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Two-stream Collaborative Learning with
Spatial-Temporal Attention for Video Classification

Yuxin Peng, Yunzhen Zhao, and Junchao Zhang

Abstract—Video classification is highly important with wide
applications, such as video search and intelligent surveillance.
Video naturally consists of static and motion information, which
can be represented by frame and optical flow. Recently, re-
searchers generally adopt the deep networks to capture the
static and motion information separately, which mainly has two
limitations: (1) Ignoring the coexistence relationship between
spatial and temporal attention, while they should be jointly
modelled as the spatial and temporal evolutions of video, thus
discriminative video features can be extracted. (2) Ignoring the
strong complementarity between static and motion information
coexisted in video, while they should be collaboratively learned to
boost each other. For addressing the above two limitations, this
paper proposes the approach of two-stream collaborative learning
with spatial-temporal attention (TCLSTA), which consists of
two models: (1) Spatial-temporal attention model: The spatial-
level attention emphasizes the salient regions in frame, and
the temporal-level attention exploits the discriminative frames
in video. They are jointly learned and mutually boosted to
learn the discriminative static and motion features for better
classification performance. (2) Static-motion collaborative model:
It not only achieves mutual guidance on static and motion
information to boost the feature learning, but also adaptively
learns the fusion weights of static and motion streams, so as to
exploit the strong complementarity between static and motion
information to promote video classification. Experiments on 4
widely-used datasets show that our TCLSTA approach achieves
the best performance compared with more than 10 state-of-the-
art methods.

Index Terms—Video classification, static-motion collaborative
learning, spatial-temporal attention, adaptively weighted learn-
ing.

I. INTRODUCTION

Video classification is a highly important task, and has
wide applications such as video search, intelligent surveil-
lance, human-computer interaction and elderly care. A recent
statistical study shows that video traffic will be 82 percent of
all consumer Internet traffic by 2021 1. Under this situation,
video classification is urgently required. It has drawn extensive
attention over past several decades, and many works have
been proposed for effective approaches and representative
benchmarks [1]–[3].

The main challenges of video classification come from
three aspects: (1) A large portion of video categories have
unconstrained content involving various objects. For example,
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many objects (e.g. flowers, cakes, knifes) appear in the scene
of “birthday party”, which make the video content of this
category very complex and hard to be recognized. (2) Videos
belonging to the same category may have greatly different
context information. For example, “birthday party” can be
held in a dinning hall with tables, or in a backyard with
green grass. (3) Videos belonging to different categories may
have similar content. For example, “soccer juggling” and
“soccer penalty” share the same content of soccer, athletes,
and green grass. These challenges lead to great difficulty in
video classification. Since video naturally consists of static and
motion information, traditional video classification methods
directly use hand-crafted features to model these two types of
information, such as histograms of oriented gradients (HOG)
[4] for static information and histograms of optical flow (HOF)
[5] for motion information.

Recently, due to the strong power in feature learning,
deep learning has been widely applied to video classification
for modelling static and motion information. Deep networks
automatically learn a hierarchy of features from large scale
raw data using a general-purpose learning procedure, which
leads to discriminative features with high abstraction and
invariance [6], [7]. While hand-crafted features don’t have
above advantages as deep networks, thus have limited dis-
criminative capacity [8]–[10]. Simonyan et al. [1] employ
two convolutional neural networks (CNNs) to model static
and motion information separately, which take frame and
optical flow as input, and achieve better performance than the
traditional video classification methods. Inspired by [1], some
methods [2], [10] are further proposed to apply two networks
to model static and motion information. Despite achieving
promising performance, these works mainly separately model
static and motion information. However, for the coexistence re-
lationship between static and motion information, they provide
complementary clues for the same video category, thus should
be collaboratively learned to promote the feature learning. This
is the first limitation.

In addition, these works ignore spatial-temporal attention,
which is very important for video classification. On spatial-
level attention, different regions in frame have different de-
grees of saliency, where salient regions should be assigned
more attention. On temporal-level attention, different frames
in video sequence contribute to video classification differently,
where discriminative frames should be paid more attention
to. Fig. 1 shows an example of spatial-temporal attention
for a video sequence of “Shoot gun”. Fig. 1.(A) shows the
original video sequence, and Fig. 1.(B) shows spatial-temporal
attention. In Fig. 1.(B), spatial-level attention is shown by
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Fig. 1. An example of spatial-temporal attention for a video sequence of “Shoot gun”. (A) shows the original video sequence. In (B), spatial-level attention
is shown by heatmap for each frame, and frames with the red rectangles and bigger size are with higher temporal-level attention, which focus on the action
sequence of shooting.

heatmaps, in which regions including the man and gun are
with more spatial-level attention, while frames with red rect-
angles and bigger sizes are with more temporal-level attention,
which are more discriminative for semantic representation of
“Shoot gun”. Recent years, some methods are proposed to
learn spatial-level attention by CNNs [11] or RNNs (recurrent
neural networks) [12], and utilize the conditional entropy of
visual words [13] or AdaBoost [14] to measure temporal-
level attention. However, existing works learn spatial-level
attention or temporal-level attention separately, and ignore
their coexistence relationship, which cannot fully exploit the
discriminations of spatial-level and temporal-level attention.
This is the second limitation.

For addressing these two limitations, this paper proposes
the approach of two-stream collaborative learning with spatial-
temporal attention (TCLSTA) for video classification. It first
models the spatial-temporal attention to emphasize salient
regions in frame and exploit discriminative frames, then per-
forms collaborative guidance on static and motion information
and adaptively learns fusion weights of static and motion
streams to exploit strong complementarity between them for
improving the classification accuracy, as shown in Fig. 2. The
main contributions of our TCLSTA approach are summarized
as follows:

• Static-motion collaborative model. Existing works model
the static and motion information separately [1], [2],
[10], which ignore the strong complementarity between
them. However, video naturally contains static and motion
information, which are two complementary aspects to
represent the same semantic category, and can provide
important cues for each other to guide the feature learn-
ing. For addressing this problem, we propose a static-
motion collaborative model to jointly exploit the discrim-
inative static and motion information using an alternate
training scheme. On the one hand, it allows mutual guid-
ance between static and motion information to promote
feature learning, which exploits strong complementarity
for learning discriminative static and motion features. On
the other hand, it adaptively learns the fusion weights of
static and motion streams, which distinguishes different

roles of static and motion information for each category
to improve classification accuracy.

