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Hierarchical Spatial Sum-Product Networks for
Action Recognition in Still Images
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Abstract—Recognizing actions from still images is popularly
studied recently. In this paper, we model an action class as
a flexible number of spatial configurations of body parts by
proposing a new spatial SPN (Sum-Product Networks). First,
we discover a set of parts in image collections via unsupervised
learning. Then, our new spatial SPN is applied to model the
spatial relationship and also the high-order correlations of parts.
To learn robust networks, we further develop a hierarchical
spatial SPN method, which models pairwise spatial relationship
between parts inside sub-images and models the correlation of
sub-images via extra layers of SPN. Our method is shown to be
effective on two benchmark datasets.

Index Terms—Sum-Product Networks, Action Recognition,
Image Classification, Computer Vision

I. INTRODUCTION

ACTION recognition from videos has been an active
research topic in computer vision for more than two

decades [1], [2], [3], [4], [5], [6], [7], [8]. However, video
is not essential in action recognition. Based on the three
images in Fig 1, we human beings can easily identify the
action classes, i.e. applauding, blowing bubbles, and cooking.
This observation motivates the computer vision community to
develop techniques for action recognition from still images,
which has many potential applications in image annotation,
image retrieval, and video-based action recognition [9].

To recognize action classes from still images accurately,
researchers tend to integrate it with the task of pose esti-
mation [10], [11]. In the integrated framework, these two
tasks can help each other. However, the performance of action
recognition heavily relies on the pose estimation result. The
failure of pose estimation can significantly reduce the action
recognition accuracy. Other interesting methods recognize
object-associated human actions by modeling the interactions
between humans and contextual objects [12], [13]. It has been
shown that action recognition can also achieve high accuracy
holistically, which can be applied in more general cases where
the information of pose and associated objects is not available
[14], [15], [16].

Some other works [17], [18], [16], [19], [11] have shown
that representing action classes by a set of body parts can
overcome the limitation of the highly structured models.
Inspired by the success of part-based methods, we model an
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Fig. 1: Example images from Stanford40 dataset [17]. We
humans can easily recognize the action class of these three
images (applauding, blowing bubbles, and cooking).

action class as a flexible number of spatial configurations of
parts. For image representation, we propose an unsupervised
method to learn a set parts. Different from previous works
that learn the parts based on low-level features, the proposed
method discovers parts through deep feature clustering and
CNN model fine-tunning. In the proposed method, deep fea-
ture clustering and CNN model fine-tunning can boost the
performance of each other. This method can be directly applied
to other tasks for unsupervised visual pattern discovery.

With a set of parts, an image can be represented by an
activation vector of these parts, as well as their locations.
The part activation vector is useful for action recognition, as
it reveals which parts occur in the image. Informative parts
indicate the potential class label of an image. For example,
the parts that represent the appearance of a bike are expected
to occur in an image from the action class of riding a bike.
However, the same set of parts may occur in two different
classes. It is the layout of parts that discriminates one from
the other. Thus, the spatial relationships of these parts are
also critical. For example, the main difference between the
action classes of riding a bike and fixing a bike is the spatial
relationship between a human and a bike.

In order to incorporate the spatial relationship between
parts in action classification, Desai et al. [20] propose to
mathematically model the locations of the parts. By implicitly
assuming the spatial relationship between parts are fixed in
the images of the same class, it cannot deal with deformable
part pairs. Differently, in this work, we propose spatial SPN
(Sum-Product Networks) to capture the spatial relationships
as well as high-order correlations of the parts. SPN is first
proposed in [21] to model the joint probability of variables in
a hierarchical manner. In naive SPN, the spatial relationships

ar
X

iv
:1

51
1.

05
29

2v
3 

 [
cs

.C
V

] 
 8

 J
ul

 2
01

6



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX 2

between its inputs are completely ignored. To capture such
important information in action recognition, we introduce four
types of indicator nodes (right, left, above, and below) for
the product nodes which are the immediate parents of two
part nodes. These indicator nodes encode the different spatial
relationships between a pair of parts. Thus, the spatial SPN can
deal with deformable spatial relationship between part pairs.

It is preferable to model local instead of long-range spatial
relationship between parts in the task of action recognition
due to two reasons. Firstly, local spatial relationship is more
stable. The local relationship a knife above vegetables always
occurs in images from the action class of cutting vegetables.
Long range spatial relationship between parts, which can vary
significantly, may not carry discriminative information. An
example is shown in Fig 6. Humans can have different poses
in images from the action class of reading. Secondly, it is
computationally expensive to model the spatial relationship
of every pair of parts. With N parts, there are N(N − 1)/2
possible part pairs. Instead of modeling the spatial relationship
of all part pairs, we hierarchically partition an image into sub-
images and only consider the part pairs that co-occur in the
same sub-image. In this way, we drop the long-range spatial
relationship between the part pairs, and significantly simplify
the structure of SPN.

