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Abstract. Compared to other applications in computer vision, convolutional neu-
ral networks have under-performed on pedestrian detection. A breakthrough was
made very recently by using sophisticated deep CNN models, with a number
of hand-crafted features [1]], or explicit occlusion handling mechanism [2]. In
this work, we show that by re-using the convolutional feature maps (CFMs) of a
deep convolutional neural network (DCNN) model as image features to train an
ensemble of boosted decision models, we are able to achieve the best reported
accuracy without using specially designed learning algorithms. We empirically
identify and disclose important implementation details. We also show that pixel
labelling may be simply combined with a detector to boost the detection perfor-
mance. By adding complementary hand-crafted features such as optical flow, the
DCNN based detector can be further improved. We set a new record on the Cal-
tech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%,
a relative improvement of 24%. We also achieve a comparable result to the state-
of-the-art approaches on the KITTI dataset.
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5 1 Introduction

>< The problem of pedestrian detection has been intensively studied in recent years. Prior
to the very recent work in deep convolutional neural networks (DCNNs) based meth-
ods [142], the top performing pedestrian detectors are boosted decision forests with care-
fully hand-crafted features, such as histogram of gradients (HOG) [3|], self-similarity
(SS) [4]], aggregate channel features (ACF) [3]], filtered channel features [|6] and optical
flow [[7].

Recently, DCNNs have significantly outperformed comparable methods on a wide
variety of vision problems [8H15]. A region-based convolutional neural network (R-
CNN) [11]] achieved excellent performance for generic object detection, for example, in
which a set of potential detections (object proposals) are evaluated by a DCNN model.
CifarNet [ 16] and AlexNet [8] have been extensively evaluated in the R-CNN detection
framework in [[17] for pedestrian detection. In their work, the best performance (23.3%)
was achieved by AlexNet pre-trained on the ImageNet [18]] classification dataset. Note
that this result is still inferior to conventional pedestrian detectors such as [6] and [7].
The DCNN models in [[17] under-perform mainly because the network design is not
optimal for pedestrian detection. The performance of R-CNNs for pedestrian detection
has further improved to 16.43% in [_2]] through the use of a deeper GoogLeNet model
which is fine-tuned using Caltech pedestrian dataset.

* Corresponding author: C. Shen (e-mail: chunhua.shen @adelaide.edu.au).
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To explicitly model the deformation and occlusion, another line of research for ob-
ject detection is part-based models [[19-22] and explicit occlusion handling [23125].
DCNNSs have also been incorporated along this stream of work for pedestrian detec-
tion [26H28]], but none of these approaches has achieved better results than the best
hand-crafted features based method of [6] on the Caltech dataset.

The performance of pedestrian detection is improved over hand-crafted features by
a large margin (a ~ 5% gain on Caltech), by two very recent approaches relying on DC-
NNs: CompACT-Deep [1]] combines hand-crafted features and fine-tuned DCNNSs into
a complexity-aware cascade. Tian et al. [2] fine-tuned a pool of part detectors using a
pre-trained GoogLeNet, and the resulting ensemble model (refer to as DeepParts) deliv-
ers similar results as CompACT-Deep. Both approaches are much more sophisticated
than the standard R-CNN framework: CompACT-Deep involves the use of a variety
of hand-crafted features, a small CNN model and a large VGG16 model [9]. DeepParts
contains 45 fine-tuned DCNN models and needs a set of strategies (including bounding-
box shifting handling and part selection) to arrive at the reported result. Note that the
high complexity of DCNN models can lead to practical difficulties. For example, it can
be too costly to load all 45 DCNN models into a GPU card.

Here we ask a question: Is a complex DCNN based learning approach really a must
for achieving the state-of-the-art performance? Our answer to this question is negative.
In this work, we propose alternative methods for pedestrian detection, which are simpler
in design, with comparable or even better performance. Firstly, we extensively evaluate
the CFMs extracted from convolutional layers of a fine-tuned VGG16 model for pedes-
trian detection. Using only a CFM of a single convolutional layer, we train a boosted-
tree-based detector and the resulting model already significantly outperforms all previ-
ous methods except the above two sophisticated DCNN frameworks. This model can
be seen as a strong baseline for pedestrian detection as it is very simple in terms of
implementation.

We show that the CFMs from multiple convolutional layers can be used for training
effective boosted decision forests. These boosted decision forests are combined alto-
gether simply by score averaging. The resulting ensemble model beats all competing
methods on the Caltech dataset. We further improve the detection performance by in-
corporating a semantic pixel labelling model. Next we review some related work.

