arXiv:1502.00374v1 [cs.CV] 2 Feb 2015

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014. 1

Adaptive Scene Category Discovery with
Generative Learning and Compositional
Sampling

Liang Lin, Member, IEEE, Ruimao Zhang, and Xiaohua Duan,

Abstract—This paper investigates a general framework to discover
categories of unlabeled scene images according to their appearances
(i.e., textures and structures). We jointly solve the two coupled tasks in
an unsupervised manner: (i) classifying images without pre-determining
the number of categories, and (ii) pursuing generative model for each
category. In our method, each image is represented by two types of
image descriptors that are effective to capture image appearances
from different aspects. By treating each image as a graph vertex, we
build up an graph, and pose the image categorization as a graph
partition process. Specifically, a partitioned sub-graph can be regarded
as a category of scenes, and we define the probabilistic model of
graph partition by accumulating the generative models of all separated
categories. For efficient inference with the graph, we employ a stochastic
cluster sampling algorithm, which is designed based on the Metropolis-
Hasting mechanism. During the iterations of inference, the model of
each category is analytically updated by a generative learning algorithm.
In the experiments, our approach is validated on several challenging
databases, and it outperforms other popular state-of-the-art methods.
The implementation details and empirical analysis are presented as
well.

Index Terms—Unsupervised Categorization; Graph Partition; Genera-
tive Learning; Scene Understanding

1 INTRODUCTION

Category discovery for unlabeled images is an important
research topic with a wide range of applications such
as content-based image retrieval [1], [2], image database
management [3], [4], and scene understanding [5], [6],
[7]. In this paper, we develop a unified framework to
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categorize scene images in an unsupervised manner.
Specifically, with this framework, a batch of unlabeled
scene images can be automatically grouped into different
categories according to their contents, and we simultane-
ously generate the probability models for the categories.

We pose the unsupervised image categorization as
a graph partition task, i.e., each generated partition
indicates a potential category; then we employ a novel
clustering sampling algorithm for inference, which is
an extension of Swendsen-Wang cuts [32] for greatly
improving the inference efficiency. More specifically,
the graph partition is formulated under a probabilistic
framework that accumulates the generative models of all
categories. Intuitively, the goodness of partitions is de-
termined based on how well the learned models explain
or generate the partitioned categories. Therefore, solving
the optimal graph partition is equivalent to searching the
maximum probability.

Natural scenes usually contain diverse image con-
tents related with different types of visual appearance
patterns, e.g., inhomogeneous (or structural) textures
(buildings, cars, roads, etc.), and homogeneous textures
(grasses, water surfaces, etc.) [19]. Many studies [20],
[21], [22] on designing image features show that the
distribution-based descriptors (e.g., SIFT [23], HOG [24]
and Textons [11]) and the binary operators (e.g., LBP
and its variants [25], [26]) lead to state-of-arts on rep-
resenting low-level image contents from different as-
pects. The former features tend to well describe the
inhomogeneous textures, while the latter can be applied
to capture highly random textures [27]. Therefore, in
our method, we represent an image with a number of
image patches at multiple scales. Two effective image
features, the Histogram of oriented gradients (HOG) [24]
and the Center-Symmetric Local Binary Pattern (CS-
LBP) [26], are employed to describe the image patches.
Specifically, we define two types of visual words (i.e.,
inhomogeneous textural words and homogeneous tex-
tural words), respectively, based on the two features. In
literature, the significance of using combined features
is also demonstrated in various vision tasks, e.g., near-
duplicate image retrieval [1], [2], object detection [35],



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014. 2

Graph partition Category models
N oW
3 W HTW
§
word index
Generative Cate.1
learning | °
| Inference | S
| verification word index
: Cate.2
1
|
1
1
|

Fig. 1. An overview of our framework. We formulate
the problem of image category discovery as a graph
partition task. In the left panel, the images are treated
as graph vertices that are partitioned into subgraphs by
turning off the graph edges. As shown in the right panel,
the generative models for all partitioned categories are
pursued simultaneously, and the models are also used
to guide the inference of graph partition. The models are
learned with two types of visual words: inhomogeneous
textural words (ITWs) and homogeneous textural words
(HTWs) defined based on two image descriptors.

and video tracking [36], [37].

