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Deep Hybrid Similarity Learning for Person
Re-identification

Jianqing Zhu, Huanqiang Zeng, Shengcai Liao, Zhen Lei, Canhui Cai, and LiXin Zheng

Abstract—Person Re-IDentification (Re-ID) aims to match
person images captured from two non-overlapping cameras. In
this paper, a deep hybrid similarity learning (DHSL) method
for person Re-ID based on a convolution neural network (CNN)
is proposed. In our approach, a CNN learning feature pair for
the input image pair is simultaneously extracted. Then, both the
element-wise absolute difference and multiplication of the CNN
learning feature pair are calculated. Finally, a hybrid similarity
function is designed to measure the similarity between the feature
pair, which is realized by learning a group of weight coefficients
to project the element-wise absolute difference and multiplication
into a similarity score. Consequently, the proposed DHSL method
is able to reasonably assign parameters of feature learning and
metric learning in a CNN so that the performance of person Re-
ID is improved. Experiments on three challenging person Re-ID
databases, QMUL GRID, VIPeR and CUHK03, illustrate that the
proposed DHSL method is superior to multiple state-of-the-art
person Re-ID methods.

Index Terms—Metric learning, convolution neural network,
deep hybrid similarity learning, person re-identification (Re-ID)

I. INTRODUCTION

Person Re-IDentification (Re-ID) plays an important role
in video surveillance for public safety [1]. However, it is a
challenging problem since person images are usually with low
resolution and partial occlusion and contain large intra-class
variations of illumination, viewpoint and pose. See Fig. 1 for
some person image examples. Terefore, how to develop an
effective person Re-ID method becomes a very desirable topic.

The two fundamental problems critical for person Re-ID
are feature representation and similarity metric. For feature
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Fig. 1. Example pairs of images from the QMUL GRID [1], VIPeR [2]
and CUHK03 [3] databases. Images in the same column represent the same
person captured under different cameras.

representation, there are Fisher vectors (LDFV) [4], bio-
inspired features (kBiCov) [5], symmetry-driven accumulated
local features (SDALF) [6], structural constraints enhanced
feature accumulation (SCEFA) [7], color invariant signature
[8], salience matching [9, 10], ensemble of local features
(ELF16) [11], mid-level learning features [12] and convolu-
tional neural network learning features [13], and so on.

For similarity metrics, many machine learning algorithms
are developed to calculate the similarity between a person
image pair, such as ranking support vector machine (Ranking
SVM) [14], partial least square (PLS) [15], Boosting [16],
multi-task learning [17, 18], metric learning [19–27] and
convolutional neural networks (CNNs) [28–37]. Note that the
metric learning and CNN based person Re-ID methods are the
most popular methods, which will be highlighted as follows.

The metric learning based person Re-ID methods [22–
27] learn a matrix with d × d parameters to calculate the
Mahalanobis distance between two d dimensional hand-crafted
features as the similarity measurement between two person
images. However, they are prone to over-fitting on a small
database. Because the number of parameters in a learned
Mahalanobis matrix is square of the feature dimension and this
is a large number. For this, the principal component analysis
(PCA) is usually used for feature dimension compression
before metric learning. However, it is not optimal for metric
learning, since PCA is not jointly optimized with metric
learning. Another solution for feature dimension compression
is proposed in [25], which is able to jointly learn a discriminant
low dimensional subspace and a similarity metric by the cross-
view quadratic discriminant analysis. In [25], although the
number of parameters in the projection matrix is reduced to be
d×s, it is still large, where s is compressed feature dimension.

Most existing CNN based person Re-ID methods [28, 30,
32–37] undervalue the similarity learning, which only apply
the simple cosine or Euclidean distance function to measure
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Fig. 2. The framework of the proposed DHSL method for person Re-ID.

the similarity between a CNN learning feature pair. Moreover,
recently CNN based person Re-ID methods [33, 35, 37]
pay more attentions on the feature learning with a deeper
feature learning module. In addition, several specified layers
are designed for further emphasizing feature learning, such
as attention component [33] and matching gate architecture
[35]. The tendency of undervaluing similarity learning and
emphasizing feature learning leads to two deficiencies. (1)
The simple cosine or Euclidean distance function is not very
discriminative for measuring the similarity between a CNN
learning feature pair. (2) The deeper feature learning module
is, the larger scale training dataset will be required. As a result,
there is still ample room for the improvement on CNN based
person Re-ID methods.

In this paper, an effective deep hybrid similarity learning
(DHSL) method for person Re-ID is proposed. As a CNN
based person Re-ID method, the major contribution of this
paper is to improve person Re-ID performance by reasonably
assigning complexities of metric learning and feature learning
modules in the CNN model. For the metric learning module,
a hybrid similarity function with reasonable parameters is
designed to measure person similarity. For the feature learning
module, a light convolution neural network only with three
convolution layers is applied to extract features. The hybrid
similarity function is realized by learning a group of weight
coefficients to project the element-wise absolute difference
and multiplication of a CNN learning feature pair into a
similarity score. Since both the element-wise difference and
multiplication of a CNN learning feature pair are considered,
the hybrid similarity function is more discriminative than the
simple cosine or Euclidean distance based similarity metric.
Note that the number of parameters in the hybrid similarity
function is only 2 times of the feature dimension, which is
much small than that of the Mahalanobis distance based simi-
larity metric. Consequently, it has been verified from extensive
experiments on three challenging person Re-ID databases (i.e.,
QMUL GRID [1], VIPeR [2] and CUHK03 [3]) that the
proposed DHSL method outperforms state-of-the-art person
Re-ID methods.

