
 

 
 
 

 
Multimodal Visual Data Registration for Web-Based 
Visualization in Media Production 
 

Abstract: 
Recent developments of video and sensing technology have led to large volumes of 
digital media data. Current media production relies on videos from the principal camera 
together with a wide variety of heterogeneous source of supporting data [photos, light 
detection and ranging point clouds, witness video camera, high dynamic range imaging, 
and depth imagery]. Registration of visual data acquired from various 2D and 3D 
sensing modalities is challenging because current matching and registration methods are 
not appropriate due to differences in structure, format, and noise characteristics for 
multimodal data. A combined 2D/3D visualization of this registered data allows an 
integrated overview of the entire data set. For such a visualization, a Web-based context 
presents several advantages. In this paper, we propose a unified framework for 
registration and visualization of this type of visual media data. A new feature 
description and matching method is proposed, adaptively considering local geometry, 
semiglobal geometry, and color information in the scene for more robust registration. 
The resulting registered 2D/3D multimodal visual data are too large to be downloaded 
and viewed directly via the Web browser, while maintaining an acceptable user 
experience. Thus, we employ hierarchical techniques for compression and restructuring 
to enable efficient transmission and visualization over the Web, leading to interactive 
visualization as registered point clouds, 2D images, and videos in the browser, 
improving on the current state-of-the-art techniques for Web-based visualization of big 
media data. This is the first unified 3D Web-based visualization of multimodal visual 
media production data sets. The proposed pipeline is tested on big multimodal data set 
typical of film and broadcast production, which are made publicly available. The 
proposed feature description method shows two times higher precision of feature 
matching and more stable registration performance than existing 3D feature descriptors.  
 
SECTION I. 

Introduction 

The development of visual sensor technology over recent decades has led to various 2D/3D 
media content acquisition devices available in our lives. In digital media production, 
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broadcasting, game design, or virtual/augmented reality systems, the trend is to deal with big 
data captured not only from video or photography but also from a variety of digital sensors. 
The appearance of a scene can be captured using different digital video cameras, from 4K/6K 
and professional HD cameras, to those of mobile phones. Time-of-flight or Kinect-like RGBD 
sensors can capture video-rate depth information, while 3D laser scans create a dense and 
accurate geometrical point cloud of the scene. Spherical high dynamic range imaging scanners 
capture full 360° texture and illumination data, which is important for backplates and 
relighting. There may be other data sources such as video capture using drones or large 
collections of images captured with high-resolution DSLR cameras. There is an explosion in the 
volume, variety, and complexity of data that outstrip the capacity of current methods to 
manage, analyze, and visualize them. In digital production, it is typical for a single film to use 
>1 PB of storage for media assets with requirements increasing year-on-year. For example, 350 
TB was allocated to the footage from various capture devices for the production of John Carter 
of Mars (2012), and Avengers: Age of Ultron (2015) is reported to have required >1 PB of 
storage. The types of data that are typically captured using visual sensors for film production, 
games, VR experience, and TV production are shown in Table I. While data storage is cheaper 
than ever, all of these data need to be sorted, indexed, and processed, which is a largely 
manual task. 

TABLE I Examples of Data Types Generated in Film Production 

 
 

We previously presented a multiple HD video camera system for studio production [1], which 
addressed the registration of multiple cameras to the world coordinate through calibration for 
3D video production of actor performance. This has been extended to outdoor capture by 
combining multiple HD cameras and a spherical camera [2]. Dynamic objects captured by HD 
video cameras and static background scene scanned by a spherical camera were registered to 
the world coordinate system. In this paper, we extend the capture system further to allow 
automatic registration of the wide variety of visual data capture devices typically used in 
production. 

A key issue is automatic registration of multimodal visual data into a common coordinate 
system to allow visualization and verification of the completeness of the data. This is essential 
to validate data collection at the point of capture. The task of handling 3D data is not merely a 
case of extending the dimensionality of existing 2D image processing. Data matching and 
registration is more difficult because 3D data can exist in different domains with different 
types of format, characteristics, density, and sources of error. In this paper, we introduce a 
unified 3D space (Fig. 1), where 2D and 3D data are registered for efficient data management 
and visualization. 2D data are registered via 3D reconstruction because direct registration of 
2D to 3D structure [3], [4] is difficult to be applied for general multimodal data registration. We 
assume that multiple 2D data exist for the same scene so that 3D geometric information can 
be extracted. 
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Fig. 1. 
Multimodal data registration and visualization. Left: overview of multimodal visual data 
registration. Middle: multiple photographs and their 3D reconstruction. Right: registration to 
LIDAR coordinate system. 

 

This unified space grounded in registration should be visualized integrating multiple 2D data 
(for example, video footage from several cameras) with raw 3D data (for example, laser-scan 
point clouds). A Web (or browser)-based application permits seamless mixing of 2D and 3D in a 
single context, allowing users to more quickly understand and navigate through the scene [5]. 
A Web application has further advantages: it is platform independent, accessible remotely, and 
easy to update and maintain. It requires no external software to be installed, is suited for 
access from all over the world, and supports collaborative workflows. In this sense, there is a 
strong drive for many modern visualization applications to be Web-based [6]. However, it 
requires great care in both its design and implementation, as a poorly designed hybrid 2D–3D 
visual experience can be incoherent in its use, and awkward to create. On the other hand, the 
raw multimodal data discussed in this paper is large (and thus difficult to transfer over the 
Web), and by its very nature has no consistent format or structure. Web-based 3D rendering is 
an emerging subject which has recently reached a new level of maturity, with recognition that 
the challenges faced are considerably different to those of offline rendering [7]. The most 
relevant issues are the time taken to download the data set to a remote client, and the 
challenge of visualizing such big data in a (relatively underpowered) Web browser. This paper 
directly addresses these challenges: the combination of modalities, the efficient use of 
bandwidth, and the processing at the client side (which has implications on usability). 

The following are the main contributions of this paper: 

1. a complete system from capture to visualization through data processing and transfer 
for efficient management of multisensory visual data from 3D and 2D modalities; 

2. a robust multimodal visual data registration method using a multidomain (color, local 
geometry, and semiglobal geometry) feature descriptor and hybrid RANSAC-based 
matching method; 

3. comprehensive evaluation of 3D feature detectors and descriptors for registration of 
3D data of the built environment from multiple visual sensors; 

4. a progressive, level-of-detail (LOD) Web-based visualization of multimodal visual data 
sets for efficient data transfer and interactive rendering; 

5. a public multimodal database captured with a wide variety of devices in different 
environments to assist further research. 
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SECTION II. 