Moreover, we adaptively select informative features
(i.e., visual words) for each scene class, along with
the categorization procedure. Several methods of image
categorization[9], [10] show that different categories of
images are probably captured by different class-specific
features. Some discriminative learning algorithms (e.g.,
Adaboost [28] and SVM) perform very well in feature
selection. However, they are not suitable for our task,
since these algorithms rely on negative data and are
often sensitive to outliers. In contrast, our framework
employs a generative learning algorithm based on infor-
mation criteria [29], [30], so that we can fast pursue the
generative models of categories without extra negative
data.

The framework of our approach is illustrated in Fig.1.
The key contribution of this work is a general approach
for automatic scene image categorization, in which the
cluster (i.e., category) number is automatically deter-
mined. The generative category models are learned and
updated simultaneously together with the categorization
procedure. Our method is evaluated on several public
datasets and outperforms the state-of-the-art approaches.
It is worth mentioning that the graph partition and
category models are closely coupled. Given a state of
partition, we can learn (or update) the probability mod-
els while the category models can drive the partition to
be refined.

1.1 Related Work

Most of the methods of scene image categorization in-
volve a procedure of supervised learning, i.e., training
a multi-class predictor (classifier) with the manually
labeled images [8]. Unsupervised image categorization is
often posed as clustering images into groups according
to their contents (i.e., appearances and/or structures). In
some traditional methods[9], various low-level features
(such as color, filter banks, and textons [11]) are first ex-
tracted from images, and a clustering algorithm (e.g., k-
means or spectral clustering) is then applied to discover
categories of the samples.

To handle diverse image content, some effective im-
age representations such as bag-of-words (BoWs) are
proposed [12], [13], and they represent an image by
using a pre-trained collection (i.e., dictionary) of visual
words. Furthermore, Lazebnik et al. [14] present a spatial
pyramid representation of BoWs by pooling words at
different image scales, and this representation effectively
improves results for scene categorization [15]. Farinella
et al. [16] propose to build an effective scene represen-
tation based on constrained and compressed domains.

To exploit the latent semantic information of scene cat-
egories, Bosch et al. [17] discuss the probabilistic Latent
Semantic Analysis (pLSA) model that can explain the
distribution of features in the image as a mixture of a few
“semantic topics”. As an alternative model for capturing
latent semantics, the Latent Dirichlet Allocation (LDA)
model [18] was widely used as well.

On the other hand, the category number is required to
be predetermined or be exhaustively selected in many
previous unsupervised categorization approaches [7],
[31]. In computer vision, the stochastic sampling algo-
rithms [32], [33], [37] are shown to be capable of flexibly
generating new clusters, merging and removing existing
clusters in a graph representation. Motivated by these
works, we propose to automatically determine the num-
ber of image categories with the stochastic sampling.

The rest of this paper is organized as follows. We first
introduce the image representation in Section 2. Then
we present the problem formulation in Section 3, and
follow with a description of the inference algorithm for
unsupervised image categorization in Section 4. Section
5 discusses the learning algorithm for category model
pursuit during the inference procedure. The experimen-
tal results and comparisons are exhibited in Section 6,
and the paper is concluded in Section 7.

2 IMAGE REPRESENTATION

In this section, we start by briefly introducing the two
effective low-level image descriptors used in this work,
and define two types of visual words to construct the
dictionary of images.

Previous works on designing image features can be
roughly divided into two categories [27], [35]. The first
one explicitly describes images with local gradients that
are sensitive to structures (e.g., edges, boundaries, and



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014. 3

ekl

0 2n
Histogram of
Oriented Gradient

on e S I\“ Ll
= a2 Eii?i 0 B0 15

b(n3 -n7)2*
Fig. 2. Image representation. We represent an image with
the pyramid Bag-of-Words (BOW) model with two types of
visual words that are, respectively, defined based on two
image descriptors, i.e., HOG [24] and CS-LBP [26].
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junctions) and distinct textures (e.g., regions of clear de-
tails). The other one reflects uncertain differences among
pixels and thus tends to be suitable for incognizable
random textures (e.g., complex regions, and cluttered
patterns). Thus, we utilize two typical image descriptors,
i.e.,, HOG [24] and CS-LBP [26], respectively, in this work.
Following the studies on image representation [27], we
refer a visual word w as an ensemble or equivalence
class of image patches that share the similar appearances.
Letting h(-) be the histogram of an image feature, we
define w as,

w={A:h(A) =h+e}, 1)

where 7 denotes the mean histogram of the image
patches, and e is the statistical fluctuation, i.e., a very
small value. According to the two image descriptors,
we define two types of visual words, inhomogeneous
textural words (ITWs) and homogeneous textural words
(HTWs), together with the two descriptors. The benefit
of combining the two types of words will be demon-
strated in the experiments.