1.1 Related Work

Convolutional feature maps (CFMs) It has been shown in [29-31]] that CFMs have
strong representation abilities for many tasks. Long et al. [32] cast all fully-connected
layers in DCNNSs as convolutions for semantic image segmentation. In [30], the CFMs
from multiple layers are stacked into one vector and used for segmentation and lo-
calization. Ren er al. [29] learn a network on the CFMs (pooled to a fixed size) of a
pre-trained model.

The work by Yang et al. [31] is close to ours, which trains a boosted decision
forest for pedestrian detection with the CFM features from the Conv3-3 layer of the
VGG16 model [9], and the performance (17.32%) on Caltech is comparable to checker-
boards [|6]. It seems that there is no significant superiority of the CFM used in [31] over
hand-crafted features on the task of pedestrian detection. The reason may be two-fold.
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First, the CFM used in [31]] are extract from the pre-trained VGG16 model which is
not fine-tuned on a pedestrian dataset; Second, CFM features are extracted from only
one layer and the multi-layer structure of DCNNS is not fully exploited. We show in
this work that both of these two issues are critically important in achieving good per-
formance.

Segmentation for object detection The cues used by segmentation approaches are typ-
ically complementary to those exploited by top-down methods. Recently, Yan et al. [33]
propose to perform generic object detection by labelling super-pixels, which results in
an energy minimization problem with data term learned by DCNN models. In [34}/13],
segmented image regions (not bounding boxes) are generated as object proposals and
then used for object detection.

In contrast to the above region (or super-pixel) based methods, we here exploit at
an even finer level of information, that is, pixel labelling. In particular, in this work we
demonstrate that we can improve the detection performance by simply re-scoring the
proposals generated by a detector, using pixel-level scores.

1.2 Contributions

We revisit pedestrian detection with DCNNs by studying the impact of a few train-
ing details and design parameters. We show that fine-tuning of a DCNN model using
pedestrian data is critically important. Proper bootstrapping has a considerable impact
too. Besides these findings, other main contributions of this work can be summarized
as follows.

1. The use of multi-layer CFMs for training a state-of-the-art pedestrian detector.
We show that it is possible to train an ensemble of boosted decision forests using
multi-layer CEMs that outperform all previous methods. For example, with CFM
features extracted from two convolutional layers, we can achieve a log-average miss
rate of 10.7% on Caltech, which already perform better than all previous methods,
including the two sophisticated DCNNs based methods [1}2]].

2. Incorporating semantic pixel labelling. We also propose a combination of sliding-
window detectors and semantic pixel-labelling, which performs on par with the best
of previous methods. To keep the method simple, we use the weighted sum of pixel-
labelling scores within a proposal region to represent the score of the proposal.

3. The best reported pedestrian detector. A new performance record for Caltech is set
by exploiting a DCNN as well as two complimentary hand-crafted features: ACF
and optical-flow features. This shows that some types of hand-crafted features are
complementary to deep convolutional features.

Before we present our methods, we briefly describe the datasets, evaluation metric
and boosting models in our experiments.

1.3 Datasets, Evaluation metric and Models

Caltech pedestrian dataset The Caltech dataset [35] is one of the most popular datasets
for pedestrian detection. It contains 250k frames extracted from 10 hours of urban traffic
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video. There are in total 350k annotated bounding boxes with 2300 unique pedestrians.
The standard training set and test set consider one out of each 30 frames. In our exper-
iments, the training images are increased to one out of each 4 frames. Note that many
competing methods [6}|31L/17]] have used the same extended training set or even more
data (every third frame).

For Caltech dataset, we evaluate the performance of various detectors using the log-

average miss rate (MR) which is computed by averaging the miss rate at false positive
rates spaced evenly between 0.01 to 1 false-positives-per-image (FPPI) range. Unless
otherwise specified, the detection performance on our experiments shown in the re-
mainder of the paper is the MR on the Caltech Reasonable test set.
KITTI pedestrian dataset The KITTI dataset [36] consists of 7481 training images
and 7518 test images, comprising more than 80 thousands of annotated objects in traffic
scenes. The KITTI dataset provides a large number of pedestrians with different sizes,
viewpoints, occlusions, and truncations. Due to the diversity of these objects, the dataset
has three subsets (Easy, Moderate, Hard) with respect to the difficulty of object size,
occlusion and truncation. We use the Moderate training subset as the training data in
our experiments.

For KITTTI dataset, average precision (AP) is used to evaluate the detection perfor-

mance. The average precision summaries the shape of the precision-recall curve, and is
defined as the mean precision at a set of evenly spaced recall levels. All methods are
ranked based on the Moderate difficult results.
Boosted decision forest Unless otherwise specified, we train all our boosted decision
forests using the following parameters. The boosted decision model consists of 4096
depth-5 decision trees, trained via the shrinkage version of real-Adaboost [37]. The
size of model is set to 128 x 64 pixels, and one bootstrapping iteration is implemented
to collect hard negatives and re-trains the model. The sliding window stride is set to 4
pixels.

