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Abstract—Dynamic adaptive streaming addresses user heterogeneity resentations, little work has been done to address thesemagion

by providing multiple encoded representations at different rates and/or
resolutions for the same video content. For delay sensitivapplications,
such as live streaming, there is however a stringent requiraent on the
encoding delay, and usually the encoding power (or rate) bugkt is also
limited by the computational (or storage) capacity of the sever. It is

therefore important, yet challenging, to optimally selectthe source coding
parameters for each encoded representation in order to mimize the
resource consumption while maintaining a high quality of eperience for
the users. To address this, we propose an optimization frarmeork with

an optimal representation selection problem for delay, powr, and rate
constrained adaptive video streaming. Then, by the optimakelection of
source coding parameters for each selected representatiome maximize
the overall expected user satisfaction, subject not only téhe encoding
rate constraint, but also to the delay and power constraintsat the server.
We formulate the proposed optimization problem as an intege linear

program (ILP) formulation to provide the performance upper bound, and
as a submodular maximization problem with two knapsack congsaints to

develop a practically feasible algorithm. Simulation resits show that the
proposed weighted rate and power cost benefit greedy algohim is able
to achieve a near-optimal performance with very low time corplexity.

In addition, it can strike the best tradeoff both between therate and
power cost, and between the algorithm’s performance and thedelay
requirements proposed by delay sensitive applications.

Index Terms—Dynamic adaptive video streaming, representation s-
election, delay-power-rate-distortion, live video, subrodular function
maximization.

|I. INTRODUCTION

With the rapid development and ever-increasing populaaty
mobile devices, users are now capable of requesting anthglaideo

selection problem at the server with considerations of thkeos
encoding delay or power consumption. This representagtgcson
problem becomes more crucial for delay sensitive appboatie.g.,
live video streaming. In live streaming [2], for exampleetth is a
stringent requirement on the encoding delay of all the issprations,
which requires the frame encoding time to be less than orl éqtlae
frame interval. In addition, the video encoding processenegally
quite demanding in terms of the computational complexititicl
is related to both the encoding delay and the power consompti
[3]. Although the server is usually assumed to be very pawerf
there still exists a physical limit in reality. For exampbes the total
number of encoders available in the DASH server is constcaand
the maximum clock frequency of the CPUs within each encosler i
limited, the encoding process for all the representatiohallothe
video streams should be limited by a maximum power budget, (i.
the total CPU capacities at the DASH server) [2]. As a redhk,
power limitations of the DASH server are definitely a criticgsue
in live streaming applications.

Previous server-side representation selection schemels,as [4],
have demonstrated the gain of the rate-distortion optitisizan the
representation selection for different video types. Du¢heodiverse
content characteristics, it is beneficial to tune the sowwcding
parameters to both the types of videos and the users’ conditi
These works are rate-distortion efficient, capable of awhie the
best overall video quality with the minimum cost of total edimg
bitrate. However, they neglect the cost of encoding delay @ower

content anywhere and at any time. Accordingly, the managemeonsumption, which nevertheless becomes a key componeteiay
of video streaming services has recently become a much megnsitive applications. From the perspective of the soemring,

complex task due to the growing heterogeneity of user pdpuala
in terms of demands for specialized video contents, devices to
display, and access network capacity. Dynamic adaptiveasting

the impact of delay and power consumption constraints on the
rate-distortion behavior is as follows. Ideally, an effitievideo
compression is preferred to greatly reduce the encodimgtéitvhile

over HTTP (DASH) has been proposed as an effective solutighaintaining the same video quality. However, the efficieitieo

to address heterogeneity and improve the overall userfazton
by offering several representations (versions) of the samdeo
content to the different clients [1]. As illustrated in Figj, each
representation is encoded with a pre-defined bitrate amdmiution
by the DASH server. The users will then select the repreienta
that better addresses their requirements and the netwoditmms.
Upon request, streams containing the desired represamgatiased
on the client-side rate adaptation algorithms are thewveted to the
users over certain network architectures, such as the rodédivery
network (CDN).

compression often requires high computational complezitythe
video encoder, which in turn results in long delay and largegy
consumption of the encoder. Such schemes however spende lar
amount of encoding time or power consumption to achieve anly
slightly better improvement in the rate-distortion penfiance of each
encoded representation, which might furthermore lead towage
of the streaming service due to unacceptable latency orithation
of the total power budget.

With the delay requirement of the live video applicationsl ahe
limited power and rate resources, the DASH server cannobdenc

While most of the research community focuses on the clietet-s as many representations as possible to individually ressporeach

rate adaptation schemes for smoothly downloading preemttoep-
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user’s request. Instead, the system resources should kxojigly
distributed between the different videos in order to maxanthe
overall system performance. It is therefore worth invesdtigg an
effective selection of the optimal representations endofte each
video with the corresponding encoder parameters, in oaéetter
support the users’ requirements and yet to be sustainatle the
delay sensitive applications.
We therefore propose in this paper to develop a server-gitie o

mization framework for the adaptive video representatielection in



delay sensitive streaming with limited resources in termstorage
(or bottleneck link capacity) and power consumption. Siedly, we
formulate a representation selection optimization pnobfer delay
sensitive DASH streaming with proper consideration of tletag
power-rate-distortion (d-P-R-D) properties of repreagnhs from
different videos, under the encoding delay, power and rastcaints.
This representation selection problem is then re-fornedlats an inte-
ger linear program (ILP). The proposed ILP could lead to thignoal
tradeoff between the delay-power-rate-distortion resewonstraints

[4]-[10]. Most of these research efforts focus on the cl&de
adaptation algorithms in order to guarantee the qualityxpkgence
(QoE) of users for given encoded representations at theiseuch
as the live streaming rate adaptation method to support attmo
presentation while maintaining a small buffer size [5], #pplication
layer probe-and-adapt rate adaptation approach drivem Bgtamate
of the network dynamics [6], and the online rate adaptatigorahm
in order to minimize the re-buffering phases [7]. Althoughahget
al. [5] highlight the importance of the server-side represiumaset

and thus provide a performance upper bound for the serder-sbptimization and show that the preparation of represantatéets may

representation selection. However, it is NP-hard and tlbostime

consuming to be a practical solution for delay-sensitiveashing.
In order to greatly reduce the execution time, we furthervedn
the original optimization problem to an equivalent set fiort opti-

mization problem, which is shown to be a submodular maxitigna
problem subject to two knapsack constraints. A weighted eatd
power cost benefit greedy algorithm is developed in ordetbtaio a
practical yet approximate solution with low computatiocainplexity
and near-optimal performance. Overall, the contributibthis paper

affect the behaviors of some client-side adaptation meshtiety do
not propose any optimization based guideline on such reptason
selection.

The server-side representation optimization has beerstigeted
very recently in [9], where a joint transcoding and cachiligcation
scheme in media cloud is proposed to minimize the total djoera
cost of delivering on-demand adaptive video streaming.4]n the
optimal representation set selection problem of adaptiveasiing
under the encoding rate constraint of the DASH server isqgeep as