To define ITWs, the input image domain is divided
into a number of regular cells; at each pixel, a local
gradient is calculated, and a histogram is pooled over
each cell for different orientations. As illustrated in Fig. 2,
we decompose an image patch by 2x2 cells and quantize
the orientations into 8 angles. The dimension of this
descriptor is thus 32.

The HTWs are generated using the CS-LBP operator,
which is computed at every pixel in the input image
domain. It compares center-symmetric pairs of the given
pixel and forms a binary vector. Given a pixel located at
x with 7 = 8 neighborhood pixels that are equally spaced
on a circle of radius, as the example illustrated in Fig. 2,
the binary vector can be calculated as,

n/2—1 1
Z b(n; — niyns2)2',  bx) = {07

where n; and n;,;/2 correspond to the intensity scales
of center-symmetric pairs of pixels. We compute the

z>1

2
otherwise @)

operator over all pixels in the domain; the obtained
binary vectors can be converted into decimal strengths
in the range of [0,15]. An example of a strength map is
shown in Fig.2. Since there are 4 cells divided, we further
pool the strengths into a histogram with 16 x4 = 64 bins,
denoted as h°.

Then we construct the dictionary to represent images
with the visual words. In our implementation, we collect
a large number of image patches from our database
and compute the two descriptors for each, and group
them into a batch of clusters (words) using the k-means
algorithm. Thus, we obtain a dictionary W = {w;,i =
1,...,m}, where w; is a visual word (i.e. ITW or HTW).

Given an image I, we represent it with a spatial
pyramid format, 1 + 4 x 2 = 9 blocks, ie., 3 scales
(resolutions) and 4 blocks in each scale except the top,
as illustrated in Fig. 2 . In each block, the image domain
is further decomposed into regular image patches that
are mapped to the generated words. The image of a
block J can be thus represented as a vector by using
the dictionary, (r1(J),r2(J),...,rm(J)), where r;(J) is
the response with the visual word w;, and

n@) = (X 1.w). @)

Aed

where 1,,(A) = {1|0}, the indicator function, is used
to indicate whether the image patch A € J matches
with w;. The matching is measured by either of the two
descriptors, h* and h®, according to the type of word w;.
Thus, we use ), .5 1, (A) to indicate the number of the
visual word w; matching with the image block J. Here
(-) is the sigmoid function §(-) that is characterized by
a saturation level.

The image I is hence represented as R(I), by concate-
nating the vectors of all 9 blocks.

3 PROBLEM FORMULATION

Given a set of unlabeled images D, the goal of our frame-
work is to categorize them into an unknown number of
disjoint K clusters, as

K} 4)

where UK, = D, mNmj =0, Vi # j.

We first build a graph Gy = (V, Ey), in which V =
D = {I,,1,...,Iy} is the set of graph vertices specifying
the images to be categorized, and Ej is the set of edges
connecting neighboring graph vertices. Then we solve
the task of graph partition by cutting edges of the graph,
i.e., generating disjoint subgraphs. However, Gy is a fully
connected graph where the initial edge set Fy could be
very large. To reduce computational complexity, we shall
compute a relatively sparse graph representation Gy =
(V, E) by pruning edges, E C E.

For any edge e € Ej, an auxiliary connecting vari-
able u. = {onloff} is first introduced, which indicates
whether the edge is turned on or off. Then we can

H:{ﬂ'hﬂ'g,...
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define the edge connecting probability by measuring
the similarity of two connected graph vertices. In our
implementation, We define the similarity using the vi-
sual words W. Specifically, for any vertices v € V, we
represent it as, R(I) = (ri(I),r2(I),...,rn(I)), where
r;(I) is the response of the word w;, as in Equation (3).
Thus, we can define the connecting probability ¢. for two
arbitrary images I, € V,I, € V as,

qe(s,t) = p(pe = onlvs, vy) = exp { — T[IC/.:(’RSHRt)] },

®)
where we denote Ry = R(I;) and R; = R(I;) for
notation simplicity. L() is the symmetric Kullback-
Leibler distance for measuring two feature vectors. 7 is
a constant parameter. ¢.(s,?) should be close to 0 if I
and I, naturally belong to different categories; the edge e
connecting I, and I; could be then turned off with high
probability.

