the matrix operator that extracts the 3D array iuZ  from u , i.e., 

i i 3D

uZ R u . Then, define i i3D 3D 3DG T R , which is a linear 

operator. It is obvious to observe that 
1 1

( )i i3D 3D

uT Z G u  is 

convex with respect to u . Since the sum of convex functions is 

convex, Eq. (6) is also convex as tou . 

The difference between the proposed NLSM and BM3D 

method mainly has three aspects. First, we mathematically 

characterize the nonlocal self-similarity for natural images by 

means of the distributions of the transform coefficients, which 

are achieved by transforming the 3D array generated by 

stacking similar image blocks. Second, for each block, we 

utilize a fixed number of blocks that are best similar to it within 

the search window to construct its 3D array. Nonetheless, in the 

BM3D works [4], [21], many tunable thresholds to choose 

similar blocks are exploited, which is a bit complicated. Our 

choice with a fixed number is not only simple but also robust to 

the similarity criterion. Moreover, the fixed size of each 3D 

array enables solving the sub-problem associated with NLSM 

quite efficient (see Theorem 2). Third, the proposed NLSM is 

more general, and can be directly incorporated into the regu-

larization framework for image inverse problems, such as im-

age inpainting, image deblurring and mixed Gaussian plus 

impulse noise removal, which will be provided in the experi-

mental section. Furthermore, a split Bregman based iterative 

algorithm and a theorem are developed to solving the NLSM 

regularized problem effectively and efficiently. 

Here, we also give a visual comparison between the pro-

posed nonlocal statistical modeling (NLSM) and two tradi-

tional nonlocal regularization terms. Fig. 4 provides visual 

results of image restoration from partial random samples for 

crops of image Barbara in the case of Ratio=20%. Fig. 4(a) is 

the corresponding degraded image with only 20% random 

samples available. Fig. 4(b) is the reconstruction result 

achieved only by local statistical modeling (LSM). It looks 

good in smooth regions, but loses sharp edges and accurate 

textures. Fig. 4(c) is the reconstruction result achieved by local 

statistical modeling and NLM-based regularization term to-

gether, denoted by LSM+NLM, where the nonlocal regulari-

zation term is defined in [45]. Fig. 4(d) provides the restoration 

result by nonlocal total variation (NL/TV), defined in [28]. It is 

obvious that reconstruction result with sharper edges and more 

image details is obtained by incorporation nonlocal graph 

However, accurate image textures still can’t be recovered and 

the results are not very clear (see the scarf in Fig. 4(d)). Fig. 4(e) 

shows the restoration result by the proposed local statistical 

modeling (LSM) plus nonlocal statistical modeling (NLSM), 

i.e., the proposed JSM. 

     
(a)                      (b)                     (c)                    (d)                    (e)  

Fig. 4. Visual quality comparison of image restoration from partial random 
samples for crops of image Barbara in the case of Ratio=20%. (a) Degraded 

image with only 20% random samples available; (b) Restoration results by only 

local statistical modeling, i.e., LSM (22.18 dB); (c) Restoration results by 
LSM+NLM (22.97 dB); (d) Restoration results by NL/TV (23.08 dB); (e) 

Restoration results by LSM+NLSM, i.e., the proposed JSM (27.21 dB). 

It can be observed that Fig. 4(e) exhibits the best visual 

quality, not only providing consistent and sharp edges but also 

generating accurate and clear textures, which fully substantiates 

the superiority of the proposed NLSM over the traditional 

nonlocal regularizers. 

In summary, the advantage of the nonlocal statistical mod-

eling is that self-similarity among globally positioned image 

blocks is exploited in a more effective statistical manner in 3D 

transform domain than nonlocal graph incorporated in tradi-

tional nonlocal regularizations. Extensive experiments in the 

following section demonstrate that the NLSM for 

self-similarity is able to not only reserve the common textures 

and details among all similar patches, but also keep the dis-

tinguished features of each block in a certain degree. Note that 

the nonlocal statistical modeling for self-similarity is da-



 

ta-adaptive because of its content-aware search for similar 

blocks within nonlocal region. It is also worth stressing that 

although Eq. (6) seems complicated as one regularization term 

in the minimization function, we will give a very efficient so-

lution in the next section. 

C. Joint Statistical Modeling (JSM) 

Considering local smoothness and nonlocal self-similarity in 

a whole, a new joint statistical modeling (JSM) can be defined 

by combining the local statistical modeling (LSM) for 

smoothness in space domain at pixel level and the nonlocal 

statistical modeling (NLSM) in transform domain at block level, 

which is expressed as 

|| || || || .1 1  ( ) ( ) ( )  NLSMJSM LSM
λτ τ λD uu u u u 

                (7) 

Thus, JSM is able to portray local smoothness and nonlocal 

self-similarity of natural images richly, and combine the best of 

the both worlds, which greatly confines the space of inverse 

problem solution and significantly improve the reconstruction 

quality. To make JSM tractable and robust, a new Split Breg-

man based iterative algorithm is developed to solve the opti-

mization problem with JSM as regularization term efficiently, 

whose implementation details and convergence proof will be 

provided in the next section. Extensive experimental results 

will testify the validity of the proposed JSM.  

Fig. 5 visually illustrates the image restoration process of the 

proposed algorithm. Fig. 5(a) is the degraded image of House 

with 20% original samples, i.e., Ratio=20%. As the iteration 

number k increases, it is obvious that the quality of the resto-

ration image becomes better and better, and ultimately stabi-

lizes, exhibited by Figs. 5(b)-(e). 

     
      (a)  k = 0          (b) k = 60       (c)  k = 120        (d) k = 210       (e) k = 300 

Fig. 5. Image restoration process as the iteration number increases in the case of 
image restoration from partial random samples for image House when Ra-

tio=20%. Here, k represents the iteration number. 