2 Boosted Decision Forests with Multi-layer CFMs

In this section, we firstly show that the performance of boosted decision forests with
CFMs can be significantly improved by simply fine-tuning DCNNs with hard negative
data extracted through bootstrapping. Then boosted decision forests are trained with
different layers of CFMs, and the resulting ensemble model is able to achieve the best
reported result on the Caltech dataset.

2.1 Fine-tuning DCNNs with Bootstrapped Data

In this work, the VGG16 [[9] model is used to extract CFMs. As we know, the VGG16
model was originally pre-trained on the ImageNet data with image-level annotations
and was not trained specifically for the pedestrian detection task. It is expected that
the detection performance of boosted decision forests trained with CFMs ought to be
improved by fine-tuning the VGG16 model with Caltech pedestrian data.

To adapt the pre-trained VGG16 model to the pedestrian detection task, we modify
the structure of the model. We replace the 1000-way classification layer with a ran-
domly initialized binary classification layer and change the input size from 224 x 224
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Table 1: Performance improvements with different fine-tuning strategies and shrinkage (on
Reasonable). All boosted decision forests are trained with the CFM extracted from the Conv3-3
layer of VGG16. CFM3a: the original VGG16 model pre-trained on ImageNet is used to extract
features. CFM3b: the VGG16 model is fine-tuned with the data collected by an ACF [5]] detector.
CFM3c and CFM3: the fine-tuning data is obtained by bootstrapping with CFM3b. With the same
fine-tuning data, setting the shrinkage parameter of Adaboost to 0.5 brings an additional 1%
reduction on the MR
Model Fine-tuning data Shrinkage Miss rate (%)

CFM3a No fine-tuning — 18.71
CFM3b Collected by ACF - 16.42
CFM3c Bootstrapping with CFM3b - 14.54
CFM3 Bootstrapping with CFM3b 0.5 13.49

to 128 x 64 pixels. We also reduce the number of neurons in fully connected layers
from 4096 to 2048. We fine-tune all layers of this modified VGG16, except the first 4
convolutional layers since they correspond to low-level features which are largely uni-
versal for most visual objects. The initial learning rate is set to 0.001 for convolutional
layers and 0.01 for fully connected layers. The learning rate is divided by 10 at every
10000 iterations. For fine-tuning, 30k positive and 90k negative examples are collected
by different approaches. The positive samples are those overlapping with a ground-truth
bounding box by [0.5, 1], and the negative samples by [0, 0.25]. At each SGD iteration,
we uniformly sample 32 positive samples and 96 negative samples to construct a mini-
batch of size 128.

We train boosted decision forests with the CFM extracted from the Conv3-3 layer
of differently fine-tuned VGG16 models and the results are shown in Table([I] Note that
all the VGG16 models in this table are fine-tuned from the original model pre-trained
on ImageNet data. It can be observed that the log-average miss rate is reduced from
18.71% to 16.42% by replacing the pre-trained VGG16 model with the one fine-tuned
on data collected by applying an ACF [5]] detector on the training dataset. The detection
performance is further improved to 14.54% MR if it is fine-tuned on the bootstrapped
data using the previous trained model CFM3b. Another 1% performance gain is obtained
by applying shrinkage to the coefficients of weak learners, with shrinkage parameter
being 0.5 (see [38])). The last model (corresponding to row 4 in Table [I)) is referred to
as CFM3 from now on.

2.2 Ensemble of Boosted Decision Forests

In the last experiment, we only use a CFM from a single layer of the VGG16 model.
In this section, we intensively explore the deep structure of the VGG16 model which
consists of 13 convolutional layers, 2 fully connected layers, and 1 classification layer.
These 13 convolutional layers are organized into 5 convolutional stacks, convolutional
layers in the same stack have the same down-sampling ratio. We ignore the CFMs of
the first two convolutional stacks (each one contains 2 layers) since they are universal
for most visual objects.
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Table 2: Comparison of detection performance (on Reasonable) of boosted decision forests
trained on individual CFMs. Note that models with Conv3-x features works as sliding-window
detectors, and models with Conv4-x and Conv5-x features are applied to the proposals gener-
ated by CFM3. The top performing layers in each convolutional stack are Conv3-3, Conv4-3 and
Convb-1 respectively. The models trained with these three layers are denoted as CFM3, CFM4, and
CFMS5 respectively

