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Privileged Information-based Conditional Structured
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Abstract—This paper introduces a regression method, called
Privileged Information-based Conditional Structured Output Re-
gression Forest (PI-CSORF) for facial point detection. In order to
train Regression Forest more efficiently, the method utilizes both
privileged information, that is available only during training such
as head pose or gender, and shape constraints on the location of
the facial points. We propose to select the test functions at some
randomly chosen internal tree nodes according to the information
gain calculated on the privileged information. In this way the
training patches arrive at leaves tend to have low variance both
in terms of their displacements in relation to the facial points
and in terms of the privileged information. At each leaf node, we
learn three models: first, a probabilistic model of the pdf of the
privileged information; second, a probabilistic regression model
for the locations of the facial points; and third, shape models that
model the interdependencies of the locations of neighbouring
facial points in a predefined structure graph. Both of the
latter two are conditioned on the privileged information. During
testing, the marginal probability of the privileged information
is estimated and the facial point locations are localized using
the appropriate conditional regression and shape models. The
proposed method is validated and compared with very recent
methods, especially that use Regression Forests, on datasets
recorded in controlled and uncontrolled environments, namely
the BioID, the Labelled Faces in the Wild, the Labelled Face
Parts in the Wild and the Annotated Facial Landmarks in the
Wild.

Index Terms—regression forest, facial point, privileged infor-
mation, structured output.

I. INTRODUCTION

DETECTING semantic facial points such as the mouth
corners and the tip of the nose, is often the first step

for many applications like face recognition and facial expres-
sion analysis. This has been a very active field in computer
vision where considerable progress has been made over the
last years[1], [2]. While most methods are tested on images
recorded in constrained environments, some recent works in
localizing facial landmarks have been extended to deal with
more challenging face images collected “in the wild” [3], [4],
[5], [6], [7]. However, detecting facial point in face images
taken in uncontrolled conditions remains challenging due to
high variations in facial appearance, pose, expression and also
due to occlusions and illumination changes.

In recent years, Random Forests (RFs) have become in-
creasingly popular for various high level computer vision tasks
[8], [9] given their ability to handle large training datasets,
their generalization power, their speed, and the relative ease of
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their implementation. Recently, random regression forests have
been applied to the problems such as human pose estimation
[10] and facial point detection [4]. In this framework, we make
the following two contributions.

Our first contribution is that we learn higher quality deci-
sion trees using some additional information. That additional
information, like the pose in [4], is only available at the
training stage but not available at testing. To be consistent
with the SVM-based LUPI (Learning Using Privileged In-
formation) paradigm proposed by Vapnik & Vashist[11], this
kind of additional information is called privileged information.
Inspired by the LUPI paradigm, we propose a mechanism
for regression forests which allows one to take advantage
of the privileged information when training trees. A similar
idea also appeared in methods that build regression forests
that are conditioned on some global/additional information,
such as [10] and [4]. Both of these models have shown that
learning the probabilities of the target conditioned on global
information can dramatically increase the detection accuracy
while maintaining a low computational cost. However, neither
[10] nor [4] exploited the privileged information when building
the decision trees, but only utilized it at leaf nodes.

Our second contribution is that we model the shape con-
straints between the locations of the different points within
the forest. In contract to the traditional methods that learn
one or several statistical shape models using global parametric
representation, our method builds shape models at each leaf
node. In this way, the shape models are naturally conditioned
on the test images. A recent work [12] also couples a shape
model with random forests regression voting. However, that
shape model is global and learned independently of the forest.

Similar to general random forests, our model is efficient to
learn and to apply. In contrast to the classic random forest
paradigm, the training process aims at decreasing the variance
of image patches both in terms of privileged information and
in terms of displacements relatively to the facial points. This
goal is achieved by selecting the test functions at some ran-
domly chosen internal tree nodes according to the information
gain calculated from the privileged information. At each leaf
node, we learn the probability of the privileged information,
regression and shape models conditioned on it. During test-
ing, the marginal probability of the privileged information is
estimated and the facial point locations are localized using the
appropriate conditional regression and shape models.

A preliminary version of part of this paper appeared in [13],
where we introduced the concept of Structured Output Re-
gression Forests and in [14], where we studied how privileged
information can be used for tree induction. This paper presents
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a general formulation that combines the two and includes a
more in-depth discussion on the effectiveness of different types
of privileged information and regression model selection. In
this work we provide a thorough experimental evaluation to
compare with the state-of-the-art methods on dataset recorded
in controlled environment like BioID and also datasets with
face images collected from the Internet, namely, Labelled Face
in the Wild, Labelled Face Parts in the Wild and Annotated
Facial Landmarks in the Wild.

The rest of the paper is organised as follows. We present
related works in random forests and facial point detection in
Section 2. In Section 3 we describes the proposed method.
Experimental results and comparisons with the current state-
of-the-art methods are given in Section 4. In Section 5 we
draw some conclusions.

II. RELATED WORK

In this section we first present a brief review of the random
forests literature that is relevant to this work, and then present
a review of related works on facial point detection.

A. Random Forests

Random forests have emerged as a powerful and versatile
method successful in real-time human pose estimation, seman-
tic segmentation, object detection and action recognition [8],
[15], [16]. Recently, it has been applied to several problems
on face analysis such as facial point detection [4], 3D head
pose estimation and 3D facial point localization [17]. In
what follows we only summarize very related methods. A
more comprehensive introduction to decision forests and their
applications in computer vision is given in [18].

In [17], in order to estimate the head pose, first the nose
tip is localized the and then head pose is estimated. A voting
framework is introduced to gather evidence from patches that
are extracted from the whole depth image that can vote for
the location of the nose tip and other key facial points. Since
patches belonging to different parts of the image contain
valuable global information, a particular point can be detected
even when it is occluded. They have shown some success even
when the nose tip is occluded.

So far as privileged information (i.e. additional information
at training phase) is concerned, Sun et al. [10] propose a
conditional regression forest model for human pose estimation.
During training, at each leaf node, the probabilistic vote is
decomposed into the distribution of 3D body joint locations for
each leaf ID and the mapping probability. The latent variable
can encode both known and unknown/uncertain properties
of the pose estimation problems. When the global property
is unknown, they propose to jointly estimate the body joint
locations and the global property. Dantone et al. [4] also
introduced a regression forests model conditioned on head
pose for facial point detection. In their method, they divide
the training set into subsets according to head pose yaw angle.
An individual regression forest is trained on each subset and
during testing a set of regression trees is selected according to
the estimated probability of the head pose. The later is given by
an additional forest trained to perform head pose estimation.

Both [10] and [4] are called conditional regression forests. In
this work we denote them by CRF (by Sun et al.) and C-
RF (by Dantone et al.) respectively. From the perspective of
training complexity, CRF proposes to share the tree structure
instead of training a separate forest for each global property
state.

B. Facial Point Detection

Facial point detection, or face parts localization, is a well-
studied problem in computer vision as it is often the first step
for further face analysis such as face recognition and facial
expression recognition. We group them into local based and
holistic based. The former involves local detection and usually
combines with shape models. The latter treat the pose vector
(locations of the facial points) as whole and regress it directly.