Related Work 

A. Multimodal Visual Data Registration 

In general visual media processing, there has been some research for 2D/3D data matching 
and registration via structure-from-motion (SfM) and feature matching. 2D–3D registration 
between two modalities such as images to light detection and ranging (LIDAR) [4], [8], [9], 
images to range sensor [10], [11], or spherical images to LIDAR [12], [13] has also been 
investigated. To the best of our knowledge, 2D and 3D data registration and visualization for 
three or more visual modalities in general environments had not been investigated until our 
preliminary research. Initially, we tested existing 3D feature descriptors on multimodal 
registration [14] and applied them to different domains (local, keypoint, and color domains) in 
order to verify the influence of color and feature geometry [15]. The work in this paper goes 
far beyond our previous works. We propose a full 2D/3D multimodal data registration pipeline 
from capture to visualization using multidomain feature description and hybrid RANSAC-based 
registration based on the observations from our preliminary research. The proposed 
algorithms are tested on public multimodal data sets, and objective analysis of feature 
matching and registration performance is provided in this paper. 

B. 3D Feature Detection and Descriptors 

Feature (keypoint) detection identifies the location of distinct points in terms of variation in 
data. There have been many 3D keypoint detectors developed and evaluated for high 
distinctiveness and repeatability on 3D point clouds [16], [17]. However, the majority of the 
best performing detectors are not suitable for multimodal data registration because source 
models can have different color histograms, or errors in their geometry, according to the 
characteristics of the capture device. We prefer classic detectors which produce a relatively 
large number of evenly distributed keypoints such as Kanade-Tomasi detector [18] used in our 
previous research. 

Feature descriptors define the characteristics of keypoints. Restrepo and Mundy [19] tested 
local 3D descriptors for registering 3D point clouds reconstructed by multiview stereo 
methods. Recently, Guo et al. [20], [21] performed a comprehensive evaluation of local feature 
descriptors on various data sets from different modalities, but the test was carried out not 
across modalities as in this paper but only within single modality in each data set. We 
performed similar evaluation to Restrepo and Mundy’s work on multimodal data [14] and 
found that fast point feature histograms (FPFH) [22] and signature of histograms of 
orientations (SHOT) [23] descriptors are the most appropriate for multimodal data registration. 
In [24] and [25], cascade combination of shape and color descriptors showed good 
performance when the color information is available. However, color information is not always 
trusted in multimodal 3D data captured by different sensors because it is difficult to balance 
colors between modalities. Appearance information cannot be trusted for non-Lambertian 
surface or repetitive patterns. The descriptors are concatenated without any priority or weight 
in [24] and [25], which leads to poor performance when the matching is dominated by one 



descriptor as demonstrated in our preliminary research [15]. In this paper, we propose a novel 
matching and registration algorithm adaptively considering multiple descriptors using a hybrid 
RANSAC technique. 

C. Web-Based Visualization of Multimodal Data 

Jankowski and Decker [5], [26] demonstrated that a so-called “dual-mode” interface, 
integrating text and 3D contexts, outperforms a more classical approach where they are 
separated (even taking into account modality switches). The visualization of the unified space 
proposed in this paper requires such hybrid integration of 3D (more challenging than that of 
Jankowski), and a wealth of layered 2D data and metadata. An HTML5 Web context is suitable, 
in this regard, as it allows (and indeed encourages) the interplay of multimedia data. 3D Web 
pages are relatively uncommon (compared to 2D pages), and for several years were mostly 
represented by declarative technologies developed in the academic domain [27], [28]. 
However, 3D Web applications have been growing in popularity since the release of WebGL in 
2011. WebGL is a Web-specific version of the OpenGL graphics API (more specifically of the 
restricted embedded systems API, OpenGL ES2.0), and allows access to dedicated graphics 
processing hardware directly from the browser (via Javascript). It is now fully supported in the 
latest versions of all major browsers. WebGL and associated HTML5 APIs (such as 
WebAudio)1 are in many respects enabling technologies, as they break down the barriers for 
the development of browser-based multimedia applications. Nevertheless, they also opens up 
new research challenges for the best way to transmit and interact with hybrid data (be it 3D, 
2D image/video, audio, or text). 

3D data are typically large, and transferring it to a remote client for rendering is a persistent 
problem for all Web 3D applications. This is particularly relevant for our work in that the 
multimodal visual data are stored in files which reach many hundreds of megabytes in size—
simply “waiting for them to download” does not provide an optimal or satisfactory user 
experience. While a naive approach might be to simply compress the data using any number of 
established and powerful algorithms, Limper et al. [29] show that straightforward data 
compression may not necessarily be the solution, as the decompression time in a browser-
based context may outweigh any benefits gained in terms of compressed data, particularly as 
bandwidth speeds increase. For a more complete overview of these issues, and the current 
state of the art with respect to Web-based 3D, including techniques of remote rendering and 
progressive transmission, we refer the reader to a recent survey paper [7]. 

In our preliminary research in this field, we presented a similar progressive visualization of 
large point cloud data, where the data are preprocessed, in an offline step, into a hierarchical 
data structure [30]. Web-based rendering of very large point-clouds is tackled in [31], which 
uses a LOD approach to ensure the number of points rendered does not saturate the browser 
application. Only a single point cloud visualization in a Web environment was dealt with 
in [30], but we present algorithms and interface for the simultaneous visualization of multiple 
point clouds, intertwined with 2D image and video data in a single Web-based visualization 
platform in this paper. The results compare favorably for transmission times for the different 
but related problem of mesh visualization in [32]. 

SECTION III. 



System Overview 
Fig. 2 shows the overall process for multimodal data registration and visualization. We use 
color 3D point clouds as a common input format for 3D feature detection and matching 
because some inputs may not have mesh connectivity information. 3D data from 3D sensors or 
proxy computer graphics (CG) objects are directly registered and 2D data are registered via 3D 
reconstruction techniques such as stereo matching or SfM. In 3D reconstruction, camera poses 
are extracted so that the original capture locations and orientations can be simultaneously 
transformed in registration. 

 
 
Fig. 2. 
Pipeline for multimodal data registration and visualization. 

 

Point clouds from different modalities have different density, and some of them have irregular 
sample distribution even in the same scene. For example, point clouds from an LIDAR scanner 
or spherical images become sparser as the distance from the capture device increases. This 
may cause bias in feature detection and description. We apply a 3D voxel grid filter which 
samples vertices in a uniform 3D grid to make the density of point clouds relatively even. 

Keypoints are detected by the combination of a 3D Kanade-Tomasi detector [18] and 3D SIFT 
detector [33] (Section V-A). Then, multidomain 3D features are extracted in local, keypoint, 
and color domain as a 2D vector for each keypoint (Section V-B). The extracted feature 
descriptors from different modalities are matched to find the optimized registration matrix to 
the target coordinate system (Section V-C). The point cloud registration is refined over the 
whole point cloud using the iterative closest point (ICP) algorithm [34]. 