Convolutional|# Channels Down-sampling Miss rate (%)
layer ratio
Conv3-1 256 4 19.15
Conv3-2 256 4 16.25
Conv3-3 (CFM3) 256 4 13.49
Conv4-1 512 8 12.95
Conv4-2 512 8 12.68
Conv4-3 (CFM4) 512 8 12.21
Conv5-1 (CFM5) 512 16 14.17
Conv5-2 512 16 14.56
Conv5-3 512 16 18.24

We train boosted decision forests with CFMs from individual convolutional layers
of the VGG16 model which is the one fine-tuned with bootstrapped data (same as row
4 in Table [T). All boosted decision forests are trained with the same data as CFM3. For
models with Conv3-x features, the input image are directly applied on the convolutional
layers and resulting in a feature map with the down-sampling ratio of 4. The correspond-
ing boosted decision forests work as a sliding-window detector with step-size of 4. For
models with Conv4-x and Conv)-x features, they are applied to proposals generated
by CFM3 model. This is due to the large downsampling ratio of Conv4-x and Conv5-x.
If the step-size of the sliding-window detector is too large, it will hurt the detection
performance.

Table [2] shows the comparison of detection performance of these boosted decision
forests on Caltech Reasonable setting. We can observe that the MR is relatively high for
the Conv3-1 layer and the Conv5-3 layer. We conjecture that the Conv3-1 layer provides
relatively low-level features which result in an under-fitting training. In contrast, the
semantic information in the Conv5-3 layer may be too coarse for pedestrian detection.
According to Table [2] the best performing layer in each convolutional stack, are from
inner layers of Conv3-3 (CFM3), Conv4-3 (CFM4), and Convb-1 (CFMS) respectively.
Fig. |1| shows the spatial distribution of convolutional features, which are frequently
selected by above three CFM models. We observe that most active regions correspond to
important human-body parts (such as head and shoulder).

The boosted decision forests trained with CFMs of these three layers are further
combined together simply through score averaging. Fig. [2| shows the framework of the
resulting ensemble model. Firstly, CFM3 model works as a sliding-window detector,
which rejects the majority of negative examples and pass region proposals to CFM4 and
CFM5. Both CFM4 and CFM5 generate the confidence score for each incoming proposal.
The final score is computed by averaging over the scores output by these three boosted
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I

(a) conv3-3 ) conv4-3 (c) conv5-1

Fig. 1: The spatial distribution of CFMs
selected by boosting algorithms. For a
128 x 64 input image, the size of fea-
ture maps are 32 X 16, 16 x 8, 8 x 4 re-
spectively. Red pixels indicate that a large
number of features are selected in that re-
gion and blue pixels correspond to low fre-
quency regions. The most important region
correspond to the head, shoulder, waist and
feet of a human.

Boosted Forest Boosted Forest
(CFEM3) (CFM4)

Score 1 Score 2
Passed
Proposals T i
Final
Score1>0?
Sing Score
window Boosted Forest  Score
(CFM5) Averaging
|
, VGG | Rejected | VGG VGG
Input image Conv3-3 o Degatives Conv4-3 Convs-1

Fig.2: The framework of an ensemble of boosted decision forests with multi-layer CFMs
(CFM3+CFM4-+CFM5), which obtain a 10.46 MR on the Caltech Reasonable test set.

Table 3: The comparison of performance (on Reasonable) of different ensemble models. DCNN:
the entire VGG16 model fine-tuned by data collected by CFM3. The combination of multi-layer
CFM models improves the detection performance of single-layer CFM models significantly (3%)

Model combination Avg. miss rate (%)
CFM3+-CFM4 10.68
CFM3+CFM5 10.88
CFM3+4CFM4+CFM5 10.46
CFM3+-CFM4+CFM5+DCNN 10.07

decision forests. This model delivers the best reported log-average miss rate (10.46%)
on Caltech Reasonable setting without using any sophisticatedly designed algorithms.

We also evaluate other combinations of the ensemble models. Furthermore, a VGG16
model is fine-tuned with another round of bootstrapping (using CFM3) and its final out-
put is also combined to improve the detection performance. The corresponding results
can be found in Table 5] We can see that combining two layers already beats all existing
approaches on Caltech, and adding the entire large VGG16 model also gives a small
improvement.

3 Pixel Labelling Improves Pedestrian Detection

In this section, the sliding-window based detectors are enhanced by semantic pixel la-
belling. By incorporating DCNNSs, the performance of pixel labelling (semantic image



8 Hu, Wang, Shen, van den Hengel, and Porikli

Final
Score

Weighted sum Aggregating

DCNN + CRF
Input image (Pixel Score Map

Labeling)

Fig. 3: The framework for pedestrian detection with pixel-labelling. The region proposals and
pixel-level score maps are obtained by individually applying the sliding-window detector and
the pixel labelling model. Next, the weighted sum of pixel scores within a proposal region is
aggregated with the detector score of the same proposal region.

segmentation) methods have been recently improved significantly [|32}[3930,40,41]]. In
general, we argue that pixel labelling models encode information complementary to the
sliding-window based detectors. Empirically, we show that consistent improvements
are achieved over different types of detectors.