III. SPLIT BREGMAN BASED ITERATIVE ALGORITHM FOR IMAGE 

RESTORATION USING JSM 

By incorporating the proposed joint statistical modeling (7) 

into the regularization-based framework (2), a new formulation 

for image restoration can be expressed as follows: 

,
2

2

1
2argmin ( ) ( )NLSMLSMu Hu y u uλτ      (8) 

where τ  and λ
 
are control parameters. Note that the first term 

of Eq. (8) actually represents the observation constraint and the 

second and the third represent the image prior local and non-

local constraints, respectively. Therefore, it is our belief that 

better results will be achieved by imposing the above three 

constraints into the ill-posed image inverse problem. Solving it 

efficiently is one of the main contributions of this paper. 

In this section, we apply the algorithmic framework of Split 

Bregman Iteration to solve Eq. (8) and present the implemen-

tation details and the convergence of the proposed algorithm. 

Split Bregman Iteration (SBI) is recently introduced by [41] 

for solving a class of 1  related minimization problems. The 

basic idea of SBI is to convert the unconstrained minimization 

problem into a constrained one by introducing the variable 

splitting technique and then invoke the Bregman iteration [41] 

to solve the constrained minimization problem. Numerical 

simulations in [40], [44] show that it converges fast and only 

uses a small memory footprint, which makes it very attractive 

for large-scale problems.  

Consider an unconstrained optimization problem 

,( ) ( )min
N
f g




u
Guu                            (9) 

where : ,  :, M N N Mf gG    . The Split Bregman 

Iteration works as follows: 

Algorithm 1 Split Bregman Iteration (SBI) 

1.    Set 0k , choose 0,  ,( ) ( ) ( )0 0 00 0, 0d u v   . 

2.    Repeat 

3.     ;
2

( ) ( ) ( )

2

+1
2argmin ( )k k kfuu Gu vu d

    

4.        ;
2

( ) ( ) ( )

2

+ +1 1
2argmin ( )k k kgv Gv v u v d

    

5.    ;( ) ( ) ( ) ( )+ + +1 1 1( )k k k kGd d u v    

6.    ;+1k k  

7.      Until stopping criterion is satisfied 

Let us go back to Eq. (8) and point out how to apply SBI to 

solve it. First, define 

,
2

2
1
2( ) f u Hu y  

,λτv Gu u u ( ) ( ) ( ) ( )=  NLSMLSMg g  

where  

, , Nv Gu w xw
x
   
    

and .2N NIG
I

  
  

 

Therefore, Eq. (8) is transformed to 

2,
s. t.  argmin .( ) ( )N N f g

u v
v Gu vu

 
       (10) 

Invoking SBI, Line 3 in Algorithm 1 becomes: 

+

+

,

2
( ) ( ) ( )

2

2

2

2

2

+1

( ) ( )

( ) ( )

2

1
2 2

argmin - -

- - -

( )k k k

k k

k k

f 






    
        

u
G

I
H

I

u u v

w bu y
x c

u d

u
     (11) 

where , ,( ) ( ) ( )
( )

2

( )

k
N Nk k k

k

bd
c

b c  
  

 . 

Splitting 
2
  norm in Eq. (11), we have 

                        .

( )

( ) ( )

2 2
+ ( ) ( )1

2 2

2

2

1
2 2

2

argmin - - -

- -

k k k

k k





 



u
Hu u y u w b

u x c
  

   (12) 

Next, Line 4 in Algorithm 1 becomes: 

,

+ +

+

              

( )
( )

( )

+1
+1

+1

2 2

2 2
+ +( ) ( ) ( ) ( )1 1

2 2

argmin ( ) ( )

- - - - .

{

}

k
k

LSM NLSMk

k k k k

τ λ
w x

wv w xx

u w b u x c

   
  

 

 

 (13) 



 

Clearly, the minimization with respect to ,  w x  are decou-

pled, thus can be solved separately, leading to 

+ ,( ) ( ) ( )
2

+ +1 1
22argmin ( ) - -k k k

LSM
 

w
w w u w b    (14) 

.( ) ( ) ( )
2

+ +1 1
22argmin ( )k k k

NLSM


   
x

x x u x cλ
  

 (15) 

According to Line 5 in Algorithm 1, the update of kd  is 

,
+ +( ) ( ) ( )1 1

( ) ( )
+ +( ) ( ) ( )1 1

+ +1 1( )
k k k

k k k
k kI

I
b b wd uc c x
       

            
    

which can be simplified into the following two expresstions: 

,

.

( ) ( ) ( ) ( )

+ + +( ) ( ) ( ) ( )1 1 1

+ + +1 1 1( )
( )k k k k

k k k ku w

u x

b b
c c





 

 
 

To sum up, the minimization for Eq. (8) is equivalent to 

solve the three sub-problems, namely, , , u w x  sub-problems, 

according to Split Bregman Iteration. The complete algorithm 

for solving Eq. (8) is described in Table I. 

In Table I, the proximal map ( )( )tprox g x  with respect to a 

proper closed convex function g
 
and a scalar 0t  is defined 

by 
2

2
1
2( )( ) argmin ( ){ }   tprox t gg

u
x u x u  [14]. 

In the light of the convergence of SBI, we have the following 

theorem to prove the convergence of the proposed algorithm 

using joint statistical modeling in Table I. 

THEOREM 1. The proposed algorithm described by Table I 

converges to a solution of (8).  

Proof: It is obvious that the proposed algorithm is an instance 

of Split Bregman Iteration. Since all the three functions ( )f ,

( )LSM , and ( )NLSM  are closed, proper and convex, the con-

vergence of the proposed algorithm is guaranteed by 

2N NIG
I

  
  

, 

which is a full column rank matrix. □ 

TABLE I. A COMPLETE DESCRIPTION OF PROPOSED ALGORITHM 

USING JOINT STATISTICAL MODELING (VERSION I) 

Input: the observed image y and the linear matrix operatorH  

Initialization: 0, = , , , ,( )( ) ( ) ( ) ( )00 0 0 0k 0u y b c w x     μ τ λ
        

 

Repeat 

    
         ;

( )
2

+1
2

2 2
( ) ( ) ( ) ( )

2 2

1
2

2 2

argmink

k k k k

u
u Hu y

u w b u x c 



     


      

;  ;( ) ( ) ( )+1k k kp u b  γ τ /μ
      

 

;( ) ( )+1 ( )( )LSM
k kproxw p                                

;  ;( ) ( ) ( )+1k k kr u c  α λ/μ                            

;( ) ( )+1 ( )( )NLSM
k kproxx r α                             

;( ) ( ) ( ) ( )+ + +1 1 1( )k k k ku wb b                              

;( ) ( ) ( ) ( )+ + +1 1 1( )k k k ku xc c                              

Until stopping criterion is satisfied 

Output: Final restored image u . 

