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Abstract— We propose a new metric to predict perceived 
crosstalk using the original images rather than both the  orig- 
inal and ghosted images. The proposed metrics are based on 

color information. First, we extract a disparity map, a color 
difference map, and a color contrast map from original image 
pairs. Then, we use those  maps  to  construct  two  new  met-  

rics (Vdispc and Vdlogc). Metric  Vdispc  considers  the  effect  of 
the disparity map and the color difference map, while Vdlogc 
addresses the influence of the color contrast map. The prediction 

performance is evaluated using various types of stereoscopic 
crosstalk images. By incorporating Vdispc and Vdlogc, the new 
metric Vpdlc is proposed to achieve  a  higher  correlation  with 

the perceived subject crosstalk scores. Experimental results show 
that the new metrics achieve better performance than previous 
methods, which indicate that color information is one key factor 

for crosstalk visible prediction. Furthermore, we construct a new 
data set to evaluate our new metrics. 

Index Terms— Color contrast information, crosstalk percep- 
tion, disparity map, objective metric. 

 

I. INTRODUCTION 

ITH dramatic advances in the modern display devices, 

the 3D display technology has been widely used. Since 

our eyes are located in two different positions on the  head,  

we perceive slightly different information from left and right 

views. This difference between the left image and the right 

image allows the human visual system (HVS) to perceive the 

relative depth of objects. Based on the processes of the HVS, 

the stereoscopic 3D techniques deliver two offset images for 

respective eyes to make the end user perceive a more realistic 

scene.  Although the 3D  display  technology has  been rapidly 
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developed in recent years [3], [7], [19], [22], [24], [25], [31], 

[32], many issues remain open challenges, such as the visual 

fatigue and the visual uncomfortableness. These phenomena 

arise from the conflict between the accommodation and con- 

vergence of human eyes. Crosstalk is one of the most serious 

problems related to the imperfect separation in a stereoscopic 

3D display, where the image for one eye remains dimly  

visible to the other eye. Crosstalk can be perceived as ghosts, 

shadows, or double contours, resulting in the degradation of 

the image quality. 

The mechanisms by which crosstalk occurs vary between 

different stereoscopic display technologies [1], [2], [4]–[6], 

[40], [41]. In time-sequential display systems, the screen 

displays the left-eye and right-eye images alternatively at high 

frame rates. The viewer can wear a pair of glasses, which 

block each eye in an alternating fashion, synchronizing to the 

content being displayed. The main factors to crosstalk in these 

systems are slow shuttering, shutter leakage, and persistence 

of the image [1], [5], [7]. In multiplexed spectrum systems,  

the polarization state of one eye image is orthogonal to that of 

the other eye image. The eye-wearing appropriate polarizers 

have been used to separate  the  stereoimages  by  blocking  

the image, which is not intended for that eye. The main  

factors to crosstalk are the imperfect spectral performance of 

the filters and the mismatch with  the  spectral  emission  of 

the displays [1], [6], [7]. In color-multiplexed stereoscopic 

displays, the most common anaglyph method uses different 

channels for each eye (e.g., the red channel for the left  eye 

and the cyan channel for the right eye). The views for the left 

and right eyes can be separated by wearing a pair of colored 

glasses. The spectral response of the display and the anaglyph 

glasses has been cited as the main source of crosstalk [1], [7]. 

Besides, crosstalk can also occur during the stereoscopic image 

acquisition stage and the manipulation stage. 

In order to  reduce the  amount of perceived crosstalk with  

a particular stereoscopic display, it  is necessary  to  perform  

a detailed analysis of these mechanisms. The analysis  can 

help to characterize and measure the effect of the compo- 

nents to crosstalk in many domains (temporal, spatial, and 

spectral). Therefore, crosstalk can be reduced by  adjusting 

one or more of these components [7]. Since crosstalk of 

displays cannot be eliminated completely with current display 

devices, researchers attempt to use image processing methods 

to conceal crosstalk  before  display,  which  is  also  known  

as crosstalk cancelation [8]–[10]. The methods of crosstalk 

cancelation hide the visibility of crosstalk by subtracting the 

amount of leakage from the intended view. The image we 

perceive is the results of the  modified  intended  view  plus 

the leakage from the unintended image. It is equivalent to 
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the original intended image. However, we have to note that 

crosstalk cancelation does not always work effectively in all 

situations [7]. 

There is already a substantial  amount  of  literatures  on  

the perceptual consequences of crosstalk. In [4], experiments 

address the effect of crosstalk on the perceived magnitude of 

depth from two aspects, disparity, and monocular occlusion. 

The results show that even at fairly low levels, the  per-  

ceived depth is significantly reduced from both cues. Besides, 

ghosting from crosstalk is implicated as a major factor of 

influencing visual comfort [11], [12]. Moreover, WIlcox and 

Stewart [12] reported that the crosstalk has an important 

influence on determining the image quality for 75% of their 

observers, and they also found that crosstalk over 5% cause 

visual comfort reduction. 