In practice, the edges with very low turn-on proba-
bility can be directly removed. Furthermore, we enforce
each vertex can be only connected to at most 6 neighbors.
That is, for any vertex we keep 6 edges with the highest
connecting probabilities, and remove the other edges.
Therefore, we obtain the sparse graph G = (V, E) where
E C Ey.

With the graph representation, we pursue the genera-
tive probability models for all categories, as

O = {gp(L Wy, 01), W, CW,k=1,...,K}, (6)

where W, C W denotes the selected visual words for
modeling the category 7, and ©; includes the cor-
responding model parameters, i.e., the coefficients of
words. The overall solution of image category discovery
can be defined as,

S = (K,IL ®), @)

where K is the inferred category number. The graph
partition II and category modeling ® can be solved
together in a Bayesian inference framework. Assume
that p(S) and p(D|S) denote the prior model and the
likelihood model, respectively. p(S) can be simply mod-
eled by incorporating an exponential function for K,
as we impose no priors on II and ®. The likelihood
model p(D|S) = p(D|II, @) can be defined as a product
of generative models of all separated categories, as we
assume the models are generated independently to each
other. We can then define the posterior probability of
solution S as,

p(S|D) o p(S)p(D|S)

s (8)
= exp{—BK} H ¢ (L Wi, Op),
k=1

where ( is an empirical parameter for constraining
the number of inferred categories. The category model

¢r(Wy, ©y) is defined on the probabilistic distribution of
the images in partition 7. The models for all categories
can be learned and updated during the procedure of
image categorization.

4 INFERENCE FOR IMAGE CATEGORIZATION

The objective of inference is to search for the optimized
solution S* by maximizing the posterior probability in
Equation (8),

S* = argmax p(S|D). 9)

This optimization is very challenging due to two char-
acters in our problem: (i) the unknown number of
partitions, (ii) no confident initializations, i.e., lack of
the initial category models. Therefore, we employ the
stochastic sampling algorithm instead of using determin-
istic inference algorithms.

In the research area of stochastic inference, cluster
sampling is very powerful for simulating Ising/Potts
graphical models, which is designed under the
Metropolis-Hasting ~ mechanism.  Recently, Barbu
and Zhu [32] generalized the algorithm, namely
Swendsen-Wang cuts (SWC), to solve graph partition
in several vision applications. This algorithm enables
us to effectively search for the maximum of posterior
probability. It simulates a Markov chain containing a
sequence of states in the solution space {2 and visits the
Markov chain by realizing a reversible jump between
any two successive states.

In the following, we first introduce the SWC algo-
rithm, and then discuss an extension [34] that greatly
improves the inference efficiency. In general, the SWC
algorithm iterates in two steps:

1) Generate the connected components (CPs) by
probabilistically turning off connecting edges in the
graph. Graph vertices connected together by “on”
edges form a connected component (denoted by
CP for simplicity). Specifically, any two vertices
in one CP are linked by a path that consists of
several edges. For arbitrary edge e € E, we sample
its connecting variable p. and decide it is turned
on or off in this step. Then we obtain a few CPs,
each of which is a set of connected graph vertices.

2) Explore a new partition solution by relabeling one
of the C'Ps. Assume that the current partition solu-
tion is S4 and we are exploring a new solution Sg.
Given one randomly selected C'P, the reversible
operators are developed to re-assign its label. For
example, the selected C'P can be merged into cur-
rent separated category by receiving the same label
with the category; otherwise, a new category can
be created if the selected C'P receives a new label.

We design the algorithm by the Metropolis-Hastings
mechanism [32]. Let Q(Sa4 — Sp) be the proposal
probability for moving from state S, to state Sp, and
conversely, Q(Sp — Sa) is the proposal probability from
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Sp to S4. The acceptance rate of the moving from 5S4 to
S B iS,

a(S4 — Sp) = min (1, QWSp = Sa) p(SBm)). (10)

Q(Sa — Sp) p(Sa|D)

For any state transition, the proposal probability usually
involves two aspects: (i) the generation of C'P, and (ii)
the label assignment of C'P. In our method, we make the
CP be assigned randomly with a uniform distribution,
so that the proposal probability can be simplified. Thus,
the ratio of proposal probability is calculated by,

Q(Sg = Sa)  lleeo, (1 —¢e)

Q(SA — SB) - HeEC’A(l - qe), (11)

where C4 denotes the edge set of edges that are proba-
bilistically turned off for generating the C'P on state 54,
and similarly Cp is the turning-off edge set on Sp. Here
we name Cy4 or Cp as a “cut”, following [32].