 

It is important to stress that the convergence will not be 

compromised if the sub-problems can be solved efficiently, 

which will also be demonstrated by the following experimental 

section. In the following, we argue that the every separated 

sub-problem admits an efficient solution. For simplicity, the 

subscript k is omitted without confusion. 

A. u  sub-problem 

In order to make the solution of Eq. (12) more flexible, we 

introduce two parameters 1  and 2  to replace  , which will 

not comprise the algorithm convergence. Thus, given ,w x , the 

u  sub-problem denoted by Eq. (12) becomes: 

    

.12 2 2

2 2 2
1
2 2 2argmin  

       2

u
Hu u y u w b u x c

  

   
 (16) 

Since Eq. (16) is a minimization problem of strictly convex 

quadratic function, there is actually a closed form for u , which 

can be expressed as 

    + ,1( )T   H H I qu                         (17) 

where + + ,1 2( ) ( )T      Hq y w b x c I is identity matrix and 

1 2    . For image inpainting and image deblurring prob-

lems, Eq. (17) can be computed efficiently [15]. 

As for image inpainting, since the sub-sampling matrix H  is 

actually a binary matrix, which can be generated by taking a 

subset of rows of an identity matrix, H  satisfies = .THH I
Applying the Sherman-Morrison-Woodbury (SMW) matrix 

inversion formula to Eq. (17) yields 

1 1
1( ) .TH HI qu                         (18) 

Therefore, u  in Eq. (18) can be computed very efficiently 

without computing the matrix inverse operation in Eq. (17). 

Moreover, owing to the particular structure of H , TH H  is 

equal to an identity matrix with some zeros in the diagonal, 

corresponding to the positions of the missing pixels. Conse-

quently, the cost of Eq. (18) is only ( )NO . In this paper, the 

mixed Gaussian plus salt-and-pepper noise removal is dealt 

with as a special case of image inpainting, which will be elab-

orated in the following section. 

As for image deblurring, H  is the matrix representing a 

circular convolution which can be factorized as 

,
1

H U DU                                   (19) 

where U  is the matrix denoting 2D discrete Fourier transform 

(DFT), 1U  is its inverse and D  is a diagonal matrix contain-

ing the DFT coefficients of the convolution operator repre-

sented by H . Thus, 

*
+ + + ,

1 1 1 1 1 2 1( ) ( )( )T          | |H H I U DDU U U U D I U  (20) 

where *( )  denotes complex conjugate and 2| |D  the squared 

absolute values of the entries of the diagonal matrix D . Be-

cause +
2 | |D I  is diagonal, the cost of its inversion is ( )NO . 

In practice, the products of 1U  and U  can be implemented 

with log( )N NO  using the FFT algorithm. 

B. w   sub-problem 

w  sub-problem, the proximal map associated to ( )LSM , 

can be regarded as a denoising filtering with anisotropic total 

variation as mentioned before. To solve it, one of the intrinsic 

difficulties is the non-smoothness of the term 
1

|| ||uD . To 

overcome this difficulty, Chambolle [3] suggested to consider a 

dual approach, and developed a globally convergent gradi-



 

ent-based algorithm for the denoising problem, which was 

shown to be faster than primal-based schemes. Later, some 

accelerating methods such as TwIST [13] and FISTA [14], are 

proposed, exhibiting fast theoretical and practical convergence. 

In our experiments, we exploit a fixed number of iterations of 

FISTA to solve w  sub-problem, which is computationally 

efficient and empirically found not to compromise convergence 

of the proposed algorithm. 

C. x  sub-problem 

Given ,w u , the x   sub-problem can be written as 

 

 .

2

2

2

2 1

1
2

1
2

argmin

argmin

( )( )

( )

NLSM

NLSM

proxα

x

x

x

x r

x r x

x r



   

   





          (21) 

By viewing r  as some type of noisy observation of x , we 

perform some experiments to investigate the statistics of 

e x r . Here, we use color image Butterfly as an example in 

the case of image deblurring, where the original image is first 

blurred by Gaussian blur kernel and then is added by Gaussian 

white noise of standard deviation 0.5. At each iteration t, we 

can obtain ( )kr  by -( ) ( ) ( 1)k k kr u c . Since the exact 

minimizer of Eq. (21) is not available, we then approximate 
( )kx  by the original image without generality. Therefore, we 

are able to acquire the histogram of ( ) ( ) ( )k k ke x r  at each 

iteration k. Fig. 6 shows the distributions of ( )ke  when k 

equals to 4 and 8, respectively. 

     
Fig. 6. The distribution of ( )ke  and its corresponding variance 

( )
Var( )ke  for 

image Butterfly in the case of image deblurring at different iterations. (a) k = 4 

and 11.18 
(4)V =ar( )e ; (b) k = 8 and 10.95 

(8)V =ar( )e . 

From Fig. 6, it is obvious to observe that the distribution of 
( )ke  at each iteration is quite suitable to be characterized by 

generalized Gaussian distribution (GGD) [43] with zero-mean 

and variance ( )Var( )ke . The variance ( )Var( )ke  can be esti-

mated by 
2( ) ( ) ( )

2

1Var( )k k k
Ne x r  .                 (22) 

Fig. 6 also gives the corresponding estimated variances at 

different iterations. Furthermore, owing that the residual of 

images is usually de-correlated, each element of ( )ke  can be 

modeled independently.  

Accordingly, to enable solving Eq. (21) tractable, in this 

paper, a reasonable assumption is made, with which even a 

closed-form solution of Eq. (21) can be obtained. We suppose 

that each element of ( )ke  follows an independent zero-mean 

distribution with variance ( )Var( )ke . It is worth emphasizing 

that the above assumption does not need to be Gaussian, or 

Laplacian, or GGD process, which is more general. By this 

assumption, we can prove the following conclusion. 