can be summarized as follows. an integer linear program (ILP), revealing the best codiatameter
1) We formulate a novel representation selection optiridmat in terms of the bitrate and resolution for each representatn [10],
framework to find the best set of encoded representatiorts titlee optimized representations obtained by solving thisdté>further
maximizes the expected video distortion reduction for siseinvestigated and validated in a practical scenario, by geimg a
under encoding delay, power and rate constraints. We furtn24-hour streaming scenario based on YouTube traces andedevi
propose an ILP formulation to provide the performance uppetatistics for Hulu and Netflix. These two works are rate@aiison
bound for the system design of the server-side DASH represeificient, capable of achieving the best overall video dyailiith the
tation selection. minimum cost of total encoding bitrate. However, they negline
2) In order to reduce the additional execution time of theasen- cost of encoding delay and power consumption, which neskrsls
tation selection algorithm in practice, we convert the imagy becomes a key component in delay sensitive applications i
optimization problem to an equivalent set function optiatian video streams, the authors in [2] propose another ILP foatron
problem and show its submodularity. By using the diminighinby considering the computation resource constraint. Tl riodel
return property of submodular functions, we develop a wieigh in [2] is based on the dataset obtained by extensive traisgod
cost benefit greedy algorithm for the representation select operations of the target videos, which means that the firmoergl
which has polynomial computational complexity and offerset of the available representations is pre-encoded wibvkrvideo
close-to-optimal performance (approximation ratio shdae qualities, bitrates and resolutions. However, this assiomgds not
above90% under different simulation settings in Section VI). feasible in practical live streaming applications whereréhis no pre-
We conduct extensive simulations under different syssa encoded representation set. Instead, we have to addres@ndrol
tings. The simulation results show that the proposed dlgori problem, which determines on the fly the source coding patensie
can scale very well with the size of the system. It strikes thg.g., the search range, the quantization step size) tewahhe
best tradeoff both between the rate and power cost, and betwelesired bitrate of each target representation. Anothétdtian of the
the algorithm’s performance in terms of the average distort above works is that these ILP problems are NP-hard. In peatven
reduction per user and the delay aspects, such as the hfgoriwith the latest optimization tools such as the IBM ILOG CPLBEXA],
computation time and the per-frame encoding time requirésne they require exponential computational complexity to acaioptimal
in delay sensitive applications. solutions. Therefore, a very long execution time will be siomed
The rest of this paper is organized as follows. Section liewes the ~for larger system settings, which introduces an intoleiwitial delay
related works in literature. In Section Il1, we introduce thotations and greatly degrades the QOE of users. In dynamic setupsewor
and the d-P-R-D models that are used throughout this paper.Yet, the computation and storage resources are usuallyvémyng,
Section IV, we propose an optimization framework and fomtmil Which requires the system to dynamically scale its capdoitgduce
a general optimization problem for the representationcsiele in the resource consumption while still respecting the emmpdielay
DASH encoding subject to encoding delay, power and rate cof¢quirement imposed by live streaming. To this end, the wark
straints. To obtain the practical algorithms with low timemplexity, [12]-[14] discuss and investigate the dynamic resourceigianing
in Section V, we transform the general representation tefeopti- Problem for encoding online videos.
mization problem to an equivalent set function optimizawoblem, ~ Rate control schemes, on the other hand, aim at providing a
which is further proved to be a submodular maximization fmob good quality for the encoded video under a given rate constra
over two knapsack constraints. We describe a practicabappation by appropriate selections of the source coding parametershis
algorithm to solve this problem with close to optimal pemiamce. €nd, many works have been conducted to analyze the complexit
Section VI presents the experimental results, and evaluhtegains rate and distortion performance of the hybrid video encodeb]-
of the proposed algorithm compared to existing algorithiise [19]. In the rate-distortion model of [15], both the sourceding
concluding remarks are given in Section VII. rate and distortion of a hybrid video coder with block basediicg
are revealed to be closely related to the video statistich the
Il. RELATED WORKS quantization step size, and derived as functions of thedatan
Different works have been proposed recently to optimize thieviation of the transformed residuals under the assumfiat these
multiple representation selection for dynamic adaptiveashing [2], transformed residuals follow a Laplacian distribution. éteal. [16]
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summarize the encoding complexity of the H.263 video encede
three modules (motion estimation, precoding and entromingy,
and derive a power-rate-distortion model to analyze thatimiship
among these three factors. For the more advanced H.264/A0 v
encoders that use the tree-structured motion compensatitn
seven inter-modes, the work in [17] proposes a delay-ristention
model for both IPPPP and hierarchical-B coding modes. I, [18
the analytical framework for delay-power-rate-distantimodeling of
the hybrid video encoder is proposed and derived as a funciio
source coding parameters (specifically, the search rangeoiion

TABLE |
MAIN NOTATIONS.

estimation and the quantization step size). On the basishef
proposed analytic model, a source rate control scheme thefur
formulated to achieve the minimum encoding distortion forgke
video representation under the constraints of maximum aingo
delay, rate, and power consumption. This model is also eggdh
the end-to-end wireless video communication system toldpvan
optimization based rate control scheme that aims at mimgithe
end-to-end distortion (including both video encoding alisbn and
the transmission distortion) subject to the transmissida and delay
constraints [19]. For the single-source, multiple desioma video
communication over the lossy Internet, a forward error ecion
packet allocation and scheduling framework is proposed2j fo
trade the transmission delay for the video distortion.

It should be noted that, however, all the aforementionee rg
control schemes (e.g., [18], [19]) are dedicated to thelsingleo

case, where we only need to determine one pair of the optin
source coding parameters for one encoded representatijecsto
the resource constraint at the encoder. In other words, fath®
encoder’s resources, including rate and power, are soletyl dor
encoding one single representation. There is no encodingeps
of another representation from the same or a different vidéoch
will compete for such limited resources at the encoder. Buéhé
failure in coping with the fairness and resource competitissue
among the multiple representations, they cannot be stfaigfardly
extended to the DASH scenario with multiple coexisting esleeach
of which is further encoded into multiple representatidnsfact, the
multiple related representations from the same or diffevieteos will
compete for the shared rate and complexity resources at A&HD
server. However, it is still unclear how to optimally alléeghe rate
and power resources among different videos, and how to ehibes
optimal source coding parameters for each specific reptatsam

In summary, the previous works are limited for delay sevsiti
DASH streaming since they are either time consuming or n
optimized over the rate/power resource allocations. Theze we
propose an optimization framework for DASH representatsen
lection with limited delay, power and rate resources, andeldp
accordingly an efficient algorithm that is able to achievarraptimal
performance with very low computational complexity. In gead,

Symbol Definition
F={1,2,...,F} The set of " video streams.
M =1{1,2,...,M} | The setofM representations for each video stream.
N ={1,2,...,N} | The set ofN users.
o The standard deviation of the transformed residuials
in motion estimation.
Afm The search range in motion estimation of theth
representation of videg € F.
Qfm The quantization step size of the-th representa-
tion of video f € F.
A The search rage set containing all the possiple
search range values.
Q The quantization step size set including all the
available quantization step sizes.
Di(Nfm, Qfm) The source coding distortion of the-th represen-
tation of videof € F.
RN fm,Qfm) The source coding rate of the-th representation
of video f € F.
CrNfm> Qfm) The CPU load in clock frequency for encoding the
m-th representation of videg € F.
Pr(Afm, Qfm) The CPU power consumption for encoding the
th representation of vide¢ € F.
dy The time (delay) needed to encode one frame| of
video f € F.
The maximum total encoding rate constrained py
t Rmax the storage capacity of the server or the bottlengck
link’s transmission rate of the network.
1 Crmax The maximum CPU load of the server.
[ AT The desired time interval for encoding one vid¢o
frame.
Bn The downlink bandwidth of user € .

The finite ground set of representations, whe
ey,m denotes the encoding of the-th representa-
tion of video f.

& ={epml|Vf,m}

The encoding decision sedl C & with each

A elemente; ,,, € A indicating the actual encoding
of the m-th representation of videg.
p}L The probability of usern requesting video filef.
B The expected average video distortion reduction
Dn(A) usern based on the encoding decision skt

for

Under the assumption that the transformed residuals in tbgom
estimation (ME) module follow an i.i.d. zero-mean Laplacuistri-
Bution [15], [22], both the source rate and distortion of @iei-coded
P-frame are derived as functions of the standard deviati@i the
transformed residuals and the quantization step @iz&pecifically,

for a video streamf € F, the source rate is approximated by

the entropy of the quantized transformed residuals, andsthece
distortion is only incurred by the quantization error, aliofes:

the differences and novelty of this work can be summarizedlps LQlog, e
joint consideration of the delay, power and rate constsaatt the Ry (L, Q) = — Pology Po + (1 = Fo) 1 _e LQ @
server; 2) a representation selection problem integraiddthe rate .
control scheme; and 3) a practically efficient approxintagtgorithm —log,(1— e *?) — LQvlog, e + 1] ;
with low computational complexity and theoretical approation
guarantee. LQe™R(2 + LQ — 29LQ) + 2 — 2¢LQ
Dy(L,Q) = g e
I1l. DELAY-POWER-RATE-DISTORTIONMODEL FORVIDEO (1—et?)
ENCODING where L. = +/2/c is the Laplace parameter that is one-to-one

In this section, we introduce the notations and the delayepo
rate-distortion model for general video encoders, which laier be
used for characterizing the corresponding behavior of eswble
encoded representation.