The rest of this paper is organized as follows. Section II
introduces the details of the proposed deep hybrid similarity
learning method. Section III presents experimental results and
analyses. Section IV concludes this paper.

II. DEEP HYBRID SIMILARITY LEARNING (DHSL) FOR
PERSON RE-ID

Fig. 2 shows the framework of the proposed DHSL method.
Since the main novelty is embodied in the hybrid similarity
learning module, the hybrid similarity learning module will be
first introduced and then the details of the CNN feature learn-
ing and the objection function construction will be presented.

A. Hybrid Similarity Learning Module

Assuming that the feature pair produced by the CNN feature
learning module is X1, X2 ∈ <d. Now, the question boils
down to the similarity measurement between a feature pair.
In this work, by analyzing the relationship among the Ma-
halanobis, Euclidean and cosine distances, a hybrid similarity
function learned on the element-wise absolute differences and
multiplications of feature pairs is proposed as below.

Firstly, the Mahalannobis and Euclidean distances are for-
mulated in Eq. (1) and Eq. (2), respectively.

d2M (X1, X2) = (X1 −X2)
TM(X1 −X2)

= (vec(M))T vec((X1 −X2)(X1 −X2)
T ).

(1)

d2E(X1, X2) = (X1 −X2)
T (X1 −X2). (2)

The vec(·) function in Eq. (1) is used to rearrange a d× d
dimensional matrix into a d2 × 1 dimensional vector. From
these two equations, one can see that the Euclidean distance
is the summation of d square differences, in which the k-
th square difference is calculated at the k-th dimension. On
the contrary, the Mahalanobis distance includes not only a
linear combination of the d square differences, but also a
linear combination of d2 − d correlations of the differences
and each correlation is calculated between a feature pair at
different dimensions. Hence, it can be easily observed that the
Mahalanobis distance formulation is much more complex than
the Euclidean distance formulation.

In addition to the Mahalannobis and Euclidean distances,
the cosine distance is also one of commonly-used similarity
metrics. Assuming that X1 and X2 have been `2 normalized,
then cosine distance between them can be formulated as
follows:

dcos(X1, X2) = XT
1 ·X2 = (X1. ∗X2)

T · 1, (3)

where 1 = [1, 1, ..., 1]T ∈ <d is a constant vector. To take a
deep insight to the cosine distance, the Mahalanobis distance
in Eq. (1) is further expanded as follows:

d2M (X1, X2) = (vec(M))T vec((X1 −X2)(X1 −X2)
T )

= (vec(M))T vec(X1X
T
1 +X2X

T
2 −X1X

T
2 −X2X

T
1 ).

(4)

From Eqs. (3) and (4), one can see that the cosine distance is
the summation of d correlations, in which the k-th correlation
is only for the cross-correlation between X1 and X2 at the
k-th dimension. On the contrary, the Mahalanobis distance
considers the cross-correlation of X1 and X2 and that of X2

and X1, the self-correlation of X1 and that of X2, in which
both cross-correlations and self-correlations are calculated at
the same dimension and different dimensions. Therefore, it
can be concluded that the cosine distance is a simplification
of the Mahalanobis distance.
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TABLE I
THE NUMBERS OF PARAMETERS IN THE MAHALANNOBIS DISTANCE, THE

EUCLIDEAN DISTANCE, THE COSINE DISTANCE AND THE PROPOSED
HYBRID SIMILARITY, WHERE d IS THE FEATURE DIMENSION.

Methods Mahalannobis
Eq. (1)

Euclidean
Eq. (2)

Cosine
Eq. (3)

Hybrid similarity
Eq. (5)

Parameter number d× d 0 0 2d

Based on the above analysis, the Euclidean or cosine
distance functions that are commonly-used in CNN are simpler
but with lower discriminative ability to measure the similarity
between a CNN learning feature pair. While the Mahalanobis
distance is more discriminative but requires a large number of
parameters (d× d), which is thus not suitable to be integrated
with a CNN directly. Therefore, we propose a hybrid similarity
function that has not only a strong discriminative ability but
also a reasonable number of parameters. The proposed hybrid
similarity function is a linear combination of the element-wise
absolute difference and multiplication between a feature pair
as follows:

dH(X1, X2) =WT
d |X1 −X2|+WT

m(X1. ∗X2), (5)

where Wd ∈ <d and Wm ∈ <d are two group of coefficients
used to project the element-wise absolute difference and
multiplication, respectively.

Table I summarizes the number of parameters in the Maha-
lannobis distance, the Euclidean distance, the cosine distance
and the proposed hybrid similarity. Compared with the Ma-
halanobis distance in Eq. (4), the proposed hybrid similarity
function is much simpler, since it only needs 2d parameters to
take the difference and correlation information between pair
features at each feature dimension into account. Compared
with the Euclidean distance in Eq. (2), the proposed hybrid
similarity function utilizes the absolute difference to replace
the square difference for further simplifying the computation.
In addition, the proposed hybrid similarity function considers
both the element-wise difference and multiplication of a CNN
learning feature pair by learning based coefficients Wd,Wm ∈
<d, it therefore has a stronger discriminative ability.