THEOREM 2. Let , , ,N K
x rx r    , and denote the 

error vector by x re  and each element of e  by ,( )je  

,...,1 N.j  Assume that ( )je is independent and comes from a 

distribution with zero mean and variance .2  Then, for any 

0> , we have the following property to describe the relation-

ship between || ||
2

2
x r  and || ||

2

2
 x r ,that is, 

,

1 1|| || || ||  
2 2

2 2
lim 1{| | }

N K N KP ，x rx r
 

        (23) 

where ( )P  represents the probability. 

Proof: Due to the assumption that each ( )je  is independent, 

we obtain that each 
2( )je  is also independent. Since 

( )[ ] 0jE e
 
and 

2( )[ ] jDe , we have the mean of each 
2( )je

, which is expressed as 

,...,,  .2 2 2( ) ( ) ( ) 1[ ] [ ] [ [ ]] Nj j jE D E je e e   
 

By invoking the Law of Large Numbers in probability theory, 

for any 0> , it leads to σ22

1

1
2 1lim ( ){| | }


 

N

jN NP je , i.e., 

 2
2

2 2
1lim 1

N NP x r 


   .                (24) 

Further, denote each element of e  by , ,...,( ) 1  Kj je . 

Due to the definition of 3D transform coefficients vector e  

and the orthogonal property of transform ,3DT  we conclude 

that ( ) je  is independent with zero mean and variance .2   

Therefore, the same manipulations applied to 
2( ) je  yield 

σ ,2 2

1

1
2 1lim ( ){| | }


  

K

jK KP je  namely,  

  .σ
2 2
2 2

1lim 1
K KP x r




              (25) 

Considering Eqs. (24) and (25) together, we prove Eq. (23). □ 

According to Theorem 2, there exists the following equation 

with very large probability (limited to 1) at each iteration k: 

2 2( ) ( ) ( ) ( )

2 2

1 1k k k k

N K x rx r    .         (26) 

Now let’s verify Eq. (26) by the above case of image 

deblurring. We can clearly see that the left hand of Eq. (26) is 

just ( )Var( )ke defined in Eq. (22), with 11.18 (4)Var =( )e  and 

10.95 (8)Var =( )e , which is shown in Fig. 6.  

At the same time, we can calculate the corresponding right 

hand of Eq. (26), denoted by 
( )Var( )ke , with the same values 

of k, leading to 10.98 (4)V =ar( )e  and 10.87 (8)V =ar( )e . 

Apparently, at each iteration, 
( )Var( )ke  is very close to 

( )Var( )ke , especially when k is larger, which sufficiently 

illustrates the validity of our assumption.  

Incorporating Eq. (26) into Eq. (21) leads to 

.
1

2

2

1
2argmin N

K   x r x
x

               (27) 

Since the unknown variable x  
is component-wise separa-

ble in Eq. (27), each of its components ( )jx  
can be inde-

pendently obtained in a closed form according to the so called 

soft thresholding [42]: 

, ,2( )soft   x r                        (28) 

where ,...,1 Kj , 
K
N
α
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Thus, the closed solution form of x  sub-problem Eq. (21) is 

, 2( ) ( ( ))NLSM NLSM soft    x rx .          (29) 

D. Summary of Proposed Algorithm 

So far, all issues in the process of handing the three 

sub-problems have been solved efficiently and effectively. In 

light of all derivations above, a detailed description of the 

proposed algorithm for image restoration using joint statistical 

modeling is provided in Table II.  

TABLE II. A COMPLETE DESCRIPTION OF PROPOSED ALGORITHM 

USING JOINT STATISTICAL MODELING (VERSION II) 

Input: the observed image y and the linear matrix operator H  

Initialization: 1 20, = = = = =, , , , ,( ) ( ) ( ) ( ) ( )0 0 0 0 0k 0u y b c w x τ λ μ μ ;  

Repeat  

Compute ( )+1ku  by Eq. (18) or Eq. (20); 

; ;( ) ( ) ( )+1
1

k k k  p u b γ τ /μ  

Compute ( )+1kw  by FISTA; 

; ;( ) ( ) ( )
2

+ + +1 1 1k k k  r u c α λ/ μ  

Compute ( )+1kx   by Eq. (29); 

;( ) ( ) ( ) ( )+ + +1 1 1( )k k k ku wb b  
 

;( ) ( ) ( ) ( )+ + +1 1 1( )k k k ku xc c    

Until maximum iteration number is reached 

Output: Final restored image u . 

 

 
Fig. 7. All experimental test images. 

IV. EXPERIMENTAL RESULTS 

In this section, extensive experimental results are presented 

to evaluate the performance of the proposed algorithm, which is 

compared with many state-of-the-art methods. We apply our 

algorithm to the applications of image inpainting, image 

deblurring and mixed Gaussian plus salt-and-pepper noise 

removal. All the experiments are performed in Matlab 7.12.0 

on a Dell OPTIPLEX computer with Intel(R) Core(TM) 2 Duo 

CPU E8400 processor (3.00GHz), 3.25G memory, and Win-

dows XP operating system. In our implementation, if not spe-

cially stated, the size of each block, i.e., sb  
is set to be 8×8 with 

4-pixel-width between adjacent blocks, the size of training 

window for searching matched blocks, i.e., L×L is set to be 

40×40, and the number of best matched blocks, i.e., c  is set to 

be 10. Thus, the relationship between N  and K  is 40K N . 

The orthogonal 3D transform denoted by 
3DT  is composed of 

2D discrete cosine transform and 1D Haar transform. All ex-

perimental images are shown in Fig. 7. 

To evaluate the quality of image reconstruction, in addition 

to PSNR (Peak Signal to Noise Ratio, unit: dB), which is used 

to evaluate the objective image quality, a new image quality 

assessment (IQA) model FSIM is exploited to evaluate the 

visual quality. FSIM is proposed recently and achieves much 

higher consistency with the subjective evaluations than 

state-of-the-art IQA metrics [31]. The higher FSIM value 

means the better visual quality, while the FSIM value lies in the 

interval [0 1]. Note that the results of every color image are 

obtained by its luminance component, keeping its chrominance 

components unchanged. In the following, the left of the slash 

denotes PSNR (dB) and the right of the slash denotes FSIM. 