In [18], [21], the models of source coding delay, power, ratel
distortion have been derived for IPPPP coding mode in HR63/

mapping ofo; vQ represents the rounding offset afds a parameter
between (0,1), such asl1/6 for H.264/AVC inter- frame coding
[15]; Py = 1 — e Y20~ s the probability of quantized transform
coefficient being zero. For a specific vidgo € F, the standard

deviationo can be well fitted by a closed form function of the search

range\ in motion estimation and the quantization step siz¢18],



as: exists a one-to-one mapping between the CPU clock frequieacy
s oA Ct(A\, Q) and the CPU power consumptioR (), Q). Therefore,

or(AQ)=ap1 e Fags taga-Q, ©) thj;oughout this paper, these two terms will bfe( interchablyeased

wherea; 1-a; 4 are empirical parameters dependent on the encodedrepresent the power consumption level of encoding viflemith

video sequencg as well as on the encoding structure. As showgource coding parameter pdiX, Q).

in [19], in order to have a better fitting result, the whole s&the

empirical values with different configurations afand @ should be V. FRAMEWORK AND OPTIMIZATION PROBLEM FORMULATION

used to determine these four parameters. To reduce the exitygh In this section, we propose an optimization framework and fo

practice, since the function form ef; (), Q) is already known and mulate a general optimization problem for representatieiecsion,

only four fitting parameters are unknown, we could choose ahmusubject to encoding delay, power and rate constraints. V@ th

smaller subset of empirical values with only a few configora of formulate the optimization problem as an integer lineargpam,

A and @ as the training set and obtain the standard deviation modghich is generally NP-hard.

in Eq. (3). Then, integrating = v/2/0 ¢ (), Q) into Egs. (1) and (2),

both the source coding rate and distortion of vigeoan be further A Framework

expressed as functions of and Q, i.e., fy(A, @) and Dy(A, @), As illustrated in Fig. 1, we assume thét live video streams,

respectively. -
On the other hand, since motion estimation (ME) takes up tr(ljésnoted as the set = {1,2,..., '}, have to be processed by

o S : . the DASH system. Any videg € F can be encoded into at most
majority of the total encoding time, the encoding complgxian be M representations by the multiple parallel encoders at th&SIDA
approximated by the ME complexity. Specifically, the ME coenjty P y ple p

. ; ; server. After encoding, all the encoded representatioes naade
is derived as the total number of CPU clock cycles consumeilsby available at the HTTP server for adaptive streaming. THiotie
SAD (sum of absolute difference) operations in ME. Thus, tfe P 9:

. - . CDN, N users subscribe to the video service and watch desired
single-reference prediction case where only one referéracee is o . .
. N . video contents with diverse network and user behaviors.@waeting
used for motion estimation of the current frame, the CPU load .
. e the first several frames whenever a scene change occurstfEs],
clock frequency for encoding a specific vidgoc F can also be

expressed as a function afand Q, as follows: deIz_aly-power-rate-dl_stortlon model of Egs. _(1)-(5) can belieitly
derived for each video stream. The practical derivationcgss of

Cr0Q) = KA+ 1)% - 14(Q) - co @) the d-P-R-D model is as follows. According to [18], the s@urate

A dy ’ model in Eq. (1), the source distortion model in Eq. (2), theagling
where K is the total number of Macroblocks (MBs) in a frame<omplexity moc_jel (r_eveal_ing the relationship betwegn tiRJCdoad
(2X + 1) - n;(Q) is the total number of SAD operations in the twof"‘”d the encoding time) in Eq. (4)_, and the encoding power mode
dimensional search area for each MBA+1)? is the theoretical total N Ed. (5) are all general models independent of the videdertn
number of SAD operations in the search, apdQ) is an empirical While only the standard deviation mode} (), Q) in Eq. (3) and
and video content dependant parameter that denotes tbeofafie the parameter;(Q) in Eq. (4) are specific to the video content.
actual number of SAD operations in the practical video cotiec Therefore, for each video stream, we can extract the firstraév
the theoretical total number of SAD operations;is the number of frames whenever a scene change occurs in order to deterfrene t
clock cycles needed for one SAD operation over a given CpuU; Video content dependent modets (), Q) and#;(Q). Once these
denotes the desired encoding delay of videa.e., the time required WO video content dependent models are known, the d-P-R-Bemo
to encode one video frame. in Egs. (1)-(5) is also derived. o _

In essence, it is the encoding complexity that depends botihe ~ These d-P-R-D models of different live video streams widrttbe
video file and the target representation. Specifically, inéhcoding US€d by the representation selection module to guide thederg
complexity model in Eq. (4), the complexity to encode oneedid Process in the parallel encoders, through providing thereks
frame is expressed as the total number of the CPU clock cycfeldfate of each representation for each video by settingofitenal
K (22+1)%-14(Q)-co, which depends on the vidgband the source encoder parameters. Here, the representation selecticlulenoot
coding parameter pajt\, Q) of the target representation. On the othePnly addresses the general problem of the number of repetzeTs
hand, the encoding complexity can be also viewed as the prodfie€ded to be encoded for each video and their average egawadin
of the encoding time (delay) and the CPU load in clock freqyen put_ e_1|so specifies explicitly by using what _encoder pararsegach
Therefore, according to different application scenanus,can either Ndividual encoder could achieve the desired rate for tHecsed
fix the CPU load in clock frequency at a constant valiie, x and €Presentations. ) _ _
set the encoding delay as a tunable paramétéh, Q), e.g., for the In practice, there are several stringent reqwrementsddzmtrgln
single video encoder with given CPU as in Ref. [18]. Or, we caffié representations encoded at the DASH server. For exannple
fix the encoding delay at a desired valdg and allocate the total order to enable delay sensitive streaming wnthout |ncgra_dd|.t|onal
CPU load of the servef',.x among different target representationsdelay accumulated over frames, there is a stringent uppérftr the
C(\, Q), which is the case in this work. frame encoding time. In addition, the sum of bitrates of altaed

By using the dynamic voltage scaling model to control the g@ow representations may be constrained by_the server's st@mlty
consumption of the microprocessor [23], [24], the CPU load i°" the bottleneck link of the network, while the total encagpower

clock frequencyC's (), Q) can be further related to the CPU poweponsumption is also limited by the total number of encoderd a
consumption: the maximum CPU load of each encoder. Therefore, the prdpose

5 representation selection module needs to be carefullymaged,
Pr(X,Q) = k- [Cr(A\ Q)] (5)  which will be described in detail in the following.

where x is a constant in the dynamic voltage scaling model and

determined by both the supply voltage and the effectivecheit B- Problem Formulation

capacitance of the circuits [25]. It can been seen from Eqth@, for In accordance with the d-P-R-D models of Section Ill, we deno
a given dynamic voltage scaling model with known constarthere by M = A x Q the set ofM = | M| possible representations. Each
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Example of the delay sensitive dynamic adaptiveasting system, and framework of the proposed optimal reptaen selection scheme.

element inM corresponds to a specific source coding parametesers. The decision variables are the source coding pazampair

pair (A, Q) with A € A and@ € Q, whereA is the search range set
containing all the possible search range values (e.g.eifitximum
search range is 16, theh = {1,2,...,16}) and Q denotes the
guantization step size set including all the available tjgation step
sizes (e.g., all the quantization step sizes corresponir@P from

0 to 51 in H.264/AVC video encoder). Without loss of geneyalive

(Af,m, Qf,m) for them-th representation of video streagfnand M
that corresponds to the number of actually encoded repssTs
for video streamf. The constraint (6b) specifies that the sum
of bitrates of all representations does not exceed the mawrim
transmission rate constrained by either the storage dgpatithe
server or the bottleneck link of the network. The constrgéd) is

sort the representation s#tf in an decreasing order of the encodinghe power consumption constraint ensuring that the ovéRlU load

bitrate, i.e., R¢(Af,i, Qi) > Rr(Af5,Qr5),Vi,j € Mandl <
i<ji<M.

The optimal representation selection problem for resowme-
strained DASH streaming can be summarized as follows. Foremg
set of source video streams, with a given video populargjrithution,
and for given users’ downlink bandwidth, the problem cassisf
deciding the encoded representations for each videotlienumber
of representations and the average bitrate of each repagisen and
the corresponding source coding parameters for each epegion
such that the total system utility in terms of the aggregatersil
satisfaction is maximized, subject to the encoding delatrate
and power constraints at the DASH server. Mathematicallghsa
problem can be formulated as:

F My
P1: N - m - Ur(Afom, ), (6a
arg max ngizj St Ut pom, Qp.m), (62)
s.t.
F ]\Jf
D> Ri(Aams Qrm) < Rinax, (6b)
f=1m=1
F ]\Jf
Z Z Of()\fvm’ Qf,m) S Omﬂx7 (6C)
f=1m=1
df < AT, Vf € F, (6d)
(Arm: Qrm) €M, Vf € F¥m={1,2,.... My},  (6e)
My <M, VfeF. (6f)

In the optimization problemP1, the objective in Eqg. (6a) is to
maximize the aggregate expected utility function for allenss

whereUs (A t,m, Qf.m) represents the utility function after encoding
the representation of videg with source coding parameter pair

(Af,m,Qs.m), N denotes the total number of useks; ,, is the
probability of users watching then-th representation of video

in clock frequency consumed to encode all representat®iimited
by the server's maximum CPU lo&d,,... The constraint (6d) is the
encoding delay requirement that states that the encodimg for one
video frame should not exceed the desired time intervalekample,
whenAT is set to the frame interval (i.e., the reciprocal of the feam
rate), it becomes the live video encoding constraint. Thestraints
(6e) and (6f) define the feasible region of the decision e
respectively, specifying that the feasible source codamgumeter pair
(Af,m; Qf,m) should be an element of the possible representation set
M = A x Q, and the number of videg’'s representations should
not exceed the total number of possible representatidns

