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Search Tracker: Human-Derived Object Tracking in
the Wild Through Large-Scale Search and Retrieval

Archith John Bency, Student Member, IEEE, S. Karthikeyan, Student Member, IEEE, Carter De Leo,
Santhoshkumar Sunderrajan, Member, IEEE, and B. S. Manjunath, Fellow, IEEE

Abstract— Humans use context and scene knowledge to easily
localize moving objects in conditions of complex illumination
changes, scene clutter, and occlusions. In this paper, we present
a method to leverage human knowledge in the form of annotated
video libraries in a novel search and retrieval-based setting
to track objects in unseen video sequences. For every video
sequence, a document that represents motion information is
generated. Documents of the unseen video are queried against
the library at multiple scales to find videos with similar motion
characteristics. This provides us with coarse localization of
objects in the unseen video. We further adapt these retrieved
object locations to the new video using an efficient warping
scheme. The proposed method is validated on in-the-wild video
surveillance data sets where we outperform state-of-the-art
appearance-based trackers. We also introduce a new challenging
data set with complex object appearance changes.

Index Terms— Data-driven methods, video search and
retrieval, visual object tracking.

I. INTRODUCTION

OBJECT tracking is a well-studied computer vision
problem. Tracking algorithms (or trackers) should be

robust to large variations of lighting, scene clutter, and handle
occlusions while localizing an object across frames. A number
of algorithms [14], [37] have approached the problem of
tracking by modeling the appearance of objects as they go
through illumination, pose, and occlusion changes in image
sequences. Motion models are also incorporated in these
algorithms to provide a prior for object location in the current
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Fig. 1. Two frames (a) and (b) of a sequence with a pedestrian walking from
right to left. The red and green boxes represent the tracker’s predicted object
location and ground-truth, respectively. Typical appearance-based trackers fail
on such low visual-quality video sequences.

frame, given the state of the tracker in previous frames. Recent
state-of-the-art algorithms have been tested on real-world
data sets [6], [8], [11]. These data sets are usually of good
image quality and capture sufficient visual information to
distinguish between the object of interest and its surroundings.
While tracking objects in videos with low-quality imaging,
these methods have difficulty in learning robust appearance
and motion models. As video infrastructures like surveillance
networks have been around for a decade, it is still important
to be able to detect and track objects in legacy low-resolution
and low-quality videos.

An example of tracker failure, where appearance-based
features are used, is presented in Fig. 1. The appearance-based
tracker gets distracted by background clutter of trees and learns
an incorrect appearance model. This leads to tracker failure
and the object state is lost. In addition, most of the trackers
need either object detectors or manual initialization for the
methods to start tracking objects. Object detectors [4], [36]
are prone to failure on low-quality images as detectors trained
on one data set may not have good detection performance
on a different data set. In conditions where one may come
across a diverse set of objects (say humans, vehicles, animals,
etc.), a large number of detectors would be needed to generate
detections for the trackers to be effective.

Humans, on the other hand, find tracking objects in such
scenarios to be a relatively easy task. Human-annotated
bounding boxes are of higher quality than those generated by
tracking algorithms. Humans leverage contextual knowledge
of both the scene and typical object motion to effortlessly
track objects. Directly replicating human knowledge would
involve coming up with complex computational models for
tracking. This paper describes a method to leverage data sets
of human annotated videos to track moving objects in new
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videos, the search tracker (ST). We maintain a library of
training videos containing objects annotated with bounding
boxes. The training videos are then transformed into
representative documents, which are indexed along with the
provided bounding boxes. These documents encode motion
patterns of annotated objects in the training videos.

For tracking to be applied on a new test video, we generate
similar documents from this video. These documents are
matched against the library documents to find video segments
with similar motion patterns. The assumption is that video
segments with similar motion characteristics will have similar
object annotations. Finally, object annotations corresponding
to the retrieved results are transferred and warped to match
the motion in the test video better.

The main contributions of this paper are as follows.
1) We present a method that tackles the problem of

tracking objects in the wild using a search and retrieval
framework by learning long-term motion patterns from
a library of training videos.

2) This approach carries out object tracking without
dedicated object detectors or manual initialization and
is automated in the true sense.

3) This approach demonstrates an empirically effective way
of transferring information learned from one data set
to apply onto other data sets of very different visual
contents such as viewpoints, types of objects, and so on.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III provides the
details of the proposed method with a focus on the offline
library generation and the online test video tracking process.
Section IV elaborates on the experiments done to validate our
approach, and we present our comments and possible future
work and conclusions in Sections V and VI, respectively.

