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De-Hashing: Server-Side Context-Aware Feature
Reconstruction for Mobile Visual Search

Yin-Hsi Kuo and

Abstract—Due to the prevalence of mobile devices, mobile
search becomes a more convenient way than desktop search.
Different from the traditional desktop search, mobile visual
search needs more consideration for the limited resourcesno
mobile devices (e.g., bandwidth, computing power, and memy
consumption). The state-of-the-art approaches show that dp-
of-words (BoW) model is robust for image and video retrieval
however, the large vocabulary tree might not be able to be laded
on the mobile device. We observe that recent works mainly
focus on designing compact feature representations on mdbi
devices for bandwidth-limited network (e.g., 3G)and directly
adopt feature matching on remote servers (cloud)However, the
compact (binary) representation might fail to retrieve target
objects (images, videos). Based on the hashed binary codes
we propose a de-hashing process that reconstructs BoW by
leveraging the computing power of remote servers. To mitige
the information loss from binary codes, we further utilize
contextual information (e.g., GPS) to reconstruct a contexaware
BoW for better retrieval results. Experiment results show that
the proposed method can achieve competitive retrieval accacy
as BoW while only transmitting few bits from mobile devices.

Index Terms—Binary codes, VLAD, BoW, mobile visual search

I. INTRODUCTION

W

limited computing power and memory usage, it becomes
challenging problem for mobile visual search (MVS) [1]. Dif
ferent from the traditional content-based image/videdeedl

[2], [B], mobile visual search requires lightweight computin
and small data transmission. Hence, recent works focus
generating compact representations before transmittireg

query. In order to achieve good retrieval accuracy, they wi
extract local features and compress them into binary caates

different applications, such as product seaich [4], lamétma

retrieval [5], imagevideo retrieval[6], [7], and interactive
image exploring system [8]. Moreover, some works such
[9] further aim at on-device image matching.

The state-of-the-art visual feature—vector of locally gg

gated descriptors (VLAD)[10]—has been shown promising

for image/video retrieval which has similar retrieval mmerf
mance as bag-of-words (BoW) modg&l [2], [1However, it
might suffer from object queries [12] because databaseéma
usually contain not only the target object but also clutier
backgrounds as shown in Figlre 1. These background feat
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Fig. 1. For mobile visual search, the state-of-the-art apgines usually send
hashed features through the bandwidth-limited network) (@l apply feature
matching on the server-side (cloud). We observe that we tikreuthe com-
puting power of remote servers to reconstruct a better featepresentation
from the hashed feature for mobile visual search. We progosentext-
aware feature reconstruction to achieve better retriesiilts. The thickness
of the lines pass through the wireless network represeetsutiount of data
transmission. We can transmit (a) binary codes or (b) a VLABXdre to the
remote server. Meanwhile, we can integrate the proposethadewith (c)
contextual information to reconstruct a context-aware BowW
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will affect the final representation of an image because VLAD
aggregates features into a single representation (SEGHAR
For object retrieval, it is necessary to utilize BoW to nitig

ITH the explosive growth of mobile devices, the needg,q effect of noisy or cluttered backgrounds and providésbet
for mobile visual search are emerging. Because of therieval accuracyi[13]. Otherwise, we need to generate and

nfatch multiple VLADs from different sizes of database immge
[12]. However, BoW requires a large vocabulary tree which
might not satisfy the memory constraioh mobile devices.
Bience, the authors in[4] propose bag of hash bits for image
Arieval. They only consume a small amount of memory

to generate compact binary codes for each local feature.

Nevertheless, if the image/video contains many local festu
fhe transmission time (cost) is still large.

Compared to mobile devices, remote servers (cloud) have
stronger computing power and storage. We find that the state-

Bt-the-art approaches usually apply feature matchingctlyre

on the received features. To leverage the computing power of
remote servers, we utilize VLAD as an intermediate feature
nd generate a better feature representation before deatur
matching. To tackle this challenge, we observe the reldi@n
tween VLAD and BoW (Sectiofdll), and propose to estimate
ossible visual words (VWSs) from VLAD on remote servers.
eanwhile, motivated by the on-device image matching [9],

Hies generate compact and fixed length binary codes from

VLAD on mobile devices. As Figurgl 1 shows, given a query
(image or video), we adopt a lightweight encoding process
that hashes features into binary codes on mobile devicels, an
design a novel decoding process on the server-side called
de-hashing To the best of our knowledge, this is the first
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TABLE |
THE COMPARISON OF THE STATEOF-THE-ART METHODS WITH OUR PROPOSED METHODOUR PROPOSED METHOD ONLY CONSUMES A SMALL AMOUNT
OF MEMORY ON MOBILE DEVICES MOREOVER, WE CAN RECONSTRUCT CONTEXJAWARE FEATURE REPRESENTATIONS FROM THE RECEIVED BINARY
CODES ON REMOTE SERVERS AND ACHIEVE BETTER RETRIEVAL ACCURRY.

[[ Transmission (KBytes)| Transmission Size [ Memory Consumption on Mobile (KBytes] — Meta-Information
BoW (1M) 0.36 - 0.6 Dependent {13 bits/feature) 68,000 (quantization tree) 8-bit per dimension
CHoG [15] 0.38-5.3 Dependent 460 bits/feature) - Feature location
Product Search 4] 05-5 Dependent (80 bits/feature) 20 (64x80x4, projection matrix) Boundary information
REVV [18], [17] - (0.35) Independent 264 (tree + matrix) On-device matching
MCVD 0.025-0.4 Independent 690 - 3,440 Contextual information
IMShare [18] 8 (2 +6) Dependent - Thumbnail
Our proposed method 0.8-1.6 Independent 45 - 121.9 (tree + matrix) Contextual information