We model the correlations of the sub-images using the top
layers of the spatial SPN. To achieve this, we propose a method
for SPN structure learning based on image partitioning. In the
proposed method, we hierarchically partition an image into
sub-images (bottom layers model spatial relationship locally
between parts inside sub-images). Among a large number
of possible partitions, we only encode the discriminant ones
in the spatial SPN for efficient learning. In the hierarchical
spatial SPN, a product node is associated with a partition
method. As the parent of several product nodes (associating
with different partitions), a sum node models the combination
of different partition methods, which collaborate to improve
the discriminant ability.

In short, our main contributions are as follows: 1) we
propose a new representation for action class in still images
based on SPN; 2) we propose spatial SPN, a new structure
of SPN, to model not only the high-order correlation, but
also the spatial relationship between its leaf nodes; 3) we
propose a new method to learn the structure of SPN based on
image partition. We test our method on two datasets (Willow
7 action and Stanford 40 action). The experiment results show
the effectiveness of our method.

The remaining part of this paper is organized as follows.
Section II describes related work. Section III introduces the
proposed method for part discovery and spatial SPN struc-
ture learning. Section IV shows the experiments. Section V
concludes this paper.

II. RELATED WORK

To recognize actions from images, researchers propose
methods to learn discriminative representations for humans
under different poses. Ikizler-Cinbis et al. [22] learn HOG-
feature based representations for different action classes based

on the images collected from Web. Thurau and Halvac [23]
train a set of pose primitives by non-negative matrix de-
composition of HOG-descriptor and represent images using
these pose primitives. Wang et al. [24] propose a technique
for deformable matching of edges from a pair of images.
These methods [22], [23], [24] extract features from the whole
image and obtain a global template. However, these global
templates are not effective for the action recognition due to
the significant pose variations in images.

It has been shown that part-based methods are more robust
than global-based methods against pose variations [10], [25].
Bourdev and Malik [19] introduce the idea of poselet for
robust person detection. Later, Bourdev [26] et al. propose
to learn poselet based on 2D keypoints and take the spatial
relationship of these poselets into consideration. Yang et al.
[10] integrate pose estimation and action recognition in a
single framework. In this work [10], a poselet represents a
set of patches not only similar in pose configuration, but also
belonging to the same action class. To recognize human and
object interactions, Yao and Fei-Fei [13] propose ‘grouplet’ to
capture the structure information of an image via an AND/OR
graph. Yao et al. [17] incorporate attributes that describe the
properties of human action into part-based representation. For
action prediction, an image is sparsely represented by a set of
action bases. To recognize human-object interactions, Desai et
al. [20] represent an image by a set of overlapping patches
at various locations with their HOG features. To define a
contextual model, the patch features are linearly combined
with the configuration structure. Maji et al. [18] propose a
dataset with 3D pose annotations and represent an image by
the pose activation vector. Sharam et al. [16] propose a SVM-
like model to capture the spatial relationship between the parts
for action recognition and attribute learning. However, it makes
the model very complicated to linearly combine the HOG
features with the locations of the detected templates.

SPN (Sum-Product Networks) [21] is a newly proposed
deep structure that can capture the high-order correlations
between its leaf nodes. A number of papers later investigate
this structure theoretically [27], [28]. In addition, SPN is
proved to be successful in several tasks of computer vision,
including image classification [29], facial attribute analysis
[30], and action recognition in videos [31]. In this paper, we
characterize an action class by several configurations of body
parts, and represent it using SPN. Amer and Todorovic [31]
propose to learn a Bag-of-Words representation for a video
and model the deep correlations of parts using SPN with a
stochastic structure. However, the spatial relationships of the
parts are not taken into consideration. For the first time, in this
work, we propose spatial SPN to explicitly model the spatial
relationship of parts for robust action recognition.

III. APPROACH

We propose to recognize actions based on parts, which are
discovered in images by adapting CNN model in an unsu-
pervised manner. The parts can be noisy, hence we propose to
use SPN to model the relationship between parts robustly. SPN
[21] has been shown to be very effective for representing high-
order correlations between variables. However, traditional SPN
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cannot represent the spatial relationship of parts, which is very
critical for our action recognition problem. In this work, we
propose a new hierarchical spatial SPN to model both spatial
relationship and high-order correlations of parts for improved
recognition.

