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No-Reference Video Quality Assessment Based on
Artifact Measurement and Statistical Analysis

Kongfeng Zhu, Chengqing Li, Senior Member, IEEE, Vijayan Asari, Senior Member, IEEE, and Dietmar Saupe

Abstract— A discrete cosine transform (DCT)-based
no-reference video quality prediction model is proposed
that measures artifacts and analyzes the statistics of compressed
natural videos. The model has two stages: 1) distortion
measurement and 2) nonlinear mapping. In the first stage, an
unsigned ac band, three frequency bands, and two orientation
bands are generated from the DCT coefficients of each decoded
frame in a video sequence. Six efficient frame-level features
are then extracted to quantify the distortion of natural scenes.
In the second stage, each frame-level feature of all frames
is transformed to a corresponding video-level feature via a
temporal pooling, then a trained multilayer neural network
takes all video-level features as inputs and outputs, a score
as the predicted quality of the video sequence. The proposed
method was tested on videos with various compression types,
content, and resolution in four databases. We compared our
model with a linear model, a support-vector-regression-based
model, a state-of-the-art training-based model, and a four
popular full-reference metrics. Detailed experimental results
demonstrate that the results of the proposed method are highly
correlated with the subjective assessments.

Index Terms— Blocking artifact, discrete cosine
transform (DCT), H.264/Advanced Video Coding (AVC),
natural scene, no-reference (NR) measure, video quality
assessment (VQA).

I. INTRODUCTION

V IDEO services have been adopted widely in both mobile
and fixed networks. To provide better service, the capa-

bility of digital cameras, smartphones, and tablet computers
to acquire and display high-resolution images and videos
continues to advance rapidly. However, the human appetite for
electronic visual content is always high, and consumer demand
is increasing rapidly [2]. Thus, content providers are interested
in evaluating the performance of their services from the final
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users’ perspective, i.e., their quality of experience (QoE).
The QoE of the visual signal is of fundamental importance
for numerous image and video processing applications, such as
3-D TV systems, surveillance systems, mobile video systems,
and conferencing systems. Before multimedia data reach the
final users, they pass through three main stages: 1) generation
by a capture device; 2) compression with a codec; and 3) trans-
mission via a communication channel. The most reliable way
of assessing video quality is subjective evaluation, where a
number of human users are asked to evaluate the perceived
quality, summarized in mean opinion scores (MOSs).
However, this approach is cumbersome, slow, and expensive
for most applications.

In contrast, algorithms may provide an efficient and
effective video quality assessment (VQA). VQA algorithms
(or metrics) can be classified into three types according to
how much reference information is used: 1) full-reference
VQA (FR-VQA); 2) reduced-reference VQA (RR-VQA); and
3) no-reference VQA (NR-VQA) [2]. In some situations, such
as evaluating the performance of digital camera and camcorder
systems, the original uncorrupted images or videos are often
unavailable because the imaging (sensing) and recording sys-
tem are unknown and have to be treated as a black box, without
providing access to the original video reference. For such
applications, only NR-VQA is applicable. However, designing
NR-VQA schemes for accurate prediction of visual quality
is more difficult than for VQA with full or partial
reference [3], [4].

Up to now, some work on NR-VQA has been reported
to measure distortion of certain types. One straightforward
approach is to run an NR-image quality assessment (NR-IQA)
algorithm on video frames one by one. However, that approach
does not perform well due to the lack of reference, the high
complexity of the distortion in the videos, and the strong vari-
ation in the video content. Obviously, the low-level features
in distortion measurements are significantly influenced by the
content of the videos, and the relation between an objec-
tive distortion measurement and the (subjectively) perceived
video quality remains unknown. Therefore, extracting content-
independent features and exploring the unknown relation are
two key problems to be solved to improve the performance of
NR-VQA algorithms.

The previous two key problems are addressed by existing
IQA and VQA algorithms in a two-stage framework that
consists of distortion measurements followed by a nonlinear
mapping [5], [6]. A distortion measurement quantifies the
difference between the distorted data and the corresponding
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reference. The nonlinear mapping is composed of one or
more nonlinear functions that transform the collection of
distortion measurements to a single score representing the
overall perceived quality of the video.

There is a tradeoff between the complexity and the
performance of these VQA algorithms. The VQA algorithms
with good performance usually require a large number of fea-
tures for the distortion measurement, and complicated training
models for determining the nonlinear mapping. To achieve
a balance between complexity and performance, this paper
focuses on the distortion measurement, and proposes an
NR-VQA algorithm with a small number of efficient and
content-independent features and a simple strategy for the
nonlinear mapping. The proposed algorithm is designed to
assess the perceived quality of compressed videos, since most
of the artifacts encountered in videos are a direct result of
lossy compression.

Our video quality prediction is based on the analysis of
discrete cosine transform (DCT) coefficients, frame-by-frame
and without reference. This follows the previous two-stage
framework. In the first stage, the distortion is quantified by
combining the artifact measurements and a statistical analysis.
Six feature maps are generated from the DCT coefficients
of all 4 × 4 subblocks in the decoded frame. From the six
bands, three features (sharpness, smoothness, and blockiness)
are extracted to quantify the artifacts introduced by lossy
compression, and three other features [kurtosis, mean
Jensen–Shannon divergence (MJSD), and distribution noise]
are calculated for the statistical analysis. In the second stage,
temporal pooling transforms the frame-level features of all
frames to six video-level features. Finally, from these six
features, a trained multilayer neural network computes a single
numerical value as the predicted video quality. Comprehensive
experiments were conducted, showing the effectiveness of the
proposed method.