To further accelerate the convergence of inference, we
employ an improved version of the SWC algorithm that
was originally proposed by us for video shot categoriza-
tion [34]. In the original algorithm, only one CP is se-
lected and processed in each step of solution exploration.
In our method, we process a number of CPs together
by coupling them into a combinatorial cluster. We thus
regard this algorithm as the compositional SWC (CSWC).
The CSWC algorithm is able to enlarge the searching
scope during the sampling iterations, resulting in faster
convergence than the original version.

Fig. 3 illustrates the idea of CSWC. Given a current
state S4 ( as shown in Fig.3 (a)), we can generate a
number of CPs by turning off a few edges (as shown
in Fig.3 (b)). Then we construct a higher layer graph G
based on these CPs. In this graph, we treat each CP
as a vertex, and link any two neighboring C'Ps by an
edge, as shown in Fig.3(c). Within G, we can generate the
combinatorial cluster, where several C Ps are selected.

Similar with the definitions in GG, we calculate the turn-
on probability ¢“7 for an edge in G according to the

similarity of two connected vertices (i.e., C'Ps), which
can be derived from the original graph G. Specifically,
given two neighboring C'P; and C'P;, we measure their
similarity by aggregating all the edges in G that connects
the vertices in G belonging to C'P; and C'P;, respectively.
Thus, we define the edge probability in G as,

" o 1-TJ00 =g,

e=<s,t>scCP,teCP.

(12)

By probabilistically turning off the edges in G, we
can also generate several connected components, and
we regard them as combinatorial clusters to distinguish
the CPs in G. In Fig.3(d), 4 combinatorial clusters are
generated. Different with the algorithm in [34], we allow
more than one combinatorial clusters to be selected in
this step, and we assign labels to the them. In this
way, we generate a new solution of graph partition
accordingly. In the implementation, we enforce each
combinatorial cluster being processed as a atomic unit,
i.e., all original C'Ps in the compositional cluster will
receive the same label. As Fig.3 illustrates, to go from S4
to Sp, the original SWC algorithm needs at least three
steps, whereas for CSWC there is only one step. Note
that we visualize only one selected CP in Fig.3 (d) for
illustration.

During the inference, the posterior probability p(S|D)
can be changed, as we keep the category models updated
with the categorization operation. Note that we only
need to update the models of the categories where we
add or remove images within them. We will introduce
the category model learning in the next section.

5 CATEGORY MODEL LEARNING

Given a fixed graph partition II, we learn the probability
model ¢y (Wy,Oy) for each category by selecting the
most informative visual words. Since all scene images
in D are unlabeled, and no extra negative samples are
provided, we employ an efficient generative learning
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Algorithm 1: The sketch of our approach

Input: Image dataset D = {I;,...,Iy}, and visual
words W = {w1,...,wn}

Output: The categorization solution S = (K, II, )

1. Initialization;

(1) Represent each image I; with the visual
words, R(L;) = {ri(L),...,rm(;)}.

(2) Create the graph Gy = (V, Ey), and compute
the turn-on probability ¢. according to Equation (5),
Ve € Ey.

(3) Remove the edges with low turn-on
probability deterministically, and generate the
sparse graph G = (V, E).

2. Repeat for cluster sampling;

(1) At the current solution S4, generate the C'Ps
by probabilistically turning off connecting edges in
the graph G.

(2) Construct a high layer of graph G based on
CPs.

(3) Generate combinatorial clusters by
probabilistically turning off edges in G.

(4) Select several combinatorial clusters and
re-assign labels to them.

(5) Accept the new solution Sp according to the
acceptance rate defined in Equation (10).

(6) Update the generative models, ¢(Ij ;; Wi, Ok),
for the categories that have been modified
according to solution Sp.

(7) Update the posterior probability (S|D)
accordingly.

3. Output the final solution S* = argmax p(S|D).

algorithm for this task, namely information pursuit [29],
[38]. Similar approaches of combining generative learn-
ing in unsupervised categorization are discussed in [10].