A. Part Learning

Part-based methods [32] are popularly used for action
recognition and achieve high accuracy [10], [18], [33], [17],
[16], [34]. They are proved to be more robust than global-
based methods against pose variations [10], [25].

In this work, we consider a part as a visual pattern that
occurs in many images. It is a difficult task to identify parts,
due to the missing information of: 1) the reference for a part; 2)
whether a part occurs in an image or not; and 3) the location of
a part (if it occurs). To overcome these difficulties, we develop
an unsupervised learning method to discover parts in image
collections.

Deep learning has attracted wide attention due to its great
success in several tasks [35], [36]. Here, we aim to learn a
CNN model which can predict the part label of an input image
patch. To obtain such a model, we start with the CNN model
pre-trained on imageNet [37], [38]. It is proved that CNN
can achieve higher image classification accuracy than shallow
models [37]. This indicates CNN-based deep features are more
powerful in visual pattern representation.

We densely sample np patches from each image for part dis-
covery. We conduct the following three steps iteratively: deep
feature extraction, unsupervised clustering, and fine-tuning.
Firstly, we extract deep features from the fully-connected layer
of CNN [37], [38]. Secondly, to obtain a tentative reference
for each part, we conduct unsupervised clustering and obtain
nc clusters (nc decreases in each iteration). Each cluster is
considered as a tentative part. We take the center point of a
cluster as the reference of this part. Thirdly, we fine-tune the
CNN model with the cluster labels. In this way, the CNN
model will be more effective in capturing the visual patterns
of our data. The deep features extracted in the next iteration
can fit our task better.

After several iterations, we obtain high quality clusters as
well as a fine-tuned CNN model which is suitable for our
dataset. Each cluster is considered as a part in this paper.
Though not all of the clusters can be semantically meaningful,
some of them represent particular parts of human body. Fig
2 shows three example clusters, which are treated as parts in
this paper.

We train an SVM classifier for each of the cluster as the part
detector. To train the SVM for cluster ci, we take the patches in
this cluster as positive sample set. To be widely representative,
the negative sample set not only contains patches from the
other clusters but also the patches that are not in any of the
clusters.

With these SVM classifiers, an image can be represented by
an activation vector of the parts, as well as the spatial locations
of these parts. In order to locate parts, we use the sliding
window method to scan regions. Even though two images
have the same parts, they may come from two different action

Fig. 2: Three example parts discovered by our fine-tuned CNN.

classes, such as fixing a bike and riding a bike. Thus, it is
important to model the spatial relationship of parts.

Fig. 3: Two examples from the action class of applauding
[17]. The actors are a baby sitting in the baby chair and a
man standing in a football court. The appearances of these
two actors are quite different.

If an object has a stable and simple structure, we can model
it accurately using the DPM model [39] or the constellation
model [40]. However, humans involved in the same action
class can be quite different due to pose variations. In addition,
the appearance of actors varies significantly. For example, in
the action class of applauding, the actor can be a baby sitting
in the baby chair, or a football player standing in the football
court, as shown in Fig 3. Such variations make the problem
of action recognition difficult for traditional part-modeling
methods [40], [39].

We consider an action as a configuration of parts. Images
from the same action class should possess a flexible number
of shared spatial configurations of parts. We model the config-
uration of parts using a newly proposed spatial SPN method
introduced in the next subsection.

B. Hierarchical Spatial SPN

1) Sum Product Networks: Poon and Domingos [21] intro-
duced SPN as a new deep architecture to represent probability
distributions based on the theory of Darwiche’s network poly-
nomial [41].
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Fig. 4: Examples of SPN. a) shows an SPN with two variables X1 and X2. b) shows the first two steps to infer the value of
x2, i.e. bottom-up evaluation with X1 = 1 and marginalized X2 (i.e. X2 = 1 and X̄2 = 1) as well as M-node generation. c)
shows the third step, i.e. the top-down inference procedure to the value of X2 = 1.

Definition [21] A sum-product network over variables
x1, x2, ..., xd is a rooted directed acyclic graph whose leaves
are the indicators x1, x2, ..., xd and x̄1, x̄2, ..., x̄d and whose
internal nodes are sums and products. Each edge (i, j) ema-
nating from a sum node i has a non-negative weight wij .

SPN is a compact graphical model that allows fast inference
and margin computation. We can consider SPN as directed
acyclic graphs whose leaves are variables, internal nodes are
sums and products [21]. These nodes are linked with weighted
edges. The value of a product node is the product of the values
of its children. The value of a sum node is Σj∈Ch(i)wijvj ,
where Ch(i) are the children of i and vj is the value of node
j. The value of an SPN is the value of its root.