The rest of this paper is organized as follows. In Section II,
previous work on NR-VQA is reviewed. Then, we discuss
the character of compressed video in the DCT-domain and
motivate the choice of our features in Section III. Section IV
details the proposed DCT-based NR-VQA model, including
the generating bands, the extraction of the frame-level features,
and the pooling of the features to predict the quality score.
In Section V, we give the experimental results on four video
databases and report on the correlation between the objec-
tive prediction with the subjective MOS. The conclusion is
drawn and some avenues for further research are summarized
in Section VI.

II. PREVIOUS WORK

A large amount of work has been done to assess the quality
of distorted images and videos by the two-stage framework,
namely, distortion measurement and nonlinear mapping. In the
following, we review previous work for both stages.

A. Distortion Measurement

1) Artifact Measurement: Assuming the video compres-
sion algorithm is known, for example, motion picture expert
group (MPEG)-4 or H.264/Advanced Video Coding (AVC),

distortion-specific NR-VQA algorithms can measure the spe-
cific artifacts that exist in the decoded video. Blockiness and
blurriness (or lack of sharpness) are the most annoying arti-
facts and have received intensive attention. In the following
section, we study blind IQA or VQA algorithms that mea-
sure one or more kinds of artifacts in the distorted image
or video, and focus on the measurement of blockiness and
blurriness.

Blurriness appears as a widening of edge width, thus a
straightforward way is to measure the average edge width [7].
An indirect measurement is to analyze the statistics of the
local edge gradients [8] and model the gradient image as a
Markov chain [9]. Blurriness was also modeled as the loss of
energy at high frequencies and measured from the local power
of the high-frequency wavelet coefficients [10], the log-energy
of the discrete wavelet transform subbands [11], and the image
effective bandwidth [12]. In addition, both spectral and spatial
properties of the image were explored to quantify the perceived
sharpness [13].

Blockiness is an annoying impairment in a decoded image
and video frames at low bit-rates. It originates from a block-
based encoding. Thus, some NR blockiness measurement
techniques model, the blocky image as a nonblocky image
interfered by a pure blocky signal in the spatial domain,
and then detect and evaluate the power of the pure blocky
signal [14]–[16]. The detected blockiness was also weighted
by models of the luminance and texture masking effects of the
human visual system (HVS), and models of human perception,
since the perception of blockiness is influenced by the amount
of detail in the images and video [17]–[19]. However, these
metrics are not efficient for H.264/AVC compressed videos
because of the deblocking filter, which smoothes the sharp
edges between macroblocks.

2) Statistical Analysis: Undistorted natural images are
assumed to possess certain statistical properties that hold
across different image contents [20], [21]. The natural scenes
here refer to real environments, as opposed to laboratory
stimuli, and may include human-made objects [21], thus any
image or video obtained from a camera or camcorder is
considered to be natural.

Based on the hypothesis that the presence of distortions
in natural images alters the natural statistical properties of
the images, researchers have attempted to develop general
purpose NR-QA algorithms without prior knowledge of the
specific types of distortion [22]. The natural image quality
evaluator in [23] uses a simple and successful spacial-domain
natural scene statistic (NSS) model to construct a quality aware
collection of statistical features.

Another statistical approach is to estimate the peak
signal-to-noise ratio (PSNR) of a compressed frame from
the coded bitstream. The transform coefficients obtained from
quantized coefficients have been variously conjectured to
follow a Laplacian distribution, a Cauchy distribution, or
a generalized Gaussian distribution [24]–[26]. For instance,
in [25], the DCT coefficients were modeled using Cauchy
and Laplace probability density functions, the maximum-
likelihood estimation method then yielding an estimate of
the coding error, which was weighted by the spatio-temporal
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contrast sensitivity function of the HVS for the prediction of
perceptual video quality.

B. Nonlinear Mapping
In previous work, a monotonic mapping function was

usually applied to a quality measure to minimize the prediction
error without changing the rank order. The simplest one is a
linear function. There are also more sophisticated monotonic
functions, such as a third-order polynomial function with
monotonicity constraints [27], an S-shaped function [28],
a four-parameter logistic function [29], and a five-parameter
logistic function [30], [31]. Parameters of these functions
are estimated by regression analysis between MOS and the
corresponding quality measure in a database. The regression
is useful and practical for algorithms based on one single dis-
tortion measure, e.g., PSNR, structural similarity (SSIM) [32],
multi-scale structural similarity (MS-SSIM) [33], and visual
information fidelity (VIF) [30].

Current VQA techniques tend to extract a large number
of features for distortion measurement, so that the over-
all quality can be predicted more accurately by supervised
learning methods based on subjective MOSs in a training
set of images or video sequences. Two NR image quality
measures were based on this two-stage framework [6], [34],
extracting a set of low-level image features in image databases
to learn a mapping from these features to subjective image
quality scores. By formulating IQA as a pattern recognition
problem, an FR-/RR-IQA metric was proposed based on
2-D mel-cepstrum for feature extraction and machine learning
for feature pooling [5].

One popular choice to construct the nonlinear mapping from
the distortion features to the perceived quality of the images
or video has been neural networks [35]–[37]. For example,
in [38], an NR-VQA method was presented based on nonlinear
statistical modeling, where an ensemble of neural networks
was used. Circular backpropagation neural networks were
used in a methodology for the objective quality assessment
of MPEG video streams to pool features extracted from
bitstreams [39]. An RR-VQA algorithm was proposed based
on a convolutional neural network, which allows a continuous
time scoring of the video, and a time-delay neural network that
integrates objective features along the temporal axis [40]. A
general regression neural network was employed for the non-
linear mapping in NR-IQA. The features, including the mean
value of the phase congruency image, the entropy of the phase
congruency image, the entropy of the distorted image, and the
gradient of the distorted image, were transformed to perceptual
image quality via a neural network [41].