work that attempts to reconstruct Bow from VLAD or binaryMoreover, recent works further propose more compact and
codes.Hence, the proposed method only transmits a singiéscriminative binary descriptors [23[24] to achieve similar
compact representation (with contextual informationyrfra performance as floating-point descriptors. These appesach
huge amount of local features in the mobile query. have shown promising results on different benchmarks; how-
In this work, we aim to leverage both the mobile- anéver, the transmission cost highly depends on the number of
cloud-based configurations (two heterogeneous platfofans) extracted local features. For high-resolution images, ighin
balancing effectiveness and efficiency for image/videpaesl exceed 1,000, but these methods usually extract few husdred
(also extendable for image/video classification). In a hovef features to perform image or video matching.
way, we exploit the (unbalanced) computation capabilities To tackle this problem, the authors in_[17] propose a
between the two heterogeneous platforms (i.e., mobile d®vel compact global signature called residual enhancadi
vices and cloud servers) and seek new feature learning amator (REVV) which compresses VLAD feature into binary
representations friendly with the whole path from mobilegodes. Hence, their proposed method only needs few bits
through communication channel, and to the cloLitke primary to represent each image. It is very suitable for on-device
contributions of the paper include, image retrieval for personal photos because the whole psoce
« Proposing a de-hashing process that leverages contexf] be done on the mobile device. Similarly, the authors in
information to approximate BoW from a compact featurf®] propose a multiple-channel coding based compact visual

representation on the server-side (Seckiah Il1). _descriptor (M_CVD),_ which ‘compresses the _BoW histogram
« Investigating the memory consumption of binary hashingto a reversible binary signature on mobile devices, and
on mobile devices (Sectidn]V). restore MCVD to BoW in a lossy manner on the remote server.

« Conducting experiments on two retrieval benchmarkdowever, their method needs to retain different compressio
and demonstrating that the proposed method can achiévactions for different locations on mobile devices. Irstef
better retrieval accuracy compared to the original binattilizing individual compression function, we attempt toop

codes (Sectiof V). vide a universal compression method on mobile devices and
investigate different reconstruction methods with contak
Il. RELATED WORKS information adaptively on remote servers.

| Rather than focusing on mobile devices, recent works atiliz
computing power of remote servers (cloud) to reconstruc
n image from its (compressed) local features| [18],] [25],

We aim to provide better search results for mobile visu
search; hence, we introduce recent works and compare th
with our proposed method. The state-of-the-art imagefvid SRS )
retrieval systems usually extract Bow from a query; howgv » of generate d'Sth.t ive image representations [4ZH
it might be infeasible to transmit the query image or VideMotlvated by aforementioned works, our proposed framework

from mobile devices under the unstable network connecti&ﬁns'ders both the limited resources on mobile deV|ce_s@dt
[1]. Recent works focus on low bitrate mobile visual searcf{ronger computing power on remove SEIVers for mobile Visua
[], [0], [L9]. They propose a lightweight encoding process oearch. Tablf] I shows the overall comparison of the proposed
the extracted features before transmission. These amﬂsa(fnethOd and prior works. _We only consume a small amount
can roughly divide into four compression methods—BoV\?f memory to generate binary codes, and further reconstruct
based[[14], CHoG-based (compressed histogram of grayiierqlf?m into a context-aware BoW for better retrieval results.
[15], hash-based[4], and VLAD-based [17] methods.

For BoW-based method, they attempt to prune the large ] ]
vocabulary tree so that it can fit in the mobile meméry [5] and 10 leverage both the mobile- and cloud-based configu-
apply standard encoding methods (e.g., run-length engodf@tions for mobile visual searchwe utilize VLAD as an
or arithmetic coding) to further compress the Bow histogramtermedlate feature for compression and reconstrucTibis
[14]. Instead of applying BoW, the authors i [15] propost becauge \_/LAD only requires a small amount of memory
a novel descriptor—CHoG—by considering the limited rdor quantization tree which is much smaller than Bow model
sources on mobile devices. Different from vector quaritizat (the fourth column in Tablé€ll) and is suitable for mobile
(or tree-based) approach, hash-based method utilize d sifigviced] Hence, we aim to reconstruct Bow from VLAD for

a_mount of memory Consum_ptlon (prOJectlon matrlx) to effi- In our prototype, it takes 7.6 milliseconds to extract VLA@H SURF
ciently generate compact binary codées [4].1[2[HT], [22]. for a 320 x 240 image in iPhone 5.

IIl. CONTEXT-AWARE BOW RECONSTRUCTION
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Fig. 2. lllustration of BoW reconstruction from VLAD. (a) Wetilize a hierarchical vocabulary tree to maintain both MAand BoW centers. Therefore,

given a local feature (rad star), we can estimate its pas®olW center (light blue circle) from its VLAD center (darkuil circle). (b) Due to the large

vocabulary of BoWwe propose to calculat®” LAD; by replacing the local feature (red star) with a Bow cenfey Hence, with the connection between
BoW and VLAD, we can roughly approximate Bow from VLAD.

better retrieval accuracy (e.g., object queries). By obsgr blue circle CBoW, — CV LAD;). Therefore, as shown in
the relation between VLAD and BoW in the hierarchicaFigure[2(c),V LAD; (Eq. (1)) can be approximated byh,
vocabulary tree, we are able to approximate BoW from VLAVhereh represents BoW histogram ari?lis generated by the
detailed in Sectiof II-A. Besides, we can utilize contettu difference between BoW centers (sub-treeC8f LAD;) and
information to reconstruct different Bow histograms framet VLAD centers (i.e.,.D = [C BoW; — CV LAD;]T).

same VLAD, or obtain a better Bow even if the VLAD is ap- Meanwhile, BoW histogram is usually a sparse vector
proximated from binary codes (cf. Sectionl IV). We investiiga because the number of local features is relatively smalgé Th
different reconstruction approaches in Secfion Ill-B. Blwrer, sparse constraint also provides an opportunity to cosrectl
we integrate the reconstruction method with a prior knogéed reconstruct BoW histogram from VLAD. Therefore, given
from the initial search results for better BoW reconstrutti VLAD; (v), BOW (k) reconstruction can be formulated as

in Sectior11I-G. .
fn=min v~ Dh||3 + \||h||1, subject toh >0, (2)