In this paper, we mainly focus on the server-side repretienta
selection for live adaptive video streams. Therefore, theespond-
ing optimal representation selection probl&hin Eg. (6) is mainly
constrained by the limited rate and power resources at tiversgide.
For example, the constraint in Eq. (6b) specifies the maxinialme
of the sum of encoding bitrates of all target representafiiinax.
The physical meaning oRmax could be either the storage capacity
of the server's buffer where the violation of constraint )(&ould
cause some representations to overflow and thus to be ueateail
for transmission to the users, or the bottleneck link capaai the
network that specifies the maximum information flow allowedoe
transmitted from the server to the users. The network traftiarred
by video streaming would determine which representatioa wideo
is downloaded and watched by users upon their requests &br th
video. This factor is thus considered in the objective fiorcin Eq.
(6a) and reflected by the probabilit)y - ¢ ... Here, N denotes
the total number of usersiy ., is the probability of users watching
the m-th representation of video fil¢ and thusN - ¢ .., represents
accordingly the number of users. When the network traffiaétéd,
users usually tend to reduce the requested bitrate in cvdmpe with
the congestion, which causes the increment\of ¢ ,,, for larger
values ofm and vice versa.

streamf and thusN - ¢ ,, represents accordingly the number of In the formulation of the optimization problefl, the delay and



power constraints cannot be introduced as a straightforexiension
of the traditional rate-distortion optimized represeiotatselection
problem [4], since for a given encoding delay, different mjitees
(the utility function related to distortion, the rate ancetpower)

where we define the reconstructed video distortion redactiar
video quality improvement) after decoding the-th representa-
tion of video f as the utility function, i.e.,.Us(Afm,Qfpm) =
Duax — Di(Afm, Qfm). Specifically, Dima. represents a con-

are coupled through the choices of the source coding paeamettant maximal distortion when no video is decoded and thus
pair (A, Q). Therefore, it is nontrivial to investigate the selectioiDmaz — Ds(Af,m, Qf,m)] denotes the distortion reduction after
of the optimal representations encoded for each video with tsuccessful decoding of the representation with codingmerar pair

corresponding encoder parameters, under the delay, rdt@pamer

(Af,m,Qr,m). The constraint (9e) sets up a consistent relationship

constraints. However, it can be seen that for a given prdibabi between the decision variablesand3, ensuring that the representa-
distribution ¢¢,,, the optimal number of representations for eaction selected by a user is already encoded and available attiver.

video with the corresponding source coding parameter mansbe

The constraint (9f) specifies the possible representatibradl video

obtained by solving®1l. On the other hand, since a user will onlystreams that can be supported by us& download link capacity

choose to watch a video representation with lower encoditrgté
than its download link’s bandwidth, the probability dibtition ¢ ..,
is highly dependent on the source coding parameter pairssathds

B,,. The constraint (9g) ensures that at most one represeamntaitia
video f is selected by a user.
The optimal solution of the ILP problen?2 can be obtained

unknown unless the source coding parameter sets are deestmiby the generic solver IBM ILOG CPLEX [11], using a branch-

Therefore, the practical algorithm is hindered by this kbicand egg

and-cut search. The branch-and-cut procedure managesreh sea

dilemma in problenP1. To address this issue, in the next subsectioitree consisting of nodes, each of which represents a relaked
we will re-formulate problenPP1 as an integer linear program basedsubproblem to be solved. It then involves running a branchtaund

on certain prior information about the users.

C. Integer Linear Programming Approach

We first denote\ = {1,2,..., N} as the set ofV users. Each
usern € N requests a videg with probability o’ and downloads a
representation of the requested video from the server vawmntnk
bandwidth B,,, which therefore specifies the largest bitrate of
representation that could be downloaded by usdn the following,
we introduce two sets of binary decision variables:

1, if usern selects then-th

af o, = representation for vided; (7)
0, otherwise.
1, if the server encodes the-th

Bfm = representation of videg; (8)
0, otherwise.

Therefore, we haveV - ¢¢,, = Zle pt - a% ., and problemP1
can be equivalently converted to the following ILP:

F M N
P2: o
BT >0 D rialm (92)
f=1m=1n=1
' |:Dmax - Df (>‘f,m7 Qf,m) 5
S.t.
F M
STN " B Re(Apams Qpam) < Rumax, (9b)
f=1m=1
F M
Z Z ﬁf,m : Of(Af,mv Qf,m) < Cmax, (9¢c)
f=1m=1
dy < AT, Yf € F, (@d)
&f m < Bf.m, YN €N, Vf € F,Vm € M, (9€)

a?,rn'Rf(Af,"th,m) S Bn7 vn€N7vf Gf,VmGM,

(9f)
M
> af. <1,¥neN,VfeF, (99)
m=1
af ., €40,1}, Yne N\Vf € F,¥Ym e M, (9h)
Br.m € {0,1}, Vf € F,¥m € M. (9)

In the ILP problemP2, the objective function and the first three

constraints are equivalent to those in the original problBd)

algorithm to create two new nodes from a parent node, anchgddi
additional cutting planes to tighten the LP relaxations esatlice the
number of branches required to solve the original ILP. Inegeh the
branch-and-cut search requires exponential computdtiomaplexity

to achieve the optimal solution. Therefore, the ILP problB&is
NP-hard. Specifically, it can be observed that the cardinali the
decision variablese and 8 is NFM and FM, respectively. By
using the branch and bound method for the binary decisioables,

in the worst case, the number of nodes observed by the CPLEX
solver would be upper bounded By ¥ x 2F'M and at each node
the solver needs to solve a relaxed LP problem with the SIMPLE
method. This corresponds to an exponential computaticoraptex-

ity O(2F2M-2N and thus incurs an incredibly long execution time
when the problem scale becomes large.

To reduce the actual execution time in practical large spedé-
lem, we can terminate the branch-and-cut procedure edhaT a
completed proof of optimality, e.g., by setting an error i(relative
optimality tolerance) or a time limit. Although the relaiwptimality
tolerance can guarantee a near-optimal solution within raice
percentage of the optimal solution, in the worst case, thabau
of nodes on the search tree is still an exponential functibthe
cardinality of the decision variables, which still indieatexponential
time complexity. On the other hand, if we set the time limitaas
acceptable value (e.g., several seconds), it is likely tiatCPLEX
solver would only obtain a poor objective value since onlynzak
subset of nodes are searched and processed.

V. EQUIVALENT SUBMODULAR MAXIMIZATION PROBLEM AND
ALGORITHM DESIGN

In order to efficiently cope with the difficulties of solvinde
original problemsP1 and P2, in this section, we convert the general
optimization formulationP1 to an equivalent set function optimiza-
tion problem. We prove that it is a submodular maximizatioobem
over independence constraints. By utilizing the dimimghireturn
characteristics of the submodular functions, we finallyedepy new
practically efficient algorithms with polynomial computatal time
complexity and theoretical approximation guarantees.

A. Equivalent Problem Formulation as a Set Function Optatian

First, the finite ground set of representations in the oagmoblem
P1 can be written as:

£ ={esm|Vf € F, Ym € M}

={ei1, " ,eLM,--.