Local based Method: A wide variety of local feature detec-
tors have been proposed which can be broadly classified into
classification-based and regression-based. The classification-
based approaches aim at designing discriminative classifiers
for an individual facial points based on the texture information
of the specific point and its surrounding region. Different types
of classifiers and image features are employed. For instance,
in [19], GentleBoost classifier based on Gabor features is
proposed to detect 20 facial points separately. The classic Sup-
port Vector Machine (SVM) classifier is used as facial point
detector in [20], [21], [22] and [6] with various image features
such as Gabor,SIFT [23] and multichannel correlation filter
responses [24]. Regression-based approaches to facial point
detection have attracted the attention of researchers in recent
years. Cristinacce & Cootes [25] presented a regression-based
approach to facial point detection. It combines a GentleBoost
regressor with an Active Shape Model (ASM) used to correct
the estimates obtained. Another sequential regression-based
approach was presented in [26], where Support Vector Regres-
sors (SVRs) were combined with a probabilistic MRF-based
shape model, that restricts the search to anthropomorphically
consistent regions. Regression forests in recent years have also
proven to be very powerful in detecting facial points [4]. The
location of facial point is estimated by accumulating votes
from nearby regions.

Since only a few facial points are discriminative, usually
shape models are required to regularize the local detection
outputs. Active Shape Model (ASM) [27] is one of the most
common approaches to model the face shape. First, a mean
shape is calculated as the concatenation of all the facial point
coordinates. Then PCA is applied to find the basis of face
variations. The Constrained Local Model (CLM) [28] learns
a model of shape and texture in a similar manner as ASM,
however, the texture is sampled in patches around individual
features. The family of methods coined CLMs is shown to
have better performance than ASM and AAM (e.g. [29]).
Instead of using a densely connected spatial model, in [5]
a tree model is proposed and the global optimal solution can
be found through efficient dynamic programming algorithms.
Further more, this work also proposes to build a mixture of
tree-structured models to capture topological changes due to
viewpoint and it has been used in [30], [31]. There are some
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other shape models based on facial points such as the Pictorial
Structure[32], Markov Random Fields [26], Restricted Boltz-
mann Machines [33], graph matching [34], and Regression
Forests votes sieving [35].

Since the ratio of distance between co-linear points is fixed
under affine transformations, line segments between facial
points are also used to model the face shape such as [36].
Liang et al. [37] use a condensation algorithm modified with
spatial constraints. It considers the segments forming the
contours delimiting facial components, and a shape model
is used to constrain consecutive segments to have coincident
limits (closing the contour), and to keep a valid angle between
them. The line segment is used in [7] as a type of geometry
features for its cascade regression. Similar idea is employed
in [26] but they go one step further and consider the relations
between any two line segments connecting two pairs of facial
points.

Holistic based Methods: Holistic based methods use global
information (typically the whole facial image), and often try
to align the shape in an iterative way. A typical method in
this category is the Active Appearance Model (AAM) [1].
Such methods have difficulties with large variations in facial
appearance due to head pose, illumination or expression. Their
localization accuracy also degrades drastically on unseen faces
[38] and low-resolution images. A recent attempt was made
by [39] which shows improvement in memory and time re-
quirements to train a discriminative appearance model. Instead
of using a simple linear regression in each iteration of the
AAM fitting, better optimizations are proposed in [40], [41],
[42] and [43]. Noticeable progress in iterative holistic shape
alignment has been made in recent years in the framework of
Cascaded Pose Regression (CPR) [3], [7], [44]. Those methods
directly learn a structural regression function to infer the whole
facial shape (i.e., the location of the facial landmarks) from
the image and explicitly minimize the alignment errors in the
training data. The primitive random fern regressor at each
iteration employs shape indexed features as input. Recent
iterative approaches include the work by Xiong & de la Torre
[43] based on SIFT features and convolutional neural networks
[45]. Most of the iterative methods in this category depend on
the initialization. Current CPR based methods like[3], [44],
[46] attempt to deal with this issue by initializing the method
with several shapes and then by selecting the median value of
the outputs. [46] proposes a smart restart scheme to improve
the robustness to random initialization. An user-assisted facial
point localization algorithm is proposed recently [47]. Once
the automatic fitting is performed, the user is instructed to
pick the landmark with the largest error and move it to the
correct location after which the algorithm adjusts the locations
of the remaining landmarks to take into account the user input.
The interaction round is repeated until the user is satisfied
with the results. [48] is very close to our work that also uses
regression forest for face analysis, which combines multiple
tasks, face alignment, facial expression recognition and head
pose estimation in a unified framework.

III. PROPOSED METHOD

In this section we describe the proposed method. The learn-
ing stage is illustrated in Fig. 1. This includes the privileged
information-based tree induction (III-A) and models-learning
at leaf nodes (III-B). As shown, by randomly selecting vari-
able whose information gain is calculated, nodes decreasing
the privileged information uncertainty and nodes decreasing
displacement uncertainty, are interleaved in the decision tree.
At each leaf node, three models are learned: First, a proba-
bilistic model of the pdf of privileged information; Second, a
regression model associated with each base feature point. A
facial point is a base point for a certain leaf if the average
relative offset of the patches that arrive at the leaf from the
facial point in question is less than a threshold; Third, shape
models related to the base feature point. Both of the latter two
are conditioned on the privileged information.

During inference (described in Section III-C), the privileged
information is firstly estimated and then it is used in the
subsequent steps for calculating the regression voting map and
the structure constraint voting map, as shown in Fig 2. The
final detection is carried out on the product of these two maps.

A. Privileged Information-Based Tree Induction

We pose the facial point localization as a regression prob-
lem: given a set of input/output pairs (training data)

(x1, y1), ..., (xM , yM ), xm ∈ X , ym ∈ Y,m ∈ 1, ...M,

the goal is to find a mapping function f :x → y from a set
of mapping functions F :X → Y with a small error on the
prediction y = f(x). Similar to [11], in our method, additional
privileged information y+ ∈ Y+ is available during training
as well. That is, the training set consists of triplets (x, y+, y)
instead of pairs (x, y). The privileged information y+ ∈ Y+

belongs to a space that is different from the space Y . The
goal remains to find the best function f :x → y in the set of
admissible functions.

In our case, a training sample is an image containing a
face, the locations of facial points in the image and labels
of privileged information, e.g., the head pose and subject’s
gender. Several fix-sized patches are randomly extracted from
a training image, each represented by the image features
x = (x1, x2, ..., xF ) ∈ X where F is the number of feature
channels. Each patch is also annotated with a displacement
vector d = (d1, ..., di, ...dN ) ∈ Y to each of the N facial point
and the privileged information label y+ ∈ Y+. The set of train-
ing patches is therefore given by P = {Pm = (xm, dm, y

+
m)}.

In this paper each tree considers only one type of privileged
information.

