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Abstract—3D video quality issues that may disturb the
human visual system and negatively impact the 3D viewing
experience are well known and become more relevant as the
availability of 3D video content increases, primarily through
3D cinema, but also through 3D television. In this paper,
we propose four algorithms that exploit available stereo dis-
parity information, in order to detect disturbing stereoscopic
effects, namely stereoscopic window violations (SWV), bent
window effects, UFO objects and depth jump cuts on stereo
videos. After detecting such issues, the proposed algorithms
characterize them, based on the stress they cause to the
viewer’s visual system. Qualitative representative examples,
quantitative experimental results on a custom-made video
dataset, a parameter sensitivity study and comments on the
computational complexity of the algorithms are provided, in
order to assess the accuracy and performance of stereoscopic
quality defect detection.

Index Terms—Visual discomfort, 3D quality, stereoscopic
video, binocular disparity

I. Introduction
As the availability of 3D video content has increased

in recent years, primarily in 3D cinema, certain stereo-
scopic effects that may confuse the human visual system
and negatively impact the 3D viewing experience have
been investigated. A prolonged exposure to 3D video
content exhibiting quality problems can cause disturbing
symptoms, such as eye strain, headaches and visual
fatigue [1]. In order to deal with these problems, 3D
cinematographers have set cinematographic rules which, if
precisely followed during the production process, eliminate
or moderate such issues. Nevertheless, in many cases, time
constraints, low budget and inadequate advance planning
prevent these rules from being properly followed. However,
the majority of related problems can be fixed in post-
production, as long as they are detected. In this paper,
we propose algorithms that exploit the available stereo
disparity information, in order to detect stereoscopic
quality issues in videos, so that they can be fixed in a post-
processing stage. Particularly, we deal with the detection
of the stereoscopic window violations (SWV), bent window
effects, UFO objects and depth jump cuts [1]. Moreover,
the proposed algorithms try to characterize the detected
effects, according to the visual stress they cause to the
viewer.

The remainder of the paper is organized as follows.
Section II provides an overview of state-of-the-art meth-
ods for disparity estimation, which is used later on for
detecting stereoscopic quality issues, as well as information
about comfortable stereoscopic vision and a presenta-
tion of existing approaches to the detection of the four
stereoscopic issues studied in this paper. Section III
describes the proposed detection algorithms and provides
qualitative examples that demonstrate their operation.
Section IV details experiments performed on a stereo video
dataset, which was assembled specifically for the purpose
of evaluating the proposed algorithms, and presents the
respective quantitative results. Finally, conclusions are
reported in Section V.

II. Disparity estimation and stereoscopic video quality
assessment

A fundamental element in 3D scene interpretation is
depth information. In a stereoscopic image pair, composed
of a left and a right channel, a dense disparity map that
assigns a depth-related disparity value to each image pixel
can be estimated from detected pixel correspondences
between the two channels [2]. Two different disparity maps
can be extracted from a single stereo-pair, associated
with the left/right image channel, respectively. When
using a parallel camera setup, for each left/right-channel
image point [x, y]⊤, in pixel coordinates, the corresponding
horizontal disparity values are dlx,y ≤ 0 and drx,y = −dlx,y,
while vertical disparities are zero. The closer an imaged
object lies to the cameras during image acquisition, the
larger is its disparity in absolute value. In contrast, objects
considered to be lying at infinity, i.e., positioned very far
from the cameras, are projected on pixels with near-zero
disparity. When viewed in the theater space during video
display, such objects appear in front of the display screen
or, in the case of objects at infinity, on the display screen
itself.

However, in 3DTV and 3D cinema, the stereo-pairs are
typically processed in post-production, to allow a per-
ceived placement of imaged objects, during video display,
both in front of and behind the screen plane. Therefore,
the disparity maps estimated from post-processed 3DTV



content typically contain both positive and negative dis-
parity values. Pixels associated with negative left disparity
are to be displayed in front of the screen, pixels with
positive left disparity are to be displayed behind the screen
and pixels with zero disparity will be displayed on the
screen plane itself.

Disparity estimation, or “stereo matching”, has been
thoroughly investigated over the past three decades [2].
The disparity estimation algorithms can be classified
into two main groups, namely local and global methods.
Local algorithms use local neighbourhood information for
matching windows, one in each stereo image channel.
They generally give less accurate results than global
ones, but are significantly faster, due to their reduced
computational complexity. Global methods are iterative
algorithms, which typically try to minimize a global energy
function. They often produce quite good disparity maps,
though at high computational complexity.

For our quantitative experiments described in Section
IV, the state-of-the-art but computationally expensive
global, variational algorithm presented in [3] was used
to extract accurate and detailed dense disparity maps.
It operates by exploiting temporal information and ge-
ometric constraints available in a video sequence, while
the produced maps do not suffer from a common issue in
disparity estimation, i.e., occasional “blank” pixels where
no correspondence between channels has been detected.
Additionally, two alternative algorithms were employed
for the case studies in Section III, which are less com-
putationally intensive at the cost of reduced estimation
accuracy and sporadic blank pixels: a publicly available
graph cuts algorithm [4], and a fast hybrid recursive
matching approach [5]. In all cases, the disparity maps
are stored as gray-scale images having a disparity range
[−127, 128]. The sign indicates whether the corresponding
pixel is to be displayed in front or behind the screen plane,
during display.

Stereoscopic 3D video display and perception is based
on a decoupling between vergence distance and accom-
modation distance, both defined in the theater space [6].
The distance, which the eyes must converge at, to see the
same point is called vergence distance. Accommodation
distance is the distance, which the eyes must focus at, in
order to see a sharp image of this point. In natural viewing,
the eyes accommodate and converge at the same point in
3D space. In stereoscopic image display, the eyes focus
on (accommodate for) the screen plane, but converge in
accordance with the value and sign of the point disparity.
Only in the case of zero disparity, accommodation and
convergence are in par. In its attempt to resolve the
vergence - accommodation conflict and eventually see in
3D, the human visual system may suffer from eye-strain,
headache and visual fatigue [6], [7].