• Spatial-temporal attention model. Existing works learn
the spatial-level attention or temporal-level attention sep-
arately [12]–[14], which ignore the coexistence relation-
ship of them. However, the spatial locations of salient
regions in video sequence vary over time, thus temporal-
level attention can guide spatial-level attention learning
to focus on the regions in discriminative frames, while
spatial-level attention can guide temporal-level attention
learning to emphasize the frames with discriminative
objects, so they can greatly boost each other and should
be jointly modelled. For addressing this problem, we
propose a spatial-temporal attention model to jointly
capture the video evolutions both in spatial and temporal
domains. It achieves mutual boosting on emphasizing
salient regions and highlighting discriminative frames,
which can learn discriminative features that combine
spatial-level and temporal-level attention.

Extensive experiments are conducted on 4 widely-used
datasets to verify the performance of our approach, which
show that our TCLSTA approach achieves the best perfor-
mance compared with more than 10 state-of-the-art methods.
The rest of this paper is organized as follows. Section II
introduces the related works, Section III presents the proposed
approach in detail, and then in Section IV experimental results
and analyses are shown, followed by conclusions and future
works in Section V.

II. RELATED WORKS

Video classification has been an attractive research topic,
and achieved great progress in recent years [1], [2], [15]. In
the following, we first review the existing works on video
classification in two aspects: feature representation and visual
attention, then we briefly review related works on alternate
training scheme, which is used in our TCLSTA approach.

A. Feature representation
1) Methods based on hand-crafted features: We discuss

the hand-crafted features for video representation from three
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aspects: low-level features, mid-level features and high-level
features. Low-level features focus on describing visual pat-
terns of local informative regions or 3D volumes. Among
methods of low-level features, Laptev [16] extends Harris
detector to Harris3D detector to detect spatial-temporal interest
points in video. The histograms of oriented gradients (HOG)
[4] are used to capture static appearance information, while
histograms of optical flow (HOF) [5] and motion boundary
histograms (MBH) [5] are proposed to capture local motion in-
formation. Wang et al. [15] further make use of point trajecto-
ries and construct effective video representation that combines
HOG, HOF, MBH and trajectories. Xian et al. [17] conduct
comprehensive experiments to evaluate the performance of
low-level features. Besides low-level features, researchers also
resort to mid-level and high-level features to construct video
representations, which usually select discriminative feature
units or utilize high-level semantic concepts. Among methods
of mid-level features, Wang et al. [18] introduce motion atom
and motion phrase to represent complex actions in video,
where motion atom is in short temporal scale and motion phase
is in long temporal scale. Both of them can be seen as mid-
level “parts” of complex actions. Liu et al. [19] propose to
represent videos by a set of intermediate concepts, where the
intermediate concepts are either manually specified or learnt
from the training data. Wang et al. [20] construct mid-level
video representations by mining spatial-temporal part with
coherent appearance and motion features, which can provide
a tradeoff between repeatability and discriminative ability.
With considering both individual and interactive actions in
video, Fradi et al. [21] propose to extract a rich set of mid-
level visual descriptors from compact local representations and
utilize them to encode semantic information. Among methods
of high-level features, Izadinia et al. [22] first learn several
concepts from manually labeled data, and then construct
video representations according to the responses of concept
detectors. Sun et al. [23] use the Hidden Markov Model to
capture the temporal transitions between concepts in video,
and encode the video into a fixed length vector by Fisher
Vector. Zhang et al. [24] propose to extract coherent motion
features using a structured trajectories learning method, and
present a high-level crowd motion behavior representation
to describe the high-level semantic information about crowd
behaviors.

2) Methods based on deep features: Nowadays, deep learn-
ing has shown its strong power in feature learning. Deep
networks have the ability of learning more discriminative and
robust features [9], [10], and achieves great progress in video
classification [1], [2], [25]–[32].

Following [33], according to the difference of network
design, we summarize methods based on deep features into
4 groups, namely methods based on spatial-temporal net-
works, multiple stream networks, deep generative networks
and temporal coherency networks. A summarization of these
4 groups is presented as Table I. The methods based on spatial-
temporal networks [10], [26]–[30] adopt deep networks to
extract features from both spatial and temporal dimensions.
Among them, Ji et al. [26] extend 2D convolutional kernels
to 3D kernels, which enable 3D CNNs to extract features
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Fig. 2. The design idea of our proposed TCLSTA approach.

from both spatial and temporal dimensions, thus capture spatial
and temporal information in video. Ng et al. [10] utilize max
pooling strategy and long short-term memory network (LSTM)
to combine image information across a video over long time
periods, which aggregates spatial and temporal information to
achieve better video classification accuracy. Wang et al. [29]
propose temporal segmentation network for video classifica-
tion, which is a video-level framework and can model long-
term temporal structure. Due to its segmental architecture with
sparse sampling, this work promotes the video classification
accuracy while maintaining a reasonable computational cost.
The methods based on multiple stream networks [1], [2], [25],
[31], [34] adopt deep networks that consist of more than
one stream to accept inputs in multiple modalities, such as
frame, optical flow and audio, which are fused to get the final
prediction. Simonyan et al. [1] propose a two-stream CNN
architecture for video classification, which consists of two
CNNs that take frame and optical flow as input respectively.
Besides frame and optical flow, Wu et al. [2] further exploit
audio signal to improve the video classification performance.
The methods based on deep generative networks [32], [35]
adopt generative models for feature learning from temporal
sequence in an unsupervised fashion. Yan et al. [32] introduce
a deep auto-encoder, denoted as Dynencoder, to capture video
dynamics, which is learned in an unsupervised fashion with
two stages, a layer-wise pre-training stage and an end-to-end
finetuning stage. Srivastava et al. [35] introduce an LSTM-
based auto-encoder including an encoder LSTM and a decoder
LSTM to discover long-term cues from video sequence. The
methods based on temporal coherency networks [36], [37]
take the assumption that video frames are correlated both
semantically and dynamically, where the temporal coherency
means that the frames are in the correct temporal order. For
example, Wang et al. [37] split video frames about an action
or event into precondition set and effect set, and then the video
is identified by learning transformations from precondition set
to effect set.

These works mainly separately learn the feature represen-
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tations of static and motion information. However, according
to [1], static information from individual frames and motion
information across frames naturally coexist in video, which are
two essentially complementary aspects to represent a semantic
category, thus should be collaboratively learned to boost each
other. For example, for the video category “Basketball Dunk”,
the static information such as basketball, basketry and player
can help to distinguish it from other categories unrelated to
basketball sport, and the motion information such as player’s
action can further distinguish it from the categories related
to basketball sport but with different actions, such as shooting
basketball. For exploiting the strong complementarity between
static and motion information, we propose a static-motion col-
laborative model, which jointly learns the discriminative static
and motion features, thus can mutually boost the representation
and optimize the fusion weights of frame and optical flow.