II. RELATED WORK

Object tracking is an active research area in the computer
vision community. Surveys of object tracking algorithms
are provided in [20], [32], and [41]. A large number of
tracking algorithms learn an appearance model from the
initial frame and adapt it to information from incoming
frames. Tracking results in the current frame are incorporated
into the tracking model for subsequent frames. This online
paradigm is called tracking by detection [10], [30]. The
simplest object trackers within this paradigm have used
color histograms [3] and template matching [16]. However,
these methods are susceptible to tracking errors, which leads
to the tracker model incorporating background clutter and
occlusions. Multiple-instance learners [1] and trackers based
on structured label Support Vector Machines (SVM) [12] have
tackled the problem of sampling the right image patches for
online learning. Yi et al. [40] propose a visual tracker that is
insensitive to the quality of manual initialization. The tracker
takes advantage of motion priors for detected target features
from optical flow, thereby handling inaccurate initializations.
This method still relies on either a manual initialization or
an object detector to initialize the tracker reliably in a close
neighborhood of the ground truth to be successful.

In addition, there are methods that learn from annotated data
sets in order to create priors that aid appearance-based trackers.
Manen et al. [21] have proposed an interesting framework
that learns how objects typically move in a scene and uses
that knowledge as a prior to guide appearance-based trackers
to handle occlusions and scene clutter. This method requires
annotations of multiple object tracks in the same scene.
In contrast, our method can track objects in scenes totally
unrelated to the data set we learn from. Rodriguez et al. [29]
use a large database of crowd videos to search and find
priors in order to guide a linear Kalman-filter-based tracker.
The method requires that the query video has a scene
appearance similar to retrieved library videos and that the
target’s position be manually initialized, which are not required
for the proposed approach.

On the front of biologically inspired systems, there are
several works that leverage human contextual knowledge for
computer vision tasks like action recognition [15], object
detection [18], [27], and scene classification [31], [33].

III. SEARCH TRACKER

A. Overview of the Approach

We aim to track objects in unseen videos by finding
matches for motion patterns among a library of videos with
indexed human-generated annotations. There are two distinct
phases in the proposed method. The offline phase operates
on a library of training videos with annotated bounding
boxes. Training videos are transformed into representative
documents, which are indexed along with the provided
bounding boxes. The documents encode long-term motion
patterns of annotated objects. We use optical flow [34] to
represent motion information from videos.

During the second phase, a new test video is accepted for
tracking. Documents similar to those created for the training
videos are generated. These documents incorporate motion
patterns across different scales and spatial locations, which
can be matched to those in the training library. This enables
the use of smaller training libraries to represent diverse motion
patterns. The matching and retrieval process handles detection
and tracking of multiple objects in the test videos.

Once matches for test video documents from the training
database are found, associated annotation bounding boxes are
transferred to the test video. Transferred bounding boxes are
warped to improve the match with motion characteristics of
tracked objects. We utilize nonmaximal suppression to derive
the best bounding boxes from the set of warped bounding
boxes. Subsequently, a smoothing step is carried out to
regularize the scale of bounding boxes for the detected objects.

To summarize, human-generated annotations are leveraged
to track moving objects in challenging scenarios without actual
human review of the test video. A high-level block diagram
depicting the proposed method is presented in Fig. 2. The
library creation process and the proposed query scheme are
explained in the following section.

B. Offline Library Creation

1) Training Video Library: The training video library
consists of around 20 min of publicly available surveillance
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Fig. 2. Block diagram presenting a high-level view of the proposed
system. Representative documents are generated from the query video.
These documents encode object motion characteristics. Query documents
are submitted to the retrieval algorithm to find matches. Annotations
corresponding to found matches are then transferred and warped onto the
query video. The red arrows represent online steps and the blue arrows
represent offline steps of the approach. (Best viewed in color.)

Fig. 3. Example frames from six of the videos included in the library of
training videos. (Best viewed in color.)

videos recorded across ten camera views on the UCSB
campus [35], [39]. The resolution of the videos is 320 × 240
and they are recorded at the rate of 24 frames/s. Note that
this does not constrain the dimensions of test videos. The
library videos capture scenes of pedestrians and bicyclists
on campus bike-paths from various viewpoints. There are a
total of 291 object tracks in the library. Example frames from
the library are shown in Fig. 3. Human-generated annotations
corresponding to individual objects are stored and indexed.
To increase the diversity of motion patterns in the data set,
we have generated horizontally and vertically flipped versions
of library videos.