Suppose the category 7y, is governed by an underlying
target model ¢y, the model pursuit can be solved by
additively searching for a sequence of features, starting
from an initial model ¢ . At each step ¢, the model
¢r+ is updated to gradually approach ¢y . Here that
we ignore k for notation simplicity. In the manner of
stepwise pursuit, the new model ¢, is updated by adding
a new feature w; based on the current model ¢;_;, and
w; imposes an additive constraint, as,

1
¢r = —r_1e™M™,
Zt

s.t. E¢t [Tt] = E¢f [Tt],

(13)

where r; denotes the response of the word w;. Ey,(r¢)
represents the expectation of feature w; over the un-
derlying model, which can be calculated by averaging
feature responses over positive samples. Ey, [r;] denotes
the feature expectation on the new model. Follow [29],
[38], we can derive the probability model by T rounds
of model pursuit as the following Gibbs form,

1 T
o W.0) = oull) g oxn { YA}, b

where Z = [[2z and © = (A1,...,Ar). 2z normalizes
the sum of the probability to 1, and ), is the coefficient
weight of the selected feature w;. In our implementation,
we specify the initial model ¢y as a uniform distribution
over all words.

With this definition in Equation (14), the model is
updated by solving A, and r; at each round ¢. Here
we discuss a MaxMin-KL algorithm for this goal, which
iteratively performs with two following steps.

Step 1: Max-KL. The most informative feature 7} is
selected to update the current model. This step optimizes
the following problem, given the candidate features,

r; = arg H}?X’C(%H@—l) (15)

= argmax \ Fy,[r] —log 2.

This step could be computational expensive as we need
to sample the model distribution ¢;_; of the previous
round ¢ — 1. Following recent works on image template
learning [38], [27], we can simplify the computation
by enforcing the visual words have little overlap. In
particular, all features can be selected independently. The
optimization in Equation (15) can be approximated as,

(16)

r; = arg max Ey, [re] — Egy e,

where Ey [r] can be ignored, as it is a constant calcu-
lated on the initial model ¢. We calculate Ey, [r] by the
mean response values,

ng

E¢f [re] = nik Zrt(li)v

i=1

17)

where nj is the number of images belonging into the
k-th category.

Step 2: Min-KL. Given the selected feature r;, this
step is to compute its corresponding weight A\; and
normalization term z; by

A= argn/l\in K(¢¢l|pt—1)
sit. Eg,[ri] = Eg,[rd.

(18)

This optimization in Equation (18) can be solved ana-
lytically according to the proof in [27], and we conduct
that,

Eg, [ri](1 = Ego[r4])
(1= Ep,[re]) Eg, [r]
€xXp )‘tE¢0 [rt] +1- Eti)o [rt]'

N = log (19)

Zt =

Since we can analytically pursue this model by select-
ing a number T of informative features, the model in
Equation (14) can be further simplified into the following
form,
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T

o1:6) = oD | L explners1)].

t

(20)

The proposed algorithm in the above is simple and
fast, because the value of Ey,[r;] and Eg,[r;] for each
feature only need to be computed once in the off-line
stage. Hence, we can embed the learning algorithm to
keep the category model updated during the iterating
procedure of categorization.

Algorithm.1 summarizes the overall sketch of our
framework.

6 EXPERIMENTS

In the experiments, we apply our method to discover
categories for a batch of unlabeled images with diverse
appearances, and compare with other state-of-the-art
approaches.

6.1

We use three challenging public databases for validation:
MIT-Scene!, Corel?, and UIUC-Scene®. Moverover, these
three databases are mixed together as a larger testing set
for further evaluation.

The MIT-Scene database contains 2688 images clas-
sified into 8 categories according to their meaningful
semantics: coasts, forest, mountains, country, highways,
city views, buildings, and streets. The number of images
in each category is in the range of 260 ~ 410, and the
resolution of each image is 256 x 256 pixels. The Corel
dataset includes 1000 natural scenes with the resolution
256 x 384 pixels of 10 semantic categories: bus, coasts,
dinosaurs, elephants, flower, food, horses, mountains,
people, and temples. Each category contains 100 images.
The UIUC-scene database, which is an extension of MIT-
Scene, contains 4485 images classified into 15 categories,
and their themes are various, e.g.,, mountains, forest,
offices, and living rooms. The mixed dataset is the union
of all the three databases, including totally 5485 images
of 23 categories. Note that there are a few overlapping
categories among them.

Datasets and Metrics

TABLE 1
The inferred cluster number in each time of experiment.