In 1939, Fry measured the Zone of Clear Single Binoc-
ular Vision (ZCSBV), which is the set of all vergence and
focal stimuli pairs that allow clear vision and successful
binocular fusion. Furthermore, the vergence - accommo-
dation conflict has been studied thoroughly by Percival

[8], who set the minimum and maximum boundaries for
comfortable 3D viewing, on a two-axes vergence distance
vs focal distance plot. The region between these bound-
aries is known as Percival’s zone of comfort. Sheard [9]
also dealt with the same issue and set a slightly different
zone of comfort. Percival’s and Sheard’s zones of comfort
are subregions of ZCSBV. Recently, Hoffman and Banks
[10] performed various experiments on how vergence -
accommodation conflicts in stereo displays affect visual
discomfort and fatigue. In particular, they examined the
effect of viewing distance, disparity sign, exposure time
and certain viewer properties, such as their refractive error
(e.g., myopia, astigmatism) and age. They found that
positive and negative left disparities are less comfortable
at large and short viewing distances, respectively. Finally,
they determined their own zone of comfort. The Banks
zone of comfort is a much narrower subregion of Perci-
val’s and Sheard’s comfort zones. 3D cinematographers,
based on Percival’s comfort zone boundaries, have set
their own rules for constructing visual content that the
viewer might fixate on without discomfort, which allow a
negative/positive left disparity up to 2 − 3% and up to
1−2% of the frame width, respectively [10]. In order to set
the appropriate thresholds for our algorithms, we adopted
as starting points these simple percentage guidelines that
seem to be followed by the majority of 3D content creators.

Production of quality stereoscopic video content is a
difficult process that has to combine technical, perceptual
and artistic aspects [1]. Certain software and hardware
devices exist nowadays, that assist stereographers in avoid-
ing annoying phenomena, such as stereoscopic window
violation, UFO objects and bent window effects. Such
devices are meant to be employed either during video
production, or in the post-production stage. Moreover,
they assist in avoiding depth jump cuts in the editing
process, or smoothing them in post-production. However,
much of the released stereoscopic content suffers from
several of the above mentioned issues, since most of these
phenomena remain undetected.

Several assistance systems have been proposed for stereo
video shooting and 3DTV production. The stereoscopic
analyzer (STAN) developed by HHI [11] detects stereo-
scopic window violation and gives a framing alert, by
keeping track of several features present in both the left
and right stereo image. The above approach, though it
works in real-time, is of limited accuracy, as it involves
sparse disparity maps and needs special hardware. De-
tection of stereoscopic window violations (referred to as
framing violations) was proposed as a possible extension
of the computational stereo camera system [12]. However,
such an algorithm was neither implemented, nor tested.
The same team also proposed a method that corrects
a stereoscopic window violation, by pushing the object
that violates the video frame border behind the screen
with a disparity scaling. Lang et al proposed a non-linear
disparity adaptation approach [13], in which they present
an example of interpolating depth jump cuts (rapid scene
cuts), in order to create smooth transitions from one shot



to the next. Kopal et al [14] proposed a viewer-centric
editor for stereo cinema that gives the ability to the
system operator to fix stereoscopic window violations, by
adding a floating window mask (referred to as proscenium
arch) to the appropriate image. Moreover, the editor gives
the opportunity to fix depth jump cuts, by applying a
cross fading effect, while translating images to change the
convergence point before and after the cut, to have the
incoming shot depth match that of the outgoing one. The
above processes are manual and, thus, need the presence of
an operator. Tseng et al [15] integrated simple stereoscopic
window violation and depth jump cut detection algorithms
within a framework for automatic optimization of stereo
camera parameters, allowing a degree of direct control over
the disparity range during video production. However, this
approach is best suited for the correction of stereoscopic
video quality issues in computer-generated imagery, when
viewed by a virtual stereo camera (e.g., in 3D animated
films).

A different approach consists in extending the concept of
aggregate video quality assessment metrics to also consider
visual discomfort in the case of 3D videos. Lopez et al [16]
have presented such a metric, which takes under considera-
tion depth jump cuts and stereoscopic window violations.
Ha et al [17] introduced a different quality assessment
metric, which exploits more general disparity and motion
distribution and variance characteristics. Their algorithm
was validated on a stereo video dataset, by establishing a
strong correlation between the outcome of their metric and
subjective quality evaluations. Solh et al [18] calculate a
quality metric by first computing an “ideal” depth map per
frame, to account for distortions introduced by disparity
map estimation, compression or transmission noise, and by
subsequently computing three partial distortion measures
related to disparity characteristics (temporal outliers,
temporal inconsistencies, spatial outliers). These measures
are then fused into an aggregate visual discomfort metric
and the results are evaluated by comparing them to
subjective quality assessment tests.

Despite the significant overlap, the end goal of such
algorithms is different than that of the described defect
detection algorithms, since they typically do not identify
specific quality issues or artifacts, but quantitatively
characterize video frames or entire video sequences. A
deliberate blending of the two approaches is possible,
however, as in the case of Voronov et al. [19], where
stereoscopic quality defects such as color and sharpness
mismatch are first detected and subsequently used to de-
rive an aggregate quality metric. This is not the approach
followed in this study, but it is an interesting field for
possible future research.

Finally, few 3D video quality defect detection algorithms
are fully automated, can be easily integrated into a video
post-processing pipeline, are fairly accurate and cover a
variety of stereoscopic effects, at the same time. The set
of algorithms proposed in this work was designed with the
goal of meeting the preceding criteria, provided that the
dense disparity estimation is accurate enough.

III. Stereoscopic quality issues detection
In this section, we provide a description of four 3D

cinematography effects, namely Stereoscopic Window Vi-
olation, UFO objects, bent window and depth jump cuts
[1] and present the proposed detection algorithms. Each ef-
fect/cinematographic rule and its detection is described in
a separate subsection, followed by representative detection
examples. In all the provided examples, unless otherwise
noted, the original videos were recorded at a resolution
of 1920 × 1080 pixels (W = 1920, H = 1080), but were
sub-sampled to 960× 540 in order to reduce the disparity
estimation execution time.

A. Stereoscopic Window Violation
In 3D cinematography, we observe the 3D world through

the so-called Stereoscopic Window (SW) [20], namely the
TV or cinema screen. In other words, the viewer watches
objects floating in a space confined by the screen edges. If
the left disparity of a 3D point is positive/zero/negative,
the eyes converge to a point either behind the screen, on
screen or within the theater space (in front of the screen),
respectively. Retinal rivalry occurs on the left or right
frame edges, when object regions positioned close to left
image left or right border do not have correspondence
(are not displayed) in the right frame and vice versa. For
objects with zero disparity, no retinal rivalry is observed.
When part of an object is cut off by the vertical edge of
the display, it results in the so-called Stereoscopic Window
Violation (SWV) and is interpreted as occlusion by the
viewer.