In a typical SPN, the parent of a sum node is a product
node and the parent of a product node is a sum node [30],
[21]. Fig 4 a) shows an example of SPN S(x1, x̄1, x2, x̄2)
over variables x1 and x2. Based on this SPN, the prob-
ability of x1 = 1 and x2 = 0 can be calculated using
P (x1, x̄2) = S(1, 0, 0, 1) = 0.8(0.3x1 + 0.7x̄1)(0.8x2 +
0.2x̄2) + 0.2(0.4x1 + 0.6x̄1)(0.1x2 + 0.9x̄2) = 0.8 × 0.3 ×
0.2 + 0.2× 0.4× 0.9 = 0.12

Based on an SPN, we can infer the value of an observed
variable using MPE (Most Probable Explanation) inference
[41]. For example, knowing x1 = 1, we can infer the value
of x2, with three steps shown in Fig 4 b) and c). The first
step marginalizes the unknown variable x2 by setting both
x2 = 1 and x̄2 = 1 and evaluate SPN accordingly. The second
step replaces the sum nodes with M (maximization) nodes
and selects the maximum child for each M-node (Fig 4 b).
The third step performs a top-down procedure to track the
maximum child for each M node and obtains x2 = 1 (Fig 4
c).

2) Hierarchical Spatial Sum Product Networks: Action
recognition in still images is treated as a binary classification
problem, where we are given a set of training images {Ii, i =
1, · · · , N} together with their class labels yi ∈ {0, 1}. Our
goal is to learn a spatial SPN for one action class responding

Fig. 5: Indicators fl, fr, fa, and fb to capture the spatial
relationships of a pair or parts. The indicator fl = 1 (fr = 1)
means part p1 is to the left (right) of part p2. The indicator
fa = 1 (fb = 1) means part p1 is above part p2. In b),
fl = 1 and fb = 1; in c) fl = 1 and fa = 1. In a) the
product nodes P1, P2, P3, and P4 capture four different types
of spatial relationships of the parts p1 and p2. The sum node
S combines these four different configurations of part p1 and
part p2 together with the weights of ei(i = 1, 2, 3, 4).

more strongly to positive images.
An image is represented by a set of parts (which are learned

in III-A) Ii = (v1i , v
2
i , · · · , vti) ∈ Rt, as well as their locations

Li = (l1i , l
2
i , · · · , lti) ∈ Rt×2, where t is the number of parts.
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Fig. 7: Samples from six action classes in Stanford40 [17]: brushing teeth, applauding, blowing bubbles, climbing, drinking,
and cutting vegetables. The rectangles show informative sub-images of these images.

Fig. 6: local spatial relationships between parts are more
robust. These three images are from the same action class
of reading. The actors are in different poses. The long-range
spatial relationships between the arms and legs vary a lot.

The binary value vji indicates whether the jth part occurs in
the image Ii or not. If the jth part occurs (vji = 1), its location
is represented by its center pixel lji = (xji , y

j
i ).

The evaluation of conventional SPN proposed in [21] is only
based on the binary values of its leaf nodes. The important
information of spatial relationship between leaf nodes is
completely ignored. To model the spatial relationship between
parts, we propose spatial SPN, which is a new SPN structure
that can effectively capture the spatial relationships of its leaf
nodes. In the proposed spatial SPN, we consider four types of
spatial relationship between a pair of parts: left, right, above,
and below.

In order to model the spatial relationships of two different
parts, we introduce an indicator child node for the product
node which is the immediate parent of two parts. Fig 5
shows an example. The indicator child represents the spatial
relationships of these two parts. For parts p1 and p2, we
define four indicator variables: fl, fr, fa and fb, respectively
denoting part p1 is to the left of, to the right of, above and
below part p2. With these variables, we can capture different
types of spatial relationships of these two parts. In Fig 5 b),
part p1 is below and left to part p2. Thus, the variables fl

and fb equal to 1; the variables fr and fa equal to 0. In
Fig 5 c), part p1 is above and to the left of part p2. Thus,
the variables fa and fl equal to 1; the variables fb and fr
equal to 0. With one of the indicator variables as a child,
each of the four product nodes Pi(i = 1, 2, 3, 4) represents
a specific spatial relationship between part p1 and part p2.
The sum node S combines these four spatial configurations
together. As we have different nodes to model different spatial
relationships, the proposed SPN can deal with deformable
spatial relationship between part pairs. The weight of ei
represents how likely the ith configuration can be seen in an
image of an action class.