A. BoW Reconstruction from VLAD with Sparse Constraintwhere the first term measures the reconstruction quality be-
To reconstruct Bow from VLAD, we observe that the};ween ‘./LADi (v) and approximated VLAD Ip h)'./\ IS a
can be connected by their vocabulary trees. As shown regularization parameter that controls the sparsity of BowW

. o . . . The formulation is similar to the sparse coding problem
Figure[2(a), we utilize a hierarchical vocabulary (e.g., MK (J L . . .
hierarchical k-meang [30]) to construct the relation b@we[@] but the dictionary ) is pre-defined according to the

VLAD and BoW. The top-layered vocabulary is used foflifference between the centers of Bow and VLAD. Hence,

we do not need to train the dictionary and can utilize SPArse
VLAD and the leaf nodes are BoW vocabulary. Therefor . .
if a local feature (red star) belongs to a VLAD center, we a(IJVIodellng Software (SPAMSLI32][[33] for solving the above

able to estimate possible Bow centers (VWSs) it belongs sfgerrggr:atlt(;]r;tl\rlg::irﬁzat glsssldzfriss gls%r?lglz]r to CoMpRess
(i.e., the sub-tree of the VLAD center). N9 u P '9 '

We first define the generation process for VLAD. For
eachV LAD;, we collect all the local features () quantized B. Context-Aware Dictionary Selection (CADS)
into the same VLAD center((V LAD;), and aggregate the |t is reasonable since mobile is augmented with geo-
difference between local features and the center as information; hence, we further propose a context-awartadic
nary selection (CADS) for BoW reconstruction. By utilizing
VLADi= > (s; = CVLAD)). @) contextual information, we are able to reconstruct differe
53 €CVLAD: BoW histograms from the same VLAD or binary codes as
As an example shown in Figuié 2(b), we assume the origirstlown in Figur€l3. We utilize a single and universal vocatyula
local feature is the red star and circles are codeword centeree for BoW reconstruction; howevere dynamically select
Different colors represent different levels of hierarehigo- possible dictionary D.ontex: in Eq. (2)) based on different
cabulary. Hence, for each local featugg)( it will contribute contextual cues. Instead of using all VWs (e.g., 9 in FigJre 2
to VLAD, by the difference between the red star and the dawke only retain few relevant VWSs (e.g., top-ranked candislate
blue circle 6; —CV LAD;). The final VLAD will concatenate by binary codes or GPS similarity). Hence, we consider
all the VLAD;, into a single feature. both visual and contextual information for generating more
By observing large vocabulary of BoW for image retrievaldiscriminative BoW representations. Note that we can mkcor
we propose to substitute a BoW centéfKoW;, light blue possible VWs (sub-vocabularies) in an offline manner, or
circle near the red star) for the local feature (red sthr). select them on the fly (e.g., calculating GPS similarities).
other words, the differences(— CV LAD;) of VLAD; can Moreover, the selection process also leads to faster gplvin
be approximated by the light blue circle minus the darime because the hypotheses of VWs are greatly reduced.
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Binary Codes: function (I + AB)_lA = A(I + BA)_I and (I + AB)_I =
troootor I — A(I + BA)~!B. Then, we can re-write Eq](4) as

OO0 A WOODN + T T 1
Reconstructed BoW ‘ GPs: o= -
coonsTuetee ™o ] 51.752, -1.247 h o (041TDD N 6;2 Do 1
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(Section 1V-B)
OA 00

!

Binary Codes:
111000101

= OélDT(OélDDT+OLQI)71(U—Dh0)+h0. (5)
Context-Aware

Setomenselesin | We can efficiently reconstruct Bow histogram based on the
above solution. Moreovenve can achieve better retrieval
01 | H accuracybecause we not only consider the initial ranking

O30 A SWOODN results but also utilize both visual and contextual infotiora

+ Reconstructed BowW
GPS: 51.750, -1.256

Fig. 3. lllustration of dictionary selection based on diffiet contextual IV. REVERSIBLE BINARY CODE GENERATION
information. We utilize the same projection matrix and dntplantization . s
tree on mobile devices, and reconstruct different Bow remeations on the ~ Under the unstable wireless network, transmitting VLAD

server-side according to the contextual information (6@RS). (e.g., 8,192 dimensions, 32KB) back to the remote server
might still be infeasible. To further compress VLAD, we
apply hash-based methods to generate binary codes on mobile

C. BoW Reconstruction with Prior Knowledge (BRPK) devices for reducing the transmission cost. The binaryihgsh
In addition to context-aware dictionary selection, weliert functions ¢/, (.)) can be formulated as

utilize initial ranking results as prior knowledge to esdit® .
a more powerful BoW representation. We know that the re- bhi(x) = (sgn(wypx) +1)/2,k =1,.., K, (6)
ranking process is a common query expansion method iere z € R? (zero mean) is the original (visual) feature
provide a better performance. Henwvee generate a pseudo-andw;, € R? is a projection vectorsampled from Gaussian
BoW from top-ranked search results (i.e., obtained from binatystribution ¢andom projection, RP [37] or learned from
codes in our experimenf$Based on the prior knowledge, ourtraining datal[38] is the total number of hashing functions
goal is to reconstruct BoW representation which is simitar {to generatel bits for each feature)Although it is compact
the approximated VLAQ(Sectior IV-G)and the pseudo-BoW. for transmission, the limited memory of mobile devices en-
Hence, the reconstruction operation can be formulated as forces the projection matrixi{ € R4*X) should be small
v — Dh)2 [l — ho|2 as well. Hence, we introduce principal component analysis
N, +(1- Q)T7 ) (pcA) hash_mg in Section TVIA and mve_stlgate_ various ways
) i for generating compact codes on mobile devices in Section
whereq stands for the influence between the first angl th_e S In Section[IV-Q, we reverse binary codes for obtaining
ond terms.N; = ||v]|3 and Ny = ||hol||3 are the normalization

g ) X X approximated VLAD which is used for BoW reconstruction.
terms. The first term is followed by the previous section to

reconstruct Bow representation. The second term is to ensyr
the reconstructed BoW is similar to the pseudo-Bok¥)(
that is generated from top-ranked results. By considesigy t
different criteria, the proposed BoW reconstruction witiop
knowledge (BRPK) can obtain a better BoW for MES.