TABLE I
SUMMARIZATION OF METHODS BASED ON DEEP FEATURES.

Group Methods Summarization

Spatial-temporal
networks

[10] [26]
[27] [28]
[29] [30]

Adopt deep networks to extract fea-
tures from both spatial and temporal
dimensions.

Multiple stream
networks

[1] [25]
[2] [31]

[34]

Adopt deep networks that consist of
more than one stream to accept in-
puts in multiple modalities, such as
frame, optical flow and audio, which
are fused to get the final prediction.

Deep generative
networks [32] [35]

Adopt generative models for feature
learning from temporal sequence in
an unsupervised fashion.

Temporal coherency
networks [36] [37]

Train networks by exploiting tem-
poral orders to learn visual repre-
sentations, which takes the assump-
tion that video frames are correlated
both semantically and dynamically.

B. Methods based on visual attention

1) Spatial-level attention: Regions in frame have different
contributions to video classification, which should be assigned
different degrees of attention. Recently, some researchers in-
troduce spatial-level attention models into video classification.
Mnih et al. [12] present a RNN based method to extract visual
attention from videos, which adaptively selects a sequence
of regions and only processes the selected regions with high
resolution. Karpathy et al. [38] design a multi-resolution CNN
with fixing the attention at the center of frame. However, the
salient regions are not always located at the center of frame.
Jaderberg et al. [11] add a soft attention mechanism between
layers of CNNs. Instead of weighting locations by a softmax
layer, they apply affine transformations to multiple layers.

2) Temporal-level attention: Temporal-level attention fo-
cuses on highlighting discriminative frames that contribute
more to semantic representation of video. Zhao et al. [13]
present an approach to find the discriminative frames in video
sequence, and represent them with the distribution of local
motion features. But they use the fixed threshold to select the
key-frames, which is not robust enough. Liu et al. [14] select
discriminative frames based on boosted frame selection. They
use a supervised pyramidal motion feature which combines

optical flow with a biologically inspired feature to detect
interest points. Barrett et al. [39] propose to automatically
identify the most discriminative temporal subsequences in
video, which is used for automatically learning the changing
appearance and motion patterns of actions.

However, above works learn spatial-level attention or
temporal-level attention separately, while ignore their co-
existence relationship. In this paper, we propose a spatial-
temporal attention model, which jointly learns the spatial-level
attention and temporal-level attention, and boosts both of them
to improve the accuracy of video classification.

C. Alternate training scheme
The alternate training scheme is often used to optimize

multi-task networks [40]–[42], which is proposed to alter-
natively optimize objective functions of multiple tasks in a
manner of optimizing one of them while fixing the others.
Lu et al. [40] apply the alternate training scheme to achieve
an alternating co-attention mechanism for addressing visual
question answer (VQA) problem, which improves the VQA
performance by jointly reasoning about visual attention and
question attention. Su et al. [41] propose a multi-task learning
method to address the problem of person re-identification
on multi-cameras, and they adopt an alternating optimization
strategy to solve the objective functions. Tang et al. [42]
investigate a multi-task collaborative learning approach with
an alternate manner, which is applied for joint learning of
speech and speaker recognition tasks. Inspired by these works,
we apply the alternate training scheme for effectively driving
the training of collaborative learning network in our approach,
in order to allow mutual guidance on the optimization of static
and motion features.

III. OUR TCLSTA APPROACH

In this section, we will introduce the proposed TCLSTA
approach in detail, which consists of two models: spatial-
temporal attention model and static-motion collaborative
model, as shown in Fig. 3. Input videos are first decomposed
into frame and optical flow for representing static and motion
information. Then spatial-temporal attention model extracts
discriminative static and motion features from frame and
optical flow by jointly modelling spatial-temporal attention.
Finally, the static-motion collaborative model is proposed to
optimize the static and motion features and adaptively learn
the fusion weight for each video category.

A. Spatial-temporal attention model
This subsection introduces our proposed spatial-temporal

attention model. As shown in Fig. 3, the proposed model
consists of two streams, which take frame and optical flow
as inputs respectively. Each stream is composed of three
parts: connection network, spatial-level attention network,
and temporal-level attention network. The spatial-level and
temporal-level attention networks emphasize salient regions in
frame and discriminative frames in video respectively, and the
connection network learns discriminative features with spatial-
temporal attention. The details of above three networks are
presented as follows:
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Fig. 3. Our proposed TCLSTA framework consists of two components: spatial-temporal attention model is proposed to extract discriminative features from
frame (static) and optical flow (motion) by jointly learning spatial-temporal attention in video, and static-motion collaborative model is proposed to exploit
the strong complementarity between static and motion information for improving video classification performance. Each loss is cross-entropy loss.

1) Connection network: The connection network is con-
structed based on ResNet-50 [43] and we make the following
changes to connect spatial-level and temporal-level attention
networks: (1) We use a weighted pooling layer to replace the
last pooling layer in original ResNet-50, which is connected
to the softmax layer in spatial-level attention network, so
that the spatial-level attention can be exploited to guide
the feature learning. (2) The feature output layer (weighted
pooling layer) is connected to the temporal-level attention
network, and serves as its input, so that the connection network
and temporal-level attention network can influence each other
through the joint training procedure.

2) Spatial-level attention network: A video frame can be
decomposed into salient and non-salient regions. “Salient
regions” contain information of discriminative objects and
distinct motion patterns [44]–[46]. These regions provide
indications for visual foregrounds and important information
associated to pre-defined semantic categories. We denote sur-
rounding background areas as “non-salient regions”, which
are less relevant to the semantic categories. For example, for
a video of “Horse Riding” category in UCF101 dataset, the
salient regions contain the horse and the rider, which indicate
the discriminative objects and distinct motion patterns for
“Horse Riding” category. While the background areas are non-
salient regions that are less relevant to the “Horse Riding”
category.

We first use a spatial-level attention network to extract
the salient regions by adopting category activation mapping
(CAM) [47], and then propose a weighted pooling method to
guide the learning of connection network, thus the features
with spatial attention information can be extracted from con-
nection network.

As shown in Fig. 3, spatial-level attention network is con-

structed based on connection network, and they share weights
on the convolutional layers. Following [47], another convolu-
tional layer (CAM conv), global average pooling (GAP) layer
and softmax layer are deployed after the shared convolutional
layers. The weights of the softmax layer are propagated back
to the convolution layers for identifying the importance of
different regions.