Support vector regression (SVR) is another popular option
to determine the mapping from the extracted features to the
subjective quality. It has been adopted for FR-IQA in [42]
and for FR-VQA in [43]. A trained epsilon-SVR model was
used in an NR-VQA algorithm to predict the video quality
from the joint and marginal distributions of local wavelet
coefficients [44].

Other machine learning methods have also been adopted
for image and VQA lately. Partial least squares regression
was used to calculate the weights of the features extracted

from an H.264/AVC encoded bitstream [45]. The circular
extreme learning machine (ELM), which is an augmented
version of the basic ELM, handles the mapping of visual
signals into quality scores in the RR-IQA metric in [46].
An NR bitstream-based objective video quality metric was
constructed by genetic programming-based symbolic regres-
sion, which calculates reliable white-box models that allow
one to determine the importance of the parameters [47].

III. ANALYSIS OF COMPRESSED NATURAL SCENES

In this section, we analyze the appearance of distortion and
the corresponding characters in compressed natural scenes,
then introduce the decomposition of a natural image as
a preprocessing step prior to the distortion measurement
step.

A. Characteristics of Compressed Natural Scenes

The appearance of power laws in the power spectral
densities of natural scenes [21] suggests that it is reasonable
to assume that there exist statistical relations between the
high-pass responses of natural images and their bandpass
counterparts. Lossy video compression leads to distortion of
the natural video, which usually manifests itself as a loss of
texture and other image features in the high-frequency domain.
Thus, lossy compression decreases the similarity between the
different frequency bands of a natural image.

In the spatial domain, the loss of texture caused by
compression appears as an increase of the smooth image area,
in which pixel values are homogenous, and a decrease of the
sharp image area, in which pixel values vary significantly from
each other. In the DCT domain, lossy compression typically
sets many ac coefficients to zero, thereby modifying the
natural distributions, which were conjectured to be Gaussian,
Laplacian, or Cauchy distributions [48]. In particular, the zero
coefficients appear with a much higher probability.

An in-loop deblocking filtering technique has been
adopted [49] to reduce blocking artifacts in H.264 compressed
videos, but blockiness remains visible in the low-textured area.
A new blockiness metric is needed to measure H.264 com-
pressed videos due to the failure of existing blockiness
measurements. We have found that blocking artifacts can be
easily quantified based on the analysis of the horizontal and
vertical DCT components.

In summary, the lossy compression of videos of natural
scenes leads to an increase of the smooth image area, a
decrease of the sharp image area, to the occurrence of blocking
artifacts, a peaky ac coefficient distribution, and a dissimilarity
between the bands of different frequencies.

B. Generation of Image Bands

To measure the distortion, a sliding window is moved over
the decoded image pixel-by-pixel to generate six image bands
B1, . . . ,B6. The window size is set to 4 × 4 for two reasons.
First, it is the smallest size from which we can obtain three
frequency bands while keeping the computational complexity
as low as possible. Note that, the larger the size of the sliding
window, the higher the computational complexity. Second,
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Fig. 1. Coefficient names of a 4 x 4 ocr block. 

it is the right size to generate two orientation bands for 
blockiness measurement, when the transform block size is 
4 x 4 in the H.264/AVC main profile [49]. Only the lwninance 
is considered in our analysis, since the HVS is more sensitive 
to luminance than to chrominance (color) [49]. From the 
16 OCT coefficients of the sliding window, we derive six fea­
tures per pixel per frame, yielding a band per frame. Suppose, 
for example, that the frame size is (M + 3) x (N + 3). The 
generation of the six bands is described in the following four 
sections. 

1) Generation of the DCT Coefficient Matrix: The 16 OCT 
coefficients of the sliding window are referred to as Ct to 
Cl6 in raster order, as shown in Fig. I. Letting the sliding 
window move over the whole frame, each coefficient yields 
a matrix C;, i = l , ... , 16 of size M x N. The matrix 
C1 contains de coefficients, whereas the other 15 matrices 
contain the ac coefficients. As discussed in Section ill-B, 
a lossy compression mainly affects the ac coefficients and 
further leads to the degradation of the quality of the com­
pressed videos, thus only {C; JJ!2 are involved in the following 
calculation. 

2) Generation of an Unsigned AC Band: Adding up the 
absolute values of the fifteen ac coefficients of a block, we get 
its unsigned ac band 8 1 

16 
8 1(m,n) = L IC;(m,n)l 

i=2 

where m = 1, ... , M , and n = 1, ... , N. It will be used to 
measure smoothness, sharpness, and peakiness. 

3) Nonnalization of the AC Coefficients: To normalize 
the OCT coefficients of a block, we divide each of its 
ac coefficients by its corresponding ac feature obtained 
in Section ill-B2, and get 15 matrices {C;}J!2, where 

- C;(m,n) 
C;(m,n) = 8 ( ) 

1 m,n 

m = I , ... , M, and n = l , ... , N. 
4) Generation of the Frequency and Orientation Bands: 

From these 15 matrices, we obtain three frequency 
bands }h, 8 3, and 8 4 to quantify the dissimilarity and noise 
in their histograms, and two orientation bands 8 5 and 8 6 to 
quantify their blockiness. They are defined by 

B2(m, n) = L C;(m, n), i = 2, 5, 6 

8 3(m, n) = L C;(m , n), i = 3, 7, 9, 10, 11 

Fig. 2. Decoded frame. 