To solve the proposed formulation, we find that it i
equivalent to the generalized Tikhonov regularization a
exists an optimal solution. Hence, we are able to comp
the unique solutiorh* of Eq. (3) analytically. Leto; = N
andag = 11;—20‘ a direct solution would lead to

= min «
f =i

Principal Component Analysis Hashing (Joint PCAH)

Recent works demonstrate that PCA hashing (PCAH) pro-
vides high binarization quality and retrieval performafig€],
[40]. The projection matrix1{”) of PCAH is learned from the
govariance matrix X X”) of training data ). By selecting
He largestK” eigenvectors to fornil’, we are able to generate

inary codes based on Efl ESbiowever, the projection matrix
might be very huge if we directly apply PCAH on the high-
dimensional feature spaamlled joint PCAH in our experi-
ments. For example, to generate 1,024-bit binary codés (
h* = (alDTD 4 agj)*l(alp% + aghg). (4) from 12,800-d VLAD (D x N), the projection matrix requires
around 50MB (i.e., 12,800 x 1,024 x 4 byteB,x N x K

However, if the inverse matrix is large (e.g0, 000 x 10, 000, Figure[3(a)) for memory usaEeAs a result, the memory

possible VWs), it is time-consuming to compute the Solysonsymption might be similar to 1M vocabulary tree (e.g.,

. T T ok
tion. We can transformD” D to DD which is related to 1ogMB = 1M centers x 128 bytes). In other wordswe

the feature dimension (e.gl28 x 128, SIFT [33]). The j,crease the dimension of the original or reduced featuses f
transformation[[36] is based on the identity of the inversgayer retrieval accuracthe memory cost will be infeasible on

2By considering the limited bandwidth for MVS, we only trarisia small mobile devices. Hence, we further consider memory'efﬁuen

amount of data (binary codes) to remote servers. It is efiicie retrieve binary hashing for mobile visual search.

images via binary codes. Nevertheless, we can also trangD and

retrieve superior ranking results for better BoW recortgion. “We can apply other binarization or (semi-) supervised masHB8]
3Note that here we choose L2 regularization is to speed upett@nstruc-  Strategies, or compute weights for each bit (dimension)prove retrieval

tion process because the response time for image retrigetrss is also accuracyl[4ll]However, we are to investigate BoW reconstruction from tyina

an important factor. Hence, with prior knowledge from ragkiresults, we codes so we only utilize the standard PCAH in our experiments

can roughly estimate possible VWs and round down the reagist Bow 5D is the dimension of local features (e.g., SIFT, SURF), aids the

histogram to enforce the sparsity in the final BowW reprediemta number of VLAD centersD* N means the concatenated dimension of VLAD.
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VLAD W (D xK) VLAD, (D x 1) VLAD, (D x 1)

Projection Matrix (W) (D*N x 1) Binary | ©9- 128x6 , ..., VLADy , ..., VLADy Memory Usage of
D*N x K (e.g., 128*3 x 6) Codes Projection Matrix
Ll .
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eg., 128x2 W,
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(a) Traditional (Joint) Binary Hashing (b) Independent Binary Hashing (c) Shared Binary Hashing (d) Projection Matrix (W)

Fig. 4. lllustration and comparison of different binary himg methods. (a) The traditional (joint) binary hashimgjects the original (high-dimensional)
feature space onto a reduced feature space. However, mersagg is proportional to the original and reduced featuwt#sensionality.(b) We can split the
original feature (VLAD) into sub-featured/(LAD;) so that the projection matrix can be reduced. (c) Moreowercan learn a uniform (shared) projection
matrix for all the sub-features. The shared method neede iits to achieve competitive retrieval accuracy compacethé¢ traditional one (Sectidn VM E);
hence, it is a trade-off between the performance and mensageu (d) The memory usage of projection matrix on threeoggpes. The symbols in different
rectangles represent the consumed memory. For examplshéred method (c) only requires the top-left (yellow) regta for the projection matrix.

B. Memory-Efficient Binary Hashing (Ind. and Shared PCAH) V. EXPERIMENT RESULTS AND DISCUSSIONS

Followed by product quantization [42] and on-device imagh. Experiment Setting

matching [17], we split high-dimensional feature (VLAD) |n our experiments, we construct 1M hierarchical vocabu-
into sub-featuresLAD;) and learn the projection matrix ary tree with 6 levels and 10 branchés][30] for Bow model,
individually calledindependent (ind.) PCAHMoreover, we and choose the second level for VLAD (i.e., 100 centers). The
can learn a shared projection matrix for all théLAD; gistance measurementis L1 for Bow and L2 for VLAD in the
called shared PCAH As shown in Figurél4(b) and 4(c), thererieval process. We conduct our proposed method on two
memory cost of ind. PCAH and shared PCAH I8 x K gatasets. For mobile scenario, we cho@tanford mobile
and D x K/N, respectively.Figure[4(d) shows the overallisya| search (SMVS) dataset[d7], [48] which contains
comparison of memory consumption by different approachess 93 single reference images with 3,269 mobile queries
Compared to others, the shared approach only requires rglaross 8 image categories (i.e., CD, DVD, Books, Video Clips
tively small memory usagelX;, top-left yellow rectangle). | andmarks, Business Cards, Text documents, Paintivys).
It is a trade-off between the performance (bit length) angsize images to small resolution (maximum height or width
memory consumption on mobile devices. No_te that the§e640) and use speeded-up robust features (SURE) [29] on
approaches are complementary to sparse learning (€.gsespgopile devices and generate VLAD with 6,400 dimensions.
PCA [43]), bilinear [44], or circulant approaches [45]. We cafrhe evaluation metric is recall afum (R@Num) and NDCG.
combine them with our proposed methindfurther reduce the e set the relevance score of ground truth images to be 1.
memory consumption. Besides, as mentioned.in [46], a simggqp, query only has one reference (correct) image; henee, th
component-wise sign binarization on VLAD can achieve goQfeal DCG is 1 and NDCG is equivalent t/logs(r + 1),
results. Hence, we will also discuss the results in Se€fi@ V \yhere » is the rank number of the reference image in the
retrieval resultsAs reported in [[17], Bow and REVV can
C. VLAD Approximation from Binary Codes achieve around 75% recall with spatial verification on top 50

Based on the previous section, we can efficiently gener&%ndldates. To demonstrate the effect of our proposed mgetho

binary codes via PCA-based methods (i) on mobile we do not apply spatial verification on the image search tesul

devices. To reconstruct Bow from VLAD on remote servelfsl'e" evaluating on the initial ranking results).