Furthermore, to learn the proposed hybrid similarity func-
tion, the element-wise difference and multiplication layers
are designed and integrated with the CNN feature learning
module, as shown in Fig. 2. The forward and backward prop-
agations of these two layers, and the corresponding objective
functions are designed as follows.

1) Element-wise Absolute Difference Layer: The forward
and backward propagations of the element-wise absolute dif-
ference layer are formulated as follows:

Diff(X1, X2) = |X1 −X2|, (6)

∂Diff

dXi
1

=

 1, ifXi
1 > Xi

2,
0, ifXi

1 = Xi
2,

−1, otherwise,
and

∂Diff

dXi
2

= −∂Diff
dXi

1

,

(7)
where Xi

1 andXi
2 represent i-th dimensions of X1 and X2,

respectively.

TABLE II
THE PARAMETER DETAILS OF THE CNN FEATURE LEARNING MODULE.

Name Output size
(h× w × c) Neuron Filter

(h× w × c× g) Stride
Pooling

operation
(h× w)

C1 128×48×32 - 3×3×3×32 1 -
B1 128×48×32 ReLU - - -
M1 64×24×32 - - 2 3×3
C2 64×24×64 - 3×3×32×64 1 -
B2 64×24×64 ReLU - - -
M2 32×12×64 - - 2 3×3
C3 32×12×128 - 3×3×64×128 1 -
B3 32×12×128 ReLU - - -
M3 16×6×128 - - 2 3×3
A1 16×1×128 - - 1 1×6

element-wise
abs. difference 16×1×128 - - - -

element-wise
multiplication 16×1×128 - - - -

Parameters h, w, c and g represent height, width, channel and group sizes,
respectively.

2) Element-wise Multiplication Layer: The forward and
backward propagations of the element-wise multiplication
layer are formulated as follows:

Mult(X1, X2) = X1.∗X2, (8)

∂Mult

dX1
= X2 and

∂Mult

dX2
= X1. (9)

B. CNN Feature Learning Module

As discussed before, the propose hybrid similarity function
is more discriminative than the simple cosine or Euclidean
distance based similarity metric. Therefore, we apply a light
CNN feature learning module for balancing the complexities
between metric learning and feature learning modules.

As shown in Fig. 2, the proposed CNN feature learning
module consists of two parameter sharing feature extraction
branches. The way of sharing parameters means the parameters
of each branch are the same, which can be referred in [28, 30,
33, 35]. In each branch, there are three convolution layers
(i.e., C1, C2 and C3), three batch normalization [38] layers
(i.e., B1, B2 and B3), three max pooling layers (i.e., M1, M2
and M3) and one average pooling layer (i.e., A1).

For C1, C2 and C3 layers, the zero padding operation is
applied and 3×3 tiny sized filters are applied for saving filter
parameters. For M1, M2 and M3 layers, the 3×3 max pooling
operation is used. The strides of three convolution layers and
three max pooling layers are set as 1 and 2, respectively. The
A1 layer uses a 1 × 6 average pooling operation to calculate
an average feature map on the horizontal direction to produce
the feature representation of an input image. This strategy is
inspired by our previous work [25], to improve the viewpoint
robustness of the learned features. Moreover, the stride of the
A1 layer is set as 1 to avoid compress features excessively.
In this paper, input images are resized into 128 × 48, then
a recommendation parameter configuration (e.g. C1, C2 and
C3 hold 32, 64 and 128 channels, respectively) for the CNN
feature learning module is applied and its details can be
referred to Table II.
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C. Objective Function Construction

Similar to [28, 29], the person Re-ID problem is transformed
into a classification problem: if a pair of person images holds
the same ID, it will be a positive sample. Otherwise, it is a
negative sample. To find a discriminative projection vector W
to ensure the classification accuracy, we apply a log-logistic
model [39] to construct the objective function for the proposed
hybrid similarity function learning:

W = argmin
W

{ 1
K

[
∑K

k=1
log(1 + e−ykW

TZk )] +
1

2
α||W ||22},

(10)
where W = [Wd,Wm] ∈ <d+d is the hybrid project vector,
α is a constant used to control the contribution of the reg-
ularization item, {(yk, Zk), k = [1, 2, ...,K]} is the training
dataset with K samples, y(.) ∈ {−1, 1} represents a class
label, Z(.) = [Diff,Mult] ∈ <d+d is an integration feature
consisting of element-wise absolute difference (Diff ∈ <d)
and element-wise multiplication (Mult ∈ <d). Note that this
equation is optimized by using the stochastic gradient descent
algorithm [40].

III. EXPERIMENT AND ANALYSIS

To validate the performance, the proposed DHSL method
is evaluated and then compared with multiple state-of-the-art
person Re-ID methods on three challenging datasets, QMUL
GRID [1], VIPeR [2] and CUHK03 [3].

A. Dataset and Evaluation Protocol

QMUL GRID [1] contains 250 pedestrian image pairs, and
each pair contains two images of the same person captured
from 8 disjoint camera views in a underground station. Be-
sides, there are 775 background images that do not belong to
the 250 persons and can be used to enlarge the gallery set.
The experimental setting of 10 random trials is provided by
the GRID dataset. For each trial, 125 image pairs are used for
training, and the remaining 125 image pairs as well as the 775
background images are exploited for testing. The average of
cumulative match characteristic (CMC) [2] curves calculated
on the 10 random trials is employed as the final result.