2) Video Document Generation: We divide the training
videos into small nonoverlapping spatiotemporal cubes and
compute dense optical flow across frames [34]. For each
spatiotemporal cube, optical flow vectors are averaged over
a time step and those exceeding a specified magnitude are
binned into four directions (top, left, bottom, and right). The
binning is performed as a soft decision where an optical flow
vector can belong to two directions (e.g., left and top), the
contribution being directly proportional to how close the vector
is to these directions. The votes for each of the optical flow

Fig. 4. (a) Example frame from a sequence belonging to the training video
library. (b) Visualization of the optical flow magnitude for the shown frame.
(c) Document generated from the sequence. The vertical axis corresponds to
the word, which in turn corresponds to spatial location of a cube and the
observed direction of motion. The horizontal axis corresponds to time steps.
The document is binary valued with the black regions signifying activations.
(Best viewed in color.)

vectors are summed up and thresholded. This generates a 4-b
binary motion code for each cube. For our experiments, we
have set the spatial size of cube to 20× 20 and the temporal
step size to four frames. The spatial locations and the motion
code of the cubes are flattened to a single column vector. Each
of the binary codes in the column vector is termed as words
with them being denoted by the variable w ∈ [0, W ). W is
the number of spatiotemporal cubes in a time step multiplied
by the number of quantized directions. The value of W is
derived as

W = IX ∗ IY ∗ m

cX ∗ cY
(1)

where IX and IY are the video width and height, cX and cY

are the spatiotemporal cube width and height, and m is the
number of binary bits in the motion code. For our experiments,
W = 768. We tried out different values for these design
parameters and got the best performance for the values
specified before. The horizontal axis represents time steps in
the video, indexed by t ∈ [0, T ). An example document is
shown in Fig. 4. Design of the video document is meant to
capture spatial location and directions of object motions from
training videos.

3) Motion and Track Indexing: To enable search and
retrieval of motion patterns from training videos, we divide
the documents along the temporal dimension into fragments.
We choose a parameter T f that denotes the document fragment
length. This is the temporal duration of the basic retrievable
segment of a library video that will be chosen and combined
to represent a query video. A fragment is, hence, a contiguous
subset of T f columns from a video document. In our
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Fig. 5. Query video gets processed as 21 different spatiotemporal volume configurations. Each configuration gets processed into a document individually.
(Best viewed in color.)

experiments, we have fixed T f to 8. Each video fragment
can be represented as a set of activated (w, τ) pairs, where
τ ∈ [0, T f ) is the time relative to the start of the fragment.
Each overlapping segment of a document with duration T f is
indexed as an individual fragment. During training, the library
data are stored and indexed across five database tables.

1) Fragment Forward Index: This table contains a row for
each fragment, mapping from a fragment name to its set
of (w, τ) activations.

2) Fragment Inverse Index: This table contains a row for
each (w, τ) pair, mapping onto the fragment names in
which that pair appears.

3) Flow Fields: This table contains the optical flow
magnitude for each time step in every document. These
will be used later for warping.

4) Track Forward Index: This table contains a row for
each unique track id present in the human-generated
annotations, mapping onto a bounding box for each
frame where the corresponding object is present.

5) Track Inverse Index: This table contains a row for each
fragment, mapping onto the set of track ids annotated
during that fragment’s duration.

C. Online Video Queries

With offline library creation steps complete, the system is
ready to provide tracks for a new unseen input video. Keeping
with the search and retrieval metaphor, an input video is called
a query.

1) Multiscale Video Document Generation: In order to
be able to match motion patterns at multiple scales and
spatial locations from the training video library, we generate
documents for different configurations of the input video.
The configurations are illustrated in Fig. 5. The first
configuration has the video processed at the original scale.

The next four configurations have the video spatially divided
into four quadrants. The quadrants are individually processed
to create one document each. Additional 16 configurations
are generated by spatially dividing the video into 16 parts
of identical sizes and each part generating a document.
In total, for each video, we generate 21 documents. The
spatial dimensions of the spatiotemporal cubes used during
document generation are modulated with the size of the
video configuration such that the number of words W is
constant across configurations. The above method enables the
representation of motion patterns in query videos at different
spatial locations and scales. When retrieving matches for query
videos, we compute matches for all the 21 configurations
and pool the results for further stages of annotation transfer
and warping, as described in Section III-C3. This enhanced
flexibility leads to a reduction in size of the training video
library required to represent arbitrary object motion in query
videos. We then divide the documents of the query video into
fragments, as described in Section III-B2.