B4(m,11) = z=c1(m,n), i =4,8, 12, 13, ... , 16 

Bs(m, n) = L IC;(m, n)l, i = 2, 3, 4 

B6(m, 11) = L IC;(m, n)l, i = 5, 9, 13 

where m = 1, ... , M and"= 1, ... , N. 
An example of a decoded frame is shown in Fig. 2 and 

the six bands of the corresponding frame are shown in Fig. 3. 
As demonstrated by Fig. 3, the six bands contain different 
information about the frame: I) band 8 1 E [0, oo] contains 
all the information of the image except the de components of 
local regions; 2) bands lh, 8 3, and 8 4 E [ -1, 1] contain low­
' medium-, and high-frequency components, respectively; and 
3) bands 8 s and 8 6 E [0, 1] contain vertical and horizontal 
components, respectively. 

Table I lists the six generated bands. The kurtosis, 
smoothness, and sharpness will be computed on the unsigned 
ac band. Two statistical features, MJSO and histo-noise, 
will be extracted over the three frequency bands. We will 
measure the blocky artifacts on the two orientation bands. 
Note that the frequency bands 8 2, 8 3, and 84 are signed 
rather than unsigned as in !!J, because their histograms are 
bilaterally symmetric by keeping signs of their elements. The 
bilateral symmetry will increase the accuracy of difference 
measurements between their probability distributions, namely, 
the MJSO in Section IV. 

IV. PROPOSED NR-VQA ALGORITHM 

Based on the above analysis, we propose an NR-VQA 
algorithm in the two-stage framework: 1) extracting 
frame-level features and 2) video-level features from the six 
bands B 1 to 8 6, followed by mapping the feature vectors to a 
quality prediction score by a neural network. 

A. Frame-Level Feature Extraction 

Based on the six bands, six frame-level features are 
extracted to quantify the distortion of compressed natural 
videos: I) kurtosis; 2) smoothness; 3) sharpness; 4) MJSD; 
5) histo-noise; and 6) blockiness. The features of kurtosis, 
smoothness, and sharpness quantify the distortion based on the 
statistical properties of band 8 1. Histo-noise and MJSD quan­
tify the similarity between frequency bands based on the 
probability density functions of 8 2, 8 3, and 8 4. To quantify 
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(a) B t 

(e) Bs (f) BG 

Fig. 3. Six bands B 1 to 8 6 of the frame shown in Fig. 2. Sums of normalized magnitudes. (a) All 15 ac coefficients. (b) Low-frequency ac coefficients. 
(c) Medium-frequency ac coefficients. (d) High-frequency ac coefficients. (e) AC coefficients for vertical structures. (f) AC coefficients for horizontal structures. 

TABLE I 

LIST OF BANDS. THE FREQUENCY BANDS ARE SIGNED SUCH TRAT THEIR HISTOGRAMS ARE SYMMETRIC 

Band Name Range Description Index 

Unsigned AC band B1 [01oo] Li IC;I. i = 21· '' 116 

low B2 [- 11 1] L 9i· i= 21516 
Frequency medium Bs [-11 1] .Li <;•· i = 31719110111 

high B4 [-11 1] .L. c,. i = 4181 121 ' ' ' 1 16 

Orientation 
vertical Bs [01 1) .L, 19•1· i = 2,314 
horizontal Ba [0 , 1] .L. IC•I· i = 5, 9,13 

TABLED 

FEATURES OF FRAME I IN THE OCT-BASED MODEL. ALL THE FEATURES ARE BETWEEN 0 AND 1 

Name Feature Range Description 

ft(t) peakiness (01 1[ inverse of the kurtosis of unsigned AC band B 1 
h(t) smoothness [0, 1] relative sharp area of the current frame 

h(t) sharpness [0, 1) relative edge area of the current frame 

!4(t) MJSD (0, 1) filtered distribution distance between B2. Ba and B4 
fs(t) histo-noise (0, 1] the average histogram noise of Bz, Bs and B4 

fs(t) blockiness (01 1] measurement of blocking artifacts 

the blocking artifacts, the blockiness measurement is proposed 
based on 8 s and 8 6. 

Compared with our prior work presented in i!J, we improve 
the feature extraction in many ways. First, the features of 
kurtosis (E [1, oo)) and blockiness (E [0, oo)) are remapped 
to (0, lJ. The accuracy and robustness of the neural network 
will be improved when all features are in (0, ll !2.Q1 Second, 
the feature of MJSD between frequency bands is improved by 
generating 8 2, 8 3, and 8 4 in a new manner, such that their 
filtered histograms are bilaterally symmetric. Together with the 

new feature of histo-noise, the modified MJSD quantifies the 
quality degradation better than that in l!J. These frame-level 
features are listed in Table ll, and presented in more detail in 
the following. 

1) Feature Extraction From the AC Band: The histograms 
of the summed unsigned ac band, B, , extracted from an 
original frame and the corresponding distorted frame are 
shown in Fig. 4. Compared with the original frame, the 
histogram for the distorted frame has a sharper main peak, 
an additional peak at near zero, and lower frequency at 
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Fig. 4. Histogram of the band B1 (summed unsigned ac coefficients) for
intensities up to 300 and bin size equal to 0.5. (a) Original frame. (b) Distorted
frame. This is an extreme example for videos with average quality. The
compression rates of the two videos are 5 Mb/s and 200 kb/s, respectively.

high intensities. In probability theory and statistics, kurtosis
measures the peakiness of the probability distribution of
a real-valued random variable. Let p1(x) be the probability
density functions of B1. We choose the inverse of the kurtosis
as a feature: its value is within (0, 1] and it is defined by

f1(t) = σ 4
x

E(x − μx)4
∈ (0, 1] (1)

where x is the intensity, μx is the mean of x , and σx is its
standard deviation.