VIPeR [2] includes 632 person image pairs captured by
a pair of cameras in an outdoor environment. Images in
VIPeR have large variations in background, illumination,
and viewpoint. Our experiments follow the widely adopted
experimental protocol on VIPeR, which randomly divides 632
image pairs into 2 parts: half for training and the other half
for testing, and repeats the procedure 10 times to obtain the
average CMC as the final result.

CUHK03 [3] has 13,164 images of 1,360 pedestrians. These
images are captured by 6 cameras over months, in which each
person is observed by two disjoint camera views and has 4.8
images on average in each view. Both manually labeled and
auto-detected pedestrian images are provided in CUHK03. Our
experiments follow the same protocol in [3] as below. The
CUHK03 is split into a training set with 1,160 persons and a
test set with 100 persons. The experiments are conducted with
20 random trials and all the CMC curves are computed with
the single-shot setting.

Fig. 3. CMC curves and rank-1 identification rates on QMUL GRID [1]
(gallery: 125 individuals+775 background images).

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED DHSL METHOD AND

MULTIPLE STATE-OF-THE-ART METHODS ON QMUL GRID [1] (GALLERY:
125 INDIVIDUALS+775 BACKGROUND IMAGES).

Method Rank=1 (%) Rank=10 (%) Rank=20 (%) Reference
DHSL 21.20 54.24 65.84 proposed

SSDAL 19.1 45.8 58.1 2016 ECCV [36]
MLAPG 16.64 41.20 52.96 2015 ICCV [26]
SLPKFM 16.3 46.0 57.6 2015 CVPR [41]

XQDA 16.56 41.84 52.40 2015 CVPR [25]
MRank-RankSVM 12.2 36.3 46.6 2013 ICIP [42]

B. Implementation Detail

The implementation details of the proposed DHSL method
can be described as below. All images in QMUL GRID, VIPeR
and CUHK03 are scaled to 128 × 48 pixels. All the three
datasets are augmented by the horizontal mirror operation.
In addition, the small datasets QMUL GRID and VIPeR are
further augmented by randomly rotating each image in the
range [−3◦, 0◦] and [0◦, 3◦]. For the network training, we
initialize the weights in each layer from a normal distribution
N(0, 0.01) and the biases as 0. The regularization weight α in
Eq. (10) for the two small datasets QMUL GRID and VIPeR
is set as 5 × 10−2, while that for the dataset CUHK03 is
set as 5 × 10−4. The size of mini-batch is 128 including 64
positive and 64 negative image pairs, and both positive and
negative pairs are randomly selected from the whole training
dataset. The momentums are set as 0.9. A base learning rate is
started from 0.001 for QMUL GRID and VIPeR, while a larger
learning rate (i.e., 0.01) is started for CUHK03 to accelerate
the training process. The learning rates are gradually decreased
as the training progress. That is, if the objective function is
convergent at a stage, the learning rates are reduced to 1/10
of the original values, and the minimum learning rate is 10−4.
Moreover, the hard negative mining [29] is performed on
CUHK03, since negative pairs on this big dataset are desirable
to be used as fully as possible.

C. Comparison with State-of-the-Art Methods

1) Result on QMUL GRID: Fig. 3 and Table III show the
performance comparison between the proposed DHSL method
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Fig. 4. CMC curves and rank-1 identification rates on VIPeR [2] (gallery:
316 individuals).

TABLE IV
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED DHSL METHOD
AND MULTIPLE STATE-OF-THE-ART METHODS ON VIPER [2] (GALLERY:

316 INDIVIDUALS). RED, GREEN AND BLUE COLORS REPRESENT THE 1ST,
2ND AND 3RD BEST RESULTS, RESPECTIVELY.

Method Rank=1 (%) Rank=10 (%) Rank=20 (%) Reference
DHSL 44.87 86.01 93.70 proposed

MTL-LORAE 42.30 81.60 89.60 2015 ICCV [18]
EDM 40.91 N/A N/A 2016 ECCV [32]

MLAPG 40.73 82.34 92.37 2015 ICCV [26]
Deep RDC 40.5 70.4 84.4 2015 PR [30]

XQDA 40.00 80.51 91.08 2015 CVPR [25]
FT-JSTL+DGD 38.6 N/A N/A 2016 CVPR [37]

Deep Rank 38.37 81.33 90.43 2016 TIP [34]
SSDAL 37.9 75.6 85.4 2016 ECCV [36]
SCNCD 37.8 81.2 90.4 2014 ECCV [43]
GSCNN 37.8 77.4 N/A 2016 ECCV [35]

SLPKFM 36.8 83.7 91.7 2015 CVPR [41]
IDLA 34.81 76.12 N/A 2015 CVPR [29]

kBiCov 31.11 70.71 82.44 2014 IVC [5]
LADF 30.22 78.82 90.44 2013 CVPR [24]

SalMatch 30.16 65.54 79.15 2013 ICCV [9]
Mid-level filter 29.11 65.95 79.87 2014 CVPR [12]

MtMCML 28.83 75.82 88.51 2014 TIP [17]
DML 28.23 73.45 86.39 2014 ICPR [28]

ColorInv 24.21 57.09 69.65 2013 TPAMI [8]
KISSME 19.6 62.2 77.0 2012 CVPR [21]

and state-of-the-art person Re-ID methods on QMUL GRID
[1]. It can be observed that the proposed DHSL method out-
performs the semi-supervised deep attribute learning (SSDAL)
[36] method by 2.1% rank-1 recognition rates, without using
the assistance of human attributes. Moreover, the proposed
DHSL method consistently outperforms the state-of-the-art
metric learning based methods MLAPG [26], the polynomial
kernel feature map (SLPKFM) method [41] and XQDA [25]
at different ranks. This study shows that even for the small
dataset QMUL GRID, the proposed method DHSL is able to
obtain a promising performance.