1) General Tree Growing Procedure: A regression forest
T = {Tt} is an ensemble of regression trees Tt. Each
regression tree is most often induced greedily based on a
randomly selected subset of the training data set P = {Pm},
in the following manner [49]. An empty tree starts with only
one root node. Then, a number of test function candidates, φ,
φ(x)→ {0, 1}, defined over the image features x are sampled
from a predefined distribution. Each patch is sent either to the
left or to the right child depending on the test result. In this



4

Fig. 1: An illustration of our proposed learning stage. An illustration of idealized tree induction for PI-RF and RF is shown
on the left. The training patches are from face images with a large variety w.r.t. the Privileged Information (PI) (here the head
pose). A classical RF attempts to guide patches that are located around the same facial point at the same leaf node. However,
as the example shows, the visual features vary a lot due to changes in the PI and therefore it is difficult to guide them to the
same leaf. On the contrary, in the PI-RF framework, the best split-function at some random internal nodes (in red) is selected
directly according to the PI. As such, patches stored at the leaves tend to have low variation both in PI and in displacement.
The information gain IGy at dark nodes is calculated based on the entropy Hy , defined in (4) while at the color nodes, the
information gain IGy+ is calculated based on the entropy Hy+ , defined in (6). At each leaf node, one (or more) base feature
point is defined and tree models are learned.

X =

Test face region Independent voting Structure constraints Product voting map Detection result SO-based detection result

Fig. 2: An illustration of the structured output inference model. The face image shown here is Laura Flessel 0001.jpg from
LFW dataset.

way, a test function φ partitions the training set into two sets,
PL(φ) and PR(φ). Each candidate test function is evaluated
according to a certain scoring function, e.g. information gain,
so that high scores are assigned to splits that aid in predicting
the output well, i.e. those that reduce the average uncertainty
about the target. The best test function, that is the one with the
highest score, is selected and stored at the node in question.
Then, the training set is partitioned according to this test into
two subsets that are propagated to the two children nodes. The
same procedure is recursively applied at each child node. The
procedure stops when certain criteria are met, typically, when
there are fewer than a minimum number of examples or a
maximum tree depth is reached.

Our binary test function φf,R1,R2,τ (x) is defined as in [8]:

φf,R1,R2,τ (x) =

{
0 if xf (R1) < xf (R2) + τ
1 otherwise (1)

This is a comparison of the average value of the feature
channel f in two asymmetric regions, R1 and R2, defined

within the patch in question. xf (R) is the average value in
region R and τ is a threshold.

Typically, the test function are randomly generated and
the one that maximizes the information gain IG(φ) that is
achieved by splitting the data is selected. That is,

φ∗ = arg maxφIG(φ) (2)

The information gain is a popular criterion used to determine
the quality of a split and has been used for both classification,
regression and density estimation[18]. The information gain is
the mutual information between the local node decision (left
or right) and the predicted output and it is defined as follows,

IG(φ) = H(P)−
∑

s∈{L,R}

ωsH(Ps(φ)), (3)

where ωs = |Ps(φ)|
|P| is the ratio of the patches sent to the child

node. H(P) is a measure of uncertainty on the set P and it is
usually related to the entropy of the labels of the elements in
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the set. Depending on the nature of labels, H(P) can either
be a discrete entropy or a differential entropy. We will address
this in next section.

2) Entropy Estimator: In our case, since Y and Y+ are
different spaces, with different properties, appropriate entropy
estimator is needed.

For Y , we use the class-affiliation method proposed by [4]
to measure the uncertainty, that is defined as:

HY(P) = −
N∑
i=1

∑
m p(ci|Pm)

|P|
log

(∑
m p(ci|Pm)

|P|

)
, (4)

p(ci|Pm) ∝ exp

(
−|d

i
m|
λ

)
, (5)

where p(ci|Pm) indicates the probability that the patch Pm is
informative about the location of the feature point i. The class
affiliation assignment is based on the Euclidean distance to the
feature point. The constant λ is used to control the steepness of
this function. In this way, we can avoid making a multivariate
Normal distribution assumption on multiple feature points and
calculate the differential entropy as in [18].

So far as Y+ is concerned, we only consider discrete privi-
leged information because: 1) for our problem it is difficult to
obtain the ground truth of the continuous head pose for each
face image; 2) learning the model conditioned on continuous
variable is still not well studied [10]. Therefore we discretise
the head pose information by partitioning the pose space.
In this context, head pose estimation becomes a multi-class
classification problem. The finite set of privileged information
classes is represented as Y+ = {1, 2, ...,K}. For each class,
let hk be the number of occurrences of the class, that is
hk =

∑
Pm∈P δ(y

+
i = k). The empirical class probabilities

p̂k(P) = hk

|P| (where |P| =
∑
k hk) are often used to calculate

the entropy, i.e. HN (P) = −
∑K
k=1 p̂k(P) log p̂k(P) (see

e.g. [18] and references therein), however, it is pointed out
by Nowozin [50] that the naive entropy estimator is biased
and universally underestimates the true entropy. Therefore, as
suggested in [50], we use the Grassberger entropy estimator
[51], given as:

HY+(P) = log |P| − 1

|P|

K∑
k=1

hkG(hk), (6)

where the function G(h) is given by G(h) = ψ(h) +
1
2 (−1)h

(
ψ(h+1

2 )− ψ(h2 )
)
, and ψ is the digamma function.

For large h the above function behaves like a logarithm and
(6) is identical to naive entropy when n → ∞. For small h,
the estimation using (6) is shown to be more accurate.

In (4) and (6) we have designed the entropy estimator
for both Y and Y+. During tree induction, at each internal
node, the best split function is selected either based on (4)
or (6). That is, the evaluation is either based on privileged
information, or on the target. Note that in both cases the
test itself is on the patch appearance, thus applicable both
at training and test phase. When one of the stopping criteria
of tree growing is met, several models will be learned at each
leaf from patches that arrive there. An illustration of the tree
induction process of our PI-based RF and of the traditional
RF is in Fig. 1.

B. Models at Leaf Nodes

This section provides a description of our conditional regres-
sion model inspired by [10]. More specifically, three models
are learned at each leaf: 1) a probabilistic model of the pdf
of the privileged information at the leaf; 2) a probabilistic
regression model for the locations of the base facial points; 3)
shape models that model the interdependencies of the locations
of facial points that are neighbors of the base point in a
predefined structure graph.

1) Probabilistic Model of Privileged Information: First,
at each leaf node, we calculate the pdf of the privileged
information. Let n be the total number of training patches that
arrive at a leaf node l, and let nk be the number of patches
belonging to class k. Then the probability for the class k at
leaf l is

p(yk+|l) =
nk
n
, (7)

where yk+ is a shorthand notation that y+ ∈ Y+ belongs to
the class k, i.e. y+ = k.

2) Conditioned Regression Model: Second, at each leaf
node, we learn the conditional regression model for the
base feature point. Our model shares tree structures for all
states of privileged information. This is similar to the Partial
conditional regression model proposed in [10]. The samples
are categorized into sub sets according to their privileged
information labels and one conditional regression model is
learned for each state.

Several regression models have been proposed in the liter-
ature. In our experiments we investigated two, both with one
offset vector ∆ and a weight ω, as the following.