(Section[dIl), we have to reverse the retrieved binary CodesMoreover, for demonstran_ng the effect of image object
and obtain approximated VLAD for the reconstruction. PC r_etr_|eval, we_choosé)xf_o rd buﬂdmgs (Oxfo_rd) datas_et [49]
based methods have the orthogonal projection matrix ptxbpe\th'Ch conta:_ns 5,062 images with 55 object quenes. We use
(WTW = I); therefore, we can reverse binary codes brootSIFT [35], [50] to generate 12,800-d VLAD with intra-
multiplying thé same préjection matrix (i.ex, ~ WiW7z) Xormalization [12H In order to provide contextual information

However, for binary hashing (i.esgn(W7z)), we will lose on Oxford, we generate GPS for each image followed by

more information due to the binarization process. This s al [51] that utilizes Gaussian error model to approximate GPS

. . . from the true location. As mentioned inh_[49], the dataset is
the reason why we propose to utilize contextual mformatlodnownIOadeOl trom 17 Flickr aueries (kevwords) Hence. we
for better BoW reconstruction (Sectidn I1I-B). Besides, as q (keywords). '

mentioned in[[10],[39], we can apply an orthogonal transfo an obtain 16 buildings’ GPS information (true locatiorgrfr

mation (e.g., RR, random rotation) to mitigate theantization lkipedia. The remaining “Oxford" keyword is randomly

error of binarization and obtain better binary codes an(?ssi[‘ger;end ;\?ertgeemrr]eeéis%(?n ktla\;/'\&vgrds:l;h'gh:\eﬂ :F\)/a(l)l;a\t/lﬁszsanc
the reversed feature. It is essential for the high-dimeradio 9¢ p ( )-

Te_ature; hence_' we will aIOP'Y fa”d(?m orthogonal rotation oneygte that the proposed method can also apply to video retrisecause
joint PCAH (joint PCAH-RR in Section V-E. we can extract features from each frame and aggregate théonovLAD.
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045 ./.——\\(a) MAP

90

0.35  —BoW (1M) 70 ¢
—VLAD (12,800) =
—e—VLAD to BowW 3
020 | | | | ; BoW (1M) [0.717]
50 ——bBo .
0.001 0.005 0.01 0.02 0.05 0.1 A s VLAD (6.400) [0.618]
9000 | (b) # Visual Words / Image —=—VLAD to BoW [0.689]

) Binary to BoW with CADS-B [0.500]
6.000 L —#-Reconstruction 30 —e—Binary to BoW with CADS-C [0.588]

— Original VWs
R@1 R@2 R@5 R@10 R@20 R@50 R@100

3,000 | \.\.

0 ‘ ‘ Fig. 6. BoW reconstruction from the original retrieved feat (i.e., VLAD
0.001 0.005 0.01 0.02 0.05 0.1 A or binary codes) on Stanford mobile visual search datasstdws that the
reconstructed BoW (VLAD to BoW) can achieve similar retakwaccuracy

Fig. 5. Parameter sensitivity of in Eq. [2) on Oxford buildings dataset. @ BoW. However, if we apply context-aware dictionary siecbased on
(a) It shows that we can achieve similar results as the origiralvBwvhen binary ranking results to estimate Bow from binary codemgj to Bow
selecting a proper value of. (b) Moreover, the value should be adjusted bywith CADS-B), the retrieval accuracy is worse than VLAD andvi because
the number of VWs we are to reconstruct. For Oxford databetateraged the binarization step loses too much information. By itifiz additional

number of VWs is around 3,350. Hence, we et 0.02 in the experiments. contextual information (category types) to select the npusisible VWs as
mentioned in Sectiop III-B, we can achieve better retrigesllts. The values

in the square brackets represent NDCG scores.

Oxford is 0.371, and is similar td_[10] which reports the

MAP of VLAD with 4,096 dimensions is 0.304. The MAPsmall resolution (maximum height or width is 640), we can
of Bow and GPS on Oxford is 0.483 and 0.168, respectivelfirectly adjust the value of to 0.1 without evaluating the
As reported in [[49], the MAP of SIFT with hierarchicalperformance (i.e., viewing Oxford as an independent datase
vocabulary tree (HKM) for BowW is 0.439. In our experiment§or SMVS) because the averaged number of VWs is around
the original SIFT can achieve 0.422 which is similar to theg30. In other words, we can decidebased on the desired

paper. Hence, we utilize the more robust rootSIFT (048ahmber of reconstructed VWs as shown in Fidmre 5(b)
for constructing vocabulary in our experimentdeanwhile,
for evaluating the effect of training data, we further ati
two additional datasetsRaris [52] and Landmarks [53]— _ _ )
for learning the vocabulary tree and projection matrix. For FirSt, we conduct experiments on SMVS dataset. As Fig-

Landmarks dataset, we randomly sample 30 images from 7#£[@ shows, the retrieval accuracy of Bow (even the recon-
landmarks, and utilize around 22,000 images for training. Structed BoW) is better than VLARD.717 or 0.689 vs. 0.618)
The results confirm that it is necessary to reconstruct Bow

from VLAD on the server-side. As mentioned in Section Il
B. Experiments on the Choice of Lambdg ( we can reconstruct Bow from VLAD or (reversible) binary