Therefore, it is beneficial to study the quantitative mea- 

surement of crosstalk. There is far less existing work on this 

topic. Among them, the crosstalk is  reported  more  annoy- 

ing in regions with high contrast, large disparity, and sharp 

edges in still images [11], [13]. As a consequence, crosstalk 

will be more  visible  when  the  contrast  and  disparity  of  

the image increase. In [13], an acceptability threshold of 

crosstalk is provided. This threshold is examined by computer- 

generated static images with several levels of image contrast 

and binocular disparity. Luminance comparison between the 

ghost image and the original  image  is  often  used  in  most 

of the existing crosstalk metrics [6], [7], [11]. However, the 

calculated crosstalk values were not always consistent with the 

perception of the observer. In [14], some 3D crosstalk metrics 

are defined using either the CIE uniform color coordinate or 

the gray scale level instead of the luminance, because these 

quantities are known to agree better with human perception. 

However, only some pure color patches are used to measure 

the effect of color on crosstalk in their experiments. Besides, 

Seuntëens et al. [11] use two similar natural scenes with vary- 

ing crosstalk levels (0%, 5%, 10%, and 15%) and camera 

baselines (0, 4, and 12 cm) to investigate the effect of crosstalk 

on perceived image distortion, perceived depth, and visual 

discomfort. Xing and You [15] give a  detailed  analysis  on 

the effect of 2D and 3D perceptual attributes on crosstalk. 

Then, they integrate the structural SIMilarity  map  (SSIM) 

and the filtered depth map to build objective metric for 

crosstalk perception. Although the metric in [15] could be 

used to predict the subjective judgment by humans with  a 

high correlation, the authors use the comparison between the 

crosstalk images and the original images, which is not useful in 

practice. For instance, they have to synthesize crosstalk images 

from original pairs, which would introduce errors inevitably. 

This paper proposes a new objective metric, which can 

better represent the subjective judgment of humans. To the 

best of our knowledge, the existing methods use the difference 

(e.g., the SSIM map) between the ghost images and the 

original images. In contrast, we use disparity information 

There are also some other methods to measure crosstalk in 

different stereoscopic displays [6]. Once we get the parame- 

ter ( p), we  can use it to measure the visibility of crosstalk   

for all images displayed in the special device. We test the 

proposed metrics on both the data set in [16] and our new  

data set. The data set provided in [16] contains seven image 

scenes with four different crosstalk levels and three different 

camera baselines, while our new data set consists of 23 nature 

image scenes with four different crosstalk levels (0%, 5%, 

10%, and 15%), which have various color information and 

depth structures. The experimental results demonstrate that our 

metric has a higher correlation with the objective judgment. 

On the other hand, we can see that the metrics using color 

information are more effective than the existing  metrics  

using structural information. It indicates that color contrast 

information is more important for crosstalk perception. Our 

source code and supplement materials will be available at 

http://github.com/shenjianbing/crosstalk 

To summarize, this paper has the following contributions. 
1) We propose new metrics to predict the perceived 

crosstalk using the color information of original images. 

Our new metrics can predict the perceived crosstalk 

using original images rather both the original and the 

ghosted images. 

2) A new data set is constructed to contain more natural 

image scenes, rich color information, depth structures, 

and complicated background. The prediction perfor- 

mance of those metrics is evaluated using various types 

of stereoscopic crosstalk images in our new data set. 

3) We have trained a support vector regression (SVR) to 

measure the stereoscopic crosstalk prediction. We also 

invite subjects and train them to collect subjective 

crosstalk visibility scores, and provide a more challeng- 

ing and complete data set for the future research. 

II. RELATED WORK 

In this section, we first introduce how we measure system- 

introduced crosstalk and synthesize crosstalk images with 

different crosstalk levels. Then, we review the main works 

with crosstalk in recent years, which provide us clues to choose 

features for crosstalk visibility prediction. 

There are two main methods, which measure the crosstalk 

in stereoscopic displays. One uses optical sensors and the 

other uses visual measurement charts [7]. Maximum crosstalk 

often occurs when the left-eye and right-eye images have the 

maximum difference in brightness. So, the traditional measure 

of crosstalk is displaying full black and full white in left-eye 

and right-eye channels, and using an optical sensor to measure 

the amount of leakage between channels. In this metric, four 

cross combinations of full white and full black in each eye 

channel have been used, and the system-introduced crosstalk 

can be modeled as follows [7], [15], [17] 
⎧
⎪⎨ CL = 

(BW − BB) 

 
 

and color contrast information between the original left and 

right images to reflect the perceived crosstalk. Besides, the 

crosstalk level  ( p) of a  special stereoscopic 3D  display   can 

(WB − BB) 

CR 
(WB − BB) 

(BW − BB) 

(1) 

be measured by using the four cross combinations of full 

white and full black in the left-eye and right-eye channels. 

where WB means the brightness when displaying full white  

in the left-eye channel and full black in the right-eye channel, 

http://github.com/shenjianbing/crosstalk


 

 

 
 

Fig. 1. Left images for Champagne and Newspaper with different crosstalk visibility levels, which is impacted by the crosstalk level and the camera baseline. 
The crosstalk level is 8% and 18% in the first two columns. The camera baseline is 50 mm in the top row and 100 mm in the bottom row. 