1) A Mean Value model in which the offset vector ∆ is
the mean value ∆ of the offsets and the voting weight
ω is defined as ω = |S∆|−

1
2 where S∆ is the covariance

matrix.
2) A Mean-Shift model in which the offset vector ∆ is the

mode of the largest cluster returned from a Mean-Shift
algorithm applied on the corresponding set of patches
that arrive at leaf node in question. The weight w is
assigned as the relative size of the largest cluster.

This greatly reduces the model complexity and training time
since we do not need to train and store separate random forest
for each state of privileged information as in [4]. Moreover,
as shown in our experiments, it leads to better results.

The probability that the facial point i is located at yi, given
that a voting patch extracted at location zx that arrive at leaf
l is given by

p(yi|yk+, l) ∝ ωkil · δ(||∆k
il||2 ≤ γ) (8)

where yi = zx + ∆k
il, i and yk+ indicate the facial point

number and privileged information state respectively. For
notational clarity we will drop the facial point index i in the
subsequent equations. γ is a threshold that prevents patches
casting votes far away from place they are extracted. This
factor avoids a bias towards an average face configuration as
the votes from long distant patches are lack of accuracy. Thus
at each leaf, the regression-voting models are only valid for
those patches whose mean offset is less than the threshold γ.
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In practice, each leaf is usually associated with one (in some
cases two or more) facial point which we call a base point for
the leaf in question.

3) Conditioned Shape Model: Third, at each leaf node,
we learn the shape model for structured output regression.
In contrast to the traditional face shape model such as ASM
or CLM, our shape model is conditioned on the image in-
formation. Here we assume that the structure of the facial
points can be organized in a graph, G = (V,E), where V
and E denote the sets of nodes and edges respectively. The
nodes i = 1, ..., N ∈ V correspond to facial points and the
edges (i, j) ∈ E capture their spatial relations. The graph can
either be dense or sparse or a tree structured model as [5].
In this work, we assume the graph structure is already known
and what needs to be done is to parameterise it. In practice,
we manually define a sparse graph model according to the
physical proximity of the facial points.

Recall that each leaf is associated with one (or more) base
points. We proceed to model shape constraints between the
base point and its neighbours in the predefined structure graph.
More specifically, assuming j is one of the neighbouring nodes
of node i in graph G, i.e. j ∈ Ne(i), their relative position is
modelled as a Gaussian,

p(yj − yi|yk+, l) = N(dj − di|µji ,Λ
j
i ) (9)

Note that yk+ is the privileged information state and that the
shape model is conditioned on it. One model is learned for
each state. Recall that dj and di denote the patch offset to the
j-th and i-th point respectively. µji and Λji denote the mean
value and covariance matrix of the Gaussian model.

C. Inference

During testing, patches from the test image are densely
sampled from the whole image and sent down through all trees
in the forest. A stride parameter is set to control the density of
the sampling. Each patch is guided by the binary tests stored
at the internal nodes and will arrive at one leaf of each tree
in the forest. In what follows, we use I denote the test image
data and let X be the set of image patches x extracted from
the image. Let L denote the set of leaf nodes in the forest.

We now describe how to estimate the facial point locations
and the privileged information state based on the models at
leaves defined in section III-B.

1) Privileged Information Inference: Similar to the MaxA
approach in [10], the scoring function of privileged infor-
mation state yk+ is defined as a sum of probabilistic votes
contributed from all patches. Formally:

S(yk+|I) =
∑
x∈X

∑
l∈L

p(yk+|l)p(l|x) (10)

where p(l|x) is delta function that a patch arrives at a leaf node
l (referred to as the leaf ID mapping probability). We then
estimate the most likely state of the privileged information ŷ+

as:
ŷ+ = arg maxyk+∈Y+S(yk+|I). (11)

This estimate will be used as a known variable in subsequent
steps.

2) Independent Regression: Firstly, we will describe the
voting mechanism for independent estimation of locations of
facial points, i.e. without considering the shape constraints.
Similar to the Partial Model in [10], by expressing the
probabilistic vote in terms of the distribution of each facial
point for each codeword (leaf id) p(yi|l) and the probability
p(l|x) that the image patch is mapped to a codeword, the
scoring function conditioned on the privileged information is
defined as

S(y|yk+, I) =
∑
x∈X

∑
l∈L

p(yi|yk+, l)p(l|x) (12)

Using the estimate ŷ+ of y+ given by (11), the best
candidate of scoring functions over the privileged information
state is selected as:

Ŝ(y|I) = S(y|ŷ+, I). (13)

Then mean-shift mode finding algorithm can be applied on the
selected scoring function for the corresponding facial point.

3) Structured Output Regression: Second, we will describe
how to infer structured output based on the conditional shape
model in (III-B3). Assume that a patch x that is extracted at zx
arrives at a leaf node l for which i is one of the base points.
The vote for the i-th point is cast at ȳi = zx + ∆il. Note
that when privileged information is taken into account, ∆k

il

(instead of ∆il) is used to estimate ȳki where k is the state of
the privileged information given in (8). Here we drop the index
k to simplify the notation and make this model more general
for regular regression forests. Recall (see III-B3) that at each
leaf we maintain shape models that model the relative locations
of the neighbours j ∈ Ne(i) for each base point. Then. given
the estimate ȳi and the Gaussian model in (9), the structure
constraint made on j is introduced in terms of the probability
that the point j is located at yj . The latter is modelled as
ps(yj |ȳi, l) = N(ȳi + µji ,Λ

j
i ). Finally, the shape constraints

on j given the estimated positions of all its neighbours i (i ∈
Ne(j)) are in the form of a scoring function Ss that gathers
the votes cast by all the corresponding patches.

Ss(yj |I) =
∑

i∈Ne(j)

∑
x∈X

∑
l∈L

ps(yj |ȳi, l)p(l|x) (14)

For each facial point, after accumulating votes cast from all
patches in a test image, a local appearance evidence term like
(13) and a structure constraint term like (14) are obtained.
Then the structure constrained voting map is given as:

Sv(y|I) = S(y|I) · Ss(y|I). (15)

The mean-shift mode finding algorithm is applied on the final
voting map to localize each facial point.

IV. EVALUATION

In this section, we present results on public datasets and
compare with a number of methods in the literature. In
comparison to the recent state-of-the-art methods, our method
shows better or comparable result in terms of location accuracy
and training efficiency.
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Fig. 3: Structured Output Regression. (a) shows manually
defined sparse spatial relations of parts on face based on their
physical locations. 20 selected face parts ( dots) are displayed
and their relations are represented by dark lines. The purple
dot is one representative facial point and its neighbouring
points are the red dots with purple shadow. (b1) illustrates
an example of the independence assumption between points
used in previous regression forests methods. Here we use xi
to represent the voting element x that is able to vote for part
i, i.e. x arrive at leaves of which the i-th point is the base
point. (b2) shows the spatial shape model of our method, in
which the position of the 4th point does not only depend on
its voting patches x4 but also on the estimated positions of its
neighbouring points in the structure graph.
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Fig. 4: Representative face images in BioID (left) and LFW
(right) along with their facial point annotations. The green
segments on the right face image represent our predefined
graph model for the corresponding 10 facial points.

A. Datasets

In this paper we focus on datasets that contain face images
that are recorded in uncontrolled environments, i.e. in the wild.
One representative dataset obtained at laboratory conditions
BioID is also used for comparison. Below we briefly describe
the datasets that we used.