For each block, if the sum of the absolute ac coefficients is
less than a given threshold TL , it is considered to be a smooth
block. The degree of smoothness is quantified by the relative
area of the smooth region in the frame, which is defined as

f2(t) = 1

MN
card({(m, n) | B1(m, n) < TL}) ∈ [0, 1] (2)

where card (A) denotes the cardinality of a set A. The
smoothness is expected to grow monotonically with respect
to the compression ratio.

If the sum of the ac coefficients is greater than a given
threshold TH , the corresponding block is considered to be a
sharp block. Sharpness is quantified as the relative area of the
sharp region in the frame, defined by

f3(t) = 1

MN
card({(m, n)|B1(m, n) > TH }) ∈ [0, 1]. (3)

A compressed video with higher compression is expected to
have a smaller sharp area.

2) Feature Extraction From the Frequency Bands: The
bands B2, B3, and B4 correspond to the low-, medium-, and
high-frequency components. We assume that the frequency
components of natural scenes are dependent and statistically
smooth, and that a lossy compression reduces their dependence
and statistical smoothness. Fig. 5(a)–(c) shows the histograms
of the three bands B2, B3, and B4 of an undistorted nat-
ural video frame and Fig. 5(d)–(f) shows the corresponding
compressed video frame. The uncompressed frame exhibits
a relatively smooth statistical distribution for each band, and
there is some similarity in the distribution between bands,
whereas the distribution for the compressed frame is noisier
and shows less similarity between bands. Hence, two features,
histo-noise and MJSD, are extracted to quantify the noise in
the histograms and the dissimilarity between bands of different
frequencies.

Write ψi (x) for the noisy histogram of band Bi and ψ̄i (x)
for the filtered version of ψi (x), where the median filter is
adopted. The histogram noise of band Bi is defined by

εi (x) = |ψi (x)− ψ̄i (x)|∑
x ψi (x)

, i = 2, 3, 4.

The histogram noise of the tth frame is defined as the mean
of εi (x)

f4(t) = 1

3

∑
x

[ε2(x)+ ε3(x)+ ε4(x)] ∈ [0, 1]. (4)

Define p(x) and q(x) as two probability mass functions.
The Kullback–Leibler divergence (KLD) is a measure of
the difference between two probability distributions and is
given by

DKL(p||q) =
∑

p(x) log
p(x)

q(x)
.

The KLD is nonsymmetric. The symmetrized version of
KLD is the Jensen–Shannon divergence (JSD), which is a
symmetric measure of the distance between two probability
distributions [51]. The JSD is defined as

DJS(p||q) = 1

2
(DKL(p||r)+ DKL(q||r))

where r(x) = (p(x)+ q(x))/2.
In Fig. 5, it can be observed that the similarity between

two adjacent frequency bands of a natural video is decreased
due to lossy compression. To measure the decrease of their
similarity, the mean JSD of B2,B3, and B4 is defined as

f5(t) = 1

2
(DJS(p2||p3)+ DJS(p3||p4)) ∈ [0, 1] (5)

where

pi(x) = ψ̄i (x)∑
x ψ̄i (x)

, i = 2, 3, 4

i.e., p2(x), p3(x), and p4(x) are the smoothed probability
density functions of B2,B3, and B4, respectively. In general,
a high value of the MJSD means a low quality of the frame.
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Fig. 5. Histograms of band B2,B3, and B4. (a)–(c) Undistorted video frame. (d)–(f) Compressed video frame. Histograms in (d)–(f) are very noisy in
comparison to those in (a)–(c), whereas all the filtered histograms are roughly bilaterally symmetric.

3) Feature Extraction From the Orientation Bands: Due
to the deficiencies of the existing blockiness metrics for
H.264/AVC compressed videos, we propose a new metric
to measure the blockiness in H.264/AVC compressed natural
videos. In the new metric, the blocking artifacts are measured
based on the two orientation bands of the decoded frame,
rather than the decoded frame itself in previous methods.
The horizontal and vertical blockiness are measured by apply-
ing the discrete Fourier transform (DFT), in the similar way
as in [14]–[16], but on bands B5 and B6 rather than gradi-
ent images. The overall blockiness measurement is defined
as the mean of the horizontal and vertical blockiness mea-
surements. Empirically, the smaller the measurement value is,
the worse the quality of the video will be. We describe the
modified blockiness measurement as follows.

Assume the macroblock size of the codec is S × S.
We measure the horizontal blockiness by applying a sum
operation along each row in band B6. This results in a
1-D array of length M , denoted by φH , where

φH (m) =
N−1∑
n=0

B6(m, n), m = 0, ...,M − 1.

It is difficult to directly derive the blockiness power from φH .
Fortunately, more clues can be obtained in the frequency
domain [14]. We take the 1-D DFT of φH and consider the
magnitude of the DFT coefficients, which can be expressed as

�H (l) =
∣∣∣∣∣
M−1∑
m=0

φH (m) exp

(
− j2πml

L

)∣∣∣∣∣
where l = 0, . . . , L − 1 and L is the smallest power of 2 less
than or equal to the upper limit M .

Due to the nature of the DFT, �H (l) has peaks at
l = (L/S) · s, for s = 1, 2, . . . , S/2 − 1. The values at
those peaks are closely related to the horizontal blockiness
of the image. The horizontal blockiness measurement is then
computed as

PH = 1

S/2 − 1

S/2−1∑
s=1

log10

(
�H

(
L

S
· s

)
+ 1

)
∈ [0,∞). (6)

To scale the blockiness measurement to the interval (0, 1],
PH is transformed to PLKH by

PLKH = 1

1 + PH
∈ (0, 1].