 

 

BW denotes the brightness when using black as the left image 

and white as the right image, BB is the  brightness  when 

using full black as both eye  images,  and  WW  represents  

the brightness when displaying full white in both channels.  

CL and CR are the ghosting images for the left  and right  

eyes. 

For time-sequential 3D LCDs, the metric recently proposed 

to measure crosstalk is gray-to-gray crosstalk [18]. In this 

method, crosstalk mainly occurs from the slow response time 

of liquid crystal, which is determined by the different gray 

level changes. Though using visual measurement to evaluate 

crosstalk is very quick and effective, there are still some 

limitations. Once the parameter p (crosstalk level) of a specific 

device has been measured by appropriate method, we can use it 

as a main factor to predict crosstalk visibility with this device. 

Conventionally, various crosstalk metrics have been pro- 

posed to quantify the crosstalk effect using the luminance 

channel alone [7], [13]. In [13], the visibility and accept- 

ability threshold of crosstalk is formalized using contrast and 

binocular disparity, where the display contrast is signed as the 

ratio between the luminance difference and the background 

luminance. In their experiments, the crosstalk images are gen- 

erated by a computer based on the hypothesis that the crosstalk 

is the luminance leakage from one eye channel to the other 

eye channel. Their results show that the crosstalk visibility 

decreases with the increment of the contrast and disparity. 

Moreover, there exists various crosstalk cancelation  meth- 

ods using this mathematical model [8], [10], [20], [21], [37]. 

However, the color information is also important to predict the 

crosstalk visibility. In [14] and [24], the CIE XYZ tristimulus 

values are used to characterize crosstalk models. 

In stereoscopic 3D televisions with  shutter  glasses,  the 

left and right images are independent during the process 

of 3D image generation. Based on that assumption, the 

computer-generated color patches used in [23] satisfy the left 

and right views’ additivity. According to the results of the 

experiments, three different crosstalk characterization models 

are proposed. They are liner combinations of the  original 

color and the leaked light from the opposite view. Moreover, 

various crosstalk cancelation technologies have been proposed 

in [9] and [10] using RGB channels. As  mentioned  before, 

we adopt the definition of  system-introduced  crosstalk  as  

the unexpected light leakage of the image  from one eye to  

the other, which is often perceived as ghosts, shadows, and 

double contours. A high level of the system crosstalk can 

significantly degrade the quality of stereoscopic images and 

cause visual discomfort because of the mismatches of color, 

luminance, and structure [8],  [26].  The  data  set  provided  

by [15] and [16] contains 72 test images. They are generated 

by using various crosstalk levels (3%, 8%, 13%, and 18%) to 

six natural scene image pairs acquired either indoor or outdoor 

using three different camera baselines. In this data set, the 

crosstalk model in a stereoscopic 3D display has been chosen 

as follows [15], [16]: 

Lc = Lo + p · Ro, Rc = Ro + p · Lo (2) 

where p is the overall crosstalk level by combining the 

system-introduced crosstalk level and simulated crosstalk 

level.  Lo  and  Ro  denote  the  luminance  for  the  left-eye 

and right-eye images without crosstalk,  respectively,  while 

Lc and Rc represent the light reaching the viewer’s eyes. 

The most reliable approach to evaluate the perceived 

crosstalk is the subjective testing, but it is not applicable in 

practice. We need to  design a  computational method, which 

is more suitable  in practice and has a high correlation with  

the subjective judgment of humans. In this paper, we propose 



 

a new crosstalk metric using crosstalk level ( p), disparity 

information, and color information. We test our metric on our 

new data set and the data set provided in [15] and [16], and the 

results show that our metrics have a higher correlation with 

the objective perceived values than the existing methods. 

 
III. PROPOSED METHOD 

Crosstalk is one of the main factors that degrade the quality 

of the stereoscopic images. In the previous literature, it has 

been well  known that the perceptual crosstalk is influenced  

by crosstalk level [11], camera baseline [11], [27], and scene 

content [15], [27], [28]. We notice that color information plays 

an important role in crosstalk perception detection. Based on 

this observation, we develop two new metrics to define the 

objective perceptual metric, using either the color difference 

information or the color contrast information of the original 

stereopairs. Furthermore, we construct a new comprehensive 

metric by combining these two metrics together, which has a 

better performance. 