2) Library Search and Composition: Consider a fragment
of one of the query video documents

fq = (w, τ) : w ∈ [0, W ), τ ∈ [0, T f ). (2)

We wish to find a set of result fragments from our
library, Fr , which composed together approximate the query
fragment

Fr = arg max
F ′r

∑

w

∑

τ

min(R fq (w, τ), R fR (w, τ)) (3)

where

fR =
⋃

fr∈F ′r
fr (4)

R f (w, τ) =
⎧
⎨

⎩

1

| f | , if (w, τ) ∈ f

0, otherwise.
(5)
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Algorithm 1 Greedy Composition of Library Fragments
Input:
Query fragment fq

Fragment forward index I f

Fragment inverse index Ii

Stopping criteria ρ

Output:
Result fragment set Fr

1: U ← fq

2: U0 ← |U |
3: Fr ← {}
4: fR ← {}
5: h ← 0
6: while |U | > ρ U0 do
7: X ← ⋃

(w,τ )∈U Ii [(w, τ)]
8: y← {}
9: for x ∈ X do

10: fc ← fR ∪ I f [x]
11: h ← | fq∩ fc |

max(| fq |,| fc|)
12: y ← y ∪ (h, x)
13: end for
14: hm , xm ← max(y)
15: fR ← fR ∪ I f [xm]
16: U ← fq\ fR

17: Fr ← Fr ∪ xm

18: end while

Here, fR is the union of all the selected result documents
and R f (w, τ) is a function that represents a set f as a
uniformly weighted discrete probability distribution whose
support is the (w, τ) pairs in f . As such, we are searching
for the set of library fragments where probability distribution
for their union has a maximal histogram intersection with
probability distribution for the query fragment. This can be
rewritten as

Fr = arg max
F ′r

| fq ∩ fR |
max(| fq |, | fR |) . (6)

Choosing the library fragments to include in the result
set Fr is very similar to the maximum set coverage
problem, which is nondeterministic polynomial-time hard [13].
We approach the selection of Fr using a greedy algorithm,
which at each step adds a new fragment from the set of
library fragments to the result set such that the resulting
histogram intersection is maximized. The retrieval algorithm
is summarized in Algorithm 1. In detail, a set of fragments
from the library X , which share activations with the query
fragment fq , are retrieved using the fragment reverse index Ii .
We then find the fragments within X , which together
compose fq in a greedy fashion. In the case where library
videos are provided as queries, the algorithm will produce an
exact match in the first iteration and generated tracks will be
the same as ground truth. See Fig. 6 for an example of one of
the library fragments retrieved for a query fragment.

The retrieval algorithm scales with multiple objects in
the query video. Consider an example where we have

Fig. 6. Example of retrieval results for a query video sequence.
(a)–(c) Frames from a query video and (d)–(f) frames from the top retrieved
result among the library videos. The motion of the walking person in the
query video in the top-left direction has been matched to the motion of the
bicyclist. Note the difference in the spatial scales and locations of the objects
in the query and result videos. The red boxes in (a)–(c) signify detected
bounding boxes and green boxes signify ground truth. The green boxes
in (d)–(f) show the human annotated bounding boxes stored with the library
videos. (Best viewed in color.)

two objects moving in a frame, one moves to the left
and the other to the right. Since the objects would occupy
distinct spatial locations and would have different directions
of motion, the activations get encoded in distinct locations of
the corresponding document and consequently the fragments.
This leads to two distinct motion patterns in the fragment.
Each of the distinct patterns would result in retrieval results
that compose these results independently. The design of the
retrieval algorithm ensures that we get multiple composed
fragments from the reference result with one corresponding
to motion to the left and the other corresponding to motion to
the right.

3) Annotation Transfer and Warping: The previous step
resulted in FR , the set of library result fragments that together
best approximate the query fragment. Looking up each of these
fragment names in track inverse index gives the set of unique
track ids occurring in the result fragments, and looking up each
of these up in the track forward index gives a set of bounding
boxes to be transferred to the query video. Finally, we retrieve
optical flow magnitude fields for the result fragments from
the flow field table. The indexes were previously defined in
Section III-B3. Each fragment corresponds to T f flow fields.

Fig. 7 shows the flow fields and annotations retrieved for
the example shown in Fig. 6. Note that while motion of the
bicyclist in the result fragment and the pedestrian in the query
fragment are similar, the objects are of different sizes and are
in different locations in the image frame. We cannot simply
copy the bounding boxes from one to the other. Instead, the
flow fields can be used to warp retrieved bounding boxes to
better match the query.