The complete data set is then organized and processed into a representation suitable for 
transmission over the Web. Video files are compressed using the OGG/Theora codec, and 
thumbnails are created from all image and video files. 3D point cloud data are entered into an 
octree data structure, which are traversed breadth first to create a series of binary files, ready 
for progressive download to the client. The final visualization is a Web application engine that 
mixes both 2D video, 2D image, and 3D WebGL contexts to allow users to navigate through the 
scene in an interactive manner. The application is designed to work on handheld devices as 
well. 

SECTION IV. 
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Input Modalities 
We consider a wide range of 2D/3D and active/passive sensors commonly used in various 
fields. 

A. Light Detection and Ranging Sensor 
LIDAR is an active sensing device using a light pulse signal to acquire 3D scene geometry. It is 
one of the most accurate depth ranging devices but has the limitation that it retrieves only a 
point cloud set without color or connectivity. However, some recent LIDAR devices provide 
colored 3D structure by mapping photos simultaneously taken during the scan. We have 
verified that color information is useful in multimodal data registration in [15], so we use FARO 
Focus 3D X1302 to obtain colored 3D point clouds in this paper. Multiple scans acquired from 
different viewpoints are manually registered and merged into a complete scene structure 
using markers in the scene and the software tool provided with FARO. We do not use our 
automatic registration method for this partial scan registration because this LIDAR model will 
be used as a ground-truth target reference in our evaluation. 

B. Spherical Imaging 
A spherical camera captures a full surrounding scene visible from the camera location. Omni 
directional imaging is useful for environmental texture map generation or lighting source 
detection, but it always requires postprocessing to map the image in spherical coordinates to 
other images captured in a different coordinate system [35]. We assume that the scene is 
captured as vertical stereo pairs to allow dense reconstruction of the surrounding scene for 
automatic registration. We use Spheron,3 a spherical line scan camera, and follow the stereo 
matching and reconstruction approach in [36]. 

C. Photographs 
Digital photographs are the most common source of scene information. 3D reconstruction and 
camera pose estimation from multiview images has been actively researched for a long time. A 
set of photographs can be registered to a 3D space by registering the reconstructed 3D model 
because the camera poses are computed during the reconstruction process. 
Bundler [37] followed by PMVS [38] provide a dense 3D reconstruction with camera pose 
estimation from multiple photos. Autodesk also provides an on-line image-based 3D 
reconstruction tool, RECAP360.4 Both tools are used in our experiment. 

D. 2D Videos 
If a single moving video camera is used, the same approach in Section IV-C is used because 
video frames from a moving camera can be considered as multiview images. In case of multiple 
wide-baseline witness cameras, it is difficult to get the scene geometry for automatic 
registration if the camera viewpoints do not have sufficient overlap. In this paper, we define 
2D videos as wide-baseline fixed witness cameras capturing a common space. Camera poses 
are estimated by wand-based calibration [39] aligned to the origin of the LIDAR sensor. 

E. RGBD Video 



Consumer level low-cost RGB+Depth cameras are becoming increasingly popular. Though 
infrared (IR) interference limits their validity in outdoor environments, they are still useful in 
indoor or shaded outdoor areas. KinectFusion [40] reconstructs a voxel volume from an RGBD 
video sequence by camera pose estimation and tracking. We use the Xtion PRO camera5 to 
acquire an RGBD video stream of the scene. 

F. Proxy Model 
Proxy model means a simple CG object that represents or symbolizes real 3D objects. Proxy 
models are used in areas such as augmented reality, previsualization, virtual maps, and urban 
planning. They are normally generated by CG, but there are some semi/fully automatic 
algorithms such as plane-/block-based scene reconstruction from images [41], [42]. 
SketchUp6 provides a semiautomatic reconstruction using vanishing points alignment. It is 
useful to build simple scenes but takes a long time for complex scenes. We use an axis-aligned 
plane-based scene reconstruction from spherical images [43] in the experiments. In feature 
detection and description, the plane structure is densely sampled to extract sufficient points 
for feature computation. 

SECTION V. 

Multimodal Data Registration 
A. 3D Feature Detector 

Keypoint detection is an essential step prior to matching and registration. There are many 3D 
feature detection methods developed and evaluated [16], [17]. However, all detectors were 
evaluated for accurate 3D models generated by CG or single-modal sensors. Highly ranked 
detectors in those evaluations do not guarantee such high repeatability and distinctiveness for 
multimodal data sets that have potentially different types of errors, sampling characteristics 
and distortions. For example, heat kernel signature detector [44] shows good repeatability and 
distinctiveness in those evaluations, but is too selective to yield a sufficient number of 
repeatable keypoints between cross-modalities due to geometrical errors induced from 
incomplete 3D reconstruction methods. A feature detector which produces a relatively large 
number of evenly distributed keypoints is preferred for robust multimodal data registration. 
We consider color as well as geometry to extract the most information from input data sets 
with outliers and different sampling resolutions. We use the combination of 3D Kanade-Tomasi 
detector and 3D SIFT feature detector. 

The original 2D Kanade-Tomasi detector [18] uses an eigenvalue decomposition of the 
covariance matrix of the image gradients. In the 3D version of the Kanade-Tomasi detector, 3D 

surface normal vectors calculated in the volume radius of rs are used as input. Eigenvalues 
represent the principal surface directions and the ratios of eigenvalues are used to detect 3D 
corners in the point cloud. 

The SIFT feature detector [33] uses a Difference-of-Gaussian filter to select scale-space 
extrema then refines the results by Hessian eigenvalue test to eliminate low contrast points 
and edge points. We use 3D versions of the Kanade-Tomasi detector and the SIFT detector 



implemented in the open source Point Cloud Library.7 Parameters for 3D SIFT feature detector 

are defined as [Minimum scale Sm , Number of octaves So , Number of scales Ss ]. 

B. Multidomain Feature Descriptor 
Most 3D feature descriptors rely only on local geometric or color features. However, these 
descriptors are not suitable for multimodal data registration because input sources may have a 
high level of geometric reconstruction error or different color histograms. Our preliminary 
research [15] found that the combination of descriptors applied on different domains such as 
color and geometry can improve the matching and registration performance for multimodal 
data. 