 
A. Crosstalk Level and Color Difference Map 

As shown in Fig. 1, crosstalk  is  more  annoying,  when  

we increase the crosstalk level p from 8%  in  the  first  

column to 18% in the second  column,  which  implies  that 

the crosstalk level is one of the main factors affecting the 

crosstalk perception. When we increase p, there is more light 

leakage from the unintended image to the intended image, 

which increases the shadow degree in turn. From Fig. 1, we 

can also see that crosstalk is more annoying in the areas 

surrounding the edges. For one reason, the colors of the objects 

in the foreground and background regions are different. In the 

regions surrounding the edges, the colors of the pixels in the 

same position of the left and right images are different, so we 

can easily distinguish the crosstalk. Given the same amount of 

light leakage, crosstalk could be more serious in the regions, 

where different colors occur in the same position of the left 

and right images. On the other  hand, we  could  hardly  see 

the crosstalk in the  regions, where the  colors are  the  same. 

It has been generally agreed that the crosstalk visibility also 

increases when the image contrast increases with a certain 

disparity [8], [14], [15], [33]. In Fig. 2(c), crosstalk  in  the  

red regions is more serious than that in the green regions. 

Intuitively, when given the crosstalk level ( p), we have to 

tolerate more crosstalk in the regions with a bigger color 

difference (e.g., the red regions). The color  difference map  

we used is the maximum difference of the color channels R, 

G, and B as 

deta_map = MAX(| Rr − Rl|, |Gr − Gl|, |Br − Bl|) (3) 

where the MAX operation is used to choose the biggest 

difference from three channels for  every  pixel.  Rl,  Gl, and 

Bl denote the pixel values in R, G, and B channels of the left 

view respectively, and Rr , Gr , Br are the color values in the 

right image. deta_map is the color difference map. 

The regions around the edges have a larger color difference 

in Fig. 2(b). Furthermore, the crosstalk  is  more  serious  in 

the regions with a larger color difference from Fig. 2(c). 

 

 
 

Fig. 2. Influence of image color information to the crosstalk visibility. 
(a) Original left image. (b) Color difference image. (c) Crosstalk image, where 
crosstalk is more visible around high contrast regions (red) than low contrast 
regions (green). 

 
Though the pixels in the bottom green region [Fig. 2(c)] have 

more light leakage, the crosstalk is almost invisible. This is 

because the colors of these pixels are similar. On the other 

hand, the color difference of the pixels in the top green region 

is large, but the perceived crosstalk is slight. This is caused  

by less light leakage in that region. 

 
B. Disparity Map 

When viewing each column from top to bottom in Fig. 1, 

we can see  that the  crosstalk becomes more annoying with  

an increased separation distance for the same proportion of 

leakage. The camera baseline becomes larger from top to 

bottom in Fig. 1. It indicates that the camera baseline has an 

impact on the separation distance of crosstalk. Furthermore, it 

is obvious that the separation distance of crosstalk varies from 

the foreground regions to the background regions for different 

depth structures. When comparing the images of Champagne 

with Newspaper, the separation distance is also different. 

Actually, the separation distance of crosstalk  is  determined 

by both camera baseline and relative depth structure together, 

which is also known as disparity. Therefore, crosstalk level, 

color information, and disparity map can be used to construct 

the metric for crosstalk perception. 

We adopt the algorithm in [30] to compute the disparity 

map in this paper. Fig. 3 shows the disparity maps of Love 

Bird, where the pixel  value  0  (black)  denotes  the  small-  

est disparity while 255 (white) means the biggest disparity. 
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Fig. 3.    Disparity  maps and filtered  disparity  maps of Love Bird (CB 100  mm and p 8%). From left to right: disparity maps, filtered maps by (4), and 
filtered maps by color difference maps by (5). We enhance these images using histogram equalization for better visualization. 

 

 

The nearer objects have larger disparity values, but the objects 

of background have smaller disparity values. We can also 

observe that there are some wrong disparity values in the 

background caused by the mismatching between the left and 

right images, and most of these wrong regions have similar 

 

The difference map is first normalized into the interval [0,1] 

by dividing the maximum color difference 255, and then, we 

use it to filter the result map by (4). We then use the filtered 

map and crosstalk level to build a new metric as 

deta_map 
structures. disc_map = 

255 
· ∗ Rdisf 

As mentioned before, disparity is one of the main factors 

impacting the crosstalk visibility. Because our eyes pay more 

attention to the foreground objects, the regions with larger dis- 

parity values have a higher impact on the crosstalk perception, 

especially for the regions with high contrast in the foreground. 

However, the disparity maps we obtain by using the existing 

methods have some regions with wrong values. For instance, 

some regions in Fig. 3 have bigger disparity values in the 

background while they are supposed to have smaller values. 

The disparity maps should be filtered before they are used to 

compute the perceived crosstalk. We know that the  crosstalk 

is almost invisible in the regions with a little leakage, so we 

can first set the values to zero in these regions. Besides, the 

background regions have similar colors between the left and 

right images, for the shift values in these regions are small. 

Moreover, crosstalk can be hidden in the regions with a small 

color difference between the stereopairs, whereas it will be 

more annoying in the regions with a large color  difference 

and disparity. Thus, the disparity map can be filtered by using 

the color difference map, which means that smaller weights 

are assigned to the regions with smaller  color  differences. 