The segmentation method proposed in [39] is used here for pixel labelling, in which
a DCNN model (VGG16) is trained on the Cityscapes dataset [42]. The prediction map
is refined by a fully-connected conditional random field (CRF) [43]] with DCNN re-
sponses as unary terms. The Cityscapes dataset that we use for training is similar to
the KITTI dataset which contains dense pixel annotations of 19 semantic classes such
as road, building, car, pedestrian, sky, etc. Note that our models that exploiting pixel
labelling have used extra data for training on top of the Caltech dataset. However, most
deep learning based methods [[1,2] have used extra data, at least the ImageNet dataset
for pre-training the deep model. Pedestrian detection may benefit from the semantic
pixel labelling in the following aspects:

— Multi-class information: Learning from multiple classes, in contrast to the object
detectors typically trained with two-class data, the pixel labelling model carries richer
object-level information.

— Long-range context: Using CRFs (especially fully-connected CRFs) as post-
processing procedure, many models (for example, [39.|41,40]) have the ability to cap-
ture long-range context information. In contrast, sliding-window detectors only extract
features from fixed-sized bounding boxes.

— Object parts: The trained pixel labelling model may cater for more fine-grained
details, such that they are more insensitive to deformation and occlusion to some extent.

However, it is not straightforward to apply pixel labelling models to pedestrian de-
tection problems. One of the main impediments is that it is difficult to estimate the
object bounding boxes from the pixel score map, especially for people in crowds.

To this end, we propose to bring the pedestrian detector and pixel labelling model
together. In our framework (see Fig. [3), a sliding-window detector is responsible for
providing region proposals and a pixel labelling model is applied to the input image at
the same time to generate a score map for the “person” class. Next, a weighted mask is
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Table 4: Performance improvements by aggregating pixel labelling models with sliding-window
detectors (on Reasonable). All the three detectors achieve performance gains, which shows that
pixel labelling can be used to help detection. Note that the performance of our model ‘CFM3 with
Pixel labelling’ is already on par with the previously best reported result of [1]

Method Avg. miss rate (%) Improve. (%)
ACEF [5] 22.23

ACF+-Pixel label. 17.73 4.50
Checkerboards [6] 18.25
Checkerboards—+Pixel label. 14.64 3.61
CFM3 (ours) 13.49

CFM3-++Pixel label. 11.58 1.91

(a) proposals by detector

(b) pixel score map

Fig. 4: Examples of some region proposals on the original images and the corresponding pixel
score maps. A strong complementary relationship can be found in the generated proposals and
the pixel score maps.

applied to the proposal region of the “person” score map to generate the weighted sum
of pixel scores. Finally, the weighted sum and the detector score for the same proposal
are aggregated together as the final score. The weighted mask is learned by averaging
the pixel scores of ground truth region on the training images. To match the mask and
the input proposals, we resize both ground truth and test proposals to 100 x 41 pixels
(no surrounding pixels). Note that, there are more sophisticated methods for exploiting
the labelling scores. For example, one can use the pixel labelling scores as the image
features, similar to ‘object bank’ [44]], and train a linear model. In this work, we show
that even simply weighted sum of the pixel scores considerably improves the results.
Table [d] shows the detection performance of different sliding-window detectors en-
hanced by pixel labelling. Boosted decision forests are trained here with three types of
features, which are ACF [3]], checkerboard features [|6] and the CFM from the Conv3-3
layer of VGG16 model (CFM3). We can see that the performances of all the three detec-
tors are improved by aggregating pixel labelling models. Fig. [ presents some region
proposals on the original images and the corresponding pixel score maps. Some of the
false proposals generated by pedestrian detectors (CFM3) can be removed by consid-
ering the context of a larger region (the largest bounding box in the first column in
Fig. ). Some occluded pedestrians have responses on the pixel score map (the right-
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Table 5: Comparison of detection results of different variants of the CFM3 detector (on
Reasonable). The convolutional features of the Conv3-3 layer are combined with different types
of hand-crafted features, and used to train a boosted decision forest. Both the performance of the
variants and the ensemble models is improved with these additional features. Flow: optical flow
features. DCNN: the entire VGG16 model fine-tuned by data collected by CFM3

Method Avg. miss rate (%)
CFM3 only 13.49
CFM3+-ACF 12.38
CFM3+ACF+Flow 11.11
(CFM3+ACF)+CFM4+CFM5+DCNN 9.37
(CFM3+ACF+Flow)+CFM4+4-CFM5+DCNN 9.32

most bounding box in the fourth column in Fig. f). This clearly illustrates why this
combination works.