(10)

S Efmy ey €F 1y ey €M}



In Eq. (10), a specific element ,,, exists if them-th representation Comparing the original problerR1 with the equivalent set function
is selected to be encoded for a video streantherefore, the ground optimization formulatiorP3, it can be seen that the objective function
set& denotes the full set of all representations of all videosstre and the first three constraints in probleRl are transformed to
that are encoded by the DASH server. By integrating Eq. (#, tEgs. (15a)-(15d) in problen®3, respectively, while the available

encoding delay constraint in Eqg. (6d) can be rewritten as: source coding parameter constraint in Eq. (6e) in probRnis
K(2X 0 +1)2 - Y- expressed as the representation 8dt = A x Q. It should be
@in + )7 17(Qg.m) - co < AT, VfeF, Yme M. noted that in the reformulated ILP probleR?2 and its equivalent

CrApm: @pm) submodular maximization probleRB, the network traffic is reflected

11
_ _ (_ ) by the users’ download link capacity constraint (9f) and Het
Therefore, the feasible region of the allocated CPU loactfmoding of representations supported by the user's download lirpacity

the m-th representation of video streafncan be denoted as: Q. in Eq. (13), respectively. Here, a simple assumption is et
KA + 1205 (Qfm) - co have certain prior information about the users, i.e., therdiok

Cr(Afom, Qfm) = - AT - , (12) ' pandwidth B,, of any usern, and userm can choose to download

Vf e F, Yme M. a representation only if its bitrate does not excdgg. However,

taking into account some more complicated network archites
As long asC (Af,m, Q,m) lies within the feasible region defined by and transmission/routing schemes is beyond the scope opéfier,
Eq. (12), the encoding delay for any representation. € £ would  and will be investigated in our future work.
not violate the live encoding constraints in Eq. (6d). Whespower  We show in the next subsection that the equivalent optiricizat
(CPU load) related constraint in Eq. (6¢) is further takeio mccount, problem P3 is a maximization problem of a submodular function
the optimal solution would be achieved with the minimum CREd  over general independence constraints, the structure ichvdan be
consumed for each representation, i[&(2Xs.., +1)* 77 (Qsm)-  further utilized to develop a computationally efficient wtidn with
co]/AT. In other words, all the optimal representations should Rgrovable approximation gaps.
encoded with the maximum encoding tinig = AT

For the users, lef2,, denote the set of representations of all vide®. Proof of Submodularity
streams that can be supported by us& download link capacity e show now that the problef3 is submodular. We first review

Bn, e, and include the definition of independence systems, and cuilar
Qn = {efm € EIR; (Ams Qf.m) < B, (13) functions according to [26]-[28], respectively.
VfeF, VYme M} CE. Definition 1. Independence system: A pait = (£,Z), where&

is a finite ground set and is a collection of subsets &, is an
independence system if and only if it satisfies the followixioms:
(11) Z is nonempty, and € Z.

(2)IfxCcyYand) €Z, thenX € 7.

Define a specific DASH encoding decision sétC &£ with each
elementes,, € A indicating the actual encoding of the:-th
representation for videg. Then, based om4, the expected average
reduction in video distortion for user can be derived as:

F M rm—1 Definition 2. Submodularity: Letf be a finite ground set, and a
D, (A) :Z Z {H (1-— 1ef,je(Amn))} (14) set functiong : 2° — R is submodular if and only if for any sets

f=1m=1L;=1 X CY C €& andforanye € (V\ X), we have

Dmax_Df(Af7m7Qf7m):|7 Q(X)-Fg(y)Zg(XUy)—Fg(Xﬂy), (16)
or equivalently

1o, ecanan) Py

wherep’ is the probability of usern requesting video strearfi and
1|.cx is an indicator function, the value of which isif z € X and g(XU{e}) —g(X) > g(YuUde}) —g()), (17)

0 otherwise. . T -
which captures the diminishing return characteristics fsubat the

Therefore, the original optimization probleRL can be reformu- penefit of adding a new element into the set would decreasheas t
lated as a constrained set function optimization problesrfoHows:  ¢at hecomes larger.

Then, we prove for the problerP3 that the constraints form

N
P3: argmax D(A) = ZDn(A% (15a) an independence system and the objective function is moaoto
AcCE el submodular.
s.t. Proposition 1. The DASH server encoding rate and power con-
rM straints in Eqg. (15b) and Eq. (15c), respectively, form adejpen-
Aclr= {A/ CED D ey ew (15b) " dence system on the ground geas defined in Eq. (10).
f=1m=1
Proof: Here, we only provide the justification that the total
“Ry(Apm, Qpm) < RmaX}y encoding rate constraint in Eq. (15b) is an independenceersys
o The proof of the total encoding power constraint in Eq. (1¢sm) be
AcTo=dACE 1/, , 15¢c) O©btained in a similar way.
“ { - ;T; | fm&A (150) From the definition ofZg, it is obvious that it is not empty and

(¢ is an element ofZr. For any X C ), the total encoding rate
“Cr(Afym, Qfm) < Cmax}, based onY would be smaller than or equal to that based)anlf
) Y € Ig, then the total encoding rate based Y¥rwould not exceed
CrOfoms Qpom) = K@ pm +1)” -0 (Qf.m) - € (15d) Rmax, Which in turn indicates that the total encoding rate based o
AT X does not excee®Rn.x and X' € Zg. It is thus checked that both
VfeF, vmeM. axioms (11) and (12) in Definition 1 are satisfied b, and the total




encoding rate constraint in Eq. (15b) forms an independegsteem Algorithm 1 (w, k)-weighted cost benefit greedy algorithm
(€,IR). u For all initial sets4°® C & such that.A°| = k, implement the following

Proposition 2. The objective function in Eq. (15a) is a monotone Wellrﬂtr;:g{;ﬁ)sr:,benem greedy procedure.
submodular function over the ground setas defined in Eq. (10). 1) Sete? _ £andt = 1.
Greedy Search lteration: (at stept = 1,2,3,...)
1) Given a partial solutiomd*—1, find
DA™ ' U{efm}) — DAY
max .
efmEEtTI\ALT Ry(Afm» Qfm)
DA™ U {esm}) — DAY

Proof: According to the property of monotonicity and sub-
modularity, the summation over a set of monotone submodular
functions is also monotone submodular. Thus, to prove theotome
submodularity ofy"""_, D, (A), we only need to prove that the set
function D,,(A) is monotone submodular for every usee N

€ft,me — AIg

1) Monotonicity: For any X C £ and anyes., € £\ X, we +(1-w)- O O (18)
have D,,(X U {ef.m}) > D,(X), since encoding and providing a o PR e fom
new representation at the DASH server will at least not digitae Update and Determination: Lo
aggregate video quality (i.e., the average video distorteEduction 1) SetA” = A U{es, m, }, andet = £, if
will not decrease). Therefore, for any two placement géts ) C roM
€, we haveD,()) > D,(X), which indicates that the objective > D e, .ccat-10ges, 1, 1) - Brfims Qfim) < Rmax, (19)
function in Eq. (15a) is monotone non-decreasing. f=1m=1

2) SubmodularityConsider any two DASH encoding decision sets and
X C Y C €&, and suppose adding a new elemept, € £\ to both F M
sets. Ifes., ¢ Qn, theney ,, is not feasible and for both sets the Z Z 1|ef7me(Af,71U{eftwm}) “CrAfm»> Qs m) < Cmax; (20)
marginal values of addingy,, is zero. Ifes,, € Q,, we consider f=1m=1

the following two cases.
i) There existser,, € (Y N Q) with y < m, i.e., based on the
encoding decision s€Y usern downloads a better or equal quality

otherwise, setd! = At~1, and&t = €71\ {ef, m, }-
2) If £\ At # 0, sett =t + 1 and return to the greedy search
iteration; otherwise, stop the iteration.

representatiory of video streamf from the DASH server. In this
case, it can be derived from Eq. (14) tiat (YU{ef,m })—Dn (V) =
0. On the other hand, due to the monotonicity, for the decisien

The solution is obtained and output s which has the largest value
of the objective functiorD(A) =~ - D»(A) over all the possible
choices of the initial setst® C &.

X we always haveD,,(X U {efm}) — Dn(X) > 0. Therefore, the
relationship of both marginal values is given By, (Y U {efm}) —
Dn(Y) < Dn(X U{efm}) — Dn(X). ical approximation guarantees, we develop (ank)-weighted cost
i) There existses, € (¥ N Q,) with y > m, i.e.,, based on penefit (WCB) greedy algorithm [30]. The two system paramsete
the encoding decision s€Y user n downloads a worse quality w € [0,1] andk = 0,1,2,..., specify the relative weight between
representatiory of video streamf from the DASH server. In this the rate and the power cost and the size of the initial sqpertiely.
case, it can be derived from Eq. (14) that.(Y U {esm}) — Specifically, the proposefv, k)-WCB greedy algorithm considers
Dn(Y) = p}Dy( Ay Qry) — Dy(Apm,Qfm)]. On the other all feasible initial setsd” C £ of cardinality k. Starting from any
hand, for the encoding decision s&t, since X C ), usern can initial set A°, at stept, the weighted cost benefit greedy procedure
only download representation of video streamf with = > y. iteratively searches over the remaining §ét' \ A"~ and inserts
Thus, the resulting marginal value I3, (X U {e,m}) — Dn(X) into the partial solution4‘~! an element according to Egs. (18)-
PHDr (A Q) — Dy(Apm, Qrm)]. Sincex > y, we have (20), until the remaining set reduces to an empty set. Inrotloeds,
Ri(Afy, Qrny) > Rf(Afe,Qre) and thus Dy(Xs,,Qxy) < this procedure adds at each iteration an element that mzesmi
Dy(Af,2,Qy,z). Therefore, the relationship of both marginal valueshe weighted marginal benefid(A*~! U {e;.n}) — D(A™ ") and
is given by Dy, (YU{ef,m}) = Dn(Y) < Dn(XU{efm}) —Dn(X).  costRs(As.m, Qrm)s Cr(Af.m, Qr.m) ratio among all elements still
For both cases, the marginal value decreases as the set d®caiffordable with the remaining rate and power budget untilnmare
larger, which satisfies Eq. (17) in Definition 2. Hence, thbrsad- element can be added. The propogedk)-WCB greedy algorithm
ularity is proved. B then enumerates all initial set4® C £ of cardinality k, augments
In Proposition 2, we have justified that Eq. (15a) is @ monach of them following the cost benefit greedy procedure safektts
tone submodular function. Further observing the encodaig and the initial set achieving the largest value of the objecfivaction
power constraints in Egs. (15b) and (15c), each elemgnt € D(A) =3 _. Dn(A) and determines its solution set as the final
A has non-uniform rate and power cost &f(\sm,Qfm) and encoded representation sdt We finally note that in some extreme
Cy(Af,m; Qrm), While the DASH server has the encoding bitratgases, the algorithm reduces to be pure rate cost benefit when
and CPU load budget aRmae and Cinaz, respectively. These two and pure power cost benefit when= 0. The complete algorithm is