2) Result on VIPeR: Fig. 4 and Table IV show the per-
formance comparisons of the proposed DHSL method and the
state-of-the-art person Re-ID methods on VIPeR [2]. One can

see that DHSL outperforms CNN based person Re-ID methods
(i.e. EDM [32], Deep RDC [30], FT+JSTL+DGD [37], Deep
Rank [34], SSDAL [36], GSCNN [35], IDLA [29] and DML
[28]) and metric learning based person Re-ID methods (i.e.,
MTL-LORAE [18], MLAPG [26] and XQDA [25]). For
example, DHSL improves the rank-1 identification rate by
3.96%, 4.37% and 6.27% over EDM [32], Deep RDC [30] and
FT+JSTL+DGD [37], respectively. DHSL beats MTL-LORAE
[18], MLAPG [26] and XQDA [25] by 2.57%, 4.14% and
4.87%, respectively, at rank 1. Moreover, the training of DHSL
is much simpler than FT+JSTL+DGD [37] and SSDAL [36].
Because DHSL does not require a large database to pre-train
the deep CNN, compared with FT+JSTL+DGD [37]. DHSL
also does not need to use additional human attributes to pre-
train the deep CNN as that in SSDAL [36].

3) Result on CUHK03: Fig. 5 shows the performance
comparison between the proposed DHSL method and the state-
of-the-art person Re-ID methods CUHK03 [3].

As shown in Fig. 5(a), DHSL beats the CNN based person
Re-ID methods (i.e. CAN [33], PersonNet [31], EDM [32],
IDLA [29], DeepReID [3]) and the metric learning based
person Re-ID methods (i.e. MLAPG [26], XQDA [25] and
KISSME [21]) on the manually labeled CUHK03 setting. As
shown in Fig. 5(b), on the auto-detected CUHK03 setting,
the similar comparison result is obtained, although the rank-1
identification rate of DHSL is bit lower than that of the CAN
[33] method.

In [37], both the domain individually CNN and domains
jointed in single-task learning with domain guided dropout
(JSTL+DGD) person Re-ID models are trained on a mixture
setting. The mixture setting are constructed by mixing the
manually labeled and auto-detected settings together. Since
the mixture setting is large enough, we trained a thicker
DHSL model. The number of channel in each layer in the
thicker DHSL model are twice of that in the original DHSL
model. For example, the C1, C2 and C3 layers in the thicker
DHSL model hold 64, 128 and 256 channels, respectively. The
thickest layers in individually CNN and JSTL+DGD models
hold 1536 channels, thus the thicker DHSL model is still
thinner than individually CNN and JSTL+DGD. As shown
in Fig. 5 (c), the thicker DHSL obviously outperforms the
individually CNN [37]. Moreover, thicker DHSL obtains a bit
higher rank 1 identification rate than JSTL+DGD.

Based on the extensive experiments on either small datasets
QMUL GRID, VIPeR or large dataset CUHK03, one can
find that the proposed method outperforms both the-state-of-
art CNN and metric learning based person Re-ID methods.
These results validate the effectiveness of the proposed DHSL
method.

D. Analysis of the Proposed DHSL Method

Recall that the proposed DHSL method consists of two
learning modules. In this subsection, we further make a
comprehensive performance analysis to show the effectiveness
of each module in the proposed DHSL method, as follows.

1) Role of the proposed CNN Feature Learning Module:
To validate the effectiveness of the proposed CNN feature
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(a) (b) (c)

Fig. 5. CMC curves and rank-1 identification rates on CUHK03 [3] (gallery: 100 individuals). (a) Manually labeled setting. (b) Auto-detected setting. (c)
Mixture setting, which mixes the manually labeled and auto-detected settings together for obtaining a large training set.

Fig. 6. CMC curves and rank-1 identification rates on VIPeR [2] (gallery:
316 individuals) resulted from three state-of-the-art CNN based person Re-ID
methods and the proposed DHSL method under the element-wise absolute
difference (Diff) and the element-wise multiplication (Mult) learning config-
urations, respectively.

learning module, experiments are conducted under either the
element-wise absolute difference (Diff) or the element-wise
multiplication (Mult) configurations rather than the proposed
hybrid similarity function. By assigning different values to
Wd and Wm in Eq. (5), we can obtain the performance by
considering only Diff (Wm ≡ 0) or Mult (Wd ≡ 0). The
results are shown in Fig. 6. Note that with the Diff or Mult
configuration, the trained CNN based person Re-ID model is
similar to that used in the state-of-the-art CNN based person
Re-ID models (i.e., IDLA [29], Deep RDC [30] and DML
[28]), since these methods train their person Re-ID models on
a single feature space constructed by calculating differences
or multiplications of feature pairs.