The filtered maps are shown in the middle and right images   

of Fig. 3, where the pixel value 0 (black) means no perceived 

crosstalk while 1 (white) denotes serious crosstalk. The filtered 

disparity map is formulated as .
0, if  p ∗  deta_map(i, j) < θ 

Vdispc = AVG(disc_map) × (
√ 

p) (5) 

where deta_map is the color difference map built by (3) and 

disc_map denotes the filtered disparity map using the color 

difference map, Vdispc is one of the new  metrics  we  pro- 

pose, p means crosstalk level, and AVG denotes the average 

operation. disk_map and crosstalk p are two main factors in 

our experiment, and they have influence on the performance 

of metric Vdispc. In order  to  balance  the  impact  of  these  

two factors, we use the square root operator for variable p. 

 
C. Contrast Map 

Crosstalk is more annoying with a dark intended region 

than a bright intended region when given the amount of light 

leakage. The reason is that the relative intensity difference 

from an original dark region is larger than the  value  from      

a bright one [8]. For example, given  the  light  leakage  50, 

the perceived intensity is 60 in the regions with intended 

intensity 10, while the perceived intensity is 200 in the regions 

with original intensity 150. But, crosstalk in the darker region 

is more annoying than in the brighter region. Weber’s law 

states that subjective sensation is proportional to the logarithm 

of the stimulus intensity [34]. Similar to the phenomenon in 

luminance channel, crosstalk is more visible in the regions 

with a larger color changing amplitude. The contract map is 

Rdisf(i, j ) = 
Rdis(i, j ), otherwise 

(4) constructed by using the values in R, G, and B channels as 

deta_map 

where i and j are the pixel indices, and Rdis denotes the 

disparity map, Rdis f is the filtered disparity map by setting 

dlog_map = 
log

 
(Rl + Gl + Bl + α) 

 
 

zero to the pixels with little leakage. We use (4) to obtain the 
Vdlogc = AVG(dlog_map) × ( p) (6) 

filtered disparity map, and we  empirically set  the threshold   

θ = 6 in (4) according to our experiment. The filtered disparity 

maps are shown in  the  middle  column  of  Fig.  3,  where  

the pixel values of  the  regions  with  similar  colors  are  set 

to zero (black) so as to reduce the influence of crosstalk 

evaluation. 

where dlog_map is the contrast map, and a  small  value 
means slight influence on crosstalk perception, and vice versa. 

We empirically set α = 30 in our experiments to ensure the 

value of log10(Rl  Gl   Bl  α) is positive. In order to ensure 

the  range  of  values  in  dlog_map to  be  the  same  as those 

of disc_map in  (5), we  use  the  log-sigmoid function  in  (6). 
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p denotes the crosstalk level and it is a parameter to simulate 

the real-world stereoscopic images by (9). We use four differ- 

ent values of p (0.1%, 5.1%, 10.1%, and 15.1%) to simulate 

the real-world stereoscopic artifacts and denote the crosstalk 

level of these stereoscopic pairs. Vdlogc is one of our new 

metrics to measure the crosstalk visibility. As shown in Fig. 3, 

the regions with larger intended values have smaller influence 

on crosstalk visibility with the given  intensity  difference.  

The regions with smaller intensity differences have a smaller 

influence as well. 

As shown in Tables II and III, we can see that the metrics 

Vdispc and Vdlogc perform better than the existing  metrics, 

which indicate that both disc_map and dlog_map have impor- 

tant influences on crosstalk perception. But, the metric Vdispc 

cannot reflect the influence of the contrast map to crosstalk 

perception. In addition, the metric Vdlogc does not use the 

information of the disparity map. We can further combine 

these two metrics to construct a new metric, which performs 

better. The two metrics are combined as 

Vpdlc = β × Vdispc + (1 − β) × Vdlogc (7) 

where Vdispc is the metric we proposed by using the disparity 

map, color difference information, and crosstalk level in (5), 

and Vdlogc is the metric constructed by the color contrast map 

and crosstalk level in (6). β is the weighting factor to balance 

the contributions of disc_map in (5) and  dlog_map  in  (6). 

We set β = 0.1 in our experiment. 

D. Crosstalk Prediction 

We use the SVR (z − SV R) to predict the perceived 

crosstalk. The z − SV R is expressed as 

 
 

Algorithm 1 Pseudocode of the Proposed Metrics 
 

 

Require: Crosstalk level p and a group of stereo pairs I  

L1, R1, L2, R2, , Ln, Rn ; 

Ensure: The vector of perception scores y; 

1: for i = 1:n do 

2: if (i 1)%4 0 then 

3: Initialize the crosstalk level p ; 

4: Obtain the disparity maps disp i; 

5: Extract the color difference maps deta_mapi ; 

6: Extract the color contrast maps log_mapi ; 
7: else 

8: p p 0.05; 

9: end if 

10: Filter the disparity map by (4); 

11: Extract the filtered disparity map and compute the 

metric Vdispc i using (5); 

12: Compute the metric V dlogci by (6); 

13: Obtain the metric V pdlci by (7); 

14: end for 

15:  Train the z SV R model using training samples (V pdlcj , 

MOS j ), obtain the parameters w and b ; 

16: Compute the crosstalk perception values y for testing 

samples by (8). 
 