constraints can be viewed as two knapsack constraints ofinike
ground set. Therefore, the optimization probleR8is a submodular
maximization problem subject to two knapsack constraiStsch a
problem is generally NP-hard and requires exponential coatipnal
complexity to reach the optimum by either integer lineargoam-
ming or other optimization methods [29]. But submodulagtysures
that the greedy algorithm provides an effective approxiomato the
optimal solution of this NP-hard problem.

C. Approximation Algorithm

To efficiently solve the constrained submodular maximaati
problem in Eq. (15) with polynomial time complexity and theb

described in Algorithm 1.

The proposed algorithm can be implemented in the represmmta
selection module in Fig. 1. Afterwards, if there is no dramahange
of the source videos or the network conditions, it is onlyessary to
run the proposed algorithm periodically with a relativetyigj period
(e.g., tens or hundreds of minutes) in order to adapt to plessi
changes in the system; otherwise, the proposed algorithimbevi
re-implemented whenever a dramatic change occurs. In tefms
computational complexity, the running time of the propoakegrithm
is O((FM)*'N), indicating a polynomial time complexity and
a very short additional implementation delay. As the valdeko
increases, the running time of the proposed algorithm besdonger



while the performance improves. As shown in [30], when> 3
and in the case of one active knapsack constraint, the tiieare
worst-case performance guarantee of the cost benefit tdgoris
1—1/e, i.e., its solution achieves at least the ratie- 1/e ~ 0.632
of the optimal objective value. Although there is no suclothkécal
guarantee for the case when both knapsack constraints t@re, &s
will be shown in the simulation results in Section VI, theaithm’s
performance approximation ratio is generally abévé in practice.

VI.

In this section, we evaluate the performance of the DAS Hersgam-
tation selection optimization framework, and derive siengliidelines
for effective content production in adaptive streamingtesys under
different simulation settings.

EXPERIMENTAL RESULTS

A. Simulation Settings

We implement the proposed framework on a 48-processor rserve

with 252 GB of RAM using Linux 3.1 kernel, where each process
is an Intel Xeon CPU E5-2680 at a clock frequency of 2.50 GHe.

suppose that there arg = 10 users and their download bandwidth

B, is randomly distributed in the rate range [&f 10] Mbps. Three
test video sequenced'(= 3, Crowd Run Tractor, and Sunflowey

with 1080p resolution 1920 x 1080) [31] are selected as the sourc
video streams to be encoded at the DASH server. These tlsee
video sequences correspond to different content types, dense
object motion forCrowd Runsequence, camera movement and me
um object motion forTractor sequence, and small object motion fo
Sunflowersequence, respectively. Typically, the distortion deseea

faster with the rate and the CPU load when the video contest ha

larger complexity. We assume that the encoding time of eadbov

frame is limited byAT = 0.03 s, and the constant maximal distortion,
is set asDmax = 500. At a frame rate of 30 fps, we further encode

each video sequencginto M = 63 representations with the coding
parameter paiAs,m, Qrm) € A x Q, whereA = {2,6,10} and

the corresponding QP value ranges between 30 and 50. Wesffurt
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Fig. 2. (a) GivenRmax = 30 Mbps, average distortion reduction per user vs.
maximum CPU load constraifimax; and (b) givenCmax = 3 THz, average
distortion reduction per user vs. maximum encoding bitcatestraint Rmax -

be made from the curves in Fig. 2(a). Given a weighenlarging the
size of the initial se& from 0 to 2 incurs higher average distortion
reduction per user for all values @f'max, but the computational
omplexity also increases fro@(FMN) to O((FM)?N). On the
other hand, wherk is fixed, the algorithm performance is affected
by the values of the maximum CPU loa@n.x and the relative
cost weightw. Obviously, the average distortion reduction per user
improves if we increase the maximum CPU la@g,.. at the server.
lg addition, it can also be seen that when the maximum CPU imad
small (e.9.Cmax = 1 THz), the algorithm with the minimum weight
w = 0 (power cost benefit, e.g., 1-approximation ratio for= 2)
routpen‘orms the weight assignmentwf= 1 (rate cost benefit, e.g.,
0.971-approximation ratio fok = 2), and vice versa. The reason
is as follows. For smallCi,.x, the power (CPU load) becomes a
scarcer resource compared to the rate, which causes the @fRU |
constraint to be active while the encoding bitrate constreémains
In this case, the power cost benefit greedy alyorithat
adds an element maximizing the marginal benefit and powetr cos
ratio at each iteration step would achieve better perfooman

h The maximum CPU load at the server is then fixedat.x = 3

inactive.

assume that the popularity of the three sequences followsph zTHz, while the value of maximum encoding bitrate varies frofn

distribution with parameter 0.56 [32], i.e., the requestimobabilities
of Crowd Run Tractor, and Sunflowersequences are 0.45, 0.31, an
0.24, respectively.

B. Simulation results of the Proposed Algorithm

In this subsection, we illustrate and analyze the simutatesults
of the proposedw, k)-WCB greedy algorithm under different max-
imum bitrate and power (CPU load) constraints, and invastighe
impact of the algorithm parametess and k£ on the overall perfor-
mance. The optimal solution of the ILP2 obtained by the generic
solver IBM ILOG CPLEX [11] is also given as the benchmark.

In Fig. 2(a), we set the maximum bitrate capacity at the seve
Rimaz = 30 Mbps, vary the value of the maximum CPU loé#t, ..,
and illustrate the average distortion reduction per usdeudifferent
parameter settings of the proposéd, k)-WCB greedy algorithm.
The optimal solution of the ILFP2 obtained by the IBM ILOG
CPLEX solver [11] using a branch and bound method with a ve
high (i.e., exponential) time complexit@ (27 22V is given as a
performance upper bound. It confirms that the proposed ithgor
achieves a good approximation performance but with a lower, (
polynomial) time complexityO((FM)*** N). Two observations can

1please not that this popularity distribution is chosen asillastrative
example. The proposed algorithm can be applied to any otbpularity
distribution, which is also experimentally justified in TablV in Section
VI-D.

Mbps to 50 Mbps. In this case, it can be seen in Fig. 2(b) that for

ahe same initial set seizk, the two curves corresponding = 0

andw = 1 intersect at a certain point of maximum encoding bitrate.
To the left of this intersecting point, the encoding bitrete scarcer
resource and the rate cost benefit greedy algorithm avith 1 would
achieve a better performance, and vice versa.

Then, the average distortion reduction per user versushiveigs
shown in Fig. 3 for the cases @,... = 30 Mbps, Crraz = 2,3,4
THz, andk = 0, 1, 2, respectively, when both the encoding bitrate
and CPU load constraints become active. Again, for a givéuevef
w, largerk indicates higher average distortion reduction. In additio
for all values ofk, there exists an optimal weight (e.g:; = 0.001
in Fig. 3(b)) achieving the peak average distortion reduncti0.988,
0.995, and 0.998-approximation ratio far= 0, 1 and 2), which
indicates the best tradeoff between the rate and power chshw
both resources are limited. Through comparison of Figs)-3(@),
it can be concluded that such optimal weight value is affected
By the allocation ofR 4. and Ch,qz. Since the maximum encoding
bitrate constraintR,,.... is fixed in Fig. 3,w™ would become larger
with the increment of the maximum CPU lod&d,.... We show the
average distortion reduction per user versus weigleurves for the
cases 0fCree: = 3 THz and R.a = 20, 30,40 Mbps in Fig. 4,
where the similar conclusion can be drawn.