Formally, for a given frame, we denote the activation of unit
k in CAM conv layer at location (x, y) as ak(x, y). Then for
a certain category c, we denote the corresponding weight of
unit k and the corresponding input of softmax layer as wc

k and
sc respectively. We can obtain that

sc =
∑
x,y

∑
k

wc
kak(x, y) =

∑
x,y

mc(x, y) (1)

mc(x, y) =
∑
k

wc
kak(x, y) (2)

where sc can indicate the overall importance of convolutional
activations for category c, thus mc(x, y) can directly indicate
the importance of the activation at spatial location (x, y)
for category c. So we defined mc(x, y) as the spatial-level
attention. Similar to [48], we normalize mc(x, y) to the same
scale as

m̃c(x, y) =
g · exp(mc(x, y))∑
x,y exp(mc(x, y))

(3)

where g stands for the number of corresponding spatial grids
in a frame.

The obtained spatial-level attention m̃c is exploited by
connection network through the weighted pooling layer, which
first multiplies the spatial-level attention with the correspond-
ing output of convolutional layer in the same region, then
conducts the pooling operation. By this way, we transfer the
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spatial-level attention into connection network to emphasize
the salient regions with discriminative information.

3) Temporal-level attention network: For a video sequence,
different frames contribute to video classification differently.
Some frames contain discriminative information, which play
the key role for video classification. We propose temporal-
level attention network to obtain the discriminative frames
for video classification. As shown in Fig. 3, the temporal-
level attention network is composed of an LSTM layer and
a softmax layer. This network accepts the output of feature
output layer (weighted pooling layer) in connection network
as input, and capture temporal contextual information of input
video sequence. We deploy two softmax layers followed by
two cross-entropy loss layers after the feature output layer
and LSTM layer respectively, which drive the joint training
of temporal-level network and connection network using the
supervision information of video categories. By this way,
we achieve effective learning of the temporal-level attention
network, and the hidden states of LSTM layer can capture
temporal evolutions of a particular category in video sequence.

Formally, for an input video sequence x = [x1,x2, ...,xT ],
the LSTM maps the input to an output sequence
[h1,h2, ...,hT ]. We stack the hidden states of the LSTM layer
as H = [h1,h2, ...,hT ] ∈ Rn×T , where every hi encodes
the contextual information of the frame in the whole video
sequence, as indicated in [49]. Similar to [40], we calculate
the affinity matrix C as

C = tanh(HTH) (4)

C computes the affinity score corresponding to each frame
pair in the video sequence, which shows the relevance of each
frame pair. Then we compute the temporal-level attention as
column-wise sum of C:

(γ1, γ2, ..., γT ) = 1TC (5)

where 1 is a vector with all elements to be 1. (γ1, γ2, ..., γT )
indicates the relevance of every frame respect to the whole
video sequence, and the frame with high relevance to the
whole sequence is captured as distinguishing frame.

For a video sequence x = [x1,x2, ...,xT ], we denote the
output feature of connection network with spatial-level atten-
tion as [α1, α2, ..., αT ], where αi ∈ Rc×1, c stands for the
dimension of feature. Exploiting the temporal-level attention
[γ1, γ2, ..., γT ], we can obtain

βi =
αi · exp(γi)∑T
j=1 exp(γj)

, i = 1, 2, ..., T (6)

The obtained feature βi contains both discriminative spatial
and temporal attention information.

B. Static-motion collaborative model

This subsection introduces our proposed static-motion col-
laborative model. We first design a collaborative learning
network to mutually boost the representations of static and
motion information. Then an adaptively weighted learning
approach is proposed to obtain the fusion weights of static
and motion streams for each category, which can distinguish

different roles of these two streams to improve classification
performance.

1) Collaborative learning network: Video naturally con-
tains static and motion information, which are two correlative
and complementary aspects to represent the same seman-
tic category. As indicated in [34], separately learning of
static and motion information is not enough to fully exploit
important clues provided by static and motion information
for recognizing video content. We propose the collaborative
learning network, which takes the frame (static) and optical
flow (motion) features extracted by spatial-temporal attention
network as input, and performs an optimization procedure
in an alternate manner to exploit the complementary clues
between them. This network is composed of a collaborative
learning layer and two softmax layers, where the collaborative
learning layer is designed to perform the alternate optimization
operations and output optimized features, and the softmax
layers are used to generate classification scores of frame and
optical flow. The collaborative learning network has a natural
symmetry structure between static and motion information,
which allows the static features to guide the optimization of
motion features, and vice versa.

Formally, at time t, we use the frame features to guide the
optimization of optical flow features. We denote the optical
flow features as V m = [vm1 , v

m
2 , ..., v

m
N ]. By adopting the

collaborative learning network, we obtain

H = tanh(WmV m + (W s
oO

s)1T ) (7)

zm = softmax(WmT
h H) (8)

Om =
∑

zmi v
m
i (9)

where 1 stands for the vector with all elements being 1,
Os stands for the video feature merged from frame features
obtained at time t− 1, zm stands for the learned optimization
coefficients on optical flow features, and Om stands for the
video feature merged from optical flow features, Wm, W s

o

and Wm
h are the weight parameters.

At time t + 1, we use the optical flow features to guide
the optimization of frame features. We denote the frame
features as V s = [vs1, v

s
2, ..., v

s
N ]. By adopting the collaborative

learning network, we can obtain the optimization coefficients
on frame features (denoted as zs), and video feature merged
from frame features optimized by zs (denoted as Os). Above
alternate learning procedure achieves the optimization of frame
and optical flow features by exploiting the strong comple-
mentary clues between static and motion information. The
collaborative optimization algorithm is briefly summarized as
Algorithm 1.

2) Adaptively weighted learning: As we have obtained the
prediction score of each stream (static and motion), we can
simply sum up those scores and get the final results. However,
static and motion information contribute differently to dif-
ferent video categories. Some categories don’t have apparent
motion, such as “Archery” and “Smoke”, which should be
identified mainly from still frames (static information). While
some categories contain obvious motion, and motion clues
are important for distinguishing them, such as “Walk” and



7

Algorithm 1 : Collaborative Learning
Input: The features of frame and optical flow extracted from

spatial-temporal attention model, V s = [vs1, v
s
2, ..., v

s
N ],

and V m = [vm1 , v
m
2 , ..., v

m
N ].

Output: The optimized frame features V s
f and optical flow

features V m
f .

1: Initialize optimization coefficients on frame features as zs

where all of its N elements are set to be 1/N .
2: repeat
3: Merge the frame features V s into a single vector as a

video feature Os =
∑
zsi v

s
i .

4: Optimize the optical flow features using Os by Equation
(7) and (8), and obtain the optimization coefficients zm

on the optical flow features.
5: Merge the optical flow features V m into a single vector

as a video feature by Equation (9).
6: Optimize the frame features using Om, and obtain the

optimization coefficients zs on frame features.
7: until The loss functions converge.
8: return The optimized frame features V s

f = V sT zs, and
the optimized optical flow features V m

f = V mT zm.