4 Fusing Models

4.1 Using Complementary Hand-crafted Features

The detection performance of the CFM3 model is critical in the proposed ensemble
model, since later components often reply on the detection results of this model. In
order to enhance the detection performance of the CFM3 model, we make two variants
of it by combining two hand-crafted features: the ACF and optical flow. We augment the
CFM3 features with the ACF and optical flow features to train an ensemble of boosted
decision forests. Optical flow features are extracted the same way as in [/7].

Table[5|shows the detection results of different variants of CFM3 model. With adding
the ACF features, the MR of CFM3 detector is reduce by 1.11%. With the extra optical
flow features, the MR is further reduced to 11.11%. These experimental results demon-
strate that hand-crafted features carry complimentary information which can further
improve the DCNN convolutional features. This is easy to understand: the ACF fea-
tures may be viewed as lower-level features, compared with the middle-level features
in CFM3. The optical flow clearly encodes motion information which is not in CFM3 fea-
tures. By adding the other components of the proposed ensemble model, our detector
can achieve 9.32% MR. The MR is slightly increased to 9.37% by removing motion
information.

4.2 Pixel Labelling

As shown in Section [3] the pixel labelling model is also complementary to convolu-
tional features. Table [6] shows the detection performance of different ensemble models
enhanced by pixel labelling model. The best result is achieved by combining the most
number of different types of models (which is refer to as All-in-one), which reduces
the MR on the Caltech Reasonable test set from the previous best 11.7% to 8.9%. Note
that the combination rule used by our methods is simple, which implies a potential for
further improvement.
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Table 6: Comparison of detection performance (on Reasonable) of different ensemble models
with pixel labelling. DCNN: the entire VGG16 model fine-tuned by hard negative data collected
by CFM3; Pixel label.: pixel labelling model; Flow: optical flow. The pixel labelling model con-
sistently improves all the considered models in this table. The All-in-one model set a new record
on the Caltech pedestrian benchmark

Method Avg. miss rate (%)

CFM3+Pixel label. 11.58

CFM3+-CFM4-+CFM5+-Pixel label. 9.94

CFM3+-CFM4+CFM5+DCNN+-Pixel label. 9.53

(CFM3+4-ACF)~+CFM4-+-CFM5+ 9.06
DCNN-+Pixel label.

(CFM3+ACF+Flow)+CFM4+CFM5+ 8.93

DCNN-+Pixel label. (All-in-one)

Table 7: Ablation studies of the All-in-one model on the Caltech Reasonable test set

CFM3a CFM3  CFM3+CFM4 CFM3+CFM4 CFM3+4CFM4 CFM3+-CFM4-CFM5 All-in-one

Model 4CFM5 +CFM5+DCNN +DCNN-Label.

Pipeline CFM3a fine-tuning Add CFM4  Add CFM5 Add DCNN Add Pixel Label. Use (CFM3+ACF+Flow)

Miss rate (%) 18.71  13.49 10.68 10.46 10.07 9.53 8.93

Improve. (%) — +5.22 +2.81 +0.22 +0.39 +0.54 +0.6

4.3 Ablation Studies

We investigate the overall pipeline of the All-in-one model by adding each component
step by step, which is shown in Table[/| As the start point, the CFM3a model with the
original VGG16 model pre-trained on ImageNet data achieves a miss rate of 18.71%. A
5.22% performance gain can be obtained by fine-tuning the VGG16 model with boot-
strapped data. The detection results can be improved to 10.46% (better than all previous
methods) by adding CFM4 and CFMS models to construct an ensemble model. We obtain
0.39% performance improvement if we use the entirc VGG16 model (fine-tuned by
bootstrapped data with CFM3) as a component of our ensemble model. Combining the
pixel labelling information to predicted bounding boxes can further reduce the miss rate
by 0.54%. By replacing the CFM3 model to CFM3+ACF+Flow model, the MR of our
ensemble mode can eventually achieve 8.93% on the Caltech Reasonable test set.