With the structure in Fig 5, we can model the spatial
relationship of every part pairs. However, it is not preferred to
model such pairwise relationship at the whole image scale due
to the following two reasons. First, even for the same action
class, configuration of parts can vary a lot in images. It is not
robust to model long-range pairwise relationship. Fig 6 shows
three images from the action class of reading. In these three
images, the actors are in different poses, i.e. sitting, standing,
and lying. The long range spatial relationships between the
arms and the legs vary a lot, hence are difficult to model.
In contrast, local pairwise spatial relationship can be very
reliable. We observe that almost all of the action classes have
similar configuration of parts in one or more sub-images, as
shown in Fig 7. In some cases, we human beings can easily
predict the action class of an image based on these informative
sub-images. For example, we can recognize the action class
of cutting vegetables by a sub-image containing a knife above
vegetables.

Second, it is computationally expensive to model pairwise
relationship at the whole image scale. With N parts, there are
N(N − 1)/2 possible part pairs at the whole image scale.
Such a large number of part pairs will lead to a very large
network that is hard to learn. And overfitting may happen.
Instead, if we only consider modeling spatial relationships
between parts inside a local sub-image, the number of possible
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Fig. 8: An example of our hierarchical spatial SPN. Images I is a sample from action class of climbing in Stanford40 dataset
[17]. (a) and (b) show two different partitions of the image, corresponding to two product nodes P1 and P2 in the SPN. The
root sum node S combine the information together which is represented by its children P1 and P2. Sub-image I2 (shown in
(c)) is further partitioned into I21, I22, and I23 corresponding to the product node P12.

part pairs which co-occur in the sub-image can be much
smaller.

Based on such intuitions, we aim to model pairwise spatial
relationship of parts locally inside sub-images, and drop the
long range spatial relationships of part pairs. As shown in Fig
8, we hierarchically partition an image into sub-images, and
model pairwise spatial relationship between parts inside leaf
node sub-images only. We further model the correlations of
sub-images using extra SPN layers on the top.

In the proposed hierarchical spatial SPN, we associate a
product node with a specific partition and use it to model the
correlations of resulting sub-images. (Here, a partition refers to
dividing an image into a set of specific regions. For example,
an image I ∈ R100×100 is partition into three sub-images
I1 ∈ R20×100, I2 ∈ R30×100, and I3 ∈ R50×100. In Fig 8, (a)
and (b) are two different partitions, because they generated
different sub-images.) We may have a number of different
partitions for an image (or sub-image), each resulting in a
product node. The information learned by these partitions are
combined together by a sum node, which is the parent of these
product nodes. In Fig 8, the product node P1 is associated
with a partition which divides image I into I1, I2 and I3.
This product node P1 models the correlations between the
sum nodes S1, S2 and S3 respectively representing these three
sub-images I1, I2 and I3. The product node P2 is associated
with another partition method (dividing image I into I

′

1, I
′

2

and I
′

3). As the parent of these two product nodes P1 and
P2, the root sum node S combines the information learned
by P1 and P2. This means the information conveyed by these

two different partitions can collaborate in predicting the action
class. Similarly, we associate the product node P21 with the
partition of dividing I2 into I21, I22, and I23. (The sum node
S2 can have more product children to represent other partition
methods of I2.) Then, we build an SPN with S2i(i = 1, 2, 3) as
the root node to model the pairwise spatial relationship inside
sub-image I2i(i = 1, 2, 3).

There are a huge number of possible ways of hierarchically
partitioning an image into sub-images. We can not model every
possible partitions in our spatial SPN. We select a number
of discriminant partitions using heuristics before formulating
them in spatial SPN. For a specific partition of image I into
s sub-images, we obtain s part activation vectors for the sub-
images and represent the whole image by the concatenation
of these activation vectors. Then, we train a classifier and
produce a classification accuracy. Only the partitions with high
accuracy scores are considered. As shown in another work
[42], this hierarchical method achieves good performance.

Algorithm 1 shows the procedure to learn the structure of
the top three layers of the SPN for each class.

Normally, algorithm 1 learns different sets of partition
methods for different action classes. However, two action
classes Cj and Ck may share a number of partition methods
and have some shared sub-image structures. This means both
the SPN for Cj and the SPN for Ck need to model the part
correlations inside the shared sub-images. If a pair of parts
with the same spatial relationship co-occur inside a shared
sub-image structure, the SPNs for two different classes can
have shared nodes, as shown in Fig 9. In this figure, the root
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Algorithm 1: SPN structure learning algorithm
Data: The part activation vectors Ii ∈ Rt for training

images, as well as the locations of these parts
Li ∈ Rt×2, where t is the number of parts.