 

 
TABLE I 

PREDICTION PERFORMANCE OF THE PROPOSED METRICS 

 
       

       

       

       

       

y = w · φ(x) + b + z (8)  
Vdispc 

 
and Vdlogc 

 
have a higher correlation with the subject 

where x is the feature (such as Vdispc, Vdlogc, or Vpdlc). φ() is 

the kernel function, and we chose radial basis function in this 

paper. z is a margin of tolerance. The z-SVR model is trained 
using training samples (xi and yi ). After we get the parameters 

w and b from the training session, we can predict the value y 

using the z-SVR model and input feature x . 

In our experiments, the prediction performance of our 

proposed metrics is evaluated by a 100 times tenfold cross 

validation. At training stage, the prediction function, which 

defines the relationship between the MOSp of our new met- 

rics and the mean opinion scores (MOSs) of the crosstalk 

perception, is constructed using training samples. Then, the 

prediction performance is measured on the test data by Pearson 

correlation (Pcor), Spearman correlation (Scor), and root- 

mean-squared error (RMSE) between the  predicted  value  

and MOSs. The data are divided into ten parts evenly and 

randomly. During the tenfold cross validation, each of the 

subsets is  used  once as  test data while the others are used   

as training samples. The tenfold cross validation was repeated 

100 times. We describe the whole pseudocode of this algorithm 

in Algorithm 1. 

We use z-SVR to predict the crosstalk perception for our 

new data set, where the results are shown in Table I. From 

Table  III,  we  can  see  that  predicted  values  of  the metrics 

adjust values of crosstalk than the existing methods on our 

new data set. These metrics by the color contrast information 

significantly improve the prediction performance of the metrics 

using the structure information (Vdis, Vpdis, and Vssim). 

 
IV. EVALUATION DATA SET DESCRIPTION 

In order to evaluate the prediction performance of our 

metrics, it is necessary to obtain subjective crosstalk percep- 

tion scores for each stereoscopic 3D scene. The similarity 

between subjective scores and predicted scores obtained by 

our metrics is used for that evaluation. 

 
A. Composition of Our Stereoscopic Data Set 

We construct a stereoscopic 3D image data set, which con- 

tains a wide variety of content characteristics. Xing et al. [16] 

introduced a useful data set to assess the crosstalk perception. 

But, it has only seven scenes that lead to the lack of diversity of 

scene contents. To improve this, we choose 30 stereoimages 

from the data set in [37]. We pick high comfortable score 

images to reduce the influence of visual discomfort and 

fatigue. These images consist of eight indoor and 15 outdoor 

scenes (Fig. 4). These  scene  contents  cover  a  wide  range 

of depth structures, contrasts, edges, and textures, which are 
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Fig. 4.  Our data set of stereoimages  for evaluating  the crosstalk performance.  We  use the last row as training  set to train subjects and use the rest of images 
as testing set to obtain crosstalk visibility scores. 

 

TABLE II 

EVALUATION RESULTS OF PROPOSED METRICS ON THE SUBJECTIVE DATA SET 

AND THE RESULTS PROVIDED BY [15] 

 
    

    

    

    

    

    

    

    

    

    

 
considered as  potential  factors  that  impact  on  perception  

of crosstalk. Compared with the crosstalk  stereoscopic 

data set provided by [15] and [16], our new data set has a 

more complicated background. For example, it is difficult to 

distinguish the foreground and the background for the first pair 

of stereoimages in the bottom row of Fig. 4. The illumination 

intensity of stereoimages in crosstalk stereoscopic data set 

tends to be constant, and our data set is quite different. Our 

data set contains not only constant illumination images but 

also more challenging stereoimages with unstable illumination. 

For example, the illumination conditions of the indoor stairs 

are very different between the  left  half  and  right  half  of  

the image for the top-right scene in Fig. 4. Our data set 

contains 23 scenes (five for training and 18 for  testing),  

which have more scene content characteristics than crosstalk 

stereoscopic data set, which makes the evaluation of the 

metric more reasonable and convincing. 

Then, we use the algorithm developed in [38] to simulate 

different levels of system-introduced crosstalk for different dis- 

plays. Boev et al. [38] present a framework for simulating real- 

world stereoscopic artifacts using the original stereoimages. 

This algorithm can be summarized by .
Channel Ld  = Channel L + p × Channel R 

TABLE III 

EVALUATION RESULTS OF METRICS ON OUR NEW DATA SET 

 
    

    

    

    

    

    

    

    

 
where Channel L and Channel R denote the original left and 

right views, Channel Ld and Channel Rd are the distorted 

views by simulating system-introduced crosstalk distortions. 