It is not necessary to obtain a dense warping field from the
result to the query; only the bounding box needs to be adjusted.
The system seeks a bounding box on the query flow field that is
similar to the human-provided bounding box on the result flow
field. This includes both the size and placement of the box, as
well as the flow it contains. Bounding boxes are defined by
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Fig. 7. (a)–(f) Optical flow fields for frames presented in Fig. 6. Query frame
flow fields in (a)–(c) have the directly transferred white bounding boxes and
the results of the warping method (described in Section III-C3) are drawn
using the red bounding boxes. The green boxes in (d)–(f) represent manually
annotated bounding boxes from the retrieval results. (Best viewed in color.)

their left, right, top, and bottom edge positions and the system
iteratively updates each edge of the query bounding box in turn
to improve quality of the match. For a query bounding box bq

and a result bounding box br with left edge values lq and lr ,
respectively, the update for lq is

lq = arg max
l′q

[
N−1∑

i=0

min(Hbr (i), Hb′q (i))

]
e
−(lr−l′q )2

2α (7)

where Hb is a N-bin normalized histogram of the flow
magnitudes inside the bounding box b and α is a penalty factor.
As such, the update seeks a new query edge position which
maximizes the histogram intersection between the histograms
of the flows in bq and br and exacts a penalty for deviating
too far from the result bounding box. The second part of the
update criterion ensures that the query bounding box does not
collapse onto a subregion of the query frame’s optical flow.

The right, top, and bottom edges proceed similarly. The
warping scheme does not put a rigid constraint on the size of
the final bounding box and allows adaptation to optical flow
statistics of the local neighborhood. Fig. 7 shows an example
result of warping bounding boxes. In our experiments, we
randomly permute the order of the left, right, top, and bottom
edges and obtain a batch of updates to eliminate bias that
the order of edges might introduce. We have observed that the
values of the edges reliably converge within ten batches across
multiple test matches. We have included a sensitivity analysis
for α in Section IV-E.

Due to the overlapping nature of fragments, a frame
can belong to multiple fragments. This leads to multiple
bounding boxes being retrieved for a given motion pattern in
a frame. To choose the best warped bounding box, we apply a
nonmaximal suppression rule to eliminate suboptimal boxes.
Bounding boxes are scored on the density of the optical flow
being covered.

The chosen detection bounding boxes are associated
together into object tracks using the Hungarian
algorithm [24], [25] to solve an assignment problem
where the association costs are modeled by a combination of
geometric distance between bounding box centers and color

histogram distance. In detail, the association costs between
bounding boxes bn

i and bn+1
j in frames n and n + 1 are

modeled as

J n,n+1
i j = dhist

(
H hsv

bn
i

, H hsv
bn+1

j

)+ β‖cbn
i
− cbn+1

j
‖2 (8)

where H hsv
b is the HSV color histogram of the image pixels

lying within the bounding box b, dhist(., .) is the histogram
intersection distance, β is a weight parameter, and cb is the
center location of the bounding box b. The color histograms
are constructed by jointly binning hue and saturation values.
H and S channels are quantized into ten and five equally
spaced bins respectively. The parameter β is fixed to 2.5 in
our experiments, as due to poor image quality in our query
videos, color information can be unreliable and provides only
coarse discriminative information for association.

Once tracks are generated from the above step, we perform
postprocessing in the form of a moving average filter with a
window width of ±2 frames. We perform this step to improve
temporal coherence of the generated bounding boxes. The
averaging operation is carried out in the center location and
scale of the bounding boxes independently.

IV. EXPERIMENTS

A. Data Sets

We have focused our experiments on surveillance videos.
As the proposed approach is designed to be effective for
low-quality and low-resolution videos, we have collected
an appropriate data set with 15 sequences. We call it the
UCSB-Courtyard data set. These video clips have been
recorded using Cisco WVC2300 wireless ip network cameras
overlooking a busy pedestrian crossing from five different
viewpoints. Each sequence contains on average 150 frames
with pedestrians on a busy courtyard in an uncontrolled
setting. The number of pedestrians varies from 1 to 4. The
tracking targets undergo complex appearance changes due to
shadows, occlusions, and compression artifacts. The Browse2,
WalkByShop1front, ShopAssistant1front, TwoEnterShop2cor,
OneShopOneWait2cor, and OneLeaveShop1cor sequences
from the CAVIAR [9] data set are used for comparisons
as well. These data sets are used to measure single-object
tracking performance. The proposed method is also capable
of detecting multiple moving objects in a scene. To compare
and benchmark with respect to other multiple object trackers,
we have chosen the S2L2 sequence of PETS2009 [6].