“Front Crawl”. Therefore, we adaptively learn different fusion
weights of static and motion streams for different categories.

Formally, we denote the prediction score of i-th training
data in j-th category as Sj

i = [sji,1
T
, sji,2

T
]T ∈ R2×c, where

c denotes the number of category, sji,m ∈ R1×c stands for the
score of m-th stream for i-th training data in j-th category,
and we denote the fusion weight for j-th category as Wj =
[wj,1, wj,2], with the restriction that

∑2
i=1 wj,i = 1, wj,i > 0.

The fusion weight for each category is learned separately, and
to obtain the weight Wj , we define the objective function as:

argmax
Wj

Pj − λNj (10)

Pj is defined as:

Pj =

nj∑
i=1

WjS
j
i Jj (11)

where nj stands for the number of training data in j-th
category. Jj = [0, ..., 1, ..., 0]T ∈ Rc×1, with the j-th element
being 1, and other elements being 0. The goal of maximizing
Pj is to maximize the product of Wj and the j-th column
vector of Sj

i . Similarly, we define:

Nj =

c∑
{k=1,k 6=j}

nk∑
i=1

WjS
k
i Jj (12)

which means minimizing the product of Wj and the j-th
column vector of Sk

i (k 6= j). Pj and Nj consider the
relationship of positive and negative training data for Wj

respectively, and λ is the parameter to balance the weight of
positive and negative samples. Then the Equation (10) can be
transformed to

argmax
Wj

Wj(
∑nj

i=1 S
j
i Jj − λ

∑c
{k=1,k 6=j}

∑nk

i=1 S
k
i Jj),

s.t.
∑2

i=1 wj,i = 1, wj,i > 0 (13)

and the fusion weight can be learned by linear programming
easily [50].

As for the test data, we first calculate and stack the
softmax score of each stream, which is denoted as St =
[st,1

T , st,2
T ]T ∈ R2×c, and the classification result is pre-

dicted by
argmax

i
WiStJi (14)

The final classification results are determined by the highest
fusion score.

IV. EXPERIMENTS

We conduct experiments on 4 widely-used datasets for video
classification, including 3 trimmed video datasets: HMDB51,
UCF50, and UCF101, and a large-scale untrimmed video
dataset THUMOS14. Our proposed TCLSTA approach is com-
pared with more than 10 state-of-the-art methods to verify its
effectiveness. In the following subsections, we first introduce
the 4 datasets briefly, then present the implementation details
of our TCLSTA approach, and finally show experimental
results and analyses.

A. Datasets
• HMDB51 [51] dataset provides 3 train-test splits, each

of them consists of 6,766 videos, with a fixed frame rate
of 30 frames per second (FPS). These clips are labeled
with 51 categories of human actions and each video is
only labeled with one category.

• UCF50 [52] dataset consists of 6,618 real-world videos
taken from YouTube with a fixed frame rate of 25 FPS,
which are labeled with 50 action categories, ranging from
general sports to daily life exercises. These videos are
split into 25 groups and videos in the same group may
share some common content, such as the same person,
similar background or similar viewpoint.

• UCF101 [53] dataset is one of the most popular video
classification datasets. It is an extension of UCF50 and
consists of 13,320 video clips, which are classified into
101 categories. These 101 categories can be classified
into 5 types (Body motion, Human-human interactions,
Human-object interactions, Playing musical instruments
and Sports). The total length of these video clips is over
27 hours. All the videos are collected from YouTube and
have a fixed frame rate of 25 FPS with the resolution
of 320 × 240. For the split of training and test sets, we
follow the common setting of 3 train-test splits [2], [34].

• THUMOS14 [54] dataset is a large-scale video dataset.
It takes UCF101 as its training set and also has back-
ground, validation and test sets, with 101 categories. The
background set has 2,500 untrimmed long videos. The
validation and test set contain 1,010 and 1,584 temporally
untrimmed long videos respectively, and they are 178GB
in total. Following [55], [56], we use the training set and
validation set as training data and evaluate our proposed
TCLSTA approach on test set.

Examples of these 4 datasets are shown in Fig. 4. Following
[15], [34], for UCF50 dataset, we apply the leave-one-group-
out cross-validation and report average accuracy over all
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categories. In detail, we conduct 25 groups of experiments
in UCF50 dataset, where each time we select 24 groups as
training set, and the remaining 1 group of videos as test set.
For HMDB51 and UCF101 datasets, we evaluate the results
by averaging accuracy over the 3 splits of training and test
data. For THUMOS14 dataset, following [54], mean average
precision (MAP) is reported for evaluation.

B. Implementation details
This subsection introduces the implementation details in-

cluding network structures and training details in the experi-
ments.

1) Spatial-temporal attention model: We adopt the same
network architectures on both two streams of frame and optical
flow. For the optical flow stream, we pre-compute the optical
flow using TVL1 method [57] and store the flow fields as
JPEG images. Following [1], we stack flow fields of every
L = 10 consecutive frames into a 2L-channel image, which
takes the horizontal and vertical components of flow fields
as channels. The implementation details of three component
networks of spatial-temporal attention network are presented
as follows:

Connection network: The connection network is con-
structed based on ResNet-50 [43], and Table II presents its
detailed architecture. Each column shows the building block(s)
of layer(s) with the same output size. The convolutional filters
are shown as (W × H,C), denoting Width, Height and
number of feature Channels, and the pooling sizes are shown
as (W × H). For the columns that present multiple blocks,
the numbers of blocks stacked are presented to the right of
brackets. The “Input size” and “Output size” are shown as
(W×H×C). The input size of conv1 is 224×224×3 for frame
and 224×224×20 for optical flow. The weighted pooling layer
is also a feature output layer as its output can be treated as
a feature of size 1× 1× 2048. Both frame feature and optical
flow feature are extracted from the feature output layer, and
the dimensions of them are both 2048. Following the weighted
pooling layer, a softmax layer is deployed for classification as
shown in Fig. 3. In the training phase, we apply the ResNet-50
model pre-trained on ImageNet dataset and set the number of
hidden units in softmax (classification) layer as the category
number of the corresponding dataset. The ResNet-50 used in
our approach can be replaced by other CNN structures, such
as AlexNet [58], VGGNet [59], and GoogLeNet [60], etc. In
the experiments, we choose ResNet-50 for implementation due
to its wide applications and performance advantage in various
tasks of computer vision as reported in previous works as [43].