The most important parameter of our proposed contefiodes. The blue curve (rectangle) in Figlte 6 shows the

aware BoW reconstruction iin Eq. [2) because it will affect 'econstructed Bow (VLAD to BoW) can achieve competi-
the reconstruction quality for image retrieval. Hence, wa-c 1ve retrieval accuracy as the original BoW. This represent

duct experiments with different values afon Oxford dataset. @t the proposed method can successfully approximate the

As FigureTa) shows, the reconstructed Bow (VLAD to Bow)o_riginal BoW. Howeve_r_, if we reconstrl_Jct BoW directly from
has similar retrieval accuracy as Bow whemanges between binary cod_es and utilize the_ approximated VLAD for tr_'e
0.005 to 0.02. We find that the number of reconstructed VV\V@_COHSUUC“O”’ the results rmght b,e worse than the origina
(6,500 to 3,500) is larger than the original VWs (around 9)35b|nary ches begause the binarization process loses toh muc
as shown in FigurEl5(b). The reconstruction step may inclug§t@iléd information to reconstruct the original VL_’ED' _
noisy VWs: however, it can also be viewed as a by-product of IN order to demonstrate the effect of contextual infornmatio
soft (multir;le) assign’menEESZ}Nhen/\ is small (0.001), we for BoW reconstruction, we assume the class information is
reconstruct too many noisy VWs and the retrieval accuraggown (i.e., book, C_d' .palntlng, etc._, given by SMVS Qat)aset
decreases. Conversely, i is larger than 0.05, the MAP isf r context-aware dictionary selection. For real applara,

worse than VLAD because we only reconstruct few VWs anie can apply classification for obtaining possible classrinf
it is hard to retrieve similar images mation. Hence, for fair comparison, we only utilize GPS mfo

We observe that a proper value faris related to image mation and binary codes for Oxford dataset in Sediiod V-E and

resolution because the number of extracted local featur-Easblem' As shown in Figurgl6, when utilizing b'”afy rank_lng

(VWs) depends on ifTherefore, for Oxford dataset with 1’024results as a contextual cue for_ BoW reconstr_ucuon (Binary
X 768 pixels, we seh to be 0.02because the averaged numbe BOW_ with CADS-B), the retrieval accuracy 1S worse t_han
of VWs is around 3,350. Note that the choice)ofor Oxford the original VLAD. However, when utilizing class informeti

is not based (_)n the h_ighe_St MAR (: 0'01)' Sim”arly' based ] "For better reconstruction results from binary codes to VLA also

on the experiments in Figulg 5(b), for SMVS dataset witllopt iterative quantization (ITQ) as proposedl[in| [39].

C. BoW Reconstruction on SMVS Dataset
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| —e— Binary Codes (RP, 800 bits) [0.435] TABLE I
Binary Codes (PCAH, 800 bits) [0.483] COMPARISON OF RETRIEVAL ACCURACY WITH DIFFERENT BIT LENGTHS
—e— PCAH to VLAD [0.596] AND CONTEXTUAL CUES. THE MAP OF VLAD AND BOW 1S 0.371AND
—m—PCAH to VLAD + ADC [0.525] 0.483,RESPECTIVELY IT SHOWS THAT JOINT BINARY HASHING(JOINT
ADC (b xm =8 x100) [0.537] - PCAH-RR)CAN PERFORM BETTER WHEN THE REDUCED DIMENSION IS

85

65 -

3 —+—VLAD (6,400) [0.618] ok LOW. MOREOVER BY UTILIZING CONTEXTUAL INFORMATION FOR BOW
& Soad RECONSTRUCTIONWE CAN ACHIEVE SIMILAR RETRIEVAL ACCURACY AS
- THE ORIGINAL BOW WHILE ONLY TRANSMITTING FEW BITS AND
45 - ./H/ _a CONSUMING A SMALL AMOUNT OF MEMORY ON MOBILE DEVICES. SEE
P MORE EXPLANATIONS IN SECTIONIV-E] ‘G’ REPRESENTS WE UTILIZE
" -7 GPSINFORMATION IN THE RECONSTRUCTION STEP WHEREASB’ ONLY
- CONSIDERS THE ORIGINAL BINARY RANKING RESULTS ‘BIN.’ STANDS
25 £ FOR THE FINAL RANKING RESULTS ARE CONDUCTED FROM BINARY
Re1 R@2 R@5 R@10 R@20  R@50 R@100 CODES AND OTHERS ARE RANKED BYBOW.
Fig. 7. Performance comparison of the original retrieveatufees (e.g., binary -
codes) and the approximated features on Stanford mobilehgarch dataset. Ox‘ford Dataset (Bl_ts) [| 1,000 2,000 4,000 [ 8,000] 12,800
The approximated VLAD (PCAH to VLAD) can achieve compettietrieval ~ 0Nt PCAH-RR [Bin ] 0.323 | 0.335 0.344 ‘ -
accuracy as the original VLAD. Moreover, we can combine tpgraximated ~ !Nd- PCAH [Bin.] 0.302 | 0.354 | 0.368 | 0.382| 0.370
VLAD with asymmetric distance computation (ADG) 42] to foer reduce _Shared PCAH [Bin.] 0.252| 0.306 | 0.346 | 0.375| 0.390
the memory consumption on the server-sifiee values in the square brackets Joint to BowW 0.291 | 0.314 | 0.314 - -
represent NDCG scores. Ind. to Bow 0.121 | 0.200 | 0.267 | 0.312| 0.336
Shared to Bow 0.066 | 0.138 | 0.233 | 0.313 | 0.343
Joint to BoW [G] 0.398 | 0.410 [ 0.413 - -
. . . Ind. to BoW [G] 0.267 | 0.314 | 0.364 | 0.390 | 0.405
as an additional cue (Binary to BoW with CADS—(_:),. We CanN gpared 10 Bow [G] 0231 | 0276 | 0341 | 0403 | 0437
achieve better retrieval accuracy (0.5 to 0.588). This éabee ~Joint to Bow [B] 0362 0378] 0384 - -
the selection process can filter out those impossible ¢ivegit)  Ind. to Bow [B] 0.240 | 0.307 | 0.363 | 0.404 | 0.404
VWs. Note that we only utilize contextual information for JSh.ared to Bow [B] 0.194 | 0.257 0.337 0.382] 0.421
. . X X R oint to BoW [G+B] 0.373 | 0.397 | 0.406 - -
BoW reconstruction (i.e., selectinf.on e iN Sectior II-B);  ind. to Bow [G+B] 0.228 | 0.309 | 0.380 | 0.419 | 0.431
hence, the proposed method can further combine with othéihared to Bow [G+B] 0.184 | 0.249 | 0.350 | 0.394 | 0.439
re-ranking methods (e.g., late fusion) in the retrievalcpss.  Joint [G+B] + BRPK [B] 0.423| 0.456 | 0.445] - -
Ind. [G+B] + BRPK [B] 0.400 | 0.465 | 0.469 | 0.481 | 0.454