From Fig. 6, one can see that the result by using the
specially designed CNN under the Diff configuration is better
than Deep RDC and IDML. Moreover, the result by using the
specially designed CNN under the Mult configuration is also
a bit better than that of DML. This study demonstrates the
effectiveness of the proposed CNN feature learning module.

2) Role of Proposed Hybrid Similarity Module: In addi-
tion to the specially designed CNN feature learning module,
extensive experiments are also conducted to evaluate the ef-

TABLE V
TOP RANKED IDENTIFICATION RATES UNDER DIFFERENT FEATURE

DIMENSIONS ON QMUL GRID [1]. DIM REPRESENTS THE COMPRESSED
FEATURE DIMENSION.

Method Dim Rank=1
(%)

Rank=10
(%)

Rank=20
(%)

Rank=30
(%)

DHSL - 21.20 54.24 65.84 71.28

CNNFeat+PCA+KISSME

16 12.24 41.04 54.96 63.68
32 16.96 47.68 58.64 66.48
64 17.20 44.32 54.80 61.60

128 15.04 39.36 50.48 57.12
256 17.12 40.96 49.68 56.40

CNNFeat+PCA+ITML

16 5.84 25.44 34.00 38.96
32 7.92 29.20 40.16 46.80
64 9.76 35.92 47.44 54.72

128 13.60 42.08 52.96 61.60
256 14.32 44.40 55.68 63.60

CNNFeat+PCA+MLAPG

16 9.76 37.52 50.24 59.12
32 15.76 43.12 56.64 64.24
64 14.96 44.08 57.36 66.08

128 15.60 42.80 57.04 65.28
256 15.36 42.40 56.24 64.96

CNNFeat+XQDA

16 12.88 41.36 54.48 63.20
32 13.52 43.28 55.76 62.96
64 16.08 41.68 54.32 61.12

128 15.60 39.84 49.76 55.04
256 15.60 39.76 49.76 55.04

CNNStru+FC+Mah

16 2.72 22.56 37.76 47.36
32 3.36 24.48 38.64 47.52
64 3.92 26.00 39.04 48.80

128 4.16 25.84 38.56 49.04
256 4.00 26.48 40.00 47.60

fectiveness of the proposed hybrid similarity learning module.
The experiments consist of the following two parts: (1) the
performance comparison between the proposed hybrid simi-
larity function and the Mahalanobis distance based similarity
metrics learned by the state-of-art metric learning methods,
i.e., KISSME [21], ITML [19], MLAPG [26], and XQDA [25],
using the same CNN feature (CNNFeat) that used in the pro-
posed hybrid similarity function; (2) the performance compar-
ison to the similarity metric by incorporating the Mahalanobis
distance function into the proposed specially designed CNN
feature learning module. Moreover, since the dimension of the
feature (i.e., the output of the A1 layer in Fig. 2) extracted by
the proposed CNN feature learning module is 16×128 = 2048
and the number of parameters in the Mahalanobis matrix is
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TABLE VI
TOP RANKED IDENTIFICATION RATES UNDER DIFFERENT FEATURE
DIMENSIONS ON VIPER [2]. DIM REPRESENTS THE COMPRESSED

FEATURE DIMENSION.

Method Dim Rank=1
(%)

Rank=10
(%)

Rank=20
(%)

Rank=30
(%)

DHSL - 44.87 86.01 93.70 95.89

CNNFeat+PCA+KISSME

16 19.24 63.73 80.03 88.20
32 26.68 72.59 85.82 91.87
64 32.25 74.56 86.55 91.74
128 30.76 71.08 82.94 89.27
256 27.37 65.09 77.59 83.26

CNNFeat+PCA+ITML

16 5.82 22.34 30.89 37.50
32 11.93 38.35 49.08 55.79
64 20.19 58.54 71.87 79.30
128 17.15 51.08 63.86 70.76
256 25.57 67.53 80.70 87.18

CNNFeat+PCA+MLAPG

16 16.39 60.28 77.75 85.98
32 23.07 69.40 83.29 89.30
64 29.18 73.13 86.17 91.33
128 28.99 73.48 85.95 91.77
256 28.10 72.69 85.66 91.33

CNNFeat+XQDA

16 23.92 68.26 82.72 89.78
32 28.39 70.09 82.41 89.21
64 28.67 67.34 79.75 86.27
128 26.33 61.42 74.43 81.11
256 23.51 55.32 67.31 74.21

CNNStru+FC+Mah

16 15.16 58.89 75.85 83.96
32 16.90 63.86 79.49 86.93
64 17.34 64.65 79.59 87.03
128 18.64 63.83 79.08 86.90
256 17.91 64.78 79.24 86.33

Fig. 7. CMC curves and rank-1 identification rates on CUHK03 [3] (gallery:
100 individuals).

square of the feature dimension, a feature compression oper-
ation is necessary before the above-mentioned Mahalannobis
distance based similarity metric learning. For that, in exper-
imental part (1), for the methods, KISSME [21], ITML [19]
and MLAPG [26], the PCA is used to compress the feature
dimension, while the XQDA [25] can automatically realize
the feature dimension compression. Hence, these methods are
denoted as CNNFeat+PCA+KISSME, CNNFeat+PCA+ITML,
CNNFeat+PCA+MLPAG, and CNNFeat+XQDA, respectively.
In experimental part (2), the bottom CNN feature learning
module (see Fig. 2, C1→...→A1) is kept the same with that
is used for the proposed hybrid similarity function. Differently,
an additional full connection (FC) layer is integrated after
the A1 layer of the proposed CNN feature learning module
to realize the feature compression. Hence, this method is

denoted as CNNStru+FC+Mah. Moreover, considering that the
feature compression degree has an important influence on the
performance, the experiments are performed under different
compressed feature dimensions. The corresponding results are
shown in Tables V, VI and Fig. 7.