In terms of system design, the messages that can be condhoded
the above observations of the propogedk)-WCB greedy algorithm
are in the following. 1) The size of the initial size adjusts the
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Fig. 4. GivenCmax = 3 THz, average distortion reduction per user vs. weightzhen maximum encoding bitrate constraif,.x is set to (a) 20 Mbps,
(b) 30 Mbps, and (c) 40 Mbps.

tradeoff between the average distortion reduction perdmee and maximum encoding delay and power constraints, its perfoomas
the computational complexity. A larger number bfimproves the upper bounded by the baseline scheme 3). In addition, threrena
algorithm’s performance, but at the cost of a longer exeautime. remarks. First, the ILP formulations in [2], [4] and [10] dotrinclude
2) The relative weightv controls the tradeoff between the rate andhe rate control consideration. To make a “fair” comparjsore
power cost. Comparing the rate and power resources, wherathe assume that the ground set of all possible representatoakdady
resource is scarcer, a larger weight value should be alddatmake pre-encoded with known bitrates, qualities and power caopgions

the proposed algorithm more rate efficient; and vice versa. when solving these ILPs. Second, in practice, the algorithnming
time is another performance metric that has the same or even
C. Performance Comparison greater importance than the average distortion reductemuser.

The computational complexity of the baseline schemes I3

greedy algorithm is compared with the other four baselifeses: exponential since they all have to solve a large spale ILP.vidlie
1) the optimal solution of the ILAP2 solved by the generic solver ShOW_ Iat_er the advantage Of. the proposeq algorithm over itRe |
IBM ILOG CPLEX [11], which provides a performance upper bdun solution in terms of the algorithm running time.
2) the power only solution, i.e., the solution of the IIEBR2 without First, we fix the constraint of the maximum encoding bitrate a
the maximum encoding bitrate constraint; 3) the rate onlytem, the server asR,... = 30 Mbps, vary the value of the maximum
i.e., the solution of the ILAP2 without the maximum power (CPU CPU loadC),., from 1 THz to 5 THz, and show the comparison
load) constraint; and 4) the popularity based allocatiogo@thm, of the average distortion reduction per user, the actual tstcoding
which allocates both the encoding bitrate and the encodiPg {©ad bitrate, and the actual total encoding CPU load achievediffsreint
budgets for videos in proportion to their popularity, andrtlgreedily algorithms in Figs. 5(a), 5(c), and 5(e), respectively. @ared with
adds encoded representations for each video until eiteentiximum the optimal solution, the propose@, k)-WCB greedy algorithm
bitrate or the maximum CPU load of that video is reached. with the optimal weightv = w™* can achieve a good approximation
The relationship between these baseline schemes and #tegxi performance for the representation selection at the DASkesén
works on server-side DASH representation selection is Hewfe. terms of the largest average distortion reduction per wgeite both
Fundamentally, the ILP formulation proposed in [2] can bewgd the maximum encoding bitrate and the maximum encoding CPU
as a special case of probleR2 without the maximum encoding load constraints are satisfied. For all different valuesCof,., for
delay and bitrate constraints. Therefore, the correspgndigorithm example, the proposef@lv*, 0)-WCB greedy algorithm can achieve
performance is upper bounded by the baseline scheme 2). ©n 8h0.955-approximation ratio. Since the optimal distortreduction
other hand, Ref. [10] validates the optimized represemtatbbtained per user in MSE is around 400, this approximation ratio means
by solving the ILP in [4] in a practical scenario, by genargta 24- near-optimal performance that is only less than 20 lower iBEM
hour streaming scenario based on YouTube traces and deattstiss than the optimal one. Whe#k is enlarged to2, this worst case
for Hulu and Netflix. Since the ILP formulation proposed i) #hd approximation ratio would be improved to 0.993, which irades
[10] can be viewed as a special case of problegwithout the a very good approximation of the optimal solution. It can betfer

In this subsection, the performance of the propogedk)-WCB
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constraint is not taken into account. Whé}, ... is large andR a2
becomes the only active constraint, its performance islainm the
optimal solution of the ILPP2 However, whenC,,.. is reduced,
since it is not power optimized, the total CPU load consumeduth
representation selection algorithm exceeds the maximdandable
CPU load Ciq4, i.€., its solution is infeasible in practical power
constrained system design. Similar observation can be rfrade
Figs. 5(b), 5(d), and 5(f), where the maximum CPU load at trees
is fixed atCmax = 3 THz, while the value of maximum encoding
bitrate varies froml0 Mbps to 50 Mbps.

In order to gain further insight into the difference betwe@e
algorithms, in Table II, we list the comparison of the repraation

seen that the proposdd*, k)-WCB greedy algorithm outperforms selection results, in terms of the coding parameter @&jr,.., Q f,m )

the popularity based allocation algorithm. The reason &t,tin
addition to the popularity, the video content informatianalso a
very important factor in accordance with which both the efico

and the corresponding encoding bitrdatg ,, and CPU loadCy,.,,
when Rmax = 30 Mbps andChnax = 3 THz. It can be seen that
the representations selected by the propo&ed 2)-WCB greedy

bitrate and CPU load budgets should be properly allocatedngm algorithm do not deviate much from the optimal represeoiatiof the

different videos. WhenC,.. is small (e.g.,1 and 2 THz) and
becomes the only active constraint, the power only solufitne

ILP P2, while a 0.998-approximation ration is achieved with bdté t
maximum encoding bitrate and CPU load constraints satisfiae

solution of the ILPP2 without maximum encoding bitrate constraint)fundamental reason why the propoged, 2)-WCB greedy algorithm

achieves similar average distortion reduction per usehéoojptimal

outperforms the popularity based allocation algorithmhis tollow-

solution of the ILPP2. In this case, even though there is still soméng. In addition to the consideration of the video popujadnd the

encoding bitrate budget remaining for more video reprednmts, the
actual total encoding CPU load of the IIH2 with/without maximum
encoding bitrate constraint reaches the maximum CPU (©ad.,

which prevents from encoding any additional representatioe to
the lack of CPU capacity. On the other hand, wh@&n,. is larger
(e.g.,3, 4, and5 THz) and the bitrate becomes a scarcer resource,
power only solution outperforms the optimal solution of the P2.

However, it should be noted that the total encoding bitrakeeeds
the maximum encoding bitrate constraiRt,... = 30 Mbps. The
rate only solution (the optimization based representatietection
algorithm in [4]) achieves a stable average distortion céda per

bandwidth distribution of different users, the represgoteselections
for different videos can be further adapted by the proposgatithm
according to the video content information. For video seges with
small motion (e.g.Sunflowey, the proposed algorithm only encodes
one basic representation with a relatively small bitratéhatDASH
therver, while for video sequences with larger motion (eGyowd
Rur), a much greater number of representations with variouatbit
allocations are encoded in order to gain larger distorteafuction.
For the rate only solution in [4] without the maximum encafdidPU
load constraint, almost all the selected representatioessacoded
with larger search range& such that a smaller encoding bitrate

user for different values o€,.., since the maximum CPU load is required for the same distortion reduction but at the ajsa
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TABLE I
REPRESENTATION SELECTIONS OF DIFFERENT ALGORITHMS WITH GEN Rmax = 30 MBPS ANDCmax = 3 THZ.
Algorithm Video f Rep. IDm | Afy | QP | Ry (Mbps) | Cf ., (THz)
Crowd Run 1 2 38 6.82 0.247
Crowd Run 2 6 40 4.76 0.305
Crowd Run 3 6 42 3.39 0.300
Optimum Crowd Run 4 6 43 2.91 0.297
Crowd Run 5 6 44 2.42 0.293
>Ry, =29.6 Mbps | CrowdRun 6 10 45 2.06 0.414
> Cfm =299 THz Tractor 1 10 38 3.19 0.422
Tractor 2 10 42 2.04 0.415
Sunflower 1 6 32 2.07 0.299
Crowd Run 1 6 38 6.48 0.312
Crowd Run 2 2 40 5.04 0.239
Crowd Run 3 6 42 3.39 0.300
(w*,2)-WCB greedy [ Crowd Run 4 6 44 2.42 0.293
Crowd Run 5 6 45 2.07 0.290
> Ry, =29.9 Mbps | Crowd Run 6 2 48 1.32 0.213
> Cfm =3.00 THz Tractor 1 6 37 4.03 0.302
Tractor 2 10 42 2.04 0.415
Tractor 3 2 50 1.12 0.215
Sunflower 1 10 32 2.02 0.418
Crowd Run 1 2 38 6.82 0.247
Crowd Run 2 2 40 5.04 0.239
Crowd Run 3 6 42 3.39 0.300
Power only solution Crowd Run 4 6 43 291 0.297
Crowd Run 5 6 44 2.42 0.293
> Ry, =34.9 Mbps | Crowd Run 6 6 45 2.07 0.290
> Cfm =298 THz Tractor 1 6 35 5.24 0.308
Tractor 2 6 40 2.91 0.297
Tractor 3 10 42 2.04 0.415
Sunflower 1 6 32 2.07 0.299
Crowd Run 1 10 38 6.45 0.431
Crowd Run 2 10 41 4.05 0.423
Crowd Run 3 10 43 2.89 0.418
Rate only solution Crowd Run 4 6 44 2.42 0.293
CrowdRun 5 10 45 2.06 0.414
> Ry = 30.0 Mbps Tractor 1 10 34 5.43 0.429
> Cfm =3.66 THz Tractor 2 10 39 2.85 0.421
Tractor 3 10 42 2.04 0.415
Sunflower 1 10 33 1.79 0.416
Crowd Run 1 10 40 4.74 0.426
Crowd Run 2 10 43 2.89 0.418
Popularity allocation | Crowd Run 3 10 45 2.06 0.414
Tractor 1 10 34 5.43 0.429
>Ry m =21.9 Mbps Tractor 2 10 42 2.04 0.415
> Cfm =2.82THz Sunflower 1 6 30 2.75 0.304
Sunflower 2 10 32 2.02 0.418