Fig. 6 shows the DFT coefficients of a reference frame
and its corresponding distorted frame. A 512-point DFT was
taken and the macroblock size was 16 × 16. No periodic
peak is observed in the top subfigure, while periodic peaks
appear at l = 32, 64, 96, 128, 160, 192, and 224 in the bottom
subfigure. The values at these peaks are chosen for computing
PH in (6). Note that due to the symmetry of the DFT for
real-valued signals, 14 peaks rather than seven are marked in
each subfigure, but only the first seven peaks are used in the
computation.

By applying a sum operation along each column in band
B5, the vertical blockiness PLKV is then measured accordingly.
Finally, the overall blockiness is defined as

f6(t) = 1

2
(PLKH + PLKV) ∈ (0, 1]. (7)

B. Nonlinear Mapping

To predict the video quality from the frame-level features
of all the frames of a video sequence, we nonlinearly map
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Fig. 6. DFT coefficients for the horizontal blockiness measurement.

the features to a score of the perceptual video quality. It is
composed of a temporal pooling of the frame-level features
and a multilayer neural network for combining the video-level
features. For a video sequence, each frame-level feature yields
a vector ( f j (1), f j (2), . . . , f j (t), . . . , f j (T0)), where T0 is the
total number of frames. The vector is then transformed to a
video-level feature by Minkowski pooling

Q j = 4

√√√√ 1

T0

T0∑
t=1

f 4
j (t)

where j = 1, 2, . . . , 6 [52].
The video-level features Q1, . . . , Q6 are then treated as

inputs to a neural network trained to predict the subjective
video quality score. We choose the neural network rather
than the popular SVR that performs better in general because
the neural network can represents the predicted score as
a parametric function of features with a fixed number of
parameters. It is helpful to design a fixed parametric function
for the nonlinear mapping in our future work. Eventually,
an explicit nonlinear mapping will be developed to replace
the black box based on machine learning. The model size
of a kernel-based SVR, however, is not fixed in general,
because the support vectors are selected from the train-
ing data, and the number varies according to the training
data [53].

Fig. 7 gives the high-level organization of the proposed
prediction model. It is composed of two stages. In the first
stage, six bands are generated from the DCT coefficients.
Second is a frame-level feature extraction stage, as described
in Section IV-A and Table II. In the second stage, each
extracted frame-level feature as a vector is first taken as
an input to the temporal pooling. A single score results as
the corresponding video-level feature along the time axis.

An objective video quality score is then predicted by the
trained neural network from the video-level features.

V. PERFORMANCE EVALUATION

Our VQA model is effective, as demonstrated by
experiments on four video databases: 1) the Institut de
Recherche en Communications et Cybernétique de Nantes
(IRCCyN) video database [54]; 2) the video quality experts
group (VQEG) high-definition television (HDTV) Pool2 data-
base [55]; 3) the LIVE mobile video database [56]; and 4)
the LIVE video database [57]. These four databases contain
many source videos with diverse content and resolution. Only
compressed videos in the databases were used to evaluate its
performance, since our method aims to objectively assess the
quality of compressed videos.

A. Experimental Procedure

For all the experimental results in Section V-B, we set
TL = 1 in (2) and TH = 300 in (3) for extracting
frame-level features. A multilayer perceptron (MLP), which
is a feed-forward artificial neural network model, was created
with two layers, and 20 nodes were empirically set in the
hidden layer for nonlinear mapping. The sigmoid transfer
function was chosen for all hidden nodes and the output node,
as all the input features are between 0 and 1. Since there
are only six features and hundreds of videos in databases, we
adopted the Levenberg–Marquardt backpropagation algorithm
to update weight and bias values in the network during
training [58]. This method is known to be fast and have stable
convergence for small-size training problems.

Four statistical indices were used to evaluate the
performance. They are the linear correlation coefficient (LCC)
also known as Pearson’s correlation coefficient, Spearman’s
rank-ordered correlation coefficient (SROCC), the root mean
squared error (RMSE), and the mean absolute error (MAE)
between the predicted quality scores and the MOS. A value
close to 1 for the SROCC or LCC and a value close to 0 for
the RMSE or the MAE indicates superior correlation with the
subjective assessments. The four indices were defined in [31].

Depending on the size of the video database, we performed
content-sensitive k-fold or leave p-fold-out cross-validation
strategy to get a general performance of the proposed model.
Let a denote the number of reference videos in a database,
and let b be the number of distorted videos generated for each
reference. In k-fold validation, the original videos were divided
into k (k ≤ a) disjoint groups with equal size. Each group of
original videos together with their distorted videos comprised
one fold.

In one cross-validation process, a single fold is set for
testing, and the remaining (k − 1) folds for training. The
training and testing process is performed k times with a
different fold of testing videos each time. This strategy is not
robust when a and b are both very small. The leave
p-fold-out strategy usually is preferred in such cases, namely,
in one training and testing process, p folds are chosen for test-
ing, and the remaining for training. Here, one-fold is composed
of one original video and the corresponding distorted videos.
The training and testing process is repeated

(a
p

)
times on

(a
p

)
train-test pairs.
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TABLE ill 
LIST OP VIDEO DATABASES FOR PERFORMANCE VALIDATION AND COMPARISON. THE a STANDS FOR THE NUMBER OF REFERENCES, b FOR THE 

NUMBER OF VLDEOS GENERATING FROM EACH REFERENCE WITH DIFFERENT QUALITY, AND ab FOR THE TOTAL NUMBER OF VIDEOS 

Database a, b a.b Resolution 

JRCCyN video database 60 5 300 640 X 480 
VQEG HDTV Pool2 database 9 8 72 1920 X 1080 
LIVE mobile video database 10 4 40 1280 X 720 
LIVE video database 10 8 80 768 X 432 