SWV does not create any problems, when it occurs
behind the screen (i.e., for objects with positive left
disparity), because both disparity and occlusion cues
dictate that the object lies behind the screen. However,
when SWV involves objects perceived as appearing in front
of the screen (i.e., they have negative left disparity), the
occlusion cue conflicts the disparity one. Generally, as
occlusion supersedes the disparity cue, the object is finally
perceived as lying behind the screen plane [20]. The above
are true for a mild SWV, where only a small object region
at the left or right frame edge is missing from the other
image. In a severe SWV, the missing object region is so
extended that the human brain cannot fuse the images
and eventually see 3D.

SWV in negative disparities is not only undesirable,
but may also prove painful. The rule regarding SWV
states that a cinematographer has to avoid breaking the
stereoscopic window, while an object has negative left
disparity. However, objects entering or exiting the video
frames in no more than half a second cause no problem [1],
since, by the time the brain localizes the object in front
of the screen, the entire object is either fully visible in the
frame or has disappeared, respectively. It must be pointed
out that all the above apply to cases of mild SWV, when
the rivalry region is relatively narrow. In a severe SWV,
stereopsis is totally interrupted and the viewer simply sees
a double image. A frequently used cinematographic tool



to fix an SWV is the so-called floating window, which is
created by adding black masks on the sides of the left or
right image. Masking only one image does not reduce the
video frame size, but changes the perceived position of the
screen window in 3D space.

A simple, yet effective, algorithm that detects the
Stereoscopic Window Violation using disparity maps is
presented in this work. We assume that the left and
right dense disparity maps have been estimated for each
stereoscopic video frame, i.e., dlx,y and drx,y, x = 0, ..,W−1,
y = 0, .., H − 1, where W,H are the width and height
of the video frame (in pixels). At the first step of the
algorithm, pixels [x, y]⊤ are selected, having left disparity
dlx,y < −TSWV

1 and right disparity drx,y > TSWV
1 .

We choose a suitable threshold TSWV
1 and perform a

per-frame connected component analysis with an 8-pixel
neighbourhood to extract object regions (connected com-
ponents) that are displayed significantly in front of the
screen. To reduce noise, objects with small width or
height (less than thresholds TSWV

w or TSWV
h , respectively)

are rejected. The detected objects are then enclosed into
rectangular regions of interest (ROIs). Thus, two sets of
ROIs Rr = {Rr

1, R
r
2, ..., R

r
N} and Rl = {Rl

1, R
l
2, ..., R

l
N}

are created for the left and right channel, respectively.
These ROIs are represented by their upper left and lower
right coordinates [xj

i,min, y
j
i,min]

T and [xj
i,max, y

j
i,max]

T ,
where j = {r, l} and i is the ROI index. The corresponding
disparities are denoted by dji,min and dji,max.

Two types of disturbing SWVs can be defined. In the
first type, namely left SWV, the violation occurs on the
left video frame border, since there is a region in the left
image, which is missing from the right one, as shown in
Figure 1. Its detection is performed as follows. If one or
more object ROIs Rr

i , with disparity characteristics, such
as those previously described, lie on the left border of
the right image, that is, if xr

i,min = 0, a SWV is present,
because xl

i,min = xr
i,min + dri,min > 0. Thus, the region

[0, dri,min] × H in the left image is not present in the
right one. Another condition is introduced to reduce false
alarms, because of disparity map inaccuracies. The object
pixel number in the two leftmost ROI columns must be
greater than a threshold TSWV

2 , expressed as a percentage
of the ROI height, to decide that this object signals a
SWV.

A similar procedure is followed for the detection of
a right SWV. In this case, a region appearing in the
rightmost border of the right image is absent from the left
image, as shown in Figure 2. Thus, if one or more object
ROIs detected in the left disparity map Rl

i lie on the right
border of the left image, i.e., if xl

i,max = W −1, a SWV is
present. This is because xr

i,max = xl
i,max+dli,max < W−1.

Therefore, the region [W + dli,max,W − 1] × H in the
right image is not present in the left one. The previously
described false alarm reduction approach regarding small
regions (noise) is applied to right SWV detection, as well.

When a left or right SWV of duration dSWV frames
is detected, the condition dSWV > fps

2 is checked to

Fig. 1. Left Stereoscopic Window Violation.

determine whether the violation is annoying or not, where
fps is the video frame rate. If yes, a floating window
(black mask) is applied, either on the left or on the right
image, depending on the SWV type, to hide regions that
are visible to only one eye. The floating window width is
estimated as follows. In the case of a left SWV, we first
calculate a mean value mr

i of the first three columns of
right image object disparities for every object that creates
a SWV, as follows:

mr
i =

(
2∑

x=0

ymax∑
y=ymin

drx,y

)
/ 3 hi, ∀Rr

i : xr
i,min = 0, (1)

where hi is the height of object Rr
i and xr

i,min is the
left vertical boundary of the object. The appropriate left
floating window mask width FWl is the mean value of all
mr

i :

FWl =

(
N∑
i=1

mr
i

)
/ N, (2)

where N is the number of objects that cause SWV, when
detected in the right disparity map. This is done because
the disparities of boundary ROI pixels, which are involved
in a SWV, point at the boundary line of the region visible
to only one eye (see the vertical line in Figures 1 and 2).
The right floating window mask width FWr is estimated
using a similar approach. Although the floating window is
a quick and effective way to correct mild SWVs, a strong
SWV may interrupt stereopsis and result in a double
image perception. To take this into account, we have set
a threshold TFW = 0.03W on the floating window width.
If this threshold is exceeded, the SWV is characterized as
strong SWV and no floating window can be applied to fix
it.

The computational complexity of the preceding algo-
rithm is linear to the number of detected connected
components having significant negative left disparity.
Therefore, its computational requirements are dominated
by those of the employed connected component analysis
algorithm. Connected component labeling can efficiently
run in linear time relative to the total number of video
pixels [21].

Subsequently, we provide representative examples of
SWV detection. The segments were extracted from a



Fig. 2. Right Stereoscopic Window Violation.

stereo video that is available on the Internet. The video
resolution is 640×480 pixels. The disparity maps for these
examples were estimated using algorithm [5].