Result: A spatial SPNstructure for each class
for each action class do

Randomly partition the images into s sub-images
with M different stretagies;
for each partition strategy do

1. concatenate the BoW representation of each
sub-image and obtain an s× t representation
vector for each image;
2. train a classifier and obtain a classification
accuracy;

end
Build a product node for each of the partitions
corresponding to the m(m < M) highest
classification accuracies;

end

Fig. 9: Shared nodes and edges between two SPNs. A shared
sub-image is modeled by the node R1 in class Cj and the node
R2 in class Ck. The green lines denote the edges for class Cj

and the black lines denote the edges for class Ck. The red
lines denote the shared edges for these two classes. They have
shared edges because the part pair relationships part p3 above
part p4 and part p5 below part p6 occur in both classes. These
two classes have shared product nodes (P2 and P3) and sum
node (S3).

nodes R1 and R2 respectively represent the shared sub-image
structure for class Cj and class Ck. The leaf nodes represent
the parts. As the part pair relationship part p3 above part p4
and part p5 below part p6 occur in both classes, the two SPNs
have shared edges (denoted by red lines), shared product nodes
(i.e. P2 and P3), and shared sum node (i.e. S3). We identify
the shared edges and learn their weights based on the images
from these two classes.

3) Learning: Our hierarchical spatial SPN takes the part
activation vector of an image as well as the locations of these
parts as input. Let S(Im) denote the evaluation of a spatial
SPN with the representation of image Im as the input. Let
V (Im) denote the root value of the spatial SPN S(Im). The
value V (Im) represents the classification score.

After fixing the structure of spatial SPN, we learn the
parameters for its edges by MPE (most probable explanation)
inference [29]. For an SPN of a specific action class Ck, our
objective is to let the value of the root node to be larger for
the positive images and smaller for the negative images. To
learn the spatial SPN for class Ck, we obtain the following
objective function :

min
∑

Im∈Ck,In /∈Ck

ξ2mn

s.t. V (Im) ≥ V (In) + 1− ξmn

(1)

where ξmn is a slack variable, Im is a positive image, and In
is a negative image.

Our training procedure has two stages. The first stage
improves the representative ability of a spatial SPN. The
second stage aims to enhance the discriminative ability of the
SPN learned in the first stage.

In the first stage, we train the spatial SPN using a generative
algorithm based on inference [21]. Algorithm 2 shows the
details. After obtaining the SPN using this algorithm, we
investigate the weight associating with each edge and delete
the edges whose weights equal to zero.

Algorithm 2: SPN parameter learning algorithm
Data: The part activation vectors, as well as the locations

of the parts (if occur), of the images from action
class Ck.

Result: A spatial SPN Sk for action class Ck.
repeat

for Im ∈ Ck do
UpdateWeights(Sk, Inference(Sk,Im))

end
until convergence or early stopping condition;

In the second stage, we improve the discriminative ability
of the learned SPN from the first stage. To achieve this, we
take a pair of images from two different classes as input and
update the weights of the spatial SPNs for these two classes.

Assume Sj and Sk are two different SPNs, with shared tree
structure (e.g. red lines in Fig 9), respectively for action classes
of Cj and Ck. Let Im and In be two images respectively from
the action classes of Cj and Ck. To update the parameter of
SPN Sk, we first evaluate this SPN with the part activation
vectors as well as their locations from both Im and In.
Then, in order to overcome gradient diffusion, we convert
the two evaluations of SPN to MPN (max-product network),
i.e. replacing the sum nodes with M (maximization) nodes, as
shown in Fig 4 from a) to b).

Using Mk(Im) and Mk(In) to represent these two MPNs
(obtained based on the evaluations on Im and In), the partial
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derivative of the logarithm with respect to the edge weight wi

can be calculated as follows
∂logMk

∂wi
=
∂logMk(Im)

∂wi
− ∂logMk(In)

∂wi
=
tmi
wi
− tni
wi

(2)

where tmi and tni count the times that the ith edge is traversed
by the MPE inference path in MPN Mk(Im) and MPN
Mk(In). The gradient of the log likelihood of the weight is
∆ti/wi, where ∆ti = tmi − tni is the difference between the
number of times that wi is traversed when evaluated on the
two images. Fig 10 shows an example of this procedure. In this
fig, a) and b) respectively show the edges that are traversed
in the MPN obtained based on image Im and In. Fig 10 c)
shows the partial derivative of the MPN.

In this way, we learn the parameters of the shared tree-
structure (e.g. red lines in Fig 9) not only using the images
from action class Ck but also images from Cj . The weights
of the edges specifically for class Ck (black lines in Fig 9)
are learned to only favor images from this class to enhance
discriminant ability.