The BioID dataset [52] has been recorded in a laboratory
environment using a low-cost web-cam. It consists of 1521
images, each depicting a frontal view of face of one of
23 different subjects with various facial expressions. One
representative image from this dataset is shown in Fig. 4. Most
of the previous methods in the topic of facial point detection
have reported their results on this dataset. This allows us to

compare our work with the state-of-the-art methods.
The Labelled Face in the Wild (LFW) dataset [53] has

been designed for studying the problem of unconstrained
face recognition. It contains more than 13,000 face images
collected from the web. It consists of face images from 5749
individuals, 1680 of which have two or more distinct photos.
Dantone et al. [4] have annotated 13,233 faces for this dataset
with the location of 10 facial points. The images exhibit a large
variation in face appearances (e.g., pose, expression, ethnicity,
age, gender) as well as general imaging and environmental
conditions (see Fig. 4 (right)).

The Labelled Face Parts in the Wild (LFPW) is also
a dataset with face images in the wild. The images are
downloaded from the Internet under a variety of acquisition
conditions, including large variability in pose, illumination,
expression, partial-occlusion of the face. This dataset shares
only image URLs on web but some of them are no longer
valid. Around 800 of the 1132 training images and 220 of the
300 test images could be downloaded when we carried out
the experiment. In our experiment, we used the 220 testing
images to test our trained model.

The Annotated Face Landmarks in the Wild (AFLW) [54]
that contains real-world face images from Flickr. These images
exhibit a very large variability in pose, lighting, expression
as well as general imaging conditions. Many images exhibit
partial occlusions that are caused by head pose, objects (e.g.,
glasses, scarf, mask), body parts (hair, hands) and shadows.
We selected a subset in which all 19 frontal landmarks (i.e.
excluding the two ear lobes) were annotated that consists of
6200 images.

B. Evaluation Methodology

Throughout the experimental section, we measure the lo-
calization performance using the inter-ocular distance (IOD)-
normalized error. ei =

||yDi −y
G
i ||2

DIOD
. yGi is the ground truth

location of point i, yDi is the estimated location of the point
and DIOD is the inter-ocular distance, defined as the distance
between the eye centres. Since the locations of the eye centers
are not annotated in LFW dataset, the inter-ocular distance is
calculated as the distance between the midpoints of the ground
truth eye corners. A point is regarded as a correct detection
if ei < 0.1. This measure is used to calculate the successful
detection rate in the experiments.

To evaluate the overall performance of localization of mul-
tiple points on a face image, we use the m17 measure which
defined in [55] as the mean error over all the internal points.
Thus three of the 20 facial points, i.e. the chin and two temple
points (i.e., P19, P9 and P14 in Fig. 3), are excluded when
computing the m17.

C. Experimental Settings

1) Setup: As in most of the previous face points detection
approaches [4], [55], [12], our method assumes that the face
bounding box is given both for training and testing images.
The annotation of the LFW dataset already provides the face
boxes for all face images. For the BioID dataset, we applied
the Viola and Jones detector [56] in OpenCV to find the
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face bounding boxes (all bounding boxes are then resized to
125 × 125 pixels). The height is enlarged by 20% in order
to ensure all facial point points are enclosed. In order to
ensure a fair comparison, we keep most of forest training
setup in our experiments as similar as possible to the default
setting of facial points detector described in [4]. The key
setting parameters include: maximum depth of each tree (20),
test candidates at split node (2500), patch size (0.25 × face
box size), image features (one channel of normalized gray
values, 35 channels of Gabor features and 2 channels of Sobel
features), number of patches per image sample (100). Unless
stated otherwise, those parameters were used for forest training
in all of our experiments.

In order to illustrate the benefits of using privileged infor-
mation, we consider three types of privileged information,
namely, yaw head pose, roll head pose and gender status
for the LFW dataset. More specifically, we constructed the
privileged information as follows: we use the discrete head
pose labels for the yaw angle (left profile (20.3%), left (7.9%),
frontal (42.4%), right (9.4%), right profile (20.0%)) provided
by [4]. Based on the locations of the facial points, we estimate
the roll angles of head poses using the POSIT algorithm [57]
and discretise them into 3 labels (left tilt, upright, right tilt).
We discard the pitch angle because it is difficult to get the
ground truth for the face images in the wild. We also annotate
the gender status (male, female) for each face image.

2) Forests Description: In order to evaluate the contribu-
tions of each component of our methods, we have built 24
forests using variations of the methods and tested on the
LFW dataset (I). Below we describe the way in which the
different variants are built . RF-MV creates the tree in a
classical manner and at each leaf node, one single Mean Value
model is learned. RF-MS also builds the tree in in a classical
way but at each leaf node, a single Mean-Shift model instead
of mean value model is stored. PI-RF-MV and PI-RF-MS
are created using head pose yaw as privileged information
and their leaf node models are the same as RF-MV and
RF-MS. SORF-MV and SORF-MS are the structured output
variants of RF-MV and RF-MS respectively. Their privileged
information-based versions are PI-SORF-MV and PI-SORF-
MS respectively. CRF-YAW, CRF-ROLL and CRF-GENDER
are forests that conditional regression models are learned
based on corresponding privileged information, head pose yaw
angle, roll angle and gender status respectively while their
PI- counterparts (i.e., PI-CRF-YAW, PI-CRF-ROLL, PI-CRF-
GENDER) use privileged information during the tree building
process. The following 6 forest, from F15 to F20 are the
corresponding versions with additional shape models. All the
above forests have the same number of trees (10). Each tree is
trained using 1500 randomly sampled face images. The same
random number generator is used for the same tree index of
all the forests in order to make the comparison fair. Finally we
construct four hybrid forests, from F21 to F24, that are used
to evaluate the effect of fusing different types of privileged
information (see Section IV-D4). F25 shares the same forest
from F24, however, during testing, it uses the ground truth
privileged information to select the regression model at the
leaf node.

In the BioID dataset, we randomly select 400 face images
for testing and the remaining 1121 images are used for
training. Two different forests are built, each with 10 trees,
one (SORF) with structured output while the other not (RF).
Each tree is trained using 600 randomly selected images. The
structure graph for 20 facial points in BioID dataset is shown
in Fig. 3. For this dataset at each leaf node we use the mean
shift-based voting scheme.

D. Experimental Results

In what follows we summarize our results and discuss our
findings from the experiments performed on the LFW and
the BioID datasets. We evaluate the influence of the different
components of our models and compare with the state-of-the-
art methods.

1) Mean-Value vs. Mean-Shift: As stated in III-B2, we
have developed two voting schemes for the base point at
each leaf, i.e. Mean-Value Model and Mean-Shift Model. We
have conducted experiments on the LFW dataset in order to
compare their performance in localizing of the facial points.
By comparing the pairs: (F1, F2), (F3, F4), (F5, F6) and (F7
F8) in Table I and in Table II, we conclude that Mean-Shift
based voting scheme performs slightly better than Mean-Value
model. On average, the difference is around 0.2% in terms
of the mean localization error and 1.96% in terms of the
successful detection rate. In the remaining experiments we
used Mean Shift-based voting.