Spatial-level attention network: As shown in Table III,
the spatial-level attention network has the same architecture as
connection network from conv1 layer to conv5 x layers, and
shares the weights on these layers. Following [47], a convo-
lutional layer (CAM conv layer) with 1024 filters and a GAP
layer are sequentially deployed after the shared convolutional
layers. Then we deploy a softmax layer following the GAP
layer with N hidden units, where N is set to be the category
number of the corresponding dataset.

Temporal-level attention network: The temporal-level at-
tention network is composed of a LSTM layer and a softmax

layer, as shown in Table IV. The LSTM layer has 512 LSTM
units and the softmax layer has N hidden units, where N is
set to be the category number of the corresponding dataset.

For the training of spatial-temporal attention model, we crop
the input frames and flow images to the size of 224 × 224.
Then we use mini-batch stochastic gradient descent (SGD) to
optimize the neural networks with each mini-batch containing
64 frames or 2L-channel flow images. We set the learning
rate to be 0.001 initially, and reduce it by a factor of 10
after the validation accuracy saturates. The weight decay is
set to be 0.0001 and the momentum to be 0.9. For HMDB51,
UCF50, and UCF101 datasets, we train the networks for 30K
iterations on frame stream, and for 60K iterations on optical
flow stream, because the networks on optical flow stream have
lower convergence rates. For THUMOS14 dataset, we train the
networks for 60K iterations on frame stream, and for 120K
iterations on optical flow stream, since THUMOS14 dataset
has much more frames and flow images for training. We apply
three cross-entropy loss functions (three loss layers) after the
softmax layers in connection network, spatial-level attention
network and temporal-level attention network, which drive the
joint learning of the whole spatial-temporal attention model
with the same supervised information.

2) Static-motion collaborative model: The static-motion
collaborative model is composed of a collaborative learning
network and an adaptively weighted learning model. Collab-
orative learning network consists of a collaborative learning
layer and two softmax layers, as shown in Fig. 3. In detail,
collaborative learning layer accepts static and motion features
as inputs, and optimizes them by alternate optimization pro-
cedure as illustrated in Algorithm 1. Similar to spatial-level
attention model, the two softmax layers are designed with
N hidden units, where N denotes the number of classes in
corresponding dataset. Finally, cross-entropy loss is adopted
to optimize the collaborative learning network. For adaptively
weighted learning model, we set the parameter λ in Equation
(13) to be 5× 10−3, which is selected by the cross-validation
model.

C. Comparisons with state-of-the-art methods

This subsection presents the experimental results and anal-
yses of our TCLSTA approach on 3 trimmed video datasets
and 1 untrimmed video dataset compared with state-of-the-
art methods. All the compared results are presented in Table
V. From Table V, for HMDB51 dataset, we can see early
works [61], [62] choose hand-crafted features for video rep-
resentation, and the performances are limited and much lower
than our TCLSTA approach. Some works such as [1] employ
two types of CNNs to model static and motion information,
and achieve better performances than the traditional video
classification methods [61], [62]. However, the improvement
is limited due to the simple fusion strategy. Besides, some
methods [31], [34] apply more complex fusion methods for
combining static and motion information, and achieve bet-
ter results than [1]. But on the one hand, they ignore the
strong complementarity between static and motion information
coexisting in video, and the features of static and motion
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Fig. 4. Examples of HMDB51, UCF50, UCF101 and THUMOS14 datasets. These 4 datasets have 51, 50, 101 and 101 categories respectively and we present
examples taken from 3 different categories of each dataset.

TABLE II
ARCHITECTURE OF CONNECTION NETWORK. BUILDING BLOCKS ARE SHOWN IN BRACKETS, WITH THE NUMBERS OF BLOCKS STACKED.

DOWN-SAMPLING IS PERFORMED BY CONV3 1, CONV4 1, AND CONV5 1 WITH A STRIDE OF 2.

Layers conv1 pool1 conv2 x conv3 x conv4 x conv5 x Weighted pooling
(Feature output)

Input size 224× 224× 3
(224× 224× 20) 112× 112× 64 56× 56× 64 56× 56× 256 28× 28× 512 14× 14× 1024 7× 7× 2048

Blocks 7× 7, 64
stride 2

3× 3
max pool
stride 2

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3
7× 7

weighted pool

Output size 112× 112× 64 56× 56× 64 56× 56× 256 28× 28× 512 14× 14× 1024 7× 7× 2048 1× 1× 2048

TABLE III
ARCHITECTURE OF SPATIAL-LEVEL ATTENTION NETWORK

Layers conv1 - conv5 x CAM conv GAP

Input size 224× 224× 3
(224× 224× 20) 7× 7× 2048 7× 7× 1024

Blocks the same as
connection network 3× 3, 1024

7× 7
average pool

Output size 7× 7× 2048 7× 7× 1024 1× 1× 1024

TABLE IV
ARCHITECTURE OF TEMPORAL-LEVEL ATTENTION NETWORK

Layers LSTM
Input size 2048

Hidden units 512
Output size 512

information are learned separately. On the other hand, they
ignore the spatial-temporal attention, thus the features learned
by these methods are not discriminative enough. Our TCLSTA
achieves the best result among these state-of-the-art methods,
bringing a promotion of 2.3% than the highest result of
compared methods. It is for the reason that our TCLSTA
not only exploits the strong complementarity between static
and motion information to guide and mutually boost the
learning of static and motion streams, but also jointly learns
the discriminative features of video by our proposed spatial-
temporal attention model.

The comparison results on UCF50 and UCF101 datasets
are also shown in Table V. The trends of results on these two
datasets are similar with HMDB51, and our TCLSTA approach
achieves the best results (0.957 and 0.940 respectively) among
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Fig. 5. The confusion matrix on HMDB51 dataset. The column and row of
the matrix represent the categories in HMDB51 dataset.

state-of-the-art methods, and brings 1.3% and 0.6% improve-
ments respectively.

We also show the confusion matrix on HMDB51 dataset
as Fig. 5, in which the columns and rows represent the
categories in HMDB51 dataset. The confusion matrix is a
probability matrix, where the element at i-th row and j-th
column represents the probability of predicting i-th category to
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TABLE V
EXPERIMENTAL RESULTS COMPARED WITH STATE-OF-THE-ARTS ON HMDB51, UCF50, UCF101 AND THUMOS14 DATASETS. THE EVALUATION

METRIC FOR HMDB51, UCF50 AND UCF101 DATASETS IS ACCURACY, AND THE EVALUATION METRIC FOR THUMOS14 DATASET IS MAP.