Due to the limit of space, only parts of the experimental results 

are shown in this paper. Please enlarge and view the figures 

on the screen for better comparison. Our Matlab software 

and more experimental visual results can be downloaded at the 

website: http://idm.pku.edu.cn/staff/zhangjian/IRJSM/. 

A. Image Restoration from Partial Random Samples 

We now handle the problem of image restoration from partial 

random samples, where the original image is operated by a 

random mask and the random mask is assumed to be known. 

That means H  in Eq. (8) is already known. The proposed 

algorithm is compared with five recent representative methods: 

SKR (steering kernel regression) [35], FoE (fields of experts) 

[36], MCA (morphological component analysis) [37] and 

SALSA [15] and BPFA [38]. 

SKR utilizes a steering kernel regression framework to 

characterize local structures for image restoration [35]. MCA 

calculates the sparse inverse problem estimate in a dictionary 

that combines a curvelet frame, a wavelet frame and a local 

DCT basis [37]. FoE learns a Markov random field model, 

where the parameters are trained from huge amounts of exam-

ple natural images [36]. SALSA develops a fast algorithm for 

total variation regularization [15]. BPFA exploits the beta 

process factor analysis framework to infer a learned dictionary 

using the truncated beta-Bernoulli process [38]. The results of 

the five comparative methods are generated by the original 

authors’ softwares, with the parameters manually optimized.    

Here, three color images are tested, with the percentage of 

retaining original samples, denoted by Ratio, being 20%, 30%, 

50% and 80%, respectively. The maximum iteration number in 

Table II is dependent on Ratio. In our experiment, the maxi-

mum iteration number is set to be 400, 350, 250, and 100 for the 

above four Ratios. 

Table III lists PSNR/FSIM results among different methods 

on the test images. From Table III, the proposed method 

achieves the highest scores of PSNR and FSIM in all the cases, 

which fully demonstrates that the restoration results by the 

proposed method are the best both objectively and visually. 

More specifically, the proposed algorithm obtains PSNR 

improvement of about 2.7 dB and FSIM improvement of about 

0.016 on average over the second best algorithms (i.e., BPFA). 

Note that, in the case of Ratio=20% on image House, the  

average PSNR and FSIM improvements achieved by the pro-

posed method over BPFA is 4.2 dB and 0.02, separately. 



 

TABLE III. PSNR/FSIM Comparisons of Various Methods for Image Restoration from Partial Random Samples 

Image Ratio Degraded SALSA [15] MCA [37] SKR [35] BPFA [38] FoE [36] Proposed 

House 

20% 6.16/0.3962 29.17/0.8916 32.22/0.9320 30.40/0.9198 30.89/0.9111 32.65/0.9335 35.11/0.9564 

30% 6.74/0.3840 31.53/0.9300 34.92/0.9563 32.48/0.9518 33.84/0.9484 35.06/0.9593 37.85/0.9741 

50% 8.22/0.3854 35.00/0.9685 38.54/0.9786 36.86/0.9784 39.57/0.9817 39.04/0.9831 41.24/0.9879 

80% 12.19/0.5210 41.03/0.9925 43.89/0.9936 44.75/0.9954 44.10/0.9931 45.62/0.9961 47.39/0.9971 

Barbara 

20% 7.36/0.4998 22.75/0.8193 25.69/0.8939 21.92/0.8607 25.70/0.8927 23.68/0.8812 27.54/0.9264 

30% 7.94/0.5111 23.65/0.8684 27.97/0.9279 23.42/0.9042 28.44/0.9362 25.66/0.9192 31.06/0.9618 

50% 9.43/0.5292 25.93/0.9303 32.35/0.9686 29.12/0.9639 34.18/0.9772 30.52/0.9676 36.77/0.9864 

80% 13.36/0.6484 31.82/0.9827 40.20/0.9937 39.95/0.9947 41.25/0.9942 39.84/0.9944 44.30/0.9973 

Foreman 

20% 4.57/0.3551 26.27/0.9065 31.40/0.9480 30.35/0.9492 29.64/0.9298 30.80/0.9397 33.28/0.9631 

30% 5.14/0.3295 28.41/0.9353 33.21/0.9630 31.75/0.9683 32.01/0.9560 33.00/0.9598 35.33/0.9745 

50% 6.61/0.3209 32.46/0.9702 36.10/0.9797 35.91/0.9852 36.73/0.9818 36.72/0.9820 38.65/0.9880 

80% 10.54/0.4498 38.91/0.9926 41.70/0.9936 43.15/0.9961 44.13/0.9957 43.82/0.9961 44.43/0.9970 

Avg. 8.19/0.4442 30.58/0.9323 34.85/0.96072 33.34/0.9556 35.05/0.9582 34.70/0.9593 37.75/0.9758 

    
(a)                           (b)                           (c)                          (d) 

    
(e)                           (f)                           (g)                          (h) 

Fig. 8. Visual quality comparison of image restoration from partial random 
samples for image Barbara in the case of Ratio=20%. (a) Original image; (b) 

Degraded image with only 20% random samples available  (7.36 dB/0.4998); 

(c)–(h) Restoration results by SALSA (22.75 dB/0.8193) [15], SKR (21.92 
dB/0.8607) [35], MCA (25.69 dB/0.8939)  [37], BPFA (25.70 dB/0.8927) [38], 

FoE (23.68 dB/0.8812) [36], and the proposed algorithm (27.54 dB/0.9264).  

    
(a)                           (b)                           (c)                          (d) 

    
(e)                           (f)                           (g)                          (h) 

Fig. 9. Visual quality comparison of image restoration from partial random 

samples for image Foreman in the case of Ratio=20%. (a) Original image; (b) 

Degraded image with only 20% random samples available (4.57 dB/0.3551); 
(c)–(h) Restoration results by SALSA (26.27 dB/0.9065) [15], SKR (30.35 

dB/0.9492) [35], MCA (31.40 dB/0.9480) [37], BPFA (29.64 dB/0.9298) [38], 

FoE (30.80 dB/0.9397) [36], and the proposed algorithm  (33.28 dB/0.9631).  