2) Effect of Privileged Information: In this part we will
assess whether: 1) using the information gain on the privileged
information as evaluation criterion at some internal nodes leads
to better trained trees; 2) using regression model conditioned
on the privileged information at leaf nodes is better. We
assess the first by comparing forests trained using privileged
information with their plain counterparts. We assess the second
by comparing forests with conditional models at leaf nodes
with their counterparts with single Mean Shift model at leaf
node. In Table III we present results with and without using
the head yew as privileged information.

TABLE III: Comparison of Mean Error (ME) and Successful
Detection Rate (SDR) of forests that using and not head pose
yaw privileged information (%).

Plain Training PI-Training
ME SDR ME SDR

Single Model base line base line ↓0.20 ↑1.14
Conditional ↓0.62 ↑3.31 ↓0.76 ↑4.14

Furthermore, we assess the usefulness of three types of priv-
ileged information separately, i.e. head pose yaw angle, roll
angle and gender status. As shown in Fig. 5, learning models
conditioned on head pose privileged information considerably
outperforms the single model approach. Similar improvements
can also be seen in Table I and Table II by comparing the
mean error and detection accuracy of F18, F19 with F6.
The improvement in the mean error when using a conditional
model is 0.78% and 0.52% respectively and the corresponding
increase in the detection rate is 4.43% and 2.53% respectively.
When using gender as privileged information, there is a 0.33%
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TABLE I: Mean error of each facial point in LFW dataset (%).

Forest ID Short Description P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avrg
F1 RF-MV 9.08 6.87 8.51 8.20 9.58 8.48 6.07 7.67 7.80 7.24 7.95
F2 RF-MS 9.29 6.72 8.23 7.85 9.40 8.23 5.65 7.84 6.95 6.89 7.70
F3 PI-RF-MV 8.35 6.65 8.15 7.78 9.37 8.22 5.93 7.51 7.51 7.12 7.66
F4 PI-RF-MS 8.39 6.28 7.96 7.76 9.44 7.92 5.83 8.09 6.67 6.71 7.51
F5 SORF-G 7.87 6.58 7.82 8.24 9.34 8.24 5.74 7.65 6.86 7.30 7.56
F6 SORF-MS 7.86 6.16 7.72 8.00 9.22 8.01 5.71 7.16 6.53 6.97 7.33
F7 PI-SORF-MV 7.72 6.45 7.61 7.93 9.04 7.96 5.67 7.41 6.77 7.20 7.37
F8 PI-SORF-MS 7.76 6.21 7.47 7.69 8.87 7.79 5.65 7.07 6.46 6.90 7.19
F9 CRF YAW 7.70 5.30 7.90 7.90 9.40 7.10 5.60 7.50 6.20 6.40 7.10
F10 CRF ROLL 8.60 5.40 7.80 7.80 10.10 7.60 5.60 7.70 6.70 6.70 7.40
F11 CRF GENDER 8.10 5.40 8.50 8.10 9.70 8.20 5.70 7.30 7.20 7.00 7.52
F12 PI-CRF-YAW 7.50 5.20 7.70 7.60 9.30 6.90 5.50 7.20 6.10 6.30 6.93
F13 PI-CRF-ROLL 7.90 5.40 7.70 7.60 10.10 7.70 5.60 7.50 6.70 6.70 7.29
F14 PI-CRF-GENDER 8.10 5.40 8.40 8.10 9.80 8.00 5.70 7.40 7.10 7.10 7.51
F15 CSORF-YAW 7.00 5.30 7.30 7.60 8.20 6.60 5.30 7.10 6.00 6.50 6.69
F16 CSORF ROLL 7.80 6.00 7.40 7.70 9.20 7.30 5.30 7.60 6.40 6.80 7.15
F17 CSORF-GENDER 7.80 6.20 8.10 8.30 9.10 7.90 6.00 7.70 6.70 7.30 7.51
F18 PI-CSORF-YAW 6.90 5.30 7.20 7.40 8.00 6.40 5.00 6.80 6.00 6.50 6.55
F19 PI-CSORF ROLL 7.30 5.60 7.10 7.50 9.50 7.30 5.30 7.00 6.40 6.60 6.96
F20 PI-CSORF-GENDER 7.80 6.60 8.40 8.40 9.40 8.00 6.00 7.80 6.80 7.40 7.66
F21 PI-CSORF-Y+G 6.88 5.36 7.29 7.51 8.11 6.45 5.05 6.88 6.10 6.59 6.62
F22 PI-CSORF-R+G 6.91 5.47 7.18 7.29 8.87 7.42 5.27 7.00 6.35 6.67 6.84
F23 PI-CSORF-Y+R 6.79 5.22 6.90 7.14 8.10 6.43 5.19 6.70 5.91 6.18 6.46
F24 PI-CSORF-R+G+R 6.84 5.37 7.37 7.52 8.26 6.60 5.19 6.80 6.12 6.51 6.66
F25 PI-CSORF-PIGT 6.70 5.30 6.70 7.14 7.76 6.32 5.00 6.60 5.71 6.11 6.33

TABLE II: Successful detection rate of each facial point in LFW dataset (%).

Forest ID Short Description P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avrg
F1 RF-MV 72.50 88.00 70.90 70.70 61.40 70.50 87.90 79.00 76.50 78.40 75.58
F2 RF-MS 77.20 88.40 72.30 73.00 63.70 72.90 90.80 79.60 82.00 80.70 78.06
F3 PI-RF-MV 77.20 90.00 73.20 73.00 62.50 71.70 89.20 80.70 78.90 80.00 77.64
F4 PI-RF-MS 79.50 91.60 75.30 74.90 63.20 74.90 90.90 79.60 83.50 80.60 79.40
F5 SORF-MV 79.60 90.40 74.60 70.50 62.50 73.00 91.60 77.50 82.60 78.50 78.08
F6 SORF-MS 81.50 91.00 75.80 73.20 65.40 73.30 91.70 79.10 85.30 80.80 79.71
F7 PI-SORF-MV 80.60 91.10 76.00 73.80 65.90 74.60 91.10 78.20 83.50 78.80 79.36
F8 PI-SORF-MS 81.50 91.30 75.30 74.90 63.20 74.90 90.90 79.60 83.50 80.80 79.59
F9 CRF YAW 81.90 93.00 74.10 75.60 63.80 81.30 91.30 77.60 88.00 83.90 81.05