Case study 1: A left stereoscopic window violation is
illustrated in Figure 3. It is obvious from Figure 3d
that the right disparity map signals the beginning of the
violation, when the lady hits the right image border in the
second video frame (n = 2), while being in front of the
screen. In the left and right disparity maps shown in Figure
3c and 3d, respectively, pixels with absolute disparity
values greater than the disparity threshold TSWV

1 are
marked yellow. There are additional pixels in the first
frame (n = 1) that signal violation, but the TSWV

2

threshold, which is set to 30% of the ROI height, prevents
false alarm. Therefore, the algorithm detects a SWV
that starts at the second frame and ends when the lady
disappears at frame n = 17. It must be pointed out that
a small part of the object is still visible in the left image,
even when it has disappeared from the right one, which
means that a SWV still exists for one more video frame.
Such a situation cannot be detected accurately through
the left disparity map, because there is no correspondence
regarding the object between the left and right images
at the same time instance and the disparities in this
region are interpolated using their neighbouring values.
The SWV duration is 16 frames or 16/25 = 0.64 seconds
(the video fps is 25). Thus, the SWV duration exceeds the
threshold Td = 25/2 ≈ 13 and the violation is labeled as
annoying. Therefore, a floating window is needed to fix it,
having width ranging from 28 to 30 pixels. This means
that the violation is mild and can be fixed by applying
a floating window mask on every left image, where the
SWV occurs.

Case study 2: A right stereoscopic window violation is
demonstrated in Figure 4. Here the left disparity map,
shown in Figure 4c signals the beginning of the SWV,
when the lady enters the frame, while being in front of
the screen. The algorithm starts signaling SWV at the
second video frame (n = 2), since, at n = 1, the size
thresholds TSWV

w and TSWV
h , meant to filter out small

artifacts caused by noise, are not exceeded. The algorithm
stops signaling SWV, when the lady does no longer hit
the right image border (frame n = 9). As before, this
happens because the TSWV

2 threshold is not exceeded and,
thus, these pixels are not taken into account. The SWV

duration of 7 video frames is lower than the duration
threshold of fps/2 = 13 frames. Therefore, the violation
is not considered annoying. However, since the violation
width ranges from 36 to 44 pixels, the SWV is mild, but
significant. Thus, a floating window mask to every right
image involved in the SWV can fix the problem.

B. The Bent Window effect
A stereoscopic window violation can involve any of the

four video frame borders (left, right, top, bottom ones).
Although the most distracting SWVs are those that occur
at the left or right border of the screen, because they cause
retinal rivalry, a violation can happen even at the top or
bottom frame borders. Typically, top or bottom window
violations cause less discomfort to the human brain, but
may ruin the 3D effect and change depth perception.
Figure 5 depicts a car that has positive left disparity,
thus appearing behind the screen plane, and a street pole
having significant negative left disparity, thus appearing in
front of the screen. Although neither the house nor the tree
interferes with the left or right edge of the screen, the shot
framing cuts off the top and bottom of the tree. In such a
case, the viewer’s brain has to decide what to do with the
contradictory cues stemming from the tree position, since
the top and bottom sides of the tree cannot be in front of
the screen, as they are cut off by the frame top and bottom
borders, while the rest of the tree lies clearly in front of
the screen, due to its strongly negative left disparity. The
brain’s solution to this conflict is to decide, in most cases,
that the stereoscopic window is bent towards the viewer,
since the top and bottom window violation locks the tree
behind the screen plane. It has been observed that top
screen edge violations have more significant impact in the
creation of the bent window effect than the bottom screen
edge violation. This could be explained by the fact that
we are used to seeing the entire heads, but not necessarily
the feet, of people standing in front of us [1].

The proposed bent window effect detection algorithm
takes as input the left disparity map of a stereo video
frame. Initially, we detect objects that have significantly
negative disparity. To do so, we perform connected com-
ponent analysis only on pixels with negative disparity
that is lower than a threshold −TBW

1 . Then we enclose
every such object in a rectangular ROI, whose upper-left
and lower-right corner coordinates are [xi,min, yi,min]

⊤ and
[xi,max, yi,max]

⊤. The final output of this step is a set of
ROIs R = {R1, R2, ..., RN}. Subsequently, the algorithm
checks if any of the objects Ri found in the previous step is
in contact with the upper and lower video frame boundary.
If this is the case, i.e., when yi,min = 0 and yi,max = H−1,
the object is marked as the cause of a bent window effect.

As in the case of SWV detection, the computational
complexity of the algorithm is linear to the number of de-
tected connected components having significant negative
left disparity. Therefore, its computational requirements
are dominated by those of the connected component
analysis process, which is linear to the total number of
video pixels [21].
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Fig. 3. Example of left stereoscopic violation: a) left video frames, and corresponding b) right video frames, c) left disparity maps, d) right
disparity maps.
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Fig. 4. Example of right stereoscopic violation: a) left video frames, and corresponding b) right video frames, c) left disparity maps.

Subsequently, we provide a representative example of
bent window detection. The disparity maps for this
example were estimated using algorithm [4].

Case study 3: In the example depicted in Figure 5, the
camera is located right behind a thin pole, i.e., a road
sign shown in frames 1 and 202 and a metal pole shown in
frames 712 and 945. In both cases, the pole is located very
close to the camera and has a strong negative left disparity
of about -35 pixels. The algorithm detects the pole and
includes it in a ROI R. Since the pole ROI intersects both
the upper and lower frame edges, a bent window effect is
declared.

C. UFO object detection
In 3D cinematography, a UFO is an object that is

improperly displayed inside the theater space [20]. The
corresponding cinematographic rule states that an object

reaching far inside the theater space must be brought there
in a proper way, e.g., by smooth motion. For example, an
object flying at a plausible speed towards the audience
is not declared as UFO. Additionally, when the object
position in the theater space can be justified by the image
structure, no UFO is declared either. For example, an
object held on a hand that extends in front of the screen is
not a UFO. Technically speaking, a UFO is an object that
a) appears and disappears suddenly, b) has significantly
negative left disparity and c) is not justified by the image
structure [1]. UFOs cause visual discomfort and fatigue,
due to rapid changes in eye convergence. For that reason
it is highly important that UFOs are identified, in order
to be dealt with in post-production.

There are inherent difficulties in detecting whether
image construction justifies the existence of an object
appearing close to the viewer, since this is directly related
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Fig. 5. Bent window effect caused by a thin object (road pole).

to rich prior knowledge about 3D set construction and
object placement in the 3D space. Therefore, we did not
deal with the previously mentioned condition (c) and de-
vised an algorithm that detects a UFO by analysing object
motion along the depth axis. As the 3D cinematographic
rule states, a UFO object appears and disappears suddenly
near the viewer. Reversely, a non-UFO object either never
moves close to the viewer in the theater space, or begins its
motion away from the viewer, approaches him/her in the
theater space and, subsequently, returns on or behind the
screen. For example, a bird flying from its nest (appearing
on or behind the screen) towards the viewer and then
flying back to its nest is not a UFO. Additionally, a
non-UFO object may follow half the trajectory described
above. Examples of non-UFOs include a knife flying from
the screen to the viewer and then disappearing, or a ball
appearing just in front of the viewer flying to the screen
and falling to the ground, while being behind the screen.
In summary, a non-UFO object with transiently negative
left disparity, has either to move from the screen to the
viewer or from the viewer to the screen at a sustainable
speed. The proposed UFO detection algorithm is presented
below.