Figs. 8–9 show visual quality restoration results for Barbara 

and Foreman in the case of Ratio=20%, where the degraded 

images (i.e., Figs. 8(b)–9(b)) are hardly identified. It is apparent 

that all the methods generate good results on the smooth re-

gions. SKR [35] is good at capturing contour structures, but 

fails in recovering textures and produces blurred effects. MCA 

[37] can restore better textures than FoE [36] and SKR. How-

ever, it produces noticeable striped artifacts. BPFA [38] is able 

to recover some textures, while generating some incorrect 

textures and some blurred effects due to less robustness with so 

small percentage of retaining samples for dictionary learning. 

The proposed joint statistical modeling (JSM) not only pro-

vides accurate restoration on both edges and textures but also 

suppresses the noise-caused artifacts, exhibiting the best visual 

quality, which is consistent with FSIM.  

    
(a)                           (b)                           (c)                          (d) 

Fig. 10. Visual quality comparison of text removal for image Barbara. (a) 

Degraded image with text mask (15.03 dB/0.7266); (b)–(d) Restoration results 

by SKR (30.93 dB/0.747) [35], FoE (31.53 dB/0.9745) [36], and the proposed 
algorithm (37.99 dB/0.9899).  

    
(a)                           (b)                           (c)                          (d) 

Fig. 11. Visual quality comparison of text removal for image Parthenon. (a) 

Degraded image with text mask (13.91 dB/0.7213); (b)–(d) Restoration results 
by SKR (31.02 dB/0.9666) [35], FoE (33.23 dB/0.9704) [36], and the proposed 

algorithm (34.45 dB/0.9770).  

B. Image Restoration for Text Removal 

We now deal with another interesting case of image 

inpainting, i.e., text removal. That means H  is not a random 

mask, but a text one. Four color images are degraded by a 

known text mask. The purpose for text removal is to infer 

original images from the degraded versions by removing the 

text region. The proposed algorithm is compared with three 

state-of-the-art approaches: SKR [35], FoE [36], and BPFA 

[38]. The experimental setting for text removal of our proposed 

algorithm is the same as the one for image restoration from 

partial random samples. Table IV lists the PSNR and FSIM 

results among different methods on test images. It shows that 



 

the proposed algorithm achieves the highest values in all the 

cases, which substantiates the effectiveness of the proposed 

algorithm. Figs. 10–11 further visually illustrates that the pro-

posed algorithm provides more accurate edges and textures 

with better visual quality, compared with other methods. 

 
TABLE IV. PSNR/FSIM Comparisons for Text Removal 

Image Barbara Foreman House Parthenon 

Degraded 15.03/0.7266 11.98/0.6439 14.20/0.6499 13.91/0.7213 

SKR [35] 30.93/0.9747 40.40/0.9930 38.65/0.9850 31.02/0.9666 

FoE [36] 31.53/0.9745 40.39/0.9911 39.46/0.9845 33.23/0.9704 

BPFA [38] 34.27/0.9790 41.09/0.9906 38.97/0.9818 33.26/0.9697 

Proposed 37.99/0.9899 44.92/0.9946 41.91/0.9905 34.45/0.9770 

 

C. Image Deblurring 

In the case of image deblurring, the original images are 

blurred by a blur kernel and then added by Gaussian noise with 

standard deviation  . Three blur kernels, a 9×9 uniform kernel, 

a Gaussian blur kernel and a motion blur kernel, are exploited 

for simulation (see Table VI). We compare the proposed JSM 

deblurring method to three recently developed deblurring ap-

proaches, i.e., the constrained TV deblurring (denoted by 

SALSA) method [15], the SA-DCT deblurring method [12], 

and the BM3D deblurring method [21]. Note that SALSA is a 

recently proposed TV-based deblurring method that can re-

construct the piecewise smooth regions. The SA-DCT and 

BM3D are two well-known image restoration methods that 

often produce state-of-the-art image deblurring results. 

    
(a)                           (b)                           (c)                          (d) 

Fig. 12. Visual quality comparison of image deblurring on image Butterfly (9×9 

uniform blur). (a) Noisy and blurred; (b) SALSA (30.30 dB/0.9300) [15]; (c) 

BM3D (28.73 dB/0.8959) [21]; (d) Proposed  (31.03 dB/0.9394). 
 

    
(a)                           (b)                           (c)                          (d) 

Fig. 13. Visual quality comparison of image deblurring on image Leaves 
(Gaussian blur). (a) Noisy and blurred; (b) SALSA (30.32 dB/0.9518) [15]; (c) 

BM3D (30.61 dB/0.9342) [21]; (d) Proposed (32.18 dB/0.9610). 

The PSNR and FSIM results on a set of four images are re-

ported in Table V. From Table V, we can conclude that the 

proposed JSM approach significantly outperforms other com-

peting methods for all three types of blur kernels. The visual 

comparisons of the deblurring methods are shown in Fig. 12 

and Fig. 13, from which one can observe that the JSM model 

produces much cleaner and sharper image edges and textures 

than other methods with almost unnoticeable ringing artifacts. 

The high performance of the proposed algorithm is attributed to 

the employment of image local and nonlocal regularization at 

the same time, which offers a powerful mechanism of charac-

terizing the statistical properties of natural images. 