We use the FPFH descriptor as a base descriptor because it shows fast and stable performance 
in our preliminary research [14]. FPFH uses a cumulated Simplified Point Feature Histogram 

(SPFH) [22]. SPFH extracts a set of tuples [α , φ , θ ] from a keypoint p and its neighboring 

local points {pk} , where α is angle to the second axis, φ is an angle to the first axis, and θ is 

a rotation on the UW plane. For neighboring local points, their k -nearest neighbors (k -NNs) 
are determined and the FPFH histogram is computed by weighted sum of their neighboring 

SPFH values as (1). The weight ωk is a distance between points p and pk . The number of bins 

is set as 11 for each α , φ , θ . Therefore one FPFH descriptor can be represented as a vector 
with 33 bins 

FPFH(p)=SPFH(p)+1k∑i=1k1ωk⋅SPFH(pk).(1) 

Source: 

\begin{equation} \text {FPFH}(p) = \text {SPFH}(p) + {\frac{1 
}{ k}} \sum _{i=1}^{k} {\frac{1 }{ \omega _{k}} \cdot \text 
{SPFH}(p_{k} )}. \end{equation} 

 
In this research, the FPFH descriptor is extended to multiple domains in order to utilize 
geometry and color information together. For the same input point cloud with detected 
keypoints, three different FPFH descriptors are calculated in three different domains: Local, 

Keypoint, and Color. The result is represented as a 2D vector with 33×3 bins. 

FPFH in the local domain FL defines the characteristic of local geometry calculated from a 

keypoint and its neighboring local 3D points in the volume radius of rl as normal local 

descriptors. FPFH in the keypoint domain FK defines the spatial distribution of detected 

keypoints, which represents semiglobal geometric feature of the scene. FK is calculated from 

a keypoint and its neighboring keypoints in the volume radius of rk , which is much larger 

than rl . Finally, FPFH in the color domain FC defines the color characteristics of a keypoint 

and its neighboring local 3D points in the same volume radius of rl as FL . FC is calculated in 
the same way but uses color components instead of surface normal components. We use the 
CIELab color space which is more perceptually uniform than the RGB space as proved in [25]. 

C. Hybrid Feature Matching and Registration 

https://ieeexplore.ieee.org/document/#deqn1


We propose the Hybrid RANSAC registration method to find an optimal 3D rigid transform 
matrix between feature sets. This extends the SAC-IA algorithm [22] by introducing a new 
distance measure with weighted sum of multidomain FPFH descriptors. Fig. 3 presents a block 
diagram of the proposed feature matching and registration method for the registration of 

keypoint set P in the source model to keypoint set Q in the target model. 

 
 
Fig. 3. 
Hybrid RANSAC-based feature matching and registration. 

 

The contribution of description domains in matching is adaptively selected according to the 
distinctiveness of the descriptor. If the point is selected from repetitive geometry or color 
patterns, it has a high possibility of a wrong match even with a low matching cost. The 

reliability λ(p) for a point p is computed by the ratio of the second to first nearest neighbor 

distances in Q as shown in (2), where D(p,q) denotes the distance between descriptors 

of p and q , and pNN[⋅] an element of p ’s k -NN in Q 

λ=D(p,pNN[1])/D(p,pNN[0]).(2) 

Source 
\begin{equation} \lambda = D(p, p_{NN[{1}]}) / D(p, 
p_{NN[{0}]}). \end{equation} 

 
The total matching cost DT(p,q) for a source keypoint p to a target keypoint q with 
multiple domains is calculated by the weighted sum of individual domain descriptors as 

DT(p,q)=λLDL(p,q)+λKDK(p,q)+λCDC(p,q).(3) 

Source 
\begin{equation} D_{T}(p,q) = {\lambda _{L}}D_{L}(p,q)+ 
{\lambda _{K}}D_{K}(p,q)\!+\! {\lambda _{C}}D_{C}(p,q).\qquad 
\end{equation} 

 
Algorithm 1 shows the registration process in detail. 

Algorithm 1 Hybrid RANSAC Registration 

Input: 

Keypoint descriptor sets P={pi} and Q={qi} 

1. Ramdomly select 3 samples S={si}⊂P 
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2. Calculate reliability set λ(si)={λL(si),λK(si),λC(si)} for si 

3. Find matches Qs={qs(i)}⊂Q with min(DT(si,qs(i))) 

4. Compute a rigid 3D transform matrix T from S to Qs 

5. Exclude unreferenced keypoints in T(P) and Q which have no 
corresponding points within a range of Rmax from the keypoints 

6. Compute registration error ER for the rest of keypoints in T(P) and Q 

7. If ER<Emin , then replace Emin with ER and keep T as Topt 

8. Repeat step 1–7 until it meets the termination criteria: 

(a) Reach the maximum iteration Imax 

(b) Emin<Rmin 

Output: rigid 3D transform matrix Topt 

SECTION VI. 

Web-Based Visualization 
The Web-based visualization is based on a hybrid 2D–3D approach, mixing video, image, text, 
and 3D displays. The input data, while registered to a common 3D space, require preprocessing 
in order to ensure its suitability for transfer to, and rendering on, a remote Web client. These 
preprocessing steps and the rendering approaches used are discussed below. 

The large amount of data with which we are dealing can make it difficult to enforce strict rules 
on file and directory structure and organization—real world big data are messy. Instead, we 
use a simple JSON file to store a scene description with relative paths to the location of the 
relevant data. The data are stored on a Linux-based machine running a custom Apache2 Web-
service, which is configured to enable HTTP gzip compression for all the file formats that serve 
the client (including the custom binary formats as described below). This enabling of gzip for all 
files provides a final compression step which is extremely fast, as it relies on a well-understood 
algorithm encoded at a low level in both the server and client-browser application, and thus 
adds very little processing overhead for potentially significant reductions in file size [30]. 

On the client side, the hybrid 2D–3D renderer is setup with a base WebGL 3D context running 
in an HTML5 canvas element, which is supplemented by various 2D document object model 
(DOM) elements, described below. Interactive scene navigation is controlled by rotating, 
panning, and zooming with standard mouse/touch gestures. 

A. Progressive Point Cloud Rendering 
The registered point clouds generated by the various input modalities presented in Section 
IV (from raw point cloud scans or reconstructed image data) are initially in off format, 



encoding position and color of each point. File sizes range from tens to hundreds of 
megabytes. Rendering such data in an offline context is trivial; doing so in a Web browser 
context, however, presents two principal challenges. The first is the simple time taken to 
download such data. Even with a fast Internet connection, and the colored points represented 
in binary format, and compressed using the HTTP standard gzip algorithm, it would take 
several seconds or even minutes to download the data before it can be rendered. Second, such 
a large number of points can easily overwhelm the browser application—our initial tests, on 
modern hardware, with a very simple WebGL point cloud rendering application showed that a 
maximum of 3.5M points can be rendered before the application crashes (in comparison, a 
similar offline application can render many more points). 