HMDB51 UCF50 UCF101 THUMOS14
Ours 0.687 Ours 0.957 Ours 0.940 Ours 0.847
Feichtenhofer et al. [31] 0.664 Lan et al. [63] 0.944 Feichtenhofer et al. [31] 0.934 Wang et al. [55] 0.822
Wang et al. [64] 0.659 Chen et al. [65] 0.930 Zhu et al. [66] 0.931 Wang et al. [29] 0.785
Feichtenhofer et al. [34] 0.654 Yang et al. [67] 0.924 Feichtenhofer et al. [34] 0.925 Jain et al. [56] 0.716
Bilen et al. [68] 0.652 Peng et al. [69] 0.923 Li et al. [70] 0.922 Simonyan et al. [1] 0.661
Fernando et al. [71] 0.637 Wang et al. [72] 0.917 Wu et al. [2] 0.913 Varol et al. [73] 0.634
Zhu et al. [66] 0.633 Wang et al. [15] 0.912 Lan et al. [63] 0.891 Wang et al. [15] 0.631
Simonyan et al. [1] 0.594 Oneata et al. [74] 0.900 Yue et al. [10] 0.882 Zhang et al. [75] 0.615
Wang et al. [15] 0.572 Ciptadi et al. [76] 0.900 Sun et al. [28] 0.881
Wu et al. [77] 0.564 Narayan et al. [78] 0.894 Simonyan et al. [1] 0.880
Cai et al. [61] 0.559 Wang et al. [15] 0.859
Wang et al. [62] 0.466 Karpathy et al. [38] 0.660

be j-th category. And from Fig. 5 we can see that our TCLSTA
approach is of good performance for most categories.

Compared with results on UCF50 and UCF101 datasets,
our TCLSTA approach achieves relatively low accuracy on
HMDB51 dataset. This is because HMDB51 dataset is very
challenging due to the large camera motion, various view-
points, and low clip quality, which result in high intra-class
variations, so the performances of all compared methods and
our TCLSTA approach decrease on this dataset. Fig. 6 presents
some examples of successful and failure cases of TCLSTA
approach on HMDB51 dataset. From Fig. 6 we can see that the
videos have low resolution or intensive camera motion, which
are very challenging to be classified accurately. However, our
proposed TCLSTA approach keeps the best accuracy even
on this challenging dataset compared with 11 state-of-the-art
methods, which shows its effectiveness and generality.

The last column of Table V shows the comparison results
on the untrimmed video dataset THUMOS14, between our
proposed TCLSTA approach and the state-of-the-art methods.
It is noted that results of [1], [15], [29], [75] are cited from
[55]. THUMOS14 is a very challenging dataset, because it
has large-scale temporally untrimmed video data that contains
long-period content without any instance of pre-defined cate-
gories. From Table V, we can see that despite the great chal-
lenges of this dataset, our proposed TCLSTA still improves
the classification performance, which fully demonstrates that
our proposed TCLSTA approach can also effectively handle
the untrimmed videos.

D. Performances of components in our TCLSTA approach
To further evaluate each component of proposed TCLSTA

approach, we conduct detailed experiments from the following
two aspects.

1) Effectiveness of spatial-temporal attention model: Our
TCLSTA approach involves two streams and two kinds of
attention. We denote the two streams and the combination of
them as “Frame”, “Optical flow” and “Two-stream” respec-
tively. Similarly, we denote spatial-level attention, temporal-
level attention and their combination, spatial-temporal atten-
tion, as “SA”, “TA” and “STA” respectively. The experimental
results with the above components are shown in Table VI,
from which we observe that:

Videos

Groundtruth

Results of

our TCLSTA

flicflac flicflac flicflac flicflac flicflac flicflac

flicflac flicflac flicflac flicflac flicflac somersault

Videos

Groundtruth hit hit hit hit hit hit

Results of

our TCLSTA
hit hit hit hit pour punch

Successful and failure cases

Fig. 6. Some classification results of successful (denoted as green boxes)
and failure (denoted as red boxes) cases on HMDB51 dataset. Our proposed
TCLSTA approach fails on some examples due to low resolution and large
camera motion, which makes these examples very difficult to recognize.

TABLE VI
EXPERIMENTAL RESULTS COMPARED WITH DIFFERENT LEVELS OF

ATTENTION AND THEIR COMBINATIONS. “TH14” DENOTES THUMOS14
DATASET. RESULTS OF THE FOUR EXPERIMENTS IN “TWO-STREAM”

SETTING IS OBTAINED BY AVERAGING THE SOFTMAX SCORE OF BOTH
STREAMS.

Methods HMDB51 UCF50 UCF101 TH14
Frame 0.514 0.904 0.839 0.721
Frame + SA 0.527 0.912 0.847 0.744
Frame + TA 0.535 0.920 0.850 0.729
Frame + STA 0.548 0.926 0.859 0.763
Optical flow 0.529 0.900 0.810 0.665
Optical flow + SA 0.547 0.910 0.827 0.688
Optical flow + TA 0.565 0.913 0.840 0.671
Optical flow + STA 0.592 0.919 0.859 0.702
Two-stream 0.626 0.934 0.917 0.776
Two-stream + SA 0.641 0.939 0.923 0.800
Two-stream + TA 0.652 0.941 0.926 0.796
Two-stream + STA 0.676 0.948 0.928 0.831

• Both spatial and temporal attention are helpful for im-
proving the classification accuracy by highlighting the
discriminative “parts” of frame and optical flow, in which
spatial-level attention helps to highlight the salient re-
gions, while the temporal-level attention helps to high-
light the discriminative frames in a video sequence. Tak-
ing HMDB51 and UCF50 datasets for examples, on frame
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Fig. 7. Visualization of spatial-temporal attention on examples of HMDB51
dataset. The heatmaps indicate the importance of different regions in frame,
and the line charts indicate the importance of different frames.

stream, comparing with the results of “Frame”, spatial-
level attention and temporal-level attention improve the
classification accuracy by promotions of 1.3% and 2.1%
respectively on HMDB51 dataset as well as promotions of
0.8% and 1.6% respectively on UCF50 dataset. On optical
flow stream, comparing with the results of “Optical
flow”, we can see spatial-level attention and temporal-
level attention achieve the promotions of 1.8%, 3.6% on
HMDB51 dataset as well as promotions of 1.0%, 1.3%
on UCF50 dataset. And on the setting of “Two-stream”,
we can also see the accuracy improvement achieved by
spatial-level attention and temporal-level attention, e.g.
65.2% and 64.1% vs. 62.6% on HMDB51 dataset as well
as 93.9% and 94.1% vs. 93.4% on UCF50 dataset. Similar
improvements can also be observed on UCF101 and
THUMOS14 datasets, which validate the effectiveness of
spatial-level and temporal-level attention for promoting
the performance of video classification.