The parameter p denotes the crosstalk level and it is a real 

value in the interval [0,1]. In our new data set, four different 

crosstalk levels p (0%,  5%, 10%, and15%) are  introduced 

to each 3D image pair, so that there are 72 test stimuli in  

total. In addition, the crosstalk level of our 27-in patterned 

retarder 3D display is about 0.1%. This crosstalk level is lower 

than the visibility threshold reported in the literature (about 

1% to 2%). So, we combine both system-introduced crosstalk 

and simulated crosstalk as the total crosstalk  levels,  which 

are 0.1%, 5.1%, 10.1%, and 15.1%. The resolution of these 

images is 1920 × 1080 pixels. 

B. Subjective Crosstalk Visibility Scores 

In order to collect subjective crosstalk visibility scores for 

32 subjects, totally 18 males and 14 females are invited to 

participate in our experiments. Among them, one subject who 

failed the Ishihara test is excluded from our subjective assess- 

ment. The rest of the 31 subjects have normal or corrected 

binocular vision tested by the Snellen chart, and could perceive 

color (tested by the Ishihara) and the binocular depth [42]. 

According to the guidance [43], at least fifteen subjects are 

needed to obtain reliable subjective assessment results. The 

Channel Rd
 = Channel R + p × Channel L 

(9) viewing distance between a subject and the 3D display is fixed 

to three times of the picture height (about 1.5 m). In order to 
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avoid light pollution, our experiments are carried out in dim 

environment. 

The experiments contain the training sessions and the testing 

sessions. Among the 23 scenes of our data  set, five scenes  

are used as the training images to train subjects (the bottom 

row of Fig. 4). A special interface is developed using the 

psychtoolbox [39] to conveniently display the stereoscopic 

images in a random order. Subjects could conveniently and 

freely decide when they moved to the next image pairs by 

pressing keyboard. During the training sessions, a subject 

could conveniently move to the next image pairs by pressing 

the “spacebar.” In the testing sessions, after  the subject gives 

a score for the current image pair, the assistant presses the 

corresponding “numerical” key—by doing this, the subject 

could concentrate on the 3D perception, rather than entering 

the scores using the keyboard. The score displays in the top- 

left for 1 s. Then, the program moves to the next pairs. In this 

developed interface, we also display the images in full screen, 

and disable unnecessary keys. 

During the training sessions, a modified version of the 

single stimulus [43] is used with a  five-point grading scale  

(5: imperceptible, 4: perceptible but not annoying, 3: slightly 

annoying, 2: annoying, and 1: very annoying). Five image 

pairs from five scenes (the last  row of Fig.  4) are  selected  

by expert viewers in such a way that each quality level is 

represented by an example image. We display each example 

and explain the corresponding quality level to the testers, until 

they could distinguish the five different quality levels. After 

that, three dummy 3D images from the image scenes we used 

in the training sessions are presented to testers to stabilize 

their judgment. Then, a total number of 72 stereoscopic images 

(18 scenes with four different crosstalk levels) are randomly 

presented to the subjects in the testing sessions. 

After subjective assessment, one outlier is eliminated 

according to the screening methodology recommended by 

ITU-R BT.500-11 [43]. We use the β2 test [43] to determine 

whether the subjective scores are normal. The results show 

that 53 stimuli are normally distributed (2 β2 4), and 17 

stimuli  are close to  normally (1  β2 < 2  or 4 < β2   5), 

while the remaining two stimuli are not (β2 < 1 or β2 > 5). 

We can safely assume that the scores are subject to the normal 

distribution. Finally, the crosstalk perception score for each test 

image is represented by MOSs from subjects. 

V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the pro- 

posed methods using  the  real-world  images  of  our  new 

data set and the crosstalk stereoscopic data set,  provided  

by [15] and [16]. 

A. Evaluation on Crosstalk Stereoscopic Data Set 

In the crosstalk stereoscopic data set, 72 test stimuli are 

acquired by applying three camera baselines and four crosstalk 

levels to six scene contents. Based on the definition that 

crosstalk is the leakage of luminance from one eye channel to 

the other eye channel, the crosstalk images are simulated by a 

computer on the luminance channel. The corresponding MOSs 

of crosstalk visibility are obtained by subjective assessments. 

 

 
 

 

 
Fig. 5. Scatter plot of MOS of crosstalk perception versus predicted values 
MOS p of Vdispc and Vdlogc on the crosstalk stereoscopic data set provided 
by [15]. (a) Pcor=0.8580, Scor=0.9206, RMSE=0.4214. (b) Pcor=0.9320, 
Scor=0.9172, RMSE=0.2955. 

 

To grade the degree of crosstalk visibility, an example of five 

categorical adjectival levels is used, and a total of 28 subjects 

participated in the tests. 