# 1 2 3 4 5 6 7 8 9 10
1 8 9 8 8 9 10 10 11 8 9

11 9 10 10 11 10 9 12 11 12 10
m 16 17 15 16 16 15 18 16 15 17
v 27 24 24 26 24 25 24 26 25 25

#: No. of experiments;

I: Experiments on the MIT database;

II: Experiments on the Corel database;
III: Experiments on the UIUC database;
IV: Experiments on the mixed dataset.

1. http:/ /people.csail.mit.edu/torralba/code/spatialenvelope/
2. http:/ /wang.ist.psu.edu/docs/related.shtml
3. http:/ /www-cvr.ai.uiuc.edu/ponce_grp/data/index.html

The usual evaluation metric for categorization is Aver-
age Precision, and the number of categories is assumed
to be predetermined. In this work, we adopt the two
recently proposed metrics for unsupervised categoriza-
tion [7], [34], i-e., Purity and Conditional Entropy. In brief,
the larger value of Purity implies the better performance
in categorization and Conditional Entropy inversely.

For the input set D, including a number of N images,
suppose the underlying category number is L and the
corresponding groundtruth category labels are denoted
by X = {z; € [1,L],i = 1,...,N}. A testing system
groups the images into K categories, {Dy,k =1,..., K},
with the inferred category labels Y = {y; € [1,K],i =
1,...,N}. It is worth mentioning that K could be not
equal to L, as we allow the algorithm to automatically
determine the number of categories. The metric Purity
and Conditional Entropy are defined as,

Purity(X|Y) = Zp max p (z]y), (21)
yey
1
H(X|Y) p(y zly) log ——, (22)
V)= 2ot 3 plel)los s
yey reX

where p(y) = u])\}‘l and p(z|y) can be simply estimated

from the observed frequencies in categorized data, re-
sulting in an empirical estimation. |D,| represents the
number of images in one category.

6.2 Parameter settings and results

We carry out the experiments on a PC with Quad-Core
3.6GHz CPU and 32GB memory. We set the parameter
£ = 300 in the probabilistic formulation (in Equation (8)),
and the parameter 7 = 0.2 in the probabilistic edge
definition (in Equation (5)).

In our experiments, we first randomly collect a num-
ber of image patches with different scales from the
datasets and generate 500 ITWs and 500 HTWs as in-
troduced in Section 2. There are totally 1000 words in
the dictionary.

We carry out our method 10 times and use the aver-
age performance for comparison. The inferred category
number may not be identical each time, as reported in
Table.1. The average category number is 9.0 for the MIT-
Scene, 10.4 for the Corel, 16.1 for UIUC-Scene, and 25.0
for the mixed dataset.

For comparison, several state-of-the-art approaches are
implemented based on the codes released by the original
researchers, including pLSA [17], Affinity Propagation
(AP) [39] and LDA [40]. For the pLSA approach, we
extract color SIFT descriptors to construct a dictionary
of 1000 visual words following their original imple-
mentation. For the other two approaches, ie., AP and
LDA, we use our image representations (i.e., two types
of words extracted within the spatial pyramid) as the
inputs of the clustering algorithms. In addition, the -
means clustering algorithm is adopted as the baseline,
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Fig. 4. The selected visual words for 15 categories of the UIUC-Scene database. For each category, we show the
top 40 informative visual words according to their information gains (the vertical axis). The different colors represent
different types of words (i.e., red for ITWs and blue for HTWs).
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Fig. 5. Convergence comparisons of the CSWC algorithm and the original version. The experiments are executed on
the three databases: MIT-Scene in (a), Corel in (b), and UIUC-Scene in (c). In each chart, the horizontal axis and the
vertical axis, respectively, represent the iterating step and the target energy (— log p(S|D)). The dashed (green) curves
are from the original SWC algorithm and the solid (blue) curves are from the CSWC algorithm, respectively.

with either our representations or the gradient-based i.e. 8 for the MIT-Scene database, 10 for the Corel, 15
GIST features [6]. These methods use exactly the same for the UIUC-Scene, and 23 for the mixed dataset. The
experiment settings as our approach for fair evaluation, quantitative performances are reported in Table 2 and Ta-
but the category number for them is manually fixed, ble 3 based on the two benchmark metrics, respectively.