4.4 Fast Ensemble Models

In this section, we investigate the speed issue of the proposed detector. Our All-in-one
model takes about 8s for processing one 640 x 480 image on a workstation with one
octa-core Intel Xeon 2.30GHz processor and one Nvidia Tesla K40c GPU. Most of time
(about 7s) is spent on the extraction of the CFMs on a multi-scale image pyramid. The
remaining components of the ensemble model takes less than 1s to process the passed
region proposals. The pixel labelling model only uses about 0.25s to process one image
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Table 8: Comparison of detection performance (on Reasonable) between the original ensemble
model and fast ensemble models

Method Avg. miss rate (%) runtime (s)
CFM3 (proposals)+-CFM4-+CFM5+DCNN+-Pixel label. 9.53 8
ACF (proposals)+CFM3+4-CFM4+4-CFM5+DCNN+-Pixel label. 12.20 0.75
Checkerboards (proposals)+CFM34-CFM4+-CFM5+DCNN+-Pixel label. 10.65 1.25

since it only need to be applied to one scale. It can be easily observed that the current
bottleneck of the proposed detector is the CFM3 which is used to extract region proposals
with associated detection scores. The speed of our detector can be accelerated using a
light-weight proposal method at the start of the pipeline in Fig.[2]

We use two pedestrian detectors ACF [5]] and checkerboards [6] as the proposal
methods. Our ACF detector consists of 4096 depth-4 decision trees, trained via real-
Adaboost. The model has size 128 x 64 pixels, and is trained via four rounds of boot-
strapping. The sliding window stride is 4 pixels. The checkerboards detector is trained
using almost identical parameters as for ACF. The only difference is that the feature
channels are the results of convolving the ACF channels with a set of checkerboard
filters. In our implementation, we adopt a set of 12 binary 2 x 2 filters to generate
checkerboard feature channels. To limit the number of region proposals, we set the
threshold of the above two detectors to generate about 20 proposals per image.

Table [§] shows the detection performance of the original ensemble model and fast
ensemble models on Caltech Reasonable test set. We can observe that the quality of
proposals are enhanced by a large margin using both ensemble models and the pixel
labelling model. The best result of fast ensemble models is achieved by using propos-
als generated by the checkerboards detector. This method uses the data collected by
checkerboards detector as the initial fine-tuning data. With a negotiable performance
loss (e.g., 1.12%), it’s about 6 times faster than the original method. Note that the fast
ensemble model (with checkerboard proposals) also achieves the state-of-the-art results.

4.5 Comparison to State-of-the-art Approaches

We compare the detection performance of our models with existing state-of-the-art ap-
proaches on the Caltech dataset. Table [9] compares our models with a wide range of
detectors, including boosted decision trees trained on hand-crafted features, RCNN-
based methods and the state-of-the-art methods on the Caltech Reasonable test set. The
performance of the first two types are quite close to each other. Using only one single
layer of convolutional feature map, our CFM3 model has outperformed all other meth-
ods expect the two sophisticated methods [2|/1]]. Note that the RCNN based methods
are based on larger models than CFM3. As feature representation, the CFM from the
Conv3-3 layer of our fine-tuned model significantly outperforms all other hand-crafted
features. The CFM3+Pixel labelling model is comparable to the state-of-the-art perfor-
mance achieved by sophisticated methods [2,|1]]. Our CFM3+CFM4+CFMS5 model per-
forms even better. Without using hand-crafted features, our model can achieve 9.53%
MR. The best result is achieved by the All-in-one model which combines a number of
hand-crafted features and CFM models.
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Table 9: Detection performance of different types of detectors on the Caltech Reasonable test set.
Three types of approaches are compared in this table, including boosted decision trees trained on
hand-crafted features, RCNN-based methods and the state-of-the-art sophisticated methods. All
of our models outperform the first three types of models, and our All-in-one set a new recorded
MR on Caltech pedestrian benchmark. T indicates the methods trained with optical flow features

Type Method Miss Rate (%)
Hand-crafted Features SpatialPooling | 29.24
SpatialPooling+ | t 21.89
LDCF 24.80
Checkerboards |E 18.47
Checkerboards-+ 6] 17.10
RCNN based AlexNet 23.32
GooglLeNet 16.43
State-of-the-arts DeepParts 11.89
CompACT-Deep 11.75
Ours CFM3 13.49
CFM3+Label. 11.58
CFM3+CFM4+-CFMS 10.46
CFM3+CFM4+-CFM5+DCNN-+Label. 9.53
All-in-one’ 8.93
94.73% VJ
68.46% HOG
29.24% SpatialPooling
24.80% LDCF
21.89% SpatialPooling+ -
18.71% CCF 99.38% VJ
17.32% CCF+CF -30 = = = " 87.39% HOG
2 17.10% Checkerboards+ o = = = - 65.49% SpatialPooling
S 2 - = = - 11.89% DeepParts S ol | = = = - 63.38% SpatialPooling+
2 = = = +11.75% CompACT-Deep 2 61.82% LDCF
€ 11.58% Ours(CFM3+Label.) E = = =+ 59.56% CCF+CF
10.46% Ours(CFM3+CFM4+CFMg) 57.96% Checkerboards+
10 i 8.93% Ours(All-in-one) 1ol | = = = - 56.42% DeepParts
N Ry = = = +56.29% CCF
54.94% Ours(CFM3+Label.)
= 53.54% Ours(CFM3+CFM4+CFM$)
05 _ 5| | = = = - 53.23% CompACT-Deep
52.40% Ours(All-in-one)