Using a hierarchical data structure to store and transmit the data solves both of these issues. 
Not only does it permit lower resolution versions of the data set to be transmitted and 
rendered immediately, while further data are downloaded, but it also permits rendering of 
larger data sets which would not be possible to render at full resolution in the browser. Thus, 
we preprocess our data in a similar way to [30], organizing the data hierarchically into a 
memory efficient octree, where the center of each node is stored, along with the mean color 
of all the points stored within it and any of its child nodes. An offline process parses this octree 
breadth first and outputs the position and color information in a simple binary format, which is 
then stored in a sequence of files. Each file contains a maximum of 5000 entries, each entry 
corresponding either to point representing a node of the octree, or a point of the final data 
set. 

The browser application features as its base context a WebGL rendering engine which 
downloads sequentially the file sequence described above. Each file is processed and the data 
for the points uploaded to the GPU. The resolution level (i.e., depth into the octree) is tracked, 
so that when higher resolution data are downloaded and displayed, lower resolution data are 
discarded (to avoid occlusion issues). The result is that, upon loading of the Web page, an 
initial low-resolution version of the point cloud is quickly displayed on the screen, which is 
then refined to a higher resolution version as more data are downloaded, until the final point-
cloud is displayed. 

Multiple point clouds can be downloaded and rendered simultaneously, and hidden/shown 
using a simple GUI element. This capability for visualization of multiple point clouds allows the 
user to quickly see the similarities and differences between the data obtained from the 
different modalities, which plays an important role in assessing the data quality, completeness, 
and key requirements. 

B. Video Data and Timeline 
The raw video footage recorded from the witness cameras (Section IV-D) is initially stored in 
uncompressed format. For transfer to the remote client it is compressed and reduced in 
resolution using the OGG-Theora codec at medium quality. A thumbnail image of a fixed frame 
from the first seconds of each video is also created. Upon loading the Web page, all videos are 
preloaded into the page DOM as HTML5 video elements, which are hidden from view using 
CSS (the elements are required to stream the video data from the server, but the actual frames 
will be rendered in WebGL as described below). 

Witness cameras are represented in the 3D scene by simple plane meshes whose positions and 
orientations match those extracted as above. The video footage from each camera is then 



rendered in the 3D context, extracting the image data from the HTML5 video element and 
passing it as a WebGL texture, which is displayed on the relevant plane mesh for each camera 
(Fig. 14). This extraction of video frames from the HTML5 video element for use as textures 
within a 3D context is one of the major benefits of developing a hybrid interface within a Web-
based context, as such a pipeline in a standard desktop OpenGL context requires a greater 
level of software engineering and preprocessing [45]. 

 
 
Fig. 14. 
(Hidden) HTML5 video element pipes texture information, at 30 frames/s, positioned to the 
original camera location and orientation. 

 

To control playback, position, and scrubbing, a simple timeline interface is drawn in a 2D 
canvas (Fig. 15). The timeline allows selection of which video to play, along with playback 
controls and a draggable timeline bar to control scrubbing. Video buffering is used to ensure 
that enough video data have been downloaded to pass as texture information to the WebGL 
renderer, and also to ensure the scrubbing interface is synchronized to the video footage. 
Upon selecting a witness camera in the timeline interface, the camera position in the 3D scene 
is instantly moved to a position just behind the plane mesh representing that camera, allowing 
the video to be seen within the 3D context. For performance reasons, only one video can be 
played at a time (the video which is selected in the timeline interface). 
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Fig. 15. 
Hybrid 2D–3D Web interface showing the timeline component and GUI overlaying the 3D 
context. 
C. Sensor Raw Data Billboards 

The registration process described in Section V also outputs the positions of 
the various sensors (LIDAR, Spheron, RGBD camera, and regular photo 
cameras), which are registered to the combined LIDAR scan for reference. To 
visualize these sensor positions, we render a simple mesh plane at the 3D 
position of the sensor within the scene, and pass a thumbnail image of the 
original sensor image as a texture for that plane. Unlike the similar setup for 
witness cameras, for the sensors, we strip all rotational information out of 
the Model-View-Projection matrix immediately prior to rendering. This 
means that the plane meshes act as billboards, constantly rotating to face 
the camera, to best show the original sensor data. When the user clicks (or 
touches) the screen, a ray is fired into the scene and a simple collision 
detection algorithm determines whether the user has clicked on a billboard 
or not. If so, the 3D context is faded into the background and the original, 
full-resolution image of the sensor is shown in an HTML/CSS lightbox (Fig. 
16). 
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Fig. 16. 
Left: sensors represented as billboards with a thumbnail of original image. Right: clicking on 
the billboard displays the full resolution image. 

 

The billboards can occasionally be difficult to spot among the rest of the point cloud data, so 
we have added a feature where the user can enable an interface overlay which draws colored 
lines above each billboard, thus highlighting the locations of all the sensors. Different sensor 
types can be assigned different colors. 

D. Annotation Component 
One of the potential industrial benefits of the system presented in this paper is that it permits 
various professional users to view and interact with the same data, at the same time, while 
potentially being in different physical locations. The rise of remote collaborative working, seen 
most strongly with the popularity of online tools such as Google Docs and Dropbox, has yet to 
reach the 3D production and post-production world, largely due to problems which the work in 
this paper strives to overcome. 

While a full collaborative work application lies as a potential future goal, we have implemented 
an annotation component, which permits users to annotate areas of the data set, raising the 
possibility of those annotations being stored on a server for viewing by other users. 
Annotation of point cloud data is slightly more troublesome than when dealing with mesh 
data. In the latter case, a simple raycast-mesh collision detection is enough to detect the 3D 
point where the user has clicked (or tapped) on the scene. GL points, however, are drawn as 
pixels and do not have any representative volume, thus a simple raycasting method is not 
sufficient. To counter this problem, we recreate in the browser context the octree used for the 
initial data partitioning, and calculate ray collisions on the nodes of the octree. This permits us 
to effectively discover the 3D point in the scene with which the user has interacted, and allows 
us to associate (and draw) an annotation at that point (Fig. 17). 
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Fig. 17. 
Screenshot showing an example of the annotation component being used to label elements in 
the scene. 

 

SECTION VII. 

Public Multimodal Database 
To support research into multimodal data processing, we present a big multimodal database 
acquired in various indoor and outdoor environments, available at: http://cvssp.org/impart/. 