As described earlier, we have composed the library videos
from a data set that covers bike paths on a university campus.
The scenes captured on this data set are distinct from test data
sets. We demonstrate that with a small library of videos, we
can apply learned motion patterns from one data set onto an
entirely different data set.

B. Evaluation Metrics

To perform quantitative comparison of object tracking,
we use the standard metrics of Pascal visual object
challenge (VOC) detection score [7] and center location
error (CLE) [38].
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Fig. 8. (a) and (b) Results for appearance-based tracker reproduced from
Fig. 1 for comparison. (c) and (d) Results for the ST on frames from the
Courtyard data set. The ST has ignored scene clutter and continues to track
the target across frames. Tracker results and ground truth boxes are marked
in red and green, respectively. (Best viewed in color.)

VOC score measures the quality of overlap between
detected and ground-truth bounding boxes. For comparison of
VOC scores of the competing methods in a test data set, we
average the scores over frames in a sequence, and then over
sequences to get the final score to generate a mean VOC score.
CLE measures the Euclidean distance between the center
of the detected bounding box and that of the ground-truth
bounding box. CLE quantifies the localization ability of an
object tracker. Similar to mean VOC score, we calculate mean
CLE score.

In addition to the above single object tracking metrics,
we have also used CLEAR metrics [2] for comparison of
algorithm performance with multiple object trackers. Multiple
Object Tracking Precision (MOTP) scores measures the
ability to detect precise object locations whereas Multiple
Object Tracking Accuracy (MOTA) measures the capability of
trackers to maintain consistent object configurations as targets
move around in the scene.

C. Comparison With State-of-the-Art

In order to demonstrate the advantages of the proposed
approach over those of more conventional appearance-based
approaches, we have chosen six state-of-the-art methods for
comparison.

1) Visual Tracking Decomposition [19]: This method
combines multiple-appearance-based observation model
and motion model trackers using sparse principle
component analysis and an interactive Markov chain
Monte Carlo framework. An initial bounding box of the
target is required for tracking.

2) Struck Tracking [12]: This adaptive method formulates
the problem of choosing good training examples for
online training of target appearance as a structured
support vector machine. An initialization of the target
position is required for tracking.

TABLE I

COMPARATIVE TABLE OF MEAN VOC SCORES FOR DATA SETS
ACROSS TRACKING METHODS. A HIGHER VALUE

REFLECTS SUPERIOR TRACKING RESULTS

TABLE II

COMPARATIVE TABLE OF MEAN CLE SCORES IN PIXELS FOR

DATA SETS ACROSS TRACKING METHODS. A LOWER
VALUE REFLECTS SUPERIOR TRACKING RESULTS

3) Adaptive Color Tracking [5]: This real-time tracking
method incorporates sophisticated color features to
provide invariant representation in the illumination
space. An initial bounding box of the target is required
for tracking.

4) Initialization-Insensitive Tracking [40]: This approach
utilizes motion saliency of local features to accurately
track objects in an adaptive manner with inaccurate
initializations. Target position initialization is required
here as well.

5) Consensus-Based Tracking and Matching of Keypoints
for Object Tracking [26]: This method tracks feature
points across frames to estimate target location in current
frame. Target position initialization is a requirement.

6) Background Subtraction-Based Tracking [17]: This
method segments out moving objects in a scene from the
background and applies a Kalman filter over bounding
box estimates.

The results for the competing methods have been
generated using codes provided by Danelljan et al. [5],
Hare et al. [12], KaewTraKulPong and Bowden [17],
Kwon and Lee [19], Nebehay and Pflugfelder [26], and
Yi et al. [40], with parameters set to the default values
suggested by the provided documentation.

In Fig. 1, we presented a case where scene clutter and
compression artifacts can cause appearance-based trackers
to fail. The ST can overcome such issues since quantized
long-term motion patterns are robust to the presence of
scene clutter and occlusions. Results for the ST on the same
sequence are shown in Fig. 8. The ST is also robust to abrupt
appearance changes due to shadows, compression artifacts,
and changing illumination because of the relative invariance
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Fig. 9. Comparative distance and overlap precision performance plots for the ST and competing algorithms on the Courtyard and CAVIAR data sets.

TABLE III

COMPARATIVE TABLE OF MEAN OVERLAP PRECISION FOR DATA SETS

ACROSS TRACKING METHODS. THE OVERLAP THRESHOLD

IS SET TO 0.5. A HIGHER VALUE REFLECTS SUPERIOR
TRACKING RESULTS

of long-term motion patterns, whereas appearance-based
trackers frequently fail in such sequences. These issues
are very important to address as they are commonplace in
real-world scenarios.