Initially, objects with strongly negative left disparity
are detected. Let us consider a left disparity sequence
dlx,y(i), i = 1, .., Nt for a stereo video. By performing a
connected component analysis on each video frame only
for pixels having negative disparities that are lower than
a threshold −T1, we detect objects that appear inside the
theater space.

Having detected an object that is a UFO candidate,
we track it in previous and subsequent video frames,
in order to acquire its entire motion trajectory. To this
end, we compute the bounding rectangle enclosing the
object and employ a tracking algorithm, e.g., the one
described in [22] or [23]. The tracker output is a sequence
of ROIs R = {R1, R2, ..., RNt

}. A mean left disparity
value di for every Ri is calculated, after having previously
trimmed out the background pixels from each ROI Ri,
i = 1, .., Nt, i.e., pixels not belonging to the tracked
object, using the following approach. For each ROI Ri,
the initial mean disparity mi and standard deviation σi

are calculated. Subsequently, all ROI pixels [x, y]⊤ with
disparity dx,y > mi+2σi or dx,y < mi−2σi are discarded
[24]. The trimmed mean ROI disparity di is computed
using only the remaining pixels.

After background pixel trimming for the entire set
R, a new sequence of mean disparity values D =
{d1, d2, ..., dNt} is created. A median filter of length M = 5
is then applied to the sequence D, in order to eliminate
abrupt mean disparity changes among consecutive frames,
possibly caused by noise. Thus, a UFO candidate moving
ROI is detected and represented by its depth trajectory,
as a sequence of the filtered mean disparity values D′ =
{d′1, d′2, ..., d′Nt

}. After finding the time instance when the
object is closest to the viewer, we check whether its motion
in the previous frames is smooth and whether the object
comes from the screen or behind it. The same steps are
repeated for video frames following the aforementioned
time point. Rapid changes in the object depth or a final
position close to the viewer, mean that, most likely, the
object is a UFO.

To determine whether this is the case, the minimum
disparity frame number imin, i.e., the frame number
for which d′imin < d′i, ∀i ∈ {1, ..., Nt}, is needed. If
at this point the object is not too close to the viewer,
that is, if d′imin > −TUFO

min , where TUFO
min is an appro-

priate threshold, the object is removed from the set of
candidate UFOs. Then, the algorithm returns to the
previous step and another moving ROI is considered.
Otherwise, subsequently, the trajectory before and after
imin is checked for depth discontinuities and for whether
the final object position lies close to the screen. That
is, for every j ∈ {imin, .., 1}, if d′j < −TUFO

max , where
TUFO
max is a threshold for determining whether the object is

displayed on the screen plane, the “depth speed”, defined
as the first derivative of the disparity signal, is calculated
for time instance j: Vj = |d′j−1 − d′j |. If Vj > TUFO

v ,
where TUFO

v is the speed threshold, the object is labeled
as “UFO” due to depth speed discontinuities and the
algorithm terminates. If the starting point of the sequence
d′1 is reached and processed, i.e., if d′1 < −TUFO

max , the
object is labeled as “potential UFO”, since the initial
position of its depth trajectory lies in front of the screen,



suggesting sudden appearance near the viewer. The same
process is followed for time instances after imin, i.e.,
for instances j ∈ {imax, .., N}. The object depth speed
at frame number j is now numerically computed using
Vj = |d′j+1 − d′j |. If the end point of the sequence d′Nt

is
reached and processed, i.e., if d′Nt

< −TUFO
max , meaning that

the object suddenly disappears while being displayed in
front of the screen, and the moving ROI has already been
declared as “potential UFO”, then it is labeled as “UFO”
and the algorithm terminates. Otherwise, the object is
marked as “non-UFO” and the algorithm ends normally.

At the pre-processing stage of the algorithm, its com-
putational complexity is dominated by the connected
component analysis and the tracking processes, which both
can run at linear time relative to the total number of
video pixels [21], [25]. However, the tracking algorithm
must be employed separately for each detected connected
component with strongly negative left disparity, resulting
in a time complexity of O(NcHWNt), assuming Nc

discovered connected components. Subsequently, the main
part of the algorithm starts with the pixel trimming and
median filtering processes, having computational com-
plexities of O(NcNt) and O(NcMNt), respectively, if a
traditional median filter is used [26]. Finally, the ROI
motion smoothness and position checks run in O(NcNt)
time. The total time complexity is O(NcNt(HW +M +
2)) = O(NcHWNt), i.e., it is dominated by the employed
tracking algorithm.

Below, we provide a representative example of UFO
detection. The disparity maps for this example were
estimated using algorithm [4].

Case study 4: In this example, a UFO object is present
for the entire duration of a video segment shown in Figure
6 and having 608 video frames. The object is detected
in the first frame of the sequence, as the T1 threshold
is set to 10 pixels. Subsequently, the object is tracked
forwards and the entire object ROI sequence is extracted.
The trimmed mean disparity value is calculated for the
ROI in each video frame, thus producing the time series
dn, n = 1, .., 608 depicted in Figure 6c. The blue line
depicts the trimmed mean disparity signal, without any
post-processing. The red line is the smoothed signal, after
applying a 5-point median filter [24]. The algorithm then
detects the minimum mean disparity value, which, in this
example, occurs at video frame n = 373 and has a value of
-20.317 pixels. This corresponds to the time instance the
object is in front of the screen and closest to the viewer.
At this time, the mean disparity value exceeds threshold
TUFO
min = 15 pixels. The algorithm creates two lists of

points L1 = {373, .., 1} and L2 = {373, .., 608}. The two
criteria for speed and position are checked for all points
in L1. The speed threshold TU = 0.5 is not exceeded.
Therefore, the object depth motion is smooth. However,
since d′i < −TUFO

max , i = 373, .., 1 (TUFO
max = 5), the object is

always displayed in front of the screen. Thus, the object
is labeled as a “potential UFO”. The same criteria are
checked for time instances in list L2. Since the object has

the same depth motion behaviour in both time intervals
L1 and L2, the algorithm indeed labels this object as a
UFO.