The database includes raw capture data and 3D reconstructions for various indoor/outdoor 
static scenes and multiple synchronized video captures for dynamic actions in the scene. 
Various capture devices such as gray/color LIDAR scanners, spherical camera, DSLR/compact 

still cameras, HD (1920×1080 ) video cameras, HD 2.7 K/4 K cameras, and RGBD cameras 
were used. The HD video cameras were genlock synchronized and calibrated. The repository 
contains detailed notes on the capture, and some preprocessing is available to make the data 
set more useful to researchers. Details can be found in the capture notes provided on the 
repository [46]. 

The proposed registration and visualization pipeline is tested on three data sets from this 
repository: Studio, Patio, and Cathedral. The Studio set is an indoor scene with stable lighting 
condition provided by KinoFlo fluorescent lights on the ceiling. The Patio set is an outdoor 

scene covering around 15 m ×10 m area. The main capture area is surrounded by walls, has a 
symmetric structure and includes repetitive geometry and texture patterns from bricks and 
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windows. RGBD data can be acquired for this scene without IR interference because it is 
shaded area. Fifteen HD video cameras were used to record main actions in the scene. The 

Cathedral set is a large outdoor scene covering around 30 m ×20 m open area. The scene was 
captured under the direct sun light which resulted in changing brightness and shadows. Main 
actions were recorded by eight HD video cameras. Fig. 4 shows examples of static and dynamic 
captures for the test scenes. As mentioned in Section IV-D, multiple HD video cameras are 
registered using their extrinsic camera parameters in our experiments because the cameras 
are too sparsely placed (little overlap) to recover the background geometry from dynamic 
videos. 

 
 
Fig. 4. 
Examples of multimodal data sets. (a) Static scene capture (top: Studio, middle: Patio, bottom: 
Cathedral). (b) Dynamic scene capture (top: Patio, bottom: Cathedral). 

 

SECTION VIII. 

Experiments 
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In order to evaluate general performance of the proposed multidomain feature descriptor and 
hybrid-registration to single modality cases, we tested them on the RGB-D Scenes data set 
from University of Washington.8 It provides 3D color point clouds of four indoor scenes. Each 
scene has 3–4 takes with different main objects and coverage for the same background scene. 
We randomly merged the first takes of each scene into one model as shown in Fig. 5(a), and 
tried to register the second takes of each scene in Fig. 5(b) to the merged target scene in Fig. 
5(a). Different objects and coverage of the second takes can be considered as noise or errors 
against the target scene, which makes the test more challenging. For objective evaluation, we 
generated a ground-truth registration by manual 4-points matching and ICP refinement using 
MeshLab.9 

 
 
Fig. 5. 
Washington RGB-D scenes data set. (a) Target reference from takes 1. (b) Test sets to be 
registered. 

 

In the experiments on the multimodal data sets introduced in Section VII, the LIDAR scan in 
each scene is set as the target reference and all other models are registered to the LIDAR 
coordinate system. Table II shows the data sets used in the experiments. “Spherical-P” is a 
partial spherical reconstruction to verify the performance of part registration to the whole 
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scene. 3D models are reconstructed for the real world scale using the reconstruction method 
introduced in Section IV. In reconstruction from photographs, Autodesk RECAP360 is used for 
the Studio and Patio scenes, and the Bundler [37] + PMVS [38] for the Cathedral scene to test 
various algorithms. HD videos are not tested for reconstruction and registration because they 
have been calibrated to the LIDAR coordinate system using the camera calibration process. The 
3D point clouds reconstructed from 2D data for the experiments are illustrated in Fig. 6. 
TABLE II Experimental Data Sets 

 
 

 
 
Fig. 6. 
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3D models for registration. (a) Studio. (b) Patio. (c) Cathedral. 
 

Ground-truth registration was generated as the same manner as the Washington data set. Fig. 
7 illustrates the original data sets, ground-truth registration results, and the registration error 
maps. The error map shows Hausdorff distance to the LIDAR model mapped in the range of 0–
3 m to a Blue-Red color range. We observe that even the ground-truth registration has errors 
against the target model because the source model has reconstruction errors, different 
coverage and density. Therefore, we measure the rms error to the ground-truth registration 
points instead of the distance to the LIDAR model for the registration evaluation. 

  
 
Fig. 7. 
Ground-truth registration. (a) Registration (top: Studio, middle: Patio, bottom: Cathedral). (b) 
Error map of spherical model (left: Studio, middle: Patio, right: Cathedral). 

 

In 3D point cloud registration, the ICP algorithm requires an initial alignment. It fails in 
registration if the initial position is not close enough to the final position. Therefore, we judge 
the performance of initial registration by success or failure of the following ICP refinement. We 
found that the ICP converges successfully if the initial registration is within 1–2 m of rms error 
range to the ground truth registration. 
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A. 3D Feature Detector 
In this experiment, we evaluate existing 3D feature detectors, and then analyze their influence 
on the registration performance. We test three feature detectors and their combinations: 3D 
Noble [47], 3D SIFT, 3D Tomasi, 3D Noble+SIFT, and 3D Tomasi+SIFT. We do not test the 
combination of 3D Noble and Tomasi because both are geometry-based detectors. Testing is 

performed on our multimodal data set. The range parameter rs for surface normal calculation 
is set as 0.5 and 0.2 m for the outdoors scenes and indoor scene, respectively. The scale 

parameters for the SIFT detector are set as [Sm , So , Ss ] = [rs , 8, 10] as suggested in the 
original implementation. 

Detected keypoints for the spherical reconstruction of the Cathedral scene are shown in Fig. 8. 
The Noble detector detected four times more points than other detectors but they are 
concentrated in specific regions. The SIFT and Tomasi detectors detected similar number of 
feature points but the result of Tomasi is more evenly spread. 

 
 
Fig. 8. 
Feature detection result (Cath-S). (a) Noble (9729 points). (b) SIFT (2115 points). (c) Tomasi 
(2461 points). 

 

The registration result using the detected keypoints in Table III clearly shows the influence of 
the feature detectors to matching and registration. In feature description and matching, we 

used the local FPFH descriptor with the parameter set [rl , Rmin , Rmax , Imax ] = 
[0.8(outdoor)/0.3(indoor), 0.2, 0.8, 8000] in an intuitive way considering the scale of the 
scenes. They are fixed for all multimodal data sets because they are not sensitive to the scene 
scale or characteristics across the range from small scale indoor scenes to large scale building 
exteriors such as the Cathedral. Different parameters have been used only for the Washington 
data sets because their scale is unknown. In Table III, figures colored in red show failed cases in 

initial registration and bold ones show the best. No.Suc . means the number of models 

succeeded in initial registration for ICP, and A.RMSE means the average rms registration 
error of the successful registrations. The Noble detector shows the worst performance in the 
single detector test in spite of the largest number of feature points because the points 
gathered in specific areas do not contribute to efficient matching and registration. The Tomasi 
detector shows the best performance among the single detectors with the largest number of 
successful registrations and the lowest rms registration error. The combinations of geometric 
and color detectors show better results as expected. Especially, the Tomasi+SIFT detector 
shows good registration performance even with a normal FPFH descriptor though it still fails 
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with the Patio set due to its repetitive geometry and texture. We use this Tomasi+SIFT 
detector for multidomain feature description and Hybrid matching in the next section. 