TABLE 2
Performance comparison via Purity (higher is better)

K-means GIST pLSA LDA AP Ours
ITW+HTW ITW  HTW

MIT 0.5529 0.5770  0.6457  0.6096  0.5546 0.6721 0.5764  0.6000
Corel 0.5337 0.5644 0.6070 0.5980 0.5612 0.6203 0.6160  0.6040
UIuC 0.4487 0.4514 05074 0.5449 0.5850 0.5964 0.5613  0.5148
Mixed 0.3632 0.3801 0.4136 0.4801 0.5017 0.5295 0.4836  0.4226
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Fig. 6. Time complexity analysis with the increase of data scale. This analysis is performed on the mixture of MIT
database and Corel database. In each figure the vertical axis represents the speed (iteration step) of convergence;
the horizontal axis in (a) represents the number of images with fixed 16 underlying categories, in (b) the number of
categories with the fixed number of images, and in (c) the number of images with various underlying categories.

In general, our method outperforms other comparing
approaches. We also evaluate our method with only one
type of visual words, i.e., either ITW or HTW, so that the
benefits of combining two types of features are clearly
illustrated.

In our method, the clustering inference is performed
simultaneously with the feature selection for category
modeling. In Fig.4, we show the selected visual words
of different types, i.e., ITWs and HTWs, for different
categories, and the coefficients of top 40 informative
words are plotted as well. The results are very reasonable
that the selected words match with the appearances of
the images very well.

6.3 Analysis

In the following, we conduct additional empirical anal-
ysis to validate the advantages of our approach.

First, we analyze the convergence efficiency of the
CSWC algorithm and compare with the original version.
Fig.5 shows the convergence curves of the target energy,
ie, —log P(S|D), with the increasing iteration steps.
Note that the energy goes inversely with the posterior
probability. We can observe that the CSWC algorithm
converges significantly faster on all the three databases.

Moreover, we analyze the computational complexity
of our approach. The space complexity (i.e., computer
memory) is basically related with the size of the visual
word dictionary and the number of images to be cat-
egorized. Here we mainly discuss the time complexity

that quantifies the amount of time taken by an algo-
rithm conditional on the asymptotic size of the input.
Using the big O notation, which excludes coefficients
and lower order terms, the theoretic time complexity of
our approach is O(MKT), where M is the number of
sampling steps, K is the category number, and T is the
average number of features selected for each category.
As we discussed in Section 5, the generative model can
be pursued analytically by greedy feature selection, and
the feature responses on all images can be calculated
off-line. In addition, only a few (ie., < K) categories
need to be updated in each iteration. Hence, we roughly
consider the time complexity determined by the sam-
pling steps. On the mentioned hardware, each iteration
costs averagely 0.043s (MIT-Scene), 0.015s (Corel), and
0.052s (UIUC-Scene), respectively, on the three databases.
In Fig. 6, we visualize the numbers of iteration steps
on two types of data scales: the total number of images
to be categorized and the underlying category number.
From the results, we can observe that the steps increase
in the nonexponential order, which is accordant with our
analysis.

At last, in order to reveal how much the vocabulary
size affects the results, we present an experiment in
Fig.7, where the categorization results are reported with
different sizes of vocabulary on the mixed dataset. The
conclusion can be drawn that our approach is not sensi-
tive on the vocabulary size, as we incorporate the model
learning (i.e., feature selection) with the categorization.
And this property enables us to avoid elaborately tuning

TABLE 3
Performance comparison via Conditional Entropy (lower is better)

K-means GIST pLSA LDA AP Ours
ITW+HTW ITW  HTW
MIT 12465 12102 10156 11836 1.1400  0.8963 11536 11145
Corel 13105 12136 11234 11371 12577  1.0909  1.1036 1.1154
UIUC 15020 14564 14322 13146 12121 11581 12150 1.3948
Mixed 17603 17172 16811 15828 15127 14328 14971 15955
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the size of vocabulary in practice.
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Fig. 7. The influence of vocabulary size. This analysis
is executed on the mixed database (of 23 categories).
The upper figure and the lower figure, respectively, rep-
resent the results via Purity and Conditional Entropy. The
horizontal axis represents the vocabulary size. Note that
we generate equal size for the two types of words in the
testings.

7 CONCLUSIONS

This paper studies a general framework for automat-
ically discovering image categories via unsupervised
graph partition. Compared with the previous methods,
the advantage of the proposed method is identified
on several public datasets and summarized as follows.
First, images are represented by two types of visual
words, ITWs and HTWs, which capture image appear-
ances from different aspects. Second, we perform feature
selection simultaneously with the clustering procedure,
guided by a generative model for each category. Third,
we employ a stochastic sampling algorithm for efficient
inference, in which the clustering number is automati-
cally determined.
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