D. Depth Jump Cuts
During the editing process, which is part of the post-

production stage, individually recorded shots are assem-
bled into a sequential order. This process is more complex
in 3D cinematography, compared to the 2D one, because
the editor has to take into consideration, among other
factors, the depth continuity rule. This rule states that
one should not cut between two shots, if their depth does
not match [1].

There is no objective definition for the “matching depth”
concept between two shots. Nevertheless, a cut from a long
shot, where objects are positioned behind the screen to a
close-up inside the theater space is a good example of non-
matching depth cut, as the eye convergence point in the
close-up shot is too far away from the convergence point in
the long shot. The viewer loses 3D perception, until his/her
visual system adapts to the new convergence point and
the left and right images are fused together to produce
a proper 3D scene perception again. This phenomenon is
called a depth jump cut. A forward jump cut is much more
disturbing than a backward one. In a forward jump cut,
the new convergence point is closer to the viewer. Thus,
the viewer’s eye has to squint to restore stereopsis. On
the contrary, in a backward jump cut, the eye convergence
point is farther away from the previous one and the viewer
has to relax his eye muscles, which is an easier task.

In 3D cinematography, there is another type of depth
cut, the so-called active depth cut. It is used when a
cut between two shots with “non-matching” depth is
absolutely necessary, e.g., in a live music band concert,
where shots depicting the band are interchanged with
shots depicting the audience. In an active depth cut, the
eye vergence point of the long shot is moved to the screen
plane, the cut to the close-up shot is performed and the
close-up shot vergence point keeps moving towards the
viewer, till it takes its correct position. Other types of
transitions, very common in 2D cinematography, like cross
fades, wipes and split screens can be adapted to fit 3D
cinematography. However, their use is limited, because
their implementation is much more difficult than in the
2D case.

The algorithm proposed for the detection of depth jump
cuts begins by calculating the mean positive and negative
disparity values for the entire disparity map for every
video frame n = 1, .., Nt. Given a set of disparity maps
d = {d1, d2, ..., dNt

}, for every disparity map di, two
subsets are defined, A+

i = {(x, y)| di(x, y) > 0} and
A−

i = {(x, y)| di(x, y) < 0} and the average positive
and negative disparity values are calculated as:

d+i =
1

|A+
i |

∑
(j,k)∈A+

i

di(j, k), (3)

and
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Fig. 6. A static UFO object. An object is dispayed far inside the theater space, while the object of attention (a woman walking) appears
behind the screen plane. The thin blue line corresponds to the mean ROI disparity, while the thick red line corresponds to the filtered mean
ROI disparity.

d−i =
1

|A−
i |

∑
(j,k)∈A−

i

di(j, k), (4)

where |A| denotes the cardinality of set A. This way,
two mean disparity signals d+i and d−i , i = 1, .., Nt are
created, as shown in Figure 7b. Since disparity maps
are generally noisy, a median filter is applied on both
the positive and negative mean disparity signals. Positive
disparities suffer from noise more severely than negative
ones, since they usually refer to the background, which is
customarily displayed behind the screen, is often blurred
and covers a much bigger region than foreground. Thus,
disparity estimation is harder on the background than on
the foreground. Taking the above into account, we use
median filter masks of length M− = 5 and M+ = 15 to
filter the negative/positive mean disparity signals, respec-

tively. Thus, two filtered disparity signals are constructed,
namely d+i

′
, d−i

′
, i = 1, .., Nt. Then, their first derivative,

which is related to the speed of change of the average
positive/negative disparity, is estimated numerically by
V +
i = d+i+1

′
− d+i

′
and V −

i = d−i+1

′
− d−i

′
. In order to

determine whether a depth jump cut is present, we set
the thresholds TDJC

dsn , TDJC
dsp for the negative / positive

disparity derivative, respectively. The above thresholds
cannot be fused to one, because the range of positive
disparity values (1 − 2% of the screen width) is smaller
than negative ones (2− 3% of the screen width), so that
the object is displayed in the comfort zone. At each time
instance, i = 1, .., Nt, we compare the signals |V +

i | and
|V −

i | against the TDJC
dsp , TDJC

dsn thresholds, respectively.
If either of the thresholds is exceeded, then we label a
depth jump cut in the background and in the foreground,



respectively. The derivative sign indicates a positive or
negative depth jump cut. Note that there are cases,
where both depth jump cuts in positive and in negative
disparities are present at the same time instance, as is the
case in Figure 7b.

It has been proven experimentally that rapid changes in
depth, such as depth jump cuts are annoying for the hu-
man visual system and cause visual fatigue and discomfort
[27], [28], [29]. Thus, in its final step, our algorithm tries to
rate a depth jump cut, according to the stress it causes. We
define three discomfort characterizations for depth jump
cuts, namely “mildly uncomfortable”, “uncomfortable”,
“highly uncomfortable”. A characterization is given to a
depth jump cut, according to the sign of positive and
negative depth derivatives V +

i and V −
i , as shown in Table

I. Rows 1,3,7 and 9 in Table I refer to cases, where a jump
cut in positive disparities is combined with a jump cut in
negative disparities. In rows 2, 4, 6 and 8, a jump cut is
present only in the negative or in the positive disparities.
In row 5, no depth jump cut occurs. The “-”, “0”, “+”
sign means negative, zero, positive disparity derivative,
respectively. The labeling criteria have been established
as follows. After a negative jump cut in the foreground
(negative disparities), the viewer has to squint the eyes to
adapt to the new viewing position, since the object is much
closer to him. This is a painful process that needs much
time. On the other hand, after a positive depth jump cut in
the foreground, the viewer has to relax the eyes, which is a
quicker and less painful process. When a positive jump cut
happens in background (positive) disparities, the viewer
has to diverge the eyes to see the background clearly,
which is a tiring process for the human visual system. In
a negative jump cut in background disparities, the viewer
has to converge his eyes, which is a more comfortable
process. Moreover, a jump cut in negative disparities is
much more annoying and uncomfortable for the human
visual system, than a jump cut in positive disparities. At
this point, it must be stated that the perceived intensity
of a depth jump cut depends on the viewer’s point
of attention at the time the jump cut happens. Thus,
it is highly subjective. Nevertheless, usually the viewer
attention is on the foreground objects, which simplifies
the problem and justifies the presented characterization
scheme to a large extent. However, it may be possible to
employ more complicated 3D saliency models in order to
find the viewer’s point of attention [30] [31].