Shared [G+B] + BRPK [B]|| 0.385 | 0.430 | 0.442 | 0.468 | 0.455

D. VLAD Approximation from Reversible Binary Codes
As demonstrated in the previous section, BoW reconstruc-

tion from binary codes might not be able to provide a goodonversely, the proposed reversible binary codes (PCAH to
reconstruction results. Therefore, we investigate thermedi- /[ AD) can achieve better retrieval accuracy. For fair compa
ate step—VLAD approximation—in this section. As Figlite Tson of memory usage on the server-side, we adopt the same
shows, the approximated VLAD from binary codes (PCAH tapproach as ADC that compresses database images into binary
VLAD [0.596)) has competitive performance as the originalodes (8x100 bits) but we utilize the approximated VLAD as
VLAD [0.618] and is better than binary codes (PCAH, 80@guery (PCAH to VLAD + ADC). It shows that we can achieve
bits [0.483). The results confirm again that we should utilizgjmilar recall rate as the original ADC while only transtinitf

the computing power of remote servers to generate a betg bits (0.525 vs. 0.537)Moreover, the ADC approach can

feature representation for image retrieval rather thanguiie  further combine with inverted indexing as proposedin [42].
original received feature. Another alternative is to iree the

number of bits for binary codes with random projection (RP).
Based on our experiments, when we utilize 6,400 bits wi
RP, the performance is similar to the approximated VLAD. Besides conducting experiments on SMVS dataset, we also
However, it might be hard to obtain approximated VLADevaluate our proposed method on Oxford buildings dataset.
from RP so we cannot further perform BoW reconstructioiVe not only compare the results by using different bit lesgth
By using PCA-based hashing methods, we can have beted binarization methods but also utilize different contex
reconstruction results when increasing the number of loits atual information (e.g., binary ranking information, GP®y f
we will demonstrate the results in next section. context-aware BoW reconstruction. As shown in the second
We also compare and integrate our proposed method withthe fourth rows of Tablg]ll, the traditional binary haghin
asymmetric distance computation (ADC) as adopted in tijgoint PCAH-RR [Bin.]) can perform well in low dimension
original VLAD paper [10]. They compress VLAD into binary(e.g., 1,000); however, the reduced dimension is limited to
codes for database images and utilize the original VLAD fdhe number of images or featufThis phenomenon is also
the query image to calculate the distance. Hence, they a@monstrated if [40][[42] that joint dimension reductioitl w
greatly reduce the memory consumption in the database wipl@vide better compact representations and retrievaloperf
retaining similar performance as the original approach. Asance. As the number of bits increases (1,000 to 12,80Q bits)
Figure[T shows, the performance of ADC method with 256
(b=8, 28) centers for 100 sub-vectors (m=100LAD;) only 8Although VLAD has 12,800 dimensions, the total number of @f
slightly decreases. However, by using ADC method, we Stgfitaset only contains 5,062 images. Therefore, we canmergie more than

- 20 ,061 dimensions by standard PCA hashing unless we appipmnarf-ourier
need to transmit the original VLAD to the remote servefeature (RFF) mappind [54] as adopted [in][39].

. BoW Reconstruction on Oxford Buildings Dataset
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TABLE Il TABLE IV
COMPARISON OF THE MEMORY COST ON MOBILE DEVICES AND THE RETRIEVAL ACCURACY ON OXFORD DATASET WITH DIFFERENT
RETRIEVAL ACCURACY ON OXFORD DATASET. ‘*’ INDICATES EACH TRAINING DATA. AS DEMONSTRATED IN PRIOR WORKTHE
DIMENSION ONLY CONSUMESS8 BITS. PERFORMANCE WILL SLIGHTLY DECREASE WHEN WE TRAIN THE
VOCABULARY ON DIFFERENT DATASETS
Bytes [[ Transmission] Memory | MAP S
BoW (IM) [14] ~5.4K 136M* - raining data
BoW (1M) [uncompressed] 13.4K 569M 0.483 MAP Oxford | Paris | Landmarks
VLAD (12,800) 51.2K 56K | 0.371 Bow (1M) 0.483 | 04111  0.404
Binarized VLAD [4€] 1.6K 56K | 0.331 VLAD (12,800) || 98711 03781  0.354
Ind. PCAH [Bin.] (2,000 bits) 0.95K 1080k | 0.354 Shared PCAH [Bin.] (12,800 bits) 0.390 | 0.374| 0.353
Shared PCAH [Bin.] (2,000 bits) 0.25K 66K | 0.306 Shared to Bow [G+B] + BRPK [B] || 0455 | 0.391] 0373
Shared PCAH [Bin.] (12,800 bits 1.6K 122K | 0.390
Shared to BoW [B] 1.6K 122K 0.421