As shown in Tables V and VI, the proposed method ob-
tains higher recognition rates than CNNFeat+PCA+KISSME,
CNNFeat+PCA+ITML, CNNFeat+PCA+MLAPG, and CN-
NFeat+XQDA both on QMUL GRID and VIPeR datasets.
This is because these methods independently optimize the
feature learning and metric learning, while the proposed
hybrid similarity function is able to jointly optimize the
feature learning and metric learning. More specifically, for
CNNFeat+PCA+KISSME, CNNFeat+PCA+ITML and CNN-
Feat+PCA+MLAPG, the feature compression via PCA does
not consider the metric learning in general. For CNN-
Feat+XQDA, although XQDA can find an optimal subspace
for metric learning, it still requires a large number of parame-
ters in the feature compression, which is prone to over-fitting
on a small dataset. On the contrary, the proposed method does
not require a feature compression operation. Consequently,
the proposed hybrid similarity function achieves a superior
performance.

In addition, the proposed hybrid similarity function also ob-
tains obvious improvement both on small (i.e., QMUL GRID
and VIPeR) and large (i.e., CHUK03) datasets, compared
with CNNStru+FC+Mah, as shown in Tables V and VI, and
Fig. 7. Note that for the large dataset CUHK03, only the
compressed feature dimension 128 is learned and denoted as
CNNStru+FC128+Mah, as it has better result on QMUL and
VIPeR datasets. The superior performance achieved by the
proposed DHSL method further indicates that the proposed
hybrid similarity function is more suitable to be integrated
with a CNN for person Re-ID than the Mahalannobis distance
function, since it can save a lot of parameter in the similarity
metric learning so as to relieve the over-fitting problem.

3) Role of the Element-wise Absolute Difference and
Multiplication Complementary Behavior: First, we validate
that it is able to learn a hybrid similarity function by projecting
element-wise absolute differences and multiplications into
similarity scores simultaneously. As shown in the Fig. 2,
there are three parameter shared batch normalization layers in
each feature extraction branch of the proposed CNN feature
learning module, which could limit the scale of output features.
Moreover, the scales of these two features are further adjusted
by the learned parameters (Wd and Wm in Eq. (5)). The Distri-
bution of similarity Scores calculated by projecting Element-
wise Absolute Differences (DoSEAD) with Wd) and the Dis-
tribution of similarity Scores calculated by projecting Element-
wise Multiplications (DoSDM) with Wm) are evaluated, as
shown in Fig. 8. One can see that both on the training and
testing setting of VIPeR [2], the rough ranges of DoSEAD and
DoSEM are [-28.84, -7.79] and [1.715, 19.89], respectively.
This study indicates that the element-wise absolute difference
and multiplication metrics have no large scale difference,
therefore it is able to learn a hybrid similarity function that
considers element-wise absolute difference and multiplication
simultaneously.



8

Fig. 8. Similarity score distributions on VIPeR [2]. DoSEAD represents
the Distribution of similarity Scores calculated by projecting Element-wise
Absolute Differences with Wd in Eq. (5). DoSEM represents the Distribution
of similarity Scores calculated by projecting Element-wise Multiplications
with Wm in Eq. (5).

Fig. 9. CMC curves and rank-1 identification rates on QMUL GRID [1]
(gallery: 125 individuals+775 background images) resulted from the proposed
DHSL method under the element-wise absolute difference (Diff), the element-
wise multiplication (Mult), the simple score fusion (Fusion) of Diff and Mult,
and the hybrid similarity learning configurations, respectively.

Second, we validate the proposed hybrid similarity function
simultaneously learns on element-wise absolute differences
and multiplications is helpful for improving person Re-ID
performance. We evaluate the proposed DHSL method under
the element-wise absolute difference (Diff), the element-wise
multiplication (Mult), the simple score fusion of Diff and Mult
(Fusion), and the proposed hybrid similarity learning (Hybrid)
configurations, respectively. The fusion configuration is to
independently train Diff and Mult person Re-ID models under
the Diff and Mult configurations and then simply summarize
the similarity scores from the Diff and Mult person Re-ID
models as the final similarity score.

It can be observed from the results shown in Figs. 9 and
10 that the CMC resulted from the Fusion method is obvious
better than that resulted from either the Diff or Mult method.
This indicates the element-wise absolute difference and mul-
tiplication play an effective complementary role to each other
for improving the person Re-ID performance. Moreover, it can
be further found that the proposed hybrid similarity method
(Hybrid) outperforms the Fusion method. This is due to the

Fig. 10. CMC curves and rank-1 identification rates on VIPeR [2] (gallery:
316 individuals) resulted from the proposed DHSL method under the element-
wise absolute difference (Diff), the element-wise multiplication (Mult), the
simple score fusion (Fusion) of Diff and Mult, and the hybrid similarity
learning configurations, respectively.

TABLE VII
TOP RANKED IDENTIFICATION RATES UNDER DIFFERENT TRAINING

DATASET SCALES ON QMUL GRID [1].