much larger power consumption. By doing so, the maximum CPpfoposed algorithm is suitable for such delay sensitiveieguons
load constraint is violated. Similarly, the power only g@ua without since it is capable of achieving a near-optimal solutiorhimita short
maximum encoding bitrate constraint allocates more tatabding period of time.
bitrate than the maximum budgétrac. Fig. 7(a) illustrates the comparison of the running timesusr
The algorithm running time is another performance metrigctvh the number of representations achieved by the proposeditalgo
has the same or even greater importance than the averagdidist and the generic solver IBM ILOG CPLEX [11] under different
reduction per user. In Fig. 6, we compare the actual runnimg t settings of error bounds (relative optimality tolerancés)Fig. 7(b),
of the proposed(w™,0)-WCB greedy algorithm and the optimalwe accordingly show the algorithm performance after spendhe
solution of the ILPP2 solved by the generic solver IBM ILOG corresponding running time, in terms of the approximatiatior to
CPLEX [11], and show the impact of the number of represemati the optimal solution. The running time of the generic solean
F x M and the number of user® on the running time. Through be greatly reduced by enlarging the relative optimalityetahce
the fitted curves in Fig. 6, the previous theoretical analyfi the (from 0.01 to 0.1 in Fig. 7(a)), which comes at the cost of the
computational complexity is well justified. That is, the IlsBlution reduction of approximation ratio (the green curve is gehetzelow
has a very high exponential time complexi@(2”*"2"), while the blue curve in Fig. 7(b)). However, the curves of the rogrtime
the proposedw™, 0)-WCB greedy algorithm achieves a linear timeversus the number of representations illustrate that eyeselting
complexity O(F M N). In other words, the proposed algorithm hasn error bound, the computational complexity of the gensaiver
a much lower increasing rate and scales better than the Ilufiga s still exponential. In contrast, the proposed algorithem achieve a
Considering a practical video streaming system with a langmber comparable approximation ratio (mostly larger than theegreurve
of videos, representations and users, the long waiting foneghe in Fig. 7(b)), while the running time is linear with the nunnbef
IBM ILOG CPLEX solver to obtain the optimal representatiorrepresentations and significantly shorter than the gesetier under
selection is intolerant and thus infeasible in practicecdntrast, the different error bound settings.
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TABLE Il
INDICES AND NAMES OF THE TEST VIDEO SEQUENCES

Index f 1 2 3 4 5 6 7 8
Video Crowd Run  Tractor Sunflower Aspen Blue Sky  Controlled Burn nnéx Ducks Take Off
Index f 9 10 11 12 13 14 15
Video In To Tree Life Old Town Cross Park Joy Riverbed Station2 Adawen Pass
TABLE IV

D. Performance Evaluation for Larger System Settings

Finally, we conduct simulations for larger scale settingstotal,
F =15 test video sequences with 1080p resoluti®®2() x 1080),
available at [31], are selected as the source video streanize t
encoded at the DASH server. They correspond to differeniamot
and video types (such as, sport, documentary, cartoon amik)no
The indices and names of these video sequences are listatlmTI.
The encoding time of each video frame is still limited A" = 0.03
s, and the constant maximal distortidh,.x = 500. At a frame rate
of 30 fps, each video sequengeis encoded intdl/ = 63 represen-
tations with the coding parameter p@i; .., Qr,m) € A x Q, where

COMPARISON OF AVERAGE VIDEO QUALITY INPSNRUNDER DIFFERENT
POPULARITY DISTRIBUTIONS

Algorithm Zipf distribution | Zipf distribution | Uniform
(parameter 0.96)| (parameter 0.56)

Optimum 30.34 31.07 31.65
(w*,1)-WCB greedy 30.23 30.93 31.49
(w*,0)-WCB greedy 30.21 30.91 31.46
Power only solution 30.34 31.07 31.65
Rate only solution 30.37 31.11 31.68
Popularity allocation 29.87 30.63 31.15

A = {2,6,10} and the corresponding QP value ranges betwe@nder to reduce the encoding bitrate while achieving theeswgiteo

30 and 50. For the video popularity, we investigate threéediht
popularity distributions, i.e., the Zipf distribution Wwiparameter 0.96
and 0.56, and the uniform distribution. The number of ussral$o
enlarged toN = 100, where each user’s download bandwidgh is
randomly distributed in the range ¢f, 10] Mbps.

distortion but with larger power consumption; and vice geQverall,
the proposed algorithm complies well with these design ejinds
and scales well with the size of the system. Since it coulth&r
strike the optimal tradeoff both between the rate and povest,c
and between the algorithm’s performance in terms of theaaeer

In Table IV, we compare the average video quality in PSNHRistortion reduction per user and the delay requiremetitsttierefore

obtained by different representation selection algorghunder the
three different popularity distributions, whé®,.x = 250 Mbps and

Cmax = 25 THz. Although the system settings scale with a larger

number of videos and users, it is again verified that for aiyparity
distributions the propose@, k)-WCB greedy algorithm outperforms
the popularity based allocation algorithm and achieveghdriPSNR
value. This PSNR performance is very close to the performapper
bound guided by the optimal solution of the ILH2 that is solved
by the CPLEX [11], but the actual running time is much shor@am
the other hand, the power only solution without maximum elivop
bitrate constraint and the rate only solution in [4] with@o&ximum

useful for practical system design.

VII. CONCLUSION

This paper has studied an encoding delay, rate and power con-
strained representation selection problem for delay seadDASH
streaming in order to maximize the expected aggregate \ddstor-
tion reduction. Based on this optimization problem, we haneided
an ILP formulation to achieve the performance upper bourtdnfin
exponential time complexity, and an equivalent constiaisigomod-
ular maximization that is used to develop an approximaterékym
with polynomial time complexity. Simulation results hauestified

CPU load constraint would achieve a PSNR value at least NSANOkY i the proposed weighted rate and power cost benefit grilgdy

than the optimal solution of the ILP2. However, these two schemes

are either not rate-efficient or not power-efficient, in tlemse that

rithm could achieve a near-optimal performance withoutoighticing
a long additional computation delay, which is thereforgahie for

they actually need to consume more bitrate or CPU load reesurdelay sensitive video streaming. Our future work will stuthe

than the server can afford in order to achieve only slightqparance
improvement. Therefore, the proposed algorithm is sigtédt delay
sensitive DASH streaming, since it could strike a trade@ffween
the algorithm’s performance and running time while satigfythe
delay, rate and power constraints at the server.

In practice, the results shown in Fig. 5 and Tables Il and IMldo
further provide some design guidelines for selecting theregen-
tations with corresponding encoder parameters, as folldydn a
typical delay sensitive streaming scenario, the rate amcepgCPU
load) allocation among videos is not only dependent on tipeijaoity
distribution, but also affected by the video content infation. For
the same video type, straightforwardly, a larger amountabé ror
power budget needs to be allocated for more popular videdsleW
for different video types, a larger amount of rate or poweddai
needs to be allocated for videos with larger motion or morepex
content. 2) The number of representations and the corrdappn
encoder parameters per video should also be content-awdaeger
number of representations with more QP configurations neetie
dedicated to videos with larger motion or more complex cainte

3) When the rate resource is scarcer than the power resoarce,

larger search rangg should be selected for each representation

online adaptation algorithms for dynamic resource prowisig in
the server-side representation selection when takingaotount the
dynamics of networks and users, and the power consumptisheof
mobile devices [33] while transcoding the received DASHatns to
support device-to-device communication.
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