We evaluated the performance of the proposed model in 
terms of the four statistical indices in testing data, and aver­
aged their results from all testing processes to estimate the 
general performance of the proposed model in each video 
database. Their means and deviations are provided in Table N. 
In addition to the validation of our VQA model on four data­
bases, the nonlinear mapping based on the MLP was compared 
to the simple linear regression, and the same SVR model, as 
in [47] , with a radial basis function kernel and the e insensitive 
loss function. SchOlkopf and Smola lTIJ. and Hay kin l.2.§l for a 
detailed discussion about SVR. We also compared the perfor­
mance with four popular FR-VQA metrics (PSNR, SSIM [3~ , 
MS-SSIM [33], and VIF [30]) on the IRCCyN video database, 
and a FR state-of-the-art VQA metric, presented in [43], on 
the LIVE video database. 

B. Peiformance Evaluation and Comparison 

For a fair comparison, we performed the cross validation 
with the same training and testing data for all models. Table ill 
provides the basic information about the videos tested in our 
experiments and the strategies adopted for cross validation. 

1) IRCCyN Video Database: This database contains 
300 videos sequences of resolution 640 x 480 and the asso­
ciated subjective results. There are 60 reference videos with 
different content and 5 versions for each one of them, includ­
ing the original one and four distorted copies. Therefore, in the 
experiment a = 60 and b = 5. For each content, the reference 
and four distorted videos with random levels of degradation 
based on H.264/ scalable video coding (SVC) coding without 
transmission errors were subjectively evaluated. The absolute 
category rating was used as test methodology [54]. 

The 10-fold validation was performed, thus there were 
30 videos for each test. The estimated performance was 

MOS range Distortion Cross-validation 

[0,5] H.264/SVC 10-fold 
[0,5] H.264, MPEG2 Leave-2-fold-out 

[0,5] H.264 Leave-2-fold-out 
[0,100] H.264, MPEG2 10-fold, leave-2-fold-out 

compared with linear regression and SVR in Table IV 
and Fig. 8(a). The means and standard deviations of the 
four indices indicated that all the three mapping methods can 
accurately and stably predict the video quality, and the 
MLP-based method gave the best performance. This is not 
only because the six extracted features are efficient for distor­
tion measurement but also because of the large number of the 
videos and the single type of distortion in the database. 

The performances of PSNR, SSIM [32], MS-SSIM 12l!. and 
VIF [30] are also given in Table IV and Fig. 8(a). Following 
the recommendation in [27], we chose the third-order polyno­
mial function as their monotonic mapping function. Since only 
four parameters of the function were estimated on the training 
data, there is low risk of overfitting, as the lower standard 
deviation of the corresponding results suggest. In this case, 
the FR metrics are superior to NR-VQA metrics, as expected. 

2) VQEG HDTV Pool2 Database: This is a full 
HD database. It is composed of 9 original sequences and 
135 distorted videos by H.264 and MPEG2 coding with 
and without transmission error. The video resolution is 
1920 x 1080 pixels at 59.94 fields/sin interlaced format [55]. 

We discarded videos with transmission errors and tested 
our model only on compressed videos, since the proposed 
model aims to predict quality of compressed videos. Hence, 
a = 9 and b = 8 in the experiment. In addition, we extracted 
features based on all fields rather than frames, because deinter­
lacing might introduce extra distortion to the video sequences. 
We performed leave two-fold-out validation with 16 videos 
compressed by H.264 and MPEG2 in each test. In comparison 
to the linear regression and the SVR in Table IV, the MLP still 
gave the best performance though the SVR was more precise 
(smaller standard deviations in Table IV). We also noticed that 
all the three mapping methods were not as stable as in the 
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TABLE IV

COMPARISON OF THE PERFORMANCE OF THE VQA ALGORITHMS. A VALUE CLOSE TO 1 FOR THE MEAN OF THE SROCC OR LCC, AND A VALUE

CLOSE TO 0 FOR THE MEAN OF THE RMSE OR THE MAE INDICATES SUPERIOR CORRELATION WITH THE SUBJECTIVE ASSESSMENTS.

A VALUE CLOSE TO 0 FOR THE STANDARD DEVIATION INDICATES A HIGH ROBUSTNESS OF THE CORRESPONDING MODEL

IRCCyN video database. This is not surprising since there are
fewer references and two types of distortion in this database.

3) LIVE Mobile Video Database: It consists of 10 reference
videos and 200 distorted videos, each of resolution 1280 × 720
at 30 frames/s, and with a duration of 15 s. A single-stimulus
continuous quality evaluation study with hidden reference was
conducted. The videos were displayed on the Motorola Atrix
smartphone for a mobile study [56]. The quality ratings are in
the range of [0, 5].

For the same reason as in the VQEG HDTV Pool2 database,
we validated our model on ab = 40, where a = 10 and b = 4,
compressed videos. It is not suitable to perform k−fold cross
validation with such small number of data. Therefore, the leave
two-fold-out cross validation was carried out with 8 videos in
each test, and the training and testing process was repeated
45 times. Unfortunately, all the mapping methods failed in
the database. We attribute the failure to the small number of
videos. The mapping was over trained on the training set, and
therefore lead to a low and unreliable performance on testing
set. The old metric in [1] was tested with the same
cross-validation strategy and was indeed inferior to the
proposed model (no data given in this paper).

4) LIVE Video Database: This database consists of
10 reference videos and 150 distorted videos, each with a
resolution of 768×432 pixels and a length of 10 s. A total of
15 distorted sequences were generated from each reference
sequence using four different distortion processes. Each
distorted video was evaluated by 38 human observers.
An MOS in the range of [0, 100] is provided as the subjective
quality assessment of each distorted video [57].