TABLE V. PSNR/FSIM Comparisons for Image Deblurring 

Image Butterfly Foreman House Leaves 

9×9 Uniform Kernel,   = 0.5 

SALSA [15] 30.30/0.9300 33.21/0.9281 33.95/0.9398 29.02/0.9245 

SA-DCT [12] 29.67/0.9261 34.07/0.9392 35.37/0.9335 28.99/0.9239 

BM3D [21] 28.73/0.8959 34.18/0.9396 35.57/0.9363 29.32/0.9155 

Proposed 31.03/0.9394 36.10/0.9612 37.73/0.9670 31.61/0.9520 

Gaussian Kernel: fspecial('Gaussian', 25, 1.6),   = 0.5 

SALSA [15] 31.24/0.9541 32.31/0.9492 33.95/0.9386 30.32/0.9518 

SA-DCT [12] 30.46/0.9373 32.63/0.9519 34.28/0.9288 30.50/0.9459 

BM3D [21] 29.80/0.9106 32.91/0.9499 34.11/0.9302 30.61/0.9342 

Proposed 31.26/0.9473 35.12/0.9664 36.68/0.9605 32.18/0.9610 

Motion Kernel: fspecial('motion', 20, 45),   = 0.5 

SALSA [15] 30.97/0.9350 33.35/0.9335 33.58/0.9376 29.63/0.9312 

SA-DCT [12] 30.75/0.9428 34.59/0.9484 35.17/0.9366 30.03/0.9384 

BM3D [21] 29.71/0.9119 34.70/0.9491 34.81/0.9344 30.42/0.9316 

Proposed 33.10/0.9572 37.28/0.9695 37.40/0.9668 33.95/0.9693 

 

Furthermore, JSM model is compared with AKTV [46], 

which is known to work quite well in the case of large blur. 

Here, the case with 19×19 uniform PSF for image Cameraman 

is tested, with the corresponding BSNR equal to 40. BSNR 

means Blurred Signal to Noise Ratio, and is equivalent to 

10*log (Blurred signal variance/Noise variance). Smaller 

BSNR means larger noise variance. The objective and visual 

quality comparisons are shown in Figs. 14. From Fig. 14, it is 

apparent to see that JSM model produces better results than 

AKTV with much sharper image edges and less annoying 

ringing artifacts. 

      
(a)                           (b)                           (c)                          (d) 

Fig. 14. Visual quality comparison of image deblurring on image Cameraman 
(19×19 uniform blur and BSNR=40). (a) Original; (b) Noisy and blurred; (c) 

AKTV (25.19 dB/0.8109) [46]; (d) Proposed (26.51 dB/0.8724). 

D. Mixed Gaussian plus Salt-and-Pepper Noise Removal 

In practice, we often encounter the case where an image is 

corrupted by both Gaussian and salt-and-pepper noise. Such 

mixed noise could occur when an image that has already been 

contaminated by Gaussian noise in the procedure of image 

acquisition with faulty equipment suffers impulsive corruption 

during its transmission over noisy channels successively.  

In our simulations, images will be corrupted by Gaussian 

noise with standard deviation   and salt-and-pepper noise den-

sity level r, where   is assumed to be known before and r is 

unknown. For mixed Gaussian plus impulse noise, traditional 

image denoising methods that can only deal with one single 

type of noise don’t work well due to the distinct characteristics 

of both types of degradation processes. Here, two 

state-of-the-art algorithms compared with our proposed method 



 

are: FTV [48] and IFASDA [49]. Experiments are carried out 

on four benchmark gray images in Fig. 7, where the standard 

variance   of Gaussian noise equals 10 and the noise density 

level r varies from 40% to 50%. To handle this case, we first 

apply adaptive median filter [47] to the noisy image to identify 

the mask H , that is, change the problem of mixed Gaussian 

and impulse noise removal into the problem of image restora-

tion from partial random samples with Gaussian noise, and then 

run the proposed algorithm according to Table II.  

Table VI presents the PSNR/FSIM results of the three 

comparative denoising algorithms on all test images for 

Gaussian plus salt-and-pepper impulse noise removal. Obvi-

ously, the proposed method considerably outperforms the other 

methods in all the cases, with the highest PSNR and FSIM, 

achieving the average PSNR and FSIM improvements over the 

second best method (i.e., IFASDA) are 1.8 dB and 0.01, sepa-

rately. 

TABLE VI. PSNR/FSIM Comparisons for Gaussian plus Salt-and-Pepper 

Noise Removal 

Image Barbara House Boat Lena 

r=40% and   = 10 

Noisy 9.36/0.4153 9.46/0.3499 9.42/0.5579 9.40/0.4848 

FTV [48] 26.18/0.8899 31.10/0.9156 28.53/0.9405 30.85/0.9574 

IFASDA [49] 28.59/0.9252 32.26/0.9263 30.28/0.9614 32.27/0.9625 

Proposed 31.81/0.9481 34.33/0.9380 30.92/0.9635 33.49/0.9708 

r=50% and   = 10 

Noisy 8.39/0.3815 8.50/0.3170 8.46/0.5230 8.44/0.4501 

FTV [48] 25.40/0.8728 30.36/0.9050 27.66/0.9259 30.20/0.9488 

IFASDA [49] 27.45/0.9129 31.69/0.9181 29.50/0.9556 31.70/0.9579 

Proposed 31.04/0.9383 33.72/0.9264 30.12/0.9613 32.90/0.9645 

Some visual results of the recovered images for the three 

algorithms are presented in Fig. 15. One can see that FTV [48] 

is effective in suppressing the noises; however, it produces 

over-smoothed results and eliminates much image details (see 

Fig. 15(b)). IFASDA [49] is very competitive in recovering the 

image structures. However, it tends to generate some annoying 

artifacts in the smooth regions (see Fig. 15(c)). By comparing 

with TV and IFASDA, the proposed method provides the most 

visually pleasant results (see Fig. 15(d)).  

       
(a)                           (b)                           (c)                          (d) 

Fig. 15. Visual quality comparison of mixed Gaussian plus salt-and-peppers 

impulse noise removal on image Barbara. (a) Noisy image corrupted by 

Gaussian plus salt-and-pepper impulse noise with        and r = 50%; (b)–(d) 
Denoised results by FTV (25.40 dB/0.8728) [48], IFASDA (27.45 dB/0.9129) 

[49], and the proposed algorithm (31.04 dB/0.9383).  

E. Parameter Optimization 

In our proposed algorithm, we have four parameters to de-

termine, i.e., τ , λ , 1μ  
and 2μ , which seems quite complicated. 