TABLE IV

COMPARATIVE TABLE OF MEAN DISTANCE PRECISION FOR DATA SETS

ACROSS TRACKING METHODS. THE DISTANCE THRESHOLD

IS SET TO 20 PIXELS. A HIGHER VALUE REFLECTS
SUPERIOR TRACKING RESULTS

Tables I and II show the comparison of mean VOC and
mean CLE scores across different data sets between the
proposed method and competing methods. Tables III and IV
report comparative results on mean overlap precision and
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mean distance precision across data sets and methods. The
distance and overlap thresholds are set to 20 pixels and 0.5,
respectively. Fig. 9 presents distance and overlap precision
scores for different values of VOC scores and CLE thresholds.
The ST consistently outperforms all other competing
algorithms by a wide margin.

As we can see, the ST is competitive with respect to the
appearance-based methods. It is important to note that we
do not depend on manually provided initial bounding boxes
or object detectors for the training videos. This gives us a
strong advantage when the manual initialization or good object
detectors are not available especially in test data sets suffering
from poor image quality. The ST outperforms competing
methods by a large margin in the Courtyard data set.
We are able to get this performance from the ST without
any manual initialization. CAVIAR has indoor sequences
set in a shopping mall with a comparatively low image
quality and more scene clutter. Therefore, leveraging motion
patterns helps us outperform all the other algorithms on
CAVIAR. Example result frames are presented in Fig. 10.
These frames illustrate resilience of our algorithm to scene
clutter, illumination changes, and occlusions. In addition, the
aforementioned image quality issues often cause background
subtraction-based tracking (BGS) methods to fail on both the
CAVIAR and the Courtyard sequences. To contrast against
the usage of optical flow and feature tracking methods, we
have provided comparisons with the consensus-based tracking
and matching of keypoints for object tracking (CMT) tracker.
Due to poor image quality of test videos, consistent tracking
of object feature points across multiple points is a difficult
problem and hence leads to a comparatively weaker tracker
performance. Since the ST utilizes aggregated optical flow
information across multiple frames at the same time, the
tracker is robust to such conditions.

In order to compare the performance with respect to
tracking multiple objects, we provide the bounding boxes
generated by the Search Tracker on the PETS 2009 S2L2
sequence to [23]. [23] combines the provided detections into
object tracks using an energy minimization framework. We
compute the MOTA and MOTP scores generated for these
tracks and compare them with the state-of-the-art methods
in Table V. Our method is comparable in performance
with other multiobject trackers. A point to note is that the
competing methods use external sources for object bounding
boxes.

D. Performance Analysis With Varying Library Sizes

We investigate the effect of different library sizes on the
proposed method’s tracking performance. We randomly chose
γ = {0.5, 0.6, 0.7, 0.8, 0.9, 1} fraction of the library videos
and generate sub-libraries. We then run the search and retrieval
algorithm with one of these sublibraries at a time and plot
the overlap precision and the distance precision scores on the
Courtyard data set for the different values of γ in Fig. 11(a).
As can be seen from the plots, the ST’s performance scales
with the size of the associated annotated video library. Since
we apply data augmentation techniques in the form of vertical

TABLE V

COMPARATIVE TABLE OF CLEAR MULTIPLE OBJECT TRACKING SCORES
FOR THE PETS-2009 S2L2 SEQUENCE ACROSS TRACKING

METHODS. A HIGHER VALUE REFLECTS

SUPERIOR TRACKING RESULTS

and horizontal flipping of library videos and also generate
multiscale query video representations, the proposed method’s
performance does not reduce by a large margin due to
reduction in library sizes.

E. Analysis on Annotation Warping

In the annotation warping stage, we control the flexibility
that a transferred bounding box has in fitting optical
flow characteristics of the query video frame, through the
penalty term α from (7). We found the optimal value
of α to be 2000 for our experiments. To investigate the
sensitivity of the proposed method for different values
of α, we execute the proposed tracker on the Courtyard
data set and measure the overlap precision and distance
precision at VOC score thresholds of 0.5 and 20 pixels,
respectively. The tracking performance of the ST is shown
in Fig. 11(b). Low values of α restrict the flexibility of
the transferred bounding box to adapt the test sequence’s
optical flow characteristics, while higher values can lead to
bounding boxes collapsing onto regions of high optical flow
magnitude.