Fig. 10: An example to calculate the partial derivative of
the logarithm with respect to the edge weight. a) and b) are
respectively the MPNs obtained based on the evaluations on
image Im and In. c) shows the difference between the times
that an edge is traversed.

IV. EXPERIMENTS

A. Datasets

We test the proposed hierarchical spatial SPN on two
publicly available datasets: Willow 7 human actions [15] and
Stanford 40 human actions [17].

Willow 7 human actions [15] is a dataset for image-based
action classification. It contains 1, 791 unconstrained consumer
images downloaded from the Internet, belonging to 7 classes
of common human actions: interacting with computer, pho-
tographing, playing music, riding bike, riding horse, running,
and walking. Each class has at least 108 images in total and
at least 70 images for training.

Stanford 40 [17] is a larger database containing 40 different
types of daily human actions. It has 9, 352 images in total. The
number of images for each class ranges from 180 to 300. The
dataset provides the train and test split for each class, which
uses 100 images of each class for training and the rest for
testing.

B. Part Discovery

We discover parts by iteratively conducting three steps:
feature extraction, clustering, and fine-tuning. In the first step,

we represent the patches using deep features extracted from
the CNN model. In the second step, we obtain a tentative label
for a patch by unsupervised clustering. In the third step, we
fine tune the CNN model to fit our data, and obtain better
representations of the patches in the next iteration.

Firstly, to discover the parts from the images, we densely
sample 1, 000 patches from each training image of Stanford
40 dataset. We resize these patches to be the same size and
take them as the inputs of the pre-trianed CNN model on
imageNet [38]. We extract the 4, 096 dimensional features of
the first fully-connected layer.

Then, we perform K-means clustering on the deep features
of all patches and obtain a set of over-segmented clusters.
These clusters are agglomerated into Nc centers based on
average link [44] to capture the spherical structure. The
average link between two clusters C1 and C2 are calculated
as

D(C1, C2) =
1

|C1|.|C2|
∑
x∈C1

∑
y∈C2

d(x, y) (3)

where d(x, y) measures the distance between x and y. The
closest two over-segmented clusters are merged together until
the number of centers reduces to Nc. In this procedure, we
drop the clusters which are small and far from the rest. Each
of these Nc centers corresponds to a tentative data-driven
attribute. The parameter Nc gradually reduces from 2, 000 to
500 in our experiments.

Thirdly, with the tentative cluster labels and the data, we
adapt the CNN model to this visual pattern discovery task
via fine-tunning. In the fine-tunned model, the soft-max layer
has Nc nodes, each corresponding to a cluster. We treat
patches from one cluster as the positive training data of the
corresponding node. In this way, we obtain an adapted CNN
model for these clusters without supervision. The adapted
CNN model is expected to generate more suitable feature
representation for our task.

After obtaining the clusters by 10 iterations, we train a SVM
classifier for each cluster. In the testing stage, we densely
sample patches with a fixed step size of 4 pixels to increase
the variety of patches. As the proposed method hierarchically
partition the image into sub-images and model the spatial
relationships of these parts inside the sub-images, we restrict
that one part occurs no more than one time in a sub-image.
The part location is represented by the coordinate of the center
point of the patch that produces the highest detection score.

C. Action Classification

Based on the edge weights of the learned SPN, we observe
that all of the sub-images are equally representative in the
action classes of jumping and climbing. However, in some
action classes, some sub-images are much more representative
than the others, such as the bottom sub-images in the action
class of cleaning the floor and the top sub-images in the action
class of drinking.

To show the effectiveness of the proposed hierarchical
spatial SPN (HS-SPN), we compare it with other two different
SPN structures. The first one is the naive SPN that does not
take the spatial information into consideration. The second one
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TABLE I: Precision (%) for each class on the Willow 7 action dataset

Inter.[12] SP[43] ov.SP[43] Dsal.[14] FS-SPN IHS-SPN JHS-SPN
InterWComp 56.6 49.4 57.8 59.7 59.3 64.2 64.2

Photographing 37.5 41.3 39.3 42.6 43.9 49.4 49.4
playingMusic 72.0 74.3 73.8 74.6 72.4 76.2 76.2
RidingBike 90.0 87.8 88.4 87.8 86.3 94.6 95.2

RidingHorse 75.0 73.6 80.8 84.2 81.3 85.1 85.6
Running 59.7 53.3 55.8 56.1 57.6 65.4 66.0
Walking 57.6 58.3 56.3 56.5 56.9 64.5 65.1

TABLE II: Mean average precision on Willow 7 action dataset

Inter. Dsal SPM EPM EPM+context
[12] [14] [43] [16] [16]