The computational complexity of the proposed algo-
rithm is dominated by the requirements of the mean
disparity signals calculation and filtering. The first one
may run in linear time relative to the total number of
video pixels, i.e., O(HWNt), while the second one is given
by O(NtM

− +NtM
+). The total time complexity of the

algorithm is O(NtM
− +NtM

+ +NtHW ) = O(NtHW ).
Subsequently, we provide examples of the performance

of our algorithm in depth jump cut detection. The video
segments are taken from the short film “The Magician”.
The disparity maps for these examples were estimated
using algorithm [5].

Case study 5: As shown in Figure 7, an on-the-screen
medium close-up shot is followed by a shot with large
depth that starts at frame n = 170, which is followed by
a shallow depth shot, beginning at frame n = 902. The
disparity range in the first shot is [−2, .., 3] pixels. In the
second shot, the disparity range increases to [−24, .., 25]
pixels. The third shot, though, is a close-up and has
shallow depth, since its disparity range is [−8, .., 2] pixels.

90th frame 430th frame 910th frame
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Fig. 7. A “highly uncomfortable” depth jump cut detected at frame
170 and a “mildly uncomfortable” one at frame 902: a) sample frames
from the three shots, b) filtered disparity signals d+i

′
, d−i

′
. Arrows

show time instances where the first derivative of the filtered positive
and negative mean disparities is large.

The algorithm detects a negative depth jump cut at
frame 170, as V −

170 = −22.39 > TDJC
dsn . A positive

depth jump cut is also detected, since the depth speed
V +
170 = 21.83 pixels exceeds the positive depth change

speed threshold TDJC
dsp . The overall depth cut is labeled as

“highly uncomfortable”, because V −
170 < 0, and V +

170 > 0.
Thus, viewer must squint his/her eyes considerably, to see
the man appearing in front of screen plane, while he has to
diverge his/her eyes too much to explore the background.

On the other hand, the depth cut at frame n = 902 is
labeled as “mildly uncomfortable”, as only the TDJC

dsp is
exceeded. As V +

902 < 0, viewer has to relax his eyes, so
that they converge to a point closer to him to explore the
background. It must be pointed out that a positive depth
cut at frame 902 (V +

902 = 9.56 pixels) is not considered
as a depth jump cut, since it does not exceed the TDJC

dsn

threshold.
Case study 6: In this case study, a depth jump cut

in negative disparities is demonstrated. Specifically, as it
is obvious from the diagram in Figure 8, a close-up shot
engaging low depth range is followed by a shot with highly
negative disparity and then by a shot with almost zero
disparity. Thresholds remain the same as in the previous
example, i.e., TDJC

dsn and TDJC
dsp are 15 and 10 pixels,

respectively. The algorithm detects the two jump cuts



TABLE I
Depth jump cuts characterization according to disparity derivative sign. U: uncomfortable, MU: mildly uncomfortable, HU: highly

uncomfortable, NO: no depth jump cut

Case V−sign V+sign Label Explanation

1 - U negative jump cut in both negative and positive disparities

2 - 0 U negative jump cut in negative disparities

3 + HU negative jump cut in negative disparities and positive jump cut in positive disparities

4 - MU negative jump cut in positive disparities

5 0 0 NO no depth jump cut present

6 + U positive jump cut in positive disparities

7 - MU positive jump cut in negative disparities and negative jump cut in positive disparities

8 + 0 MU positive jump cut in negative disparities

9 + U positive jump cut in both negative and positive disparities

at frames n = 185 and n = 412. The depth jump cut at
frame n = 185 is negative, as V −

185 < 0. Thus, it is labeled
as “uncomfortable”. The depth jump cut at frame n = 412
is labeled “mildly uncomfortable” as V −

412 > 0. The other
depth cuts detected at frames n = 359, n = 407 and
n = 730 are discarded, because the algorithm considers
them negligible, since thresholds TDJC

dsn and TDJC
dsp are not

exceeded.
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Fig. 8. An “uncomfortable” depth jump cut at video frame 185 and
a “mildly uncomfortable” one at video frame 412: a) sample frames
of the four shots, b) filtered disparity signals d−i

′
, d+i

′
. Arrows show

time instances where the first derivative in positive and negative
disparities is large.

IV. Experimental evaluation
There is no common and publicly available stereoscopic

video dataset oriented specifically towards the detection
of the four quality defects of interest, although more

generic stereo quality assessment datasets do exist (e.g.,
[32]). Thus, a video database was assembled in order
to quantitatively evaluate the proposed algorithms. It is
composed of four videos, one for each of the quality defect
types under examination, with every video consisting of
multiple consecutive shots. A percentage of these shots
exhibit the corresponding quality defect, while others are
defectless.

The four videos were subjectively evaluated in an
annotation process, in order to construct the ground truth
of this study. The Single Stimulus Continuous Quality
Evaluation method was employed in a setting conforming
to Recommendation ITU-R BT.1438, a standard protocol
for subjective stereoscopic video quality assessment [33].
This protocol specifies an integer five-grade scale (with
5 corresponding to “imperceptible defect” and 1 corre-
sponding to “very annoying defect”). After the evaluation
process, each video frame score Si was thresholded to
become compatible with a binary quality defect ground
truth: Si ≥ 4.5 means that no defect is present, while
Si < 4.5 signals a defect. Subsequently, each defective
video frame range was visually inspected to rule out cases
where the viewer discomfort is not caused by the defect
type under examination (e.g., in the “SWV” video, if
discomfort can be solely attributed to excessive disparities,
without any SWV present). Such frames were annotated
as defectless.

The “SWV” video is composed of 26 shots containing
1368 frames, where a stereoscopic window violation is
present, out of a total of 1986 video frames. The “BW”
video is composed of 21 shots containing 999 frames,
where a bent window effect is present, out of a total
of 1650 frames. The “DJC” video is composed of 52
shots containing 46 depth jump cuts, out of a total of
9798 frames. The “UFO” video is composed of 27 shots
containing 1087 frames where a UFO effect is present,
out of a total of 2570 frames. The original videos were



Fig. 9. Example of the video dataset used for the experimental
evaluation: a left-channel frame and its left disparity map.

recorded at a resolution of 1920× 1080 pixels (W = 1920,
H = 1080), but were sub-sampled to 960 × 540 pixels,
in order to reduce the execution time of left and right
disparity estimation for each frame. The employed stereo
matching method was the state-of-the-art algorithm [3],
in order to get accurate disparity maps. Figure 9 shows an
example left-channel frame and its corresponding disparity
map from the “DJC” video. All of the proposed algorithms
were implemented in C++ and were executed in real-
time, achieving processing rate greater than 25 frames
per second on a high-end desktop PC (Quad Core i7 @
3.4 GHz, 16 GB RAM).