F. Computational Cost

Our experiments were carried out on a single-core 3.5-GHz
workstation using MATLAB. The query stage and the
bounding box composition steps take between 4 and 25 s for
each frame, depending on the number of moving objects in the
scene. The computational cost of the ST is distributed among
the query multiscale fragment computation stage, the library
search and composition stage, and the annotation transfer and
warping stage. The time required per frame for fragment
generation is 53 ms, the library search stage needs 3.7 s, and
the annotation transfer stage requires 9.3 s on average for the
Courtyard data set.

The cost of fragment generation is independent of the
content in query videos. Annotation transfer and warping
requires the largest amount of computation among all the
stages. Since a frame can be a member of multiple query
fragments, the large number of matched annotations and the
accompanying warping procedure adds to the computational
cost. Annotation warping can be made faster by a parallelized
implementation for warping of retrieved candidate bounding
boxes. The optical flow method in [34] provided the most
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Fig. 10. Comparison of our approach with state-of-the-art trackers on CAVIAR and Courtyard data sets. The first (top) row shows images where the target
undergoes illumination and shape variations. In the second row, the target passes through a cluttered scene. The target in the third row undergoes compression
artifacts and an occlusion. The proposed tracker is able to track the targets and it adapts bounding box scale to the target size, whereas the competing trackers
get distracted by scene clutter, have fixed bounding box scales, and fail when the target appearance changes or undergoes occlusions. (Best viewed in color.)

accurate results, but the method is computationally expensive
and this adds to the cost of the ST.

V. DISCUSSION

There are a few limitations to the proposed method. The
ST is designed to work with stationary cameras and will
not be directly applicable to data from pan–tilt–zoom and
mobile device cameras. There may be cases where the motion
present in the test video cannot be modeled by the training
library database, which can be overcome by adding more
video clips to the library. Diversity can also be induced by
generating translated and rotated versions of preexisting library
videos. In addition, with state-of-the-art trackers becoming
more efficient and robust, we could combine automated
tracker outputs instead of depending on human-generated

annotations to create cheaper large-scale video libraries and,
consequently, lead to improved object tracking. We also expect
that this method of directly transferring knowledge available
on one annotated data set to a different data set to be
applicable to other problems like action recognition, activity
analysis, and other tasks that can be analyzed through motion
patterns.

The ST has also limitations with respect to modeling
target motion in crowded sequences. In sequences where
a large number of targets occlude each other, the optical
flow signatures are not discriminative enough to find
a good match from the library data set. In some
cases, very small objects in scenes do not generate
strong optical flow fields, and hence, encoding of motion
becomes challenging. The ST is best suited for tracking
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Fig. 11. (a) Overlap precision and distance precision values for the proposed
method on the Courtyard data set with γ fraction of the entire video library
used for the retrieval database. (b) Overlap precision and distance precision
values for the proposed method on the Courtyard data set for different values
of the parameter α. The VOC score threshold and CLE thresholds were set
as 0.5 and 20 pixels, respectively, for both plots and Courtyard was used as
the test data set to generate both plots.

a fewer number of objects in cluttered and challenging
scenarios.

VI. CONCLUSION

In the proposed method, the transferred annotations are
warped on each frame from the query video. The warping
algorithm could be made more robust and efficient by
considering optical flow characteristics of adjacent frames,
resulting in smoother tracks.

The paradigm of learning motion patterns and behaviors
from an annotated library of past videos can be extended to
several novel surveillance scenarios. Consider a surveillance
network where we have annotations for videos from a subset
of the connected cameras. With the remaining cameras or in
the event of adding a new camera, we could directly start
leveraging the past motion pattern knowledge mined from
the annotated data set. The ST could also be used in an
active learning framework where imperfect appearance-based
trackers and detectors are used as teacher algorithms to create
a seed library. The ST as the student algorithm tracks objects
in conditions that are difficult for appearance-based trackers
using the library. The library expands continuously, both
from the past outputs of the ST and the appearance-based
tracker, which would lead to an improvement in ST
performance. The basic idea of similarity search of motion
patterns could be explored for applications in action
recognition, object retrieval, and object reidentification from
videos.

We have presented a novel approach to tracking that uses
human annotations to directly drive an automated tracking
system. We generate documents from videos that represent
motion patterns. These documents are used to retrieve videos
with similar motion characteristics and associated annotations
are transferred and warped to the query video. This system
avoids the requirement of object detectors and outperforms the
state-of-the-art appearance-based trackers on the in-the-wild
surveillance data sets, which has been demonstrated in the
experiments.
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