TABLE III Registration Result With Different Feature Detectors (N+S: Noble+SIFT, T+S: 
Tomsi+SIFT, S: Success, and F: Failure) 

 
 

B. Feature Matching and Registration 

3D feature descriptors are computed for the keypoints extracted by the 
combination of Tomasi and SIFT in Section VIII. A . We compared the 
registration performance of the proposed multidomain FPFH descriptor and 
Hybrid RANSAC registration (denoted as FHYB ) with those of normal FPFH 
(F ), SHOT (S ), and cascade combinations of FPFH descriptors in different 
domains (FLK , FLC , and FLKC ). We use the same parameter set of Section 
VIII. A for the multimodal data sets and [rl , rk , Rmin , Rmax , Imax ] = [0.2, 
1.0, 0.05, 1.0, 5000] for the Washington data sets. 

For matching performance evaluation, best matching pairs of all detected 
keypoints to the target reference are calculated and compared with the 
ground-truth feature matching pairs. Ground-truth feature matching pairs 
are defined by the closed keypoints of the target reference in the range 
of rgt from the source keypoints transformed by the ground truth 
registration. rgt was set as 0.03 for the Washington data set (the scale of the 
3D coordinate is unknown) and 5 cm for the multimodal data set. As tested 
in [21], precision values are computed as follows: 

Precision=Number of correct matchesNumber of matches.(4) 

Source 
\begin{equation} \text {Precision} = \frac {\text {Number of 
correct matches}}{\text {Number of matches}}. \end{equation} 
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1) Test on Single-Modal Data Set: 

Table IV shows matching precision and registration results of the Washington 
RGB-D scenes data set according to the description methods. Only precision 
results are given here because the outlier ratio is more important in RANSAC-
based registration. Average in the last row means the average of the whole 
precision values in the precision columns and the average rms registration 
error of the “successful registrations” in the registration columns. In the 
feature matching evaluation, combination of features from various domains 
shows higher precision rate. Especially, it shows better results both in feature 
matching and registration when the color information was involved because 
their appearance was captured with the same lighting condition and sensor. 
Feature matching shows relatively high precision rate though they were 
captured with slightly different objects and coverages. The proposed 
multidomain feature description and hybrid RANSAC registration shows 
competitive performances against other cascade combination methods but is 
not very advantageous considering its computational complexity. 

TABLE IV Matching and Registration Results for Single-Modal Data Set (Washington Data Set) 

 
 

2) Test on Multimodal Data Set: 

Table V shows the feature matching and initial registration results of the 
multimodal data set. The precision rates of feature matching are much lower 
than those of single-modal set shown in Table IV due to different 
characteristics and reconstruction errors of modalities. The proposed feature 
description and matching method shows higher precision compared with 
other descriptions. Fig. 9 shows examples of feature matching according to 
descriptors. The best 20 keypoints matches for the Patio set and 200 
matches for the Cathedral set using conventional SHOT and FPFH local 
descriptors and the proposed multidomain hybrid matching are visualized. 
The local descriptor matching results are scattered over the scene while the 
proposed method shows more consistent matching to the correct position. 

TABLE V Matching and Registration Results for Multimodal Data Set 
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Fig. 9. 
Matched features (top: SHOT, middle: FPFH, bottom: Proposed). (a) 
Patio-R to LIDAR. (b) Cath-SP to LIDAR. 

 

In Table V, the Studio set shows better performance than Patio and Cathedral sets in matching 
and registration, and especially, the color information improves the performance of feature 
matching because the Studio set was captured in stable lighting condition. However, it shows 
poor result with the spherical reconstruction, because the Studio-S model was reconstructed 
from only one pair of spherical images and has large self-occlusion areas in the geometry. 

The Patio scene models have repetitive structures with similar colors such as bricks and 
window frames. It causes relatively low feature matching rates compared with other data sets. 
In the registration results, we observe that some structures are misregistered by 180° as 

shown in Fig. 10(a). Keypoint descriptions (FK ) that consider feature distribution over a large 
area achieve better performance than local color or shape descriptors due to repetitive local 
geometry and appearance. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/76/8330723/7792647/kim.t5-2642825-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/76/8330723/7792647/kim.t5-2642825-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/76/8330723/7792647/kim9ab-2642825-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/76/8330723/7792647/kim9ab-2642825-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/76/8330723/7792647/kim.t5-2642825-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/76/8330723/7792647/kim9ab-2642825-large.gif


 
 
Fig. 10. 
Failure cases in registration. (a) Patio-S with FPFH. (b) Cath-P2 with FPFHLC. 

 

In the Cathedral scene models, the appearance information is less trusted because it changes 
according to the capture device, capture location (direction) and time in the open outdoor 
environment. As shown in Fig. 10(b), the left wing of the building is mapped to the right wing 

in the LIDAR model. It happens with F , FLC , and FLKC descriptors whose local and color 
components dominate the matching over the semiglobal geometric component. The proposed 
hybrid matching and registration sorts out this bias problem. However, the color information is 
more helpful than others in the case of proxy model (Cath-PR) whose distinctiveness of 
geometrical features are very low. SHOT descriptor also shows poor result in feature matching. 
This results from the failure of defining local reference frame for SHOT descriptor. 

The cascade combinations of descriptors generally show slightly better performances than the 
single local descriptors, but it sometimes makes worse as seen in the case of Patio-P1 

with FLC , Cath-P2 with FLK , Cath-SP with FLC and Cath-PR with FLK . They show poor 
performances because the features from different domains compete each other without 
considering their reliabilities. The proposed matching and registration method 
FPFHHYB successfully registered all 12 data sets with high precision feature matching and low 
rms registration error. 

C. Web-Based Visualization 
Figs. 11–17 show screenshots of the various components of the visualization. Table VI contains 
results showing the total time taken for the point cloud data (from all sources) to download 
and render, at clamped bandwidth of 8 Mb/s. The purpose of this table is to highlight the 
advantage of the LOD approach compared to simply waiting for the entire data set to 
download. Note that an initial, low resolution view is available within a second (note that the 
first view values are not related to the final size), yet the final data set (millions of points) may 
take several tens of seconds to download—without the progressive refinement technique, the 
user would be waiting approximately this time to see anything. These values are similar to 
those we obtained with the similar technique presented in [30], despite this there are multiple 
point clouds (at least three) being downloaded simultaneously, and compare well with those 
state of the art on the different but related problem of progressive mesh transmission [32]. 
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The thumbnail images do not add overhead with respect to the 3D point cloud data, as their 
file sizes are comparatively small and they appear rapidly in the scene. 