With the exception of depth jump cuts, all of the
examined quality defect instances are characterized by a
specific duration (typically 15 frames or more). Therefore
the temporal overlap between the detected defects and
the actual defects known from the ground truth is of
high importance. In order to account for this overlap,
the experimental results were evaluated on a per-frame
basis and each frame was deemed as a true positive, a
true negative, a false positive or a false negative, based
on the ground truth. Given these characterizations, a set
of popular metrics were evaluated for the results of each
algorithm, i.e., precision, recall, F-Measure, specificity
(true negative rate) and accuracy.

Figures 10a-d show the experimental results for the
case of stereoscopic window violation, bent window, UFO
and depth jump cut detection, respectively, using the
aforementioned metrics. As can be seen, the corresponding
F-Measures are 94.05%, 90.40%, 96.15% and 84.54%, while
the respective specificity rates (SPC) are 79.00%, 98.31%,
98.79% and 99.89%. Therefore, the algorithms successfully
detect the majority of the defects in all cases, while the
false positive rate (FPR = 1 − SPC) is negligible in
all cases, except for the stereoscopic window violations.
Note, however, that the specificity and accuracy metrics
are not very informative in the case of depth jump cuts,
since their computation is dominated by the number of
true negatives TN . Due to depth jump cuts being of
momentary duration, only 46 out of 9798 frames contain
depth jump cuts and TN is unavoidably very large,
resulting in values near 100% for both specificity and
accuracy.

The preceding results were obtained with the algorithm
parameter values shown in Table II, where W,H are the
frame width, height in pixels, respectively, and hROI

is the ROI height. These values were derived through
a sensitivity analysis performed on the parameters, by

(a) (b)

(c) (d)
Fig. 10. Results of the proposed detection algorithms for a)
stereoscopic window violations, b) bent window effects, c) UFO
effects, d) depth jump cuts.

TABLE II
Parameter values used to obtain the experimental results.

Parameter Value Parameter Value

TSWV
1 0.0030W TUFO

min 0.0100W

TSWV
h 0.2000H TUFO

max 0.0030W

TSWV
w 0.0100W TUFO

v 0.0010W

TSWV
2 0.3000hROI TDJC

dsn 0.0009W

TBW
1 0.0045W TDJC

dsp 0.0016W

selecting the value that leads to the highest F-Measure,
with the exception of TUFO

max . The latter was always kept
at a constant value of 0.0030W , since it is a threshold that
determines whether a ROI is displayed on the screen plane
and it must be as low as possible. For video width W = 960
pixels, TUFO

max = 0.0030W = 2.88 pixels. Figures 11a-i
show a plot of F-Measure and specificity rate for different
parameter values, for each of the other 9 parameters that
were employed in the algorithms.

As can be seen, the proposed algorithms are fairly robust
with regard to the parameter values, since an extended,
continuous range of possible parameter values lead to high
quality defect detection performance. The most sensitive
parameter is TUFO

min , for which a very specific parameter
value seems to provide the best performance in terms of
the F-Measure metric.

In order to compare the proposed methods against sim-
ilar algorithms, rival stereoscopic quality defect detection
methods had to be selected, implemented and tested on
the assembled dataset. However, the few such algorithms
present in the literature mostly ignore bent window and
UFO defects. In fact, comparisons were only possible
against the methods described in [15], regarding SWV
and DJC detection. The best obtained F-Measures are
78.79% and 63.16%, for SWV and DJC respectively, while
the corresponding specificity rates (SPC) are 81.26%
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Fig. 11. Sensitivity analysis results for a) TSWV

1 , b) TSWV
h , c)

TSWV
w , d) TSWV

2 , e) TBW
1 , f) TUFO

min , g) TUFO
v , h) TDJC

dsn , i) TDJC
dsp .

The horizontal axis indicates different parameter values, while the
vertical one indicates evaluation result metric values, in percentage
form. The solid/dotted lines represent the F-Measure/specificity rate
metrics, respectively.

and 99.51%, respectively. Thus, the proposed methods
outperform these competing algorithms by 15.26% (SWV)
and 21.38% (DJC), in terms of the F-Measure metric,
while achieving comparable specificity/false positive rate.
Additionally, the proposed methods rate the detected
defects according to the visual stress they cause.

It should be noted that, during preliminary testing,
tweaking the parameters affecting the operation of the em-
ployed, off-the-shelf connected component analysis library
[34] led to slight performance increases. This indicates that
the performance of the proposed algorithms depends not
only on the noise of the inputs (the estimated disparity
maps), but also on the accuracy of the employed blob
extraction method. This was to be expected, since the
detected connected components on the disparity channel
located in front of the screen (during stereoscopic display)
are the image regions being checked for any stereo quality
defects.

Additionally, a method implementation parameter (ini-
tially thought to be of secondary importance) was modified
after initial testing, thus contributing to slight perfor-
mance increases. More specifically, on our initial SWV
detection software, if two different left (respectively, right)
SWVs were observed, with less than 5 frames separating
them in time, they were considered to be one and the same
SWV. The entire video duration from the start of the
first up to the end of the second defect, was then marked
as suffering from left (respectively, right) SWV. This
precaution was meant to account for transient disparity
estimation and blob detection errors. In the final software,
this parameter was changed from 5 frames to 2 frames,
thus leading to improved results.

V. Conclusions

The popularity of 3D movies makes the investigation
of stereo quality issues all the more important. Certain
stereoscopic effects found in the 3D video content may con-
fuse the human visual system, affect viewing experience
in a negative way and eventually cause unpleasant symp-
toms, such as eye strain, visual fatigue and headaches.
In this paper, new algorithms are presented that detect
four such stereoscopic effects, namely, stereoscopic window
violations (SWV), bent window effects, UFO objects and
depth jump cuts automatically, by exploiting disparity
information. The algorithms also try to characterize these
stereoscopic effects according to the stress they cause to
the viewer. Representative qualitative examples, quan-
titative experimental results on a custom-made video
dataset, a parameter sensitivity study and comments
on the computational complexity of the algorithms are
provided, proving effectiveness of the proposed methods in
detecting the four above mentioned stereo quality defects.

The assembled video dataset may be useful in future
stereo quality studies, by providing positive and negative
examples of the four quality defects under examination.
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