64.1% 65.9% 63.7% 66.0% 67.6%

SPN FS-SPN IHS-SPN JHS-SPN
48.7% 65.3% 71.3% 71.7%

TABLE III: Mean average precision on Stanford 40 action
dataset

Object LLC SPM EPM EPM+context
bank [45] [46] [43] [16] [16]

32.5% 35.2% 34.9% 40.7% 42.2%

SPN FS-SPN IHS-SPN JHS-SPN
32.8% 41.5% 43.1% 44.3%

is the flat spatial SPN (FS-SPN) structure that considers not
only local pairwise spatial relationships, but also long-range
pairwise spatial relationships without the hierarchical partition
method. For the HS-SPN, we have two different learning
strategies: individual learning HS-SPN (IHS-SPN) and joint
learning HS-SPN (JHS-SPN). The IHS-SPN does not consider
the shared sub-images and the shared edges between SPNs for
two different classes. The JHS-SPN learns the weights of the
shared edges (e.g. red lines in Fig 9) jointly using the images
from two different classes.

Table I lists the classification accuracies of different meth-
ods on the seven action classes of Willow 7. Table II and
table III list the mean average precisions of different methods
respectively on the Willow 7 and Stanford 40 datasets. Besides
our baselines, we also list the accuracies of some recent meth-
ods, including Inter. [12], Dsal. [14], SPM (spatial pyramid
method) [43], and two EPM (expanded parts model) methods
[16]. Our method outperforms the latest method [16] by 4.1%
and 2.1% respectively on Willow 7 dataset and Stanford 40
dataset.

As we can see from table II and table III, the FS-SPN
significantly outperforms SPN (17.0% on Willow 7 and 11.3%
on Stanford 40). This means the spatial relationship is indeed
important for action recognition. The classification accuracy
of naive SPN is only 21.2% on the action class of fixing a
bike. Most of the images in this class are misclassified into
the class of riding a bike. This is because the same set of
parts occur in these two action classes (fixing a bike and riding
a bike). Similarly, SPN cannot correctly classify the images
from the action classes of riding a horse and feeding a horse.

Incorporating the spatial information, the proposed spatial SPN
increases the accuracies of these action classes significantly
(from 21.2% to 76.2% for riding a bike and from 10.7% to
44.3% for riding a horse).

Fig. 11: The action recognition varies with the number of
parts on Willow 7 dataset and Stanford 40 dataset. (SPN: the
naive SPN proposed in [21] without spatial information. FS-
SPN: Flat Spatial SPN that considers not only local spatial
relationship but also long-range spatial relationship between
parts. JHS-SPN: Joint Learning Hierarchical Spatial SPN.)

The experimental results also show that HS-SPN performs
better than FS-SPN. This demonstrates the effectiveness of
our hierarchical partition method. With 500 parts on Willow
7 dataset, while the FS-SPN needs to model 249, 500 part
pairs, IHS-SPN and JHS-SPN only need to model 5, 000 part
pairs after hierarchical partition. This significantly simplifies
the structure of the learned SPN and reduces the computational
complexity.

The JHS-SPN achieves accuracy 0.4% and 1.2% higher than
IHS-SPN on respectively Willow 7 dataset and Stanford 40
dataset. This means the joint learning is useful in this task. The
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improvement of accuracy mainly originates from the action
classes that have shared structure with some other classes.
In Willow 7, the action classes that share many nodes in the
learned SPN are: running and walking, riding a bike and riding
a horse. The action classes running and walking share the top
sub-images. This is because the upper body of the actors are
quite similar in the images of these two different action classes.

Fig 11 shows how the action recognition accuracy varies
with the number of parts. Normally, we can improve the
accuracy by discovering more parts. With 100, 300, and 500
parts, the recognition accuracies of JHS-SPN are respectively
32.8%, 41.5%, and 44.3% on Stanford 40 dataset. While the
200 parts from 101-300 improve the accuracy by 8.7%, the
parts from 301-500 only improve the accuracy by 2.8%.

We also discover discriminative part pairs based on the
learned hierarchical SPN, as shown in Fig 12. To measure
the discriminative ability of a part pair, we disable this part
pair to see the drop of the accuracy. A larger drop in accuracy
indicates a more discriminative part pair.

Fig. 12: The discriminative part pairs discovered by our
learned hierarchical spatial SPN.

V. CONCLUSION

In this paper, we propose hierarchical spatial SPN for action
recognition from still images. In the proposed method, we
introduce indicator children for the product nodes to model
the spatial relationships of part pairs. Also, we propose to
encode the discriminant partitions of images using SPN. The
experimental results proves the effective of the proposed
method.
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