TABLE VI Time Taken (ms) to Download and Render Different Point Clouds at Three Resolution 
Levels. (First View: Initial Render of the Low Resolution Data; 50% and 100%: Percentage 
(Number of Points) of the Entire Data Set Rendered. The Three Scenes Were Downloaded 
Simultaneously. Bandwidth is Clamped to 8 Mb/s 

 
 

 
 
Fig. 11. 
Progressive rendering of base LIDAR scan used in Patio scene. 

 

 
 
Fig. 12. 
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Progressive and simultaneous rendering of four point clouds, with resolution increasing from 
top-left to bottom-right. 

 

 
 
Fig. 13. 
Rendering of LIDAR only (left) and LIDAR + still photograph (right). 

 

An interesting comparison of our progressive point cloud rendering method is with that 
provided by Potree [31]. While implementational details and timings of the Potree method are 
yet to be published, it clearly uses a similar LOD approach to ours. However, beyond that basic 
similarity, the techniques appear different. Potree seems designed to minimize the data 
downloaded by increasing the LOD of those areas which are currently within a certain distance 
of the camera. While our work does support this feature (see [30]), we choose to disable it for 
this application, in the interest of downloading the entire data set as quickly as possible—this 
also makes it unfeasible to compare download times, as Potree makes a point of not 
downloading the entire data set if possible. We do note, however, that in one of our trial data 
sets (the largest point cloud from the Patio set), the Potree rendering presents some artifacts 
between the cells of the hierarchical data structure, which are not present in our work (see Fig. 
18). 
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Fig. 18. 
Rendering of our method (left) and [31] (right). The latter features white artifacts between the 
cells used for the data structure. 

 

SECTION IX. 

Conclusion 
Typically, processing and visualization of big multimodal data are split between individual 
tools, with video and images processed in a 2D domain then visualized using a thumbnail 
browsing interface, and 3D data in dedicated 3D production and rendering software. In this 
paper, we have introduced a framework for unified 3D Web-based visualization of multimodal 
digital media production data sets, which allows various input modalities to be registered into 
a unified 3D space, and visualized in hybrid-mode Web application. 

A multidomain feature description extended from an existing feature descriptor and a hybrid 
RANSAC-based registration technique were proposed. The approach was tested on our 
multimodal database acquired from various modalities including active and passive sensors as 
well as public single-modal data set. The proposed method shows two times higher precision 
of feature matching and more stable registration performance than conventional 3D feature 
descriptors. 

Visualization of production data via the Web is currently become increasingly relevant as 
modern workflows become based in the cloud. Our Web-based visualization takes advantage 
of the power of the Web-context to integrate several viewing modalities into a single 
application, with the additional advantages of the Web: machine independence, no specialized 
software requirements, viewing from anywhere in the world, etc. The results show that our 
progressive download method reduces the problems relating to remote viewing of big data. 
The principal contribution of this aspect of the work is that few other researchers have 
presented results on progressive visualization of point cloud data via the Web; and (to our 
knowledge) our work represents the first effort to do so as part of a wider hybrid visualization 
of multimodal data. 

Future work on the multimodal data registration aims to extend to a large-scale 
spatiotemporal scene data producing a coherent view of the world. It deals with 
synchronization and registration of multimodal data streams captured by very large and 
diverse collections of professional and consumer devices under uncontrolled and 
unpredictable environments. Another direction of extension will be registration of nonvisual 
data such as audio and text (annotation and metadata). New feature description and matching 
method for cross-modalities should be developed. Although our current system works 
effectively on tablet devices, our future work on visualization is now focused on integrating 
more elements of mixed reality into the application. This possibility is opened due to the fact 
that mobile versions of many Web browsers allow JavaScript access to the device 
accelerometer and camera, raising the prospect of remote users being able to visualize a 
current data set in real-time (i.e., on the same day as the capture) and use of tablet devices as 
a virtual ‘window’ into the scene, moving it around in space to view the reconstructed scene. 
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Multimodal data registration and visualization. Left: overview of multimodal visual data 
registration. Middle: multiple photographs and their 3D reconstruction. Right: registration to 
LIDAR coordinate system. 
Fig. 2. 
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Pipeline for multimodal data registration and visualization. 

Fig. 3. 
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Hybrid RANSAC-based feature matching and registration. 

Fig. 14. 
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(Hidden) HTML5 video element pipes texture information, at 30 frames/s, positioned to the 
original camera location and orientation. 

Fig. 15. 
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Hybrid 2D–3D Web interface showing the timeline component and GUI overlaying the 3D 
context. 

Fig. 16. 
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Left: sensors represented as billboards with a thumbnail of original image. Right: clicking on 
the billboard displays the full resolution image. 

Fig. 17. 
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Screenshot showing an example of the annotation component being used to label elements in 
the scene. 

Fig. 4. 
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Examples of multimodal data sets. (a) Static scene capture (top: Studio, middle: Patio, bottom: 
Cathedral). (b) Dynamic scene capture (top: Patio, bottom: Cathedral). 

Fig. 5. 
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Washington RGB-D scenes data set. (a) Target reference from takes 1. (b) Test sets to be 
registered. 

Fig. 6. 
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3D models for registration. (a) Studio. (b) Patio. (c) Cathedral. 

Fig. 7. 
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Ground-truth registration. (a) Registration (top: Studio, middle: Patio, bottom: Cathedral). (b) 
Error map of spherical model (left: Studio, middle: Patio, right: Cathedral). 

Fig. 8. 
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Feature detection result (Cath-S). (a) Noble (9729 points). (b) SIFT (2115 points). (c) Tomasi 
(2461 points). 

Fig. 9. 
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Matched features (top: SHOT, middle: FPFH, bottom: Proposed). (a) Patio-R to LIDAR. (b) 
Cath-SP to LIDAR. 

Fig. 10. 
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Failure cases in registration. (a) Patio-S with FPFH. (b) Cath-P2 with FPFHLC. 

Fig. 11. 
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Progressive rendering of base LIDAR scan used in Patio scene. 

Fig. 12. 
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Progressive and simultaneous rendering of four point clouds, with resolution increasing from 
top-left to bottom-right. 

Fig. 13. 
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Rendering of LIDAR only (left) and LIDAR + still photograph (right). 

Fig. 18. 
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Rendering of our method (left) and [31] (right). The latter features white artifacts between the 
cells used for the data structure. 



 