. ] ] . (10+100) x 4 bytes) on mobile devices and 1.6KBytes (12,800
independent binary hashing (Ind. PCAH [Bin.]) and sharggls) for transmission cosas Tablelll shows, for fair compar-
binary hashing (Shared PCAH [Bin.]) can have competitiugon we only utilize image content for retrieval and congpar
or even better retrieval accuracy than the traditional webth memory cost in an uncompressed manner. It shows that Bow
Note that the MAP might be low on Oxford; nevertheless, jhathod can achieve the best retrieval accuracy; however, it
is still similar to [10] (i.e., VLAD with 64 VWs: 0.304, PCA consumes more memory and transmission cost. VLAD-like
with 128-d: 0.257). approaches can greatly reduce memory consumption while
As reported in the prior section, the approximated VLARhe accuracy may slightly decrease. Note that Ind. PCAH can
(PCAH to VLAD) can achieve similar results as the originahe viewed as a simplified version of REVMence, we only

VLAD. Hence, we only focus on BoW reconstruction (viancrease a small amount of memory and transmission cost for
VLAD) from binary codes on Oxford dataset. As shown in thgetter reconstruction results and retrieval accuracy.

fifth to the seventh rows of Tablel II, for fair comparison, we . " )

show the results without utilizing contextual informatighe ~ We further utilize two additional datasets—Paiis|[52] and
reconstructed BowW from joint PCAH-RR (Joint to BoW) isl_andmarks_[53]—for evaluating _the effect of training data.
better than others because each bit is generated from (and 28 Shown in Table[ 1V, the retrieval accuracy slightly de-
represent) a high-dimensional projection vector (i.e,80Q- Creases when the vocabulary is tralned.on o_ther datase!ss._ Th
d) whereas other methods only consider (reconstruct) f@€nomenon has been demonstrated in prior work. Besides,
dimensions (i.e., 128-d). However, it might consume too mu&imilar to [46], the results of binarized VLAD are slightly
memory usage on mobile devices. An alternative way is pelow the original VLAD. In our work, we assume that we can

utilize independent or shared binary hashing and increzese foughly replace the original local features with Bow cester
number of bits (still few bits for transmission). As the nuenb for VLAD generation. Hence, we choose the best vocabulary

of bits is 8,000 or 12,800, we can achieve similar results ¥§€ (better BoW centers), and evaluate the effect of PCA
the joint one. hashing (projection matrix in SectidnllV) and reconstroiati

on independent datasets. As shown in TaBlle V, we can achieve
similar retrieval accuracy as training on the database @sag
(Oxford). Based on these experiments, we observe that a

reconstruction. As Tablg]ll shows, the BowW reconstructio"ﬁletable vocabulary tree is essential. Hence, we can furthe

results are much better (i.e., better than the original VI'_Aﬁ'lpply the concept of fine quantization ]55] or vocabulary

0.371), and only slightly below the original Bow (0_483)_adaptation L1P] to our proposed method.

This means that we only transmit few bits and consumeFor retrieval time, as demonstrated in prior work, binary
a small amount of memory on mobile devices to achievfatching and Bow matching with inverted indexing are very
competitive results as BoW (especially for challengingeabj efficiency for real-time retrieval systems. Hence, in our ex
queries). Moreover, as mentioned in Section fll-C, we caferiments, we consume more time on the reconstruction step.
also utilize pseudo-BoW from top-ranked results to roughlgrom binary codes to approximated VLAD, it only contains a
estimate possible VWs for a given query (binary codes). Afiatrix multiplication. However, the BowW reconstructiorst
shown in the last three rows of Talp[e II, we can further imgrowith sparse constraint (EqL](2)) takes around 0.14 seconds
the retrieval accuracy by utilizing prior knowledge frometh for eachV LAD; (128-d) when we consider all the possible
initial binary ranking results (BRPK [B]). However, if theg- vWs. To further apply dictionary selection, we can reduce
ranked images are irrelevant to the target query, as theying to 0.05s (i.e., around 5s per query). For integrating with
ranking results in Figurgl 1, the improvement by utilizingsth prior knowledge (Section TII=C), we relax the sparse caaistr
method might be limited. and thus reduce the reconstruction time to 0.51s per query.

We find that shared PCAH might be the most suitable wayloreover, take advantages of cloud, we can parallel the
for MVS because it only consumes 121.9KBytes (projectiaeconstruction step for eadhL AD; and utilize multiple cloud
matrix: 128-d x 128 bits x 4 bytes + hierarchical tree: 128-d ervers to further reduce the reconstruction time.

To mitigate the loss in binarization and achieve bett
results, we further utilize different contextual inforrwet
(i.e., [G]PS, [B]inary ranking results) for context-awdaeW



JOURNAL OF BTeX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

TABLE V [11]
THE RETRIEVAL ACCURACY ON OXFORD DATASET WITH DIFFERENT
TRAINING DATA ON PCAHASHING. WE CAN ACHIEVE SIMILAR [12]
PERFORMANCE AS TRAINING ONOXFORD
[13]
Training data
MAP Oxford | Paris | Landmarks (14]
VLAD (12,800) 0.371
Shared PCAH [Bin.] (12,800 bits) 0.390 | 0.393 0.384
Shared to Bow [G+B] (12,800 bits)| 0.439 | 0.430 |  0.433 (5]
Shared to Bow [G+B] + BRPK [B]|| 0.455 | 0.450 0.449
BoW (IM) 0.483
[16]

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we propose context-aware BoW reconstructidh’]
that utilizes the computing power of remote servers for neobi
visual search. We focus on generating reversible and memory
efficient binary codes on mobile devices, and attempt t]
reconstruct them to a better BoW representation on remote
servers (cloud). Hence, the proposed method only transmits
few bits to the remote server. By observing the relatidi9]
between VLAD and BoW, we can reconstruct Bow from
VLAD or binary codes. Moreover, we can select possiblgg
visual features (VWSs) according to the contextual infoliorat
(e.g., top-ranked images, category, GPS), and furtherrincg
porate with prior knowledge from the initial (binary) rankji
results. Experimental results show that the proposed rdetho
can achieve better retrieval results compared to the @iigin??]
retrieved feature (e.g., VLAD or binary codes). In the fatur
we will investigate how to utilize extra information on thepg)
server-side and adopt better binary reconstruction method

such as[[56].
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