Training Scale
(Individuals) Rank=1 (%) Rank=10 (%) Rank=20 (%) Rank=30 (%)

50 14.48 42.72 54.96 63.36
75 18.48 46.64 58.64 66.48
100 21.20 51.44 63.84 70.40
125 21.20 54.24 65.84 71.28

fact that the proposed deep hybrid similarity learning method
is able to maximize the complementary effectiveness between
Diff and Mult.

TABLE VIII
TOP RANKED IDENTIFICATION RATES UNDER DIFFERENT TRAINING

DATASET SCALES ON VIPER [2].

Training Scale
(Individuals) Rank=1 (%) Rank=10 (%) Rank=20 (%) Rank=30 (%)

100 30.79 72.78 83.92 88.70
150 34.72 78.86 88.51 92.91
200 41.61 81.90 91.23 94.56
250 41.77 83.54 92.25 95.35
300 44.08 84.97 93.01 95.70
316 44.87 86.01 93.70 95.89

4) Role of Training Dataset Scale: In this experiment,
the number of training person individuals is changed, and the
number of testing person image pairs is kept the same (i.e., 125
testing person individuals on QMUL GRID [1], 316 testing
person individuals on VIPeR [2]).

From the results shown in Tables VII and VIII, one can
observe that the performance of the proposed DHSL method
is increased with the training dataset scale on both QMUL
GRID [1] and VIPeR [2] datasets. Moreover, from the results
on QMUL GRID in Tables III and VII, it can be seen that
the proposed DHSL method trained by only using 75 training
person individuals obtains a better performance than MLAPG
[26], SLPKFM [41], XQDA [25] and MRank-RankSVM [42].
Similarly, from the results on VIPeR in Tables IV and VIII,
it can be found that the proposed DHSL method trained by
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TABLE IX
RUNNING TIME COMPARISON OF DIFFERENT METHODS. FET AND SCT
REPRESENT FEATURE EXTRACTION TIME PER IMAGE AND SIMILARITY

CALCULATION TIME PER IMAGE PAIR, RESPECTIVELY.

Method Mex
CPU:

I7-6820HQ @2.7 Hz
GPU:

NVIDIA Quadro M1000M
FET

(msec/image)
SCT

(msec/pair)
FET

(msec/pair)
SCT

(msec/pair)
DHSL Yes 4.9781 0.0373 0.3640 0.0028

LOMO [25] Yes 10.1297 N/A N/A N/A
ELF16 [11] No 254.6033 N/A N/A N/A

Thicker DHSL Yes 10.3066 0.0749 0.8462 0.0053
JSTL+DGD [37] Yes 111.0322 N/A 5.9347 N/A

only using 200 training person individuals is comparable to
MTL-LORAE [18], MLAPG [26], XQDA [25] and Deep RDC
[30], and is better than the rest methods, such as LADF [24],
MtMCML [17], KISSME [21], IDLA [29] and DML [28],
and so on. These results illustrate that the proposed DHSL
method is less dependent on the training data scale. This is
because the proposed DHSL method has a reasonable number
of parameters.

5) Running Time Analysis: To validate the running time
advantage of the proposed DHSL method, we evaluate the
feature extraction time (FET) per image and similarity cal-
culation time (SCT) per image pair. The software tools are
Matconvnet [44], CUDA 8.0, CUDNN V5.1, MATLAB 2016
and Visual Studio 2015. We re-implemented LOMO 1 [25]
and EFL16 2 [11] feature extraction codes provided by their
authors to evaluate FETs. Both for LOMO and EFL16, the
FET excludes the feature compression running time, since the
initial code does not provide feature compression code. The
pretrained JSTL+DGD 3 [37] model is implemented in the
Caffe [45] deep learning framework. The results are shown in
Table IX.

As shown in Table IX, the summation of FET and SCT
resulted from DHSL is less than half of the FET of LOMO
[25], using the same CPU setup. Moreover, the FETs of DHSL
are only 4.48% and 6.13% of those of JSTL+DGD [37] under
the same CPU and GPU settings, respectively. Even for the
thicker DHSL, its FETs are only 9.28% and 14.26% of those
of JSTL+DGD [37] under the same CPU and GPU settings,
respectively. This illustrates that the proposed DHSL is much
more efficient than state of the arts.

IV. CONCLUSION

In this paper, a deep hybrid similarity learning (DHSL)
method for person Re-IDentification (Re-ID) is proposed. The
superior performance of DHSL is achieved by reasonably
assigning complexities of metric learning and feature learning
modules in the CNN model. In the metric learning module,
the hybrid similarity function is proposed and learned on the
element-wise absolute differences and multiplications of the
CNN learning feature pairs simultaneously, which yields a
more discriminative similarity metric. In the feature learning

1http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo xqda/index.html
2http://isee.sysu.edu.cn/∼chenyingcong/code/demo feat.zip
3https://github.com/Cysu/dgd person reid

module, a light CNN only including three convolution layers
is applied. We further examine the effectiveness of each role in
the proposed DHSL method, e.g., complementary behavior of
element-wise absolute differences and multiplications, training
dataset scale and running time analysis. Experiments on three
challenging person Re-ID databases, QMUL GRID, VIPeR
and CUHK03, show the proposed DHSL method consistently
outperforms multiple state-of-the-art person Re-ID methods.
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