First, we use a nonlinear regression in (10) suggested by 

Video Quality Expert Group (VQEG) to transform the results 

of each metric (V ) to the predicted MOS values (MOSp), then 

calculate the RMSE, Pearson correlation (Pcor) coefficient, 

and Spearman correlation (Scor) coefficient between the 

objective values MOSp and the subjective values MOSs. 

Equation (10) normalizes the value of each metric to the range 

of MOS. The nonlinear regression suggested by the VQEG is 

defined as 

MOS  
b1 

(10) 
1 + exp(−b2 × (r(V ) − b3)) 

where b1, b2, and b3 are the regression coefficients, which can 

be initialized by 0, and r(V ) is the raw value calculated from 

the proposed metrics. 

Fig. 5 shows the scatter plot  of  MOS  versus  MOSp of 

the proposed metrics on the crosstalk stereoscopic data set 

in [15], where the performance of metric Vdlogc has a better 

performance than metric Vdispc. It can be seen  from bottom 

row of Fig. 5 that the metric Vdlogc has better performance 



 

 

 
 

 

 

 

Fig. 6. Scatter plot of MOS of crosstalk perception versus predicted values 
MOS p of Vpdlc on (a) our data set and (b) data set in [15]. 

 

 
in predicting crosstalk perception of stereoscopic images with 

low and high impairments. The metric Vdispc also has good 

performance in predicting crosstalk perception of stereoscopic 

images with high and medium impairments. Six scene contents 

of crosstalk stereoscopic data set have simple background and 

remarkable foreground, especially for scenes “Champagne,” 

“Dog,” and “Pantomime,” the background of these scenes is 

near pure color. Therefore, contrast maps of the stereoscopic 

images have significantly impact on this data set. 

We compare our metrics with six other  popular metrics. 

The proposed metric is compared with traditional 2D metrics 

Vpsnr and Vssim  as  well  as  other  three  metrics  Vdep,  Vpdis, 

and Vdis. The SSIM [29] is a  perceptual  quality  metric,  

which takes the characteristics of stereoscopic images into 

account for predicting quality levels of crosstalk perception   

in  stereoscopic  images.  It  is  based  on  an   understanding 

of three main factors: crosstalk level, camera baseline, and 

scene content. Vpsnr and Vssim are calculated between the 

original-crosstalked and the left-crosstalked images. Vdep com- 

bines the SSIM  map  [29]  and  the  depth  map  calculated  

by Depth Estimation Reference Software. Vpdis and Vdis are 

proposed by [15]. The metric Vdis is a combination of the 

SSIM map and the disparity map estimated by the sum of 

squared difference plus min filter [35]. Vpdis and  Vpdep  are 

built by using the disparity map and the depth map filtered by 

the SSIM map, respectively. The similarity between subjective 

and predicted scores obtained by the above metrics and our 

metrics using the crosstalk stereoscopic data set are pre- 

sented in Table II. Compared with other metrics, our metrics 

Vdispc and  Vdlogc have low values of RMSE and high values    

of Pearson correlation and Spearman correlation coefficients. 

In particular, the proposed metric Vdlogc has better performance 

in RMSE and Pearson than above metrics, because of high 

contrast of the crosstalk stereoscopic data set. Furthermore,  

we combine our two metrics to construct a new metric Vpdlc, 

which performs better than other well-known metrics. 

B. Evaluation on Our New Data Set 

Fig. 6 shows the scatter plot of MOS of crosstalk perception 

versus predicted values MOSp of Vpdlc on our new data  set 

and crosstalk stereoscopic data set. Our metrics has a great 

performance on the crosstalk stereoscopic data set, and we  

can see that MOSp in Fig. 6(b) is more accurate than the one 

in Fig. 6(a). This is because our data set has more challenging 

scenes with vivid content characteristics, such as complicated 

background, unstable illumination, rich color information, and 

depth structures. The more discrete points concentrate on the 

diagonal, the more correct predicted scores are. The similarity 

between subjective scores and predicted scores obtained by the 

exciting metrics and our metrics using the new data set can be 

seen in Table III. Our new metrics Vdispc and Vdlogc perform 

better than the existing methods in our data set. The metric 

Vdlogc has the largest Person correlation (0.896) and Spearman 

correlation (0.881), which indicates that the color contrast 

between the original left and right images and crosstalk level 

have an important influence on the crosstalk perception. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a novel metric to predict 

the crosstalk visibility. To build this metric, we used crosstalk 

level, disparity map, and color contrast map, which are calcu- 

lated between the original left and right images. The existing 

methods usually use the difference between the ghost and the 

original images. But, the ghost images generated by a com- 

puter are not accurate, because the mechanism behind crosstalk 

is still not clear. Our metric does not require the ghost images. 

The color information has an important influence on crosstalk 

perception, and it builds our new metrics. Experimental results 

show that our metrics using color information yield higher 

correlation against the subjective MOS values than previous 

metrics. Our results indicate that color information is the most 

critical factor to achieve better crosstalk visible prediction. 
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