F10 CRF ROLL 82.20 92.70 77.20 77.30 59.90 75.80 91.20 80.40 83.60 81.10 80.14
F11 CRF GENDER 79.70 92.40 74.20 72.60 59.80 72.30 90.10 79.70 82.20 79.80 78.28
F12 PI-CRF-YAW 81.70 93.80 75.70 76.60 65.60 83.40 91.20 79.30 86.60 85.20 81.91
F13 PI-CRF-ROLL 81.70 92.80 77.50 76.80 62.10 76.70 91.00 80.00 83.60 81.70 80.39
F14 PI-CRF-GENDER 80.30 92.90 68.30 71.20 61.00 68.70 90.30 80.20 82.10 79.00 77.40
F15 CSORF-YAW 83.20 93.60 76.90 76.70 72.40 84.90 93.90 80.40 87.90 83.60 83.35
F16 CSORF ROLL 80.90 92.30 78.80 75.60 65.80 79.30 93.50 77.90 84.40 80.90 80.94
F17 CSORF-GENDER 80.50 90.80 74.80 71.50 66.60 76.10 92.20 79.80 83.20 78.00 79.35
F18 PI-CSORF-YAW 83.40 94.30 78.80 77.20 74.10 86.20 94.30 81.70 87.50 83.90 84.14
F19 PI-CSORF ROLL 83.60 92.90 80.70 78.70 65.20 78.50 94.30 82.70 84.90 80.90 82.24
F20 PI-CSORF-GENDER 79.80 91.40 75.10 71.50 65.20 74.90 91.80 79.80 82.90 78.80 79.12
F21 PI-CSORF-Y+G 83.20 93.60 77.70 75.90 74.50 85.00 94.90 81.80 87.70 83.30 83.76
F22 PI-CSORF-R+G 84.20 93.10 79.60 79.30 68.20 78.40 94.50 82.90 86.00 82.30 82.85
F23 PI-CSORF-Y+R 85.10 94.00 82.20 79.40 74.00 85.80 94.80 83.50 88.40 85.80 85.30
F24 PI-CSORF-R+G+R 84.80 92.80 79.40 76.20 72.40 84.50 94.40 83.00 87.80 83.80 83.91
F25 PI-CSORF-PIGT 85.70 95.10 83.10 80.20 74.90 87.10 95.30 84.20 89.10 86.10 86.08

increase of the mean error and a 0.5% drop in the detection
rate, however, for some facial points like P1 and P6, forests
that use gender privileged information performs better. Further
comparisons, as shown in Fig. 5 indicates that the gender
privileged information does not have much impact on the
model while the other two, i.e. head pose yaw and roll help
to improve the performance.

3) Effect of Structured Output: To evaluate the effectiveness
of our proposed structured output (SO) method, experiments
are conducted both on the BioID dataset and on the LFW
dataset. For the experiments in the BioID dataset we used the

TABLE IV: Estimation accuracy of privileged information.

Property yaw (5 classes) roll (3 classes) gender (2 classes)
Accuracy 68.25% 85.10% 87.5%

structured graph with 20 nodes that is illustrated in Fig. 3 while
for the LFW with 10 nodes is illustrated in Fig. 4 (right).

First, on the BioID dataset, we report the results from
SO forests and non-SO forests, i.e. the comparison of the
Regression Forest (RF) and Structured Output Regression
Forest (SORF) in Fig. 6 in terms of the mean error and
the detection rate. The comparison shows that our shape
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Fig. 5: Conditional model vs. single model. Some representative results on LFW dataset.
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Fig. 6: Overall performance and comparison of RF and SORF on BioID dataset.

model reduces the mean error and increase the successful
detection rate for most of the facial points. Particularly, the
improvements of the difficult points like the chin point and
lower lip centre are more significant. This is expected since
these points are not located at intensity edges and therefore
there is inherent uncertainty.

We perform several experiments on the LFW dataset, in
order to compare SO-forests and non-SO-forests for several
variants of our method. The results are shown in Table I and
Table II. We show the CDFs of the detection results for some
representative forests in Fig. 7. More details can be seen in
the tables. The result validates the efficiency of our proposed
structured output model in the localization of the facial points.

4) Effect of Privileged Information Fusion: Finally, we
perform experiments in which we fuse different types of
privileged information. PI-CSORF-Y+G, PI-CSORF-R+G and
PI-CSORF-Y+R randomly take trees from two of the corre-
sponding forests, i.e., PI-CSORF-YAW (Y), PI-CSORF-ROLL
(R) and PI-CSORF-GENDER (G), 5 from each. PI-CSORF-
R+G+R randomly takes 3 trees from each of the three corre-
sponding forests. The CDFs of detection accuracy of the hy-
brid forests are shown in Fig. 8. Except the Y+R combination,
the other fusion types have very similar performances, better
than PI-CSORF-GENDER but not better than PI-CSORF-YAW
or PI-CSORF-ROLL. This implies that the hybrid forests with

trees trained based on gender privileged information do not
lead to performance improvement. On the contrary, the hybrid
forest, PI-CSORF-Y+R, with trees from YAW and ROLL
forests outperforms both the YAW and ROLL forests.

Finally, we assess the prediction accuracy of the privileged
information as shown in Table IV. We can achieve high accu-
racy in predicting the three types of privileged information. We
also note that, F25 is able to achieve the most accurate result,
if all the privileged information can be perfectly predicted.
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Fig. 7: Representative results from SO forests in LFW dataset,
compared with their non-SO counterparts.

5) Run-time Performance: We record the run-time perfor-
mance on a standard 3.30GHz CPU machine. Our full method
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Fig. 8: The performances of hybrid forests on LFW dataset,
compared with the original ones.
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Fig. 9: CDFs of the m17 measure on BioID dataset, compared
with reported results from [12], [21], [7], [55], [58]

performs on LFW dataset at a average speed of 22 FPS
while that of the baseline C-RF method is 25 FPS. Though
we have more models at leaf nodes than C-RF, we estimate
the privileged information within the forests, which is in
contrast to C-RF that uses additional forests to estimate the
conditional/privileged information.

E. Comparison with State of the Art

Finally, we compare our proposed methods with state-
of-the-art approaches facial point localization on the above
mentioned datasets.
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Fig. 10: CDFs over point error on BioID dataset, compared
with [26], [3], [6], [2]. For fairness, only 17 internal facial
points are used.

1) BioID Dataset: On BioID, we initialize the detection
using the OpenCV Viola and Jones face detector. Since related
methods that start from the face bounding box have not
discussed how they treat the failure cases of face detection
(around 10 out of 400), we report the results by 1) manually
defining the bounding boxes in the face images in which the
face detection failed (the corresponding curves are with ”All”
label in the figures); 2) treating them as failure cases in facial
point detection when calculating the successful detection rate
and the cumulative distribution curve. In the literature, two
types of curves are used to measure the overall performance.
One is the commutative distribution function (CDF) over point
error (i.e., fraction of points) and the other is the CDF of
m17 (i.e., fraction of face images). They are shown in Fig. 9
and Fig. 10 respectively, together with results on the same
dataset published elsewhere. As shown in these two figures,
our method achieves very promising results on this dataset.
Compared to the related method [12] that has applied CLMs on
the regression forest voting, our method performs better. This
method has validated that its curve shape is consistent with
the curve calculated from annotation with simulated Gaussian
noise with around 1.5 pixels stand deviation. This implies that
the root MSE of our method is smaller than 1.5 pixels. [12]
points out the distinctive ”S” shape of our curve suggests
that the errors in the localization of different points are not
correlated. The detection accuracy and the mean error for each
of the 20 facial points is shown in Fig. 6.