The leave 2-fold-out cross validation was performed on
80 (a = 10 and b = 8) videos compressed by MPEG-2
compression and H.264 compression. The training and testing
process was repeated 45 times, each with 16 videos for
testing. We compared the performance of our model with the
training-based FR-VQA algorithm in [43]. The results of linear
regression were also given to provide a baseline for readers.

The proposed model slightly outperformed the FR-VQA
algorithm in [43] in terms of means of the LCC, SROCC,
RMSE, and the MAE, but their standard deviations were
higher in our model. Moreover, our model is distortion-
specific and limited to compressed videos, whereas the
FR-VQA in [43] is general purpose. However, we still believe
the performance of our model is comparable with the
FR-VQA algorithm since predicting video quality without
reference is much harder.

We noticed that in our experiment the performance of
FR-VQA [43] was worse than the original results reported
in [43]. Assuming this is due to the different cross-validation
strategy, we then conducted the 10-fold cross validation, as
in [43]. As expected, we obtained similar results, as shown
in Table IV.

The error bars of the LCC, SROCC, RMSE, and the MAE
in all experiments were plotted in Fig. 8 to visually compare
the performance of mapping methods and VQA models.
In general, the more videos in a database, the better were
the performance of our model. The linear mapping, with
no surprise, performed worse than the SVR and the MLP.
In addition, the performance of SVR-based nonlinear mapping
was more precise (smaller standard deviations in Table IV)
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Fig. 8. Standard error bar for performance evaluation and comparison in (a) IRCCyN video database, (b) VQEG HDTV Pool2 database, (c) LIVE mobile
video database, and (d) and (e) LIVE video database. The left y-axis corresponds to the LCC and SROCC, and the right y-axis to the RMES and MAE. The
cross-validation strategies are 10-fold in (a) and (e), and leave two-fold out in (b)–(d).

throughout the cross validation than that of the MLP-based
mapping, though the former was not as accurate as the latter.
Therefore, it is hard to conclude, which one is better than the
other.

5) Summary: Instead of adopting the leave-one-out
cross-validation approach for only one limited size video
database, as in [1], we have conducted a more comprehensive
validation. Experiments used four video databases with diverse
content and various types of video compression, and per-
formed content-sensitive cross-validation strategies to estimate
the general performance on unknown data. The proposed
model was also compared with training-based methods,
such as the linear regression and the SVR, and benchmarked
against four popular FR-VQA metrics and a state-of-the-art
training-based FR-VQA algorithm. In addition to improving
the algorithm performance from [1], the statistical results

presented in Table IV and Fig. 8 provide a more robust
validation of the model.

VI. CONCLUSION

The VQA by subjective user studies is time consuming
and expensive and may be replaced by a suitably designed
objective NR-VQA. To assess the quality of H.264 coded
videos, an NR-VQA model was presented, based on analyzing
the local DCT coefficients of compressed video frames. Based
on the properties of natural scenes and the different types of
distortion in compressed videos, the proposed model combines
the existing artifact- and NSS-based approaches. It is compa-
rable with one state-of-the-art FR-VQA method according to
the evaluation results for the LIVE video database.

The proposed model can quantify the distortion of a
video sequence by extracting a few but efficient features for



544

distortion measurement and adopting a simple neural network
for the quality prediction. In the model, a DCT was taken
within a local window, which moves pixel-by-pixel over
the entire frame to generate the so-called DCT map. For
each frame, six bands are extracted from the DCT map.
Six frame-level features, including three artifact metrics and
three statistical metrics, are extracted from these bands. The
frame-level features are transformed to video-level features
through temporal pooling. Finally, a trained multilayer neural
network gives the predicted video quality according to the six
video-level features.

The performance evaluation was conducted on the
IRCCyN video database, the VQEG HDTV Pool2 database,
the LIVE mobile video database, and the LIVE video database.
The results for videos compressed by H.264/SVC, H.264, and
MPEG2 show a strong correlation between the predicted qual-
ity and the subjectively assessed quality. It is also clear that the
proposed model is comparable to one FR-VQA algorithm in
terms of Pearson’s correlation coefficient, SROCC, the RMSE,
and the MAE.

However, the proposed metric is distortion specific and data
driven. Thus, the disadvantage of data-driven approaches is
also applied to our model. For example, it is highly prone
to overfitting of their parameters on small training sets, and
therefore results in a low performance on unknown data.
In addition, tests of their general performance on unknown
data are not robust across content. Moreover, the uncertainty
of subjective results [27] and the uncertainty of the pre-
dicted quality scores call for better statistical tools to evaluate
and compare the performance of machine-learning-based
methods.

The proposed model is designed for compression-distorted
videos and aims at evaluating the performance of imaging sys-
tems based on the H.264/SVC, H.264, or MPEG2 compression
standard, such as mobile phone cameras, HD camcorders, and
video surveillance systems. Thus, its application is limited
to compressed videos. The luma component was used for
measuring the distortion frame by frame during the video
analysis. Hence, the distortion in the temporal domain and
the chroma components cannot be obtained using the proposed
method. To include these effects, further study of the properties
of natural scenes and the influence of various compressions on
these properties is required. In addition, it may be possible to
identify the most efficient features among the extracted ones
to simplify the nonlinear mapping model and to decrease the
complexity of the model, whereas preserving or improving
its performance. An explicit nonlinear mapping, for instance,
a parametric function of features, is also in demand to cir-
cumvent the intractable problem of overfitting in data-driven
methods.
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