To make it tractable, we simplify the optimization of four pa-

rameters into the optimization of one parameter  . Specifi-

cally, in Eq. (16), to make a tradeoff between LSM and NLSM, 

1μ  
and 2μ  

in the ratio of one to six is exploited, which is ver-

ified by our experiments. Moreover, due to the relationship 

1 2    , we get 0.141   and 0.862  . To deter-

mine τ  and λ , we observe that, the standard deviation   of 

Gaussian noise n   in Eq. (1) is not larger than ten, a good rule 

of thumb is 10 10, 1 τ= λ= 2  [15]. Therefore, it yields 

1.4τ=   and 8.6λ=  . So far, the relationships between the 

above four parameters and 
 
are established. In practice, for 

each case of image processing application, the optimization of 


 
is obtained

 
by simply searching some values.  

     
Fig. 16. PSNR evolution with respect to parameter 

 
in the cases of motion 

blur kernel with Gaussian noise standard deviation   = 0.5 and      .  for three 

test images. 

    
(a)                           (b)                           (c)                          (d) 

Fig. 17. Visual quality comparison of proposed algorithm with various 
 
in 

the case of image deblurring with motion blur kernel and    = 0.5. (a) Original 

image; (b) Deblurred result with  =5e-4, PSNR=26.87; (c) Deblurred result 

with  =2e-3, PSNR=33.10; (d) Deblurred result with  =3e-2, 

PSNR=28.50. 

Take the case of image deblurring as example. Fig. 16 pro-

vides PSNR evolution with respect to 
 
in the cases of motion 

blur kernel with Gaussian noise standard deviation   = 0.5 and 

     .  for three test images. From Fig. 16, three conclusions 

can be observed. First, as expected, there is an optimal 
 
that 

achieves the highest PSNR by balancing image noise suppres-

sion with image details preservation (see Fig. 17(c)). That 

means, if 
 
is set too small, the image noise can’t be sup-

pressed (see Fig. 17 (b)); if 
 
is set too large, the image details 

will be lost (see Fig. 17(d)). Second, in each case, the optimal 


 
for each test image is almost the same. For instance, in the 

case of    = 0.5, the optimal 
 
is 2e-3, and in the case of    = 

1.5, the optimal 
 
is 1e-2. This is very important for parameter 

optimization, since the optimal 
 
in each case can be deter-

mined by only one test image and then applied to other test 

images. Third, it is obvious to see that   has a great relation-

ship with  . A larger   corresponds to a larger  . 

F. Algorithm Complexity and Computational Time 

Comparing the , , u w x  sub-problems, it is obvious to 

conclude that the main complexity of the proposed algorithm 

comes from the x  sub-problem, which requires the operations 

of 3D transforms and inverse 3D transforms for each 3D array. 

In our implementation, for image House with size 256×256, 

each iteration costs about 1.25 s on a computer with Intel 
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3.25GHz CPU. Take image inpainting application for example. 

With degraded images as default initialization described by 

Table VII, it takes about 130 s by 100 iterations in the case of 

Ratio=80% and about 510 s by 400 iterations in the case of 

Ratio=20%. All the computational time for image House with 

various methods are given in Table VII. 

TABLE VII. Computational Time Comparisons of Different Methods (unit: s) 

Image Ratio MCA SKR BPFA FoE 
Degraded 

+JSM 

SKR 

+JSM 

House  

20% 237.8 10.8 2170.4 217.4 506.8 75.1 

30% 224.1 11.2 2200.6 220.6 443.5 49.2 

50% 209.4 12.1 2260.5 226.5 316.7 37.4 

80% 196.6 13.4 2280.9 228.9 126.7 26.1 

Avg. 216.9 11.8 2240.4 224.4 348.4 46.9 

To speed up our proposed algorithm, on one hand, we can 

exploit the results of SKR instead of degraded images as ini-

tialization, which decreases the number of iteration enor-

mously. The last column of Table VII shows the computational 

time, which is about one seventh of the original time (denoted 

by the column next to the last). On the other hand, ongoing 

work addresses the parallelization, utilizing GPU hardware to 

accelerate the proposed algorithm. 

G. Algorithm Convergence and Robustness 

From the discussions above, the computational time of the 

proposed algorithm would be significantly reduced along with 

a good initialization. In this sub-section, we will verify the 

convergence and robustness of the proposed algorithm.  

     
Fig. 18. Verification of the convergence and robustness of the proposed algo-

rithm. From left to right: progression of the PSNR (dB) results achieved by 
proposed algorithm with various initializations with respect to the iteration 

number in the cases of image inpainting with ratio=0.3 for images Lena and 

Barbara. 

Take the cases of image inpainting application when Ra-

tio=30% for two images Lena and Barbara as examples. The 

restoration results generated by SALSA [15], FoE [36], SKR 

[35], BPFA [38] are utilized as initialization for the proposed 

algorithm, respectively. Fig. 18 plots the evolutions of PSNR 

versus iteration numbers for test images with various initiali-

zations. It is observed that with the growth of iteration number, 

all the PSNR curves increase monotonically and almost con-

verge to the same point, which fully demonstrates the conver-

gence of the proposed algorithm. The algorithm convergence 

also makes the termination of the proposed algorithm easier, 

which just needs to reach the preset maximum iteration number. 

Furthermore, it is obvious that the initialization results with 

higher quality require fewer iteration numbers to be convergent. 

The tests fully illustrate the robustness of our proposed method, 

that it, our proposed method is able to provide almost the same 

results when starting with various initializations.  

V. CONCLUSIONS 

In this paper, a novel algorithm for high-quality image res-

toration using joint statistical modeling in space-transform 

domain is proposed, which efficiently characterizes the intrin-

sic properties of local smoothness and nonlocal self-similarity 

of natural images from the perspective of statistics at the same 

time. Experimental results on three applications: image 

inpainting, image deblurring and mixed Gaussian and 

salt-and-pepper noise removal have shown that the proposed 

algorithm achieves significant performance improvements over 

the current state-of-the-art schemes and exhibits nice conver-

gence property. Future work includes the investigation of the 

statistics for natural images at multiple scales and orientations 

and the extensions on a variety of applications, such as image 

deblurring with mixed Gaussian and impulse noise and video 

restoration tasks. 
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