2) LFW Dataset: We now focus on the more challenging
dataset LFW and compare with the regression forest method
presented in [4]. We use the publicly available implementation
provided by the authors 1. We have made a minor change,
namely we changed the facial point data format from integer
to float, in order to have a smoother error distribution. The
CDFs of the error is shown in Fig. 11c. Note that the
results that we obtained differ from what is reported in [4]
possibly because the publicly available trained trees are a
reimplementation. Different image features, parameter settings
might affect the results. The close-to-human performance
reported in [4] requires parameter optimization for each of
the facial points and also training more than 10 trees in a sub-
forest. The comparison here is based on the same experimental
setting, namely the same number of training samples for
each tree, the same image features used for training, and the
same global parameters of a tree (maximum depth, number
of testing candidates at each internal node). In this setting,
our model outperforms the C-RF using the same yaw head
pose privileged information. Furthermore, by incorporating the
structure constraints and fusion of roll head pose information,
the performance of our method is very close to human. As
shown in Fig. 11a and Fig. 11b, the results are similar to
results reported in [4] and very close to human performance.

We note that training our trees is computationally more
efficient than training a C-RF. C-RF trains an additional forest
for head pose estimation and also one forest for each head
pose subset while only one forest is trained in our method.
In the public implementation which we compare, 60 trees in

1http://www.dantone.me/projects-2/facial-feature-detection/
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Fig. 11: Overall performance of our method on LFW dataset, compared with [4].

total (10 trees for head pose estimation and 10 for each yaw
pose) are built in C-RF while our method use only 10 trees in
total. It also means that, many more training samples are used
in their model despite a tree is trained using the same number
of training samples.

Cao et al. [3] have reported results on LFW87 [59] This
is a dataset that is not publicly available but which seems to
be of similar difficulty. We also list our MRSE (Mean Root
Square Error) evaluation metric in Table V in order to give an
idea about the relative performance but note that the results
are on different datasets with similar characteristics.

TABLE V: Percentages of test images with RMSE(Root Mean
Square Error) less than the given thresholds on the LFW
dataset, compared to [3], [59] on LFW87 dataset.

RMSE < 5 pixels < 7.5 pixels < 10 pixels
Method in [3] 74.7% 93.5% 97.8%
Method in [59] 86.1% 95.2% 98.2%
PI-CSORF-Y+R 94.4% 96.3% 99.2%

3) LFPW Dataset: We compare our method and the C-RF
detector on test images from the LFPW dataset to test whether
the learned models can be transferred to a different dataset.
Again, the OpenCV Viola and Jones face detector is applied
first. The mean error of each facial point is shown in Fig. 12.
Although our detector does not perform as well as [6] and
[3], the average mean error, around 2 pixels, is very low. It
is worth noting that neither our model nor C-RF is trained
on LFPW and it is known that the image quality of LFW
is much worse than that of LFPW. The performance of our
detector and C-RF on LFPW is close to their performance
on LFW. When the error fraction is less than 0.1, a detection
is regarded as success. We reported the successful detection
rate of each facial point in Fig. 13. As it can be seen, for
most of the points, the successful detection rate is very high,
more than 90%. The mouth corners and the outer lower lip
are the most difficult points to localize. In Fig. 14, we show
the detection results of our model and of the C-RF detector
on some example images from LFPW . As it can be seen,
under partial occlusion, both C-RF and our CRF method fail
to localize all points at the correct positions since they are
both local detectors. On the contrary, CSORF method is able
to handle such cases since it takes the structure constraints
into account.
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Fig. 12: Mean error of our model on LFPW dataset, compared
to C-RF detector from [4].
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Fig. 13: Successful detection rate of our model on LFPW
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Fig. 14: Example Images from LFPW dataset. First column
shows detected facial points by C-RF [4], second column the
detection results by PI-CRF-YAW forest and the last column
the detected facial points by PI-CSORF-YAW Forest.
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Fig. 15: Comparison to RF based methods (C-RF [4] and RF-
CLM [12]) on AFLW.

4) AFLW Dataset: Finally we show the performance on
the AFLW dataset and compare to recent Regression Forests
based methods including the baseline C-RF [4], RF-CLM [12]
(RF combined with CLM) as shown in Fig. 15. We select 1000
images from AFLW for testing and the rest of them for training
the forests and repeat this process for four times and we report
the average results as shown in Fig. 15. Our proposed method
performs significantly better than the baseline RF and on par
with the RF-CLM, which has explicitly shape models. Our
method is able to further combine with other shape models
for performance boost.

F. Sensitivity to Face Bounding Box Shift

In recent years, the cascaded methods have shown promis-
ing results in facial points detection. However, compared to
the local-based methods as ours, they are more sensitive to
initialization, which is often calculated from face detection. It
is because the features are extracted around the initial estimate
of the landmarks. Applying a different face detector influences
the results of the cascaded methods - this is evident by the
fact that [3], [46] rely on multiple initializations or to the
so called ’smart starts’. By contrast, the method is this paper
is a local-based one that does not rely on any initialization
shape: patches from all over within the bounding box will be
used and the RF will decide which ones will vote for which
landmark. This decision is based on the patches appearance
and not on their distance from a shape. Indeed, regions near the
facial points give better predictions however such information
(i.e. the true distance) is not known at test time. When the
bounding box shifts due to an inaccurate face detection, then
some patches fall out of the new bounding box, and some
new patches fall in. However, all the patches that are in the
intersection of the old and the new bounding box will vote in
exactly the same way. This makes local methods more robust.

We perform experiments on LFW to demonstrate this. We
apply the state of the art cascaded method, SDM [43] on the
same test images from LFW that we have used and report
the results of their common facial points. We shift the face
Bounding Box (BB) by 5% to 20% and the results are as
follows: Though SDM and our method have similar results
given the ground truth face bounding box, when face bounding
box shifts, the performance of SDM drops rapidly. On the

Bounding Box shift 0% 5% 8% 10% 20%
SDM Mean Error 6.45 7.71 15.56 22.57 40.36
Our Mean Error 6.46 6.48 6.51 6.70 9.20

TABLE VI: SDM [43] vs. our method when face BB shifts.

contrary, until the shift is very huge (20%) and results in some
facial points obviously fall out of the face bounding box, our
method is fairly robust to the bounding box shifts.

V. CONCLUSION

In this paper, we have presented a novel method called
privileged information based conditional structured output
regression forest (PI-CSORF) and have applied it in the
problem of facial point detection. We show how to utilize
privileged information, i.e. information that is available only
during training and how to incorporate structure information
within the regression forests.

Extensive experimental evaluations on facial point detection
on face images from both controlled and uncontrolled envi-
ronments show the advantages of the proposed methods. We
demonstrate state-of-the-art performance on the BioID dataset.
On more challenging datasets (LFW, LFPW and AFLW) that
consist of images that exhibit greater variability, our method
considerably outperforms the recent conditional regression
forest method and other regression forests related methods
using the same experimental setting, despite the fact that we
use much fewer training images and trees.

Although it does not perform better when comparing to
the recent holistic-based methods, our method follows very
different setting and we believe its advantage will be useful in
certain circumstance for instance when the initialization is not
reliable for cascaded holistic method. Also since our method
does not use any explicit shape models, the performance can
be boosted if we combine our method with the state of the art
shape models like the CLM or the mixture of tree model.
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