; ; ; ; ; ; ; ; ; ;
10° 10" 10° 10'
false positives per image

(a) Reasonable

10° 10° 107" 10° 10

false positives per imaae

(b) Medium scale

98.67% VJ 99.53% VJ
30| = = - - 84.47% HOG 30| = = - - 90.36% HOG
o - - - - 52.52% SpatialPooling 2 - = = - 74.04% SpatialPooling
S 2 43.19% LDCF S 2 71.25% LDCF
2 = = = - 40.57% CCF 2 = = = = 71.11% SpatialPooling+
£ = = = -39.25% SpatialPooling+ € = = = -68.60% CCF+CF
- = = -37.69% CCF+CF - 67.70% Checkerboards+
10 31.31% Checkerboards+ - 10} | = = = -66.73% CCF
30.45% Ours(CFM3+Label.) - - = = - 64.78% DeepParts
29.91% Ours(CFM3+CFM4+CFM3) H - = = -64.44% CompACT-Deep
- = = - 25.14% CompACT-Deep 64.13% Ours(CFM3+Label.)
05 25.09% Ours(All-in-one) 05 63.41% Ours(CFM3+CFM4+CFMS)
- = = -19.93% DeepParts 62.49% Ours(All-in-one)

107 107 107 10" 10' 107 107 107 10" 10'
false positives per imaae false positives per imaae
(c) Partial occlusion (d) Overall

Fig. 5: Comparison to state-of-the-art on various Caltech test settings.



14 Hu, Wang, Shen, van den Hengel, and Porikli

Fig. [5] shows a more complete evaluation of the proposed detection framework on
various Caltech test settings, including Reasonable, Medium scale, Partial occlusion,
and Overall. We can observe that our ensemble model achieves the best results on most
test subsets (including Reasonable). On the Partial occlusion set, our models are only
outperformed by DeepParts [2]], which is specifically trained for handling occlusions.

Table 10: Detection results on the KITTI

. KITTI Pedestrian (moderate)

dataset. Note: * indicates the methods ~— @ @[ e——fsso----_
trained with stereo images
0.75
Method ‘Moderate(%) Easy(%) Hard(%) \
3DOP* [46] 67.47 8178 64.70 2 05
Fast-CFMs (Ours) 63.26 74.22  56.44 S o '
Reionlets [47] 61.15  73.14 55.21 e .
CompACT-Deep [1] 58.74 70.69  52.71 025 gg:;’g;’s";g;’njﬁ 74 '
DeepParts [2] 58.67 70.49  52.78 Fiteredcr 56 75 '
FilteredICF [6] 56.75 67.65 51.12 R-CNN 50.13% L
pAUCERsT |7 54.49 65.26  48.60 o 0z o 075 1
R-CNN [17] 50.13 61.61  44.79

Fig.6: Comparison to state-of-the-art on the
KITTI Moderate test set.

Table [T0] shows the results on the KITTI dataset. Since images of KITTI are larger
than in Caltech, the feature extraction of CFM3 model is time-consuming. In our exper-
iments, only the fast ensemble model with Checkerboards proposals is used for test-
ing on KITTL Our model achieves competitive results, 74.22%, 63.26%, and 56.44%
AP on Easy, Moderate, and Hard subsets respectively. Fig. [] presents the comparison
of detection performance on the KITTI Moderate test subset. It can be observed that
the proposed detector outperforms all published monocular-based methods. Note that
the 3DOP [40] is based on stereo images. The proposed ensemble model is the best-
performing detector based on DCNN, and surpasses CompACT-Deep [1]] and Deep-
Parts [2]] by 4.52% and 4.59% respectively.

5 Conclusions

In this work, we have built a simple-yet-powerful pedestrian detector, which re-uses in-
ner layers of convolutional features extracted by a properly fine-tuned VGG16 model.
This ‘vanilla’ model has already achieved the best reported results on the Caltech
dataset, using the same training data as previous DCNN approaches. With a few simple
modifications, its variants have achieved even more significant results.

We have presented extensive and systematic empirical evaluations on the effective-
ness of DCNN features for pedestrian detection. We show that it is possible to build
the best pedestrian detector, yet avoiding complex custom designs. We also show that a
pixel labelling model can be used to improve performance by simply incorporating the
labelling scores with the detection scores of a standard pedestrian detector. Note that
simple combination rules are used here, which leaves potentials for further improve-
ment. For example the ROI pooling for further speed and performance improvement.
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