• Combining the spatial-level attention and temporal-level
attention further improves the accuracies than exploiting
only one type of attention. Taking the “Two-stream”
setting for illustration, compared to the results of only
with spatial-level attention, spatial-temporal attention
achieves promotions of 3.5%, 0.9%, 0.5% and 3.1% on
4 datasets respectively. Compared to the results of only
with temporal-level attention, it achieves promotions of
2.4%, 0.7%, 0.2% and 3.5% on 4 datasets respectively.
And comparing with the results without any attention
on 3 settings of “Frame”, “Optical flow” and “Two-
stream”, spatial-temporal attention achieves promotions
of 3.4%, 6.3%, 5.0% on HMDB51 dataset, 2.2%, 1.9%,
1.4% on UCF50 dataset, and similar promotions can be
seen on UCF101 and THUMOS14 datasets. It shows the
effectiveness of our spatial-temporal attention model on
jointly learning the spatial-level and temporal-level atten-
tion, because the spatial-temporal attention is coexistent
in frame and optical flow, thus should be jointly modelled
as spatial and temporal evolutions of videos.

Fig. 7 shows the visualization of spatial-temporal atten-
tion detected by our proposed approach on some examples
in HMDB51 dataset, using heatmaps and line charts. The
heatmaps indicate the importance of different regions in frame,
and the line charts indicate the importance of different frames.
From Fig. 7, we can see that spatial-temporal attention model
in our proposed TCLSTA approach captures the discriminative
frames and its salient regions accurately.

TABLE VII
EXPERIMENTAL RESULTS OF STATIC-MOTION COLLABORATIVE MODEL.

“TH14” DENOTES THUMOS14 DATASET. RESULTS OF “TWO-STREAM +
STA” AND “TWO-STREAM + STA + CLN” ARE OBTAINED BY LATE

FUSION.

Methods HMDB51 UCF50 UCF101 TH14
Two-stream+STA 0.676 0.948 0.928 0.831
Two-stream+STA+CLN 0.679 0.951 0.932 0.836
Two-stream+STA+AWL 0.682 0.953 0.936 0.841
Two-stream+STA+CLN+AWL 0.687 0.957 0.940 0.847

TABLE VIII
EXPERIMENTAL RESULTS COMPARED WITH DIFFERENT FUSION METHODS.

“TH14” DENOTES THUMOS14 DATASET.

Methods HMDB51 UCF50 UCF101 TH14
Two-stream + STA + Late 0.676 0.948 0.928 0.831
Two-stream + STA + Early 0.679 0.950 0.931 0.834
Two-stream + STA + MKL 0.680 0.951 0.934 0.836
Two-stream + STA + AWL 0.682 0.953 0.936 0.841

2) Effectiveness of collaborative learning model: We fur-
ther conduct experiments to demonstrate the effectiveness
of proposed corroborative learning network and adaptively
weighted learning. In Table VII, “Two-stream + STA” refers to
applying spatial-temporal attention on both streams, then fus-
ing by late fusion. “CLN” refers to the collaborative learning
network, and “AWL” refers to adaptively weighted learning.

From Table VI, comparing the results of 3 settings:
“Frame”, “Optical flow” and “Two-stream”, it is easy to
observe that frame and optical flow are complementary in
video classification, for the reason that these two streams
express the static and motion information respectively, which
are two important aspects for representing video information.
Compared with the results of “Two-stream + STA” in Table
VII, which is without collaborative learning model, “Two-
stream + STA + CLN” achieves better classification accuracy
and MAP score. It shows that our proposed collaborative
learning network can boost the learning of frame and optical
streams mutually, and exploit the correlation between them,
thus further improves video classification accuracy.

Compared with the results of “Two-stream + STA” in Table
VII, “Two-stream + STA + AWL” also achieves higher classi-
fication accuracy, which shows that it is helpful to adaptively
learn the fusion weights of two streams. “Two-stream + STA
+ CLN + AWL” achieves the best accuracy among all the 4
settings, which shows the collaborative learning network and
adaptively weighted learning can reinforce each other.

Furthermore, for validating the effectiveness of our adap-
tively weighted learning method, we conduct more comparison
experiments with different fusion strategies, namely early fu-
sion, late fusion and MKL fusion [79]. The brief introductions
of these 4 fusion methods are as follows, and the comparison
results are shown in Table VIII.
• Late fusion: Averaging the prediction scores of static and

motion streams (denoted as “Late” in Table VIII).
• Early fusion: Concatenating static and motion features

and training a SVM for final video classification (denoted
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TABLE IX
EXPERIMENTAL RESULTS ABOUT EFFICIENCY EVALUATION ON HMDB51

DATASET.

Methods Frames per second
Ours 89.6
Feichtenhofer et al. [31] 49.5
Wang et al. [64] 26.3
Feichtenhofer et al. [34] 33.2
Bilen et al. [68] 37.0
Zhu et al. [66] 96.7
Simonyan et al. [1] 99.7
Wang et al. [15] 37.9
Wang et al. [62] 48.5

as “Early” in Table VIII).
• MKL fusion: Using scores as features and combining

different kernels by the LP-norm MKL algorithm [79]
(denoted as “MKL” in Table VIII).

• Our adaptively weighted learning: Fusing the scores
by the adaptively weighted learning method (denoted as
“AWL” in Table VIII).

Table VIII shows that the trends of results for these fusion
methods are similar among all the 4 datasets. In detail, late
fusion and early fusion achieve relatively lower accuracies,
as they cannot distinguish different roles of static and motion
information for different categories. MKL fusion gets slightly
better results than early fusion and late fusion, while its
performance gain is not often observed to be significant, as
indicated by [80]. Our adaptively weighted learning method
learns specific fusion weight for each category in an adaptive
fashion and achieves the best accuracies on all 4 datasets,
because it distinguishes different contributions of static and
motion information to different semantic categories.

E. Evaluation on efficiency

For evaluating the efficiency of our proposed TCLSTA
approach, we test the running speed in the test procedure
on HMDB51 dataset. Table IX shows the comparison results
with state-of-the-art methods. All the results are obtained on
a PC that has an Intel i7-5930K CPU, 64GB RAM and a
TITAN X GPU with 12GB memory. The compared methods
are cited from Table V, which include methods based on
deep networks [1], [31], [34], [64], [66], [68] and methods
based on hand-crafted features [15], [61], [62], [71], [77].
It is noted that, the test procedure of methods based on
hand-crafted features includes extracting local features, feature
encoding and classifying, where the process of extracting local
features takes most of the computation cost. So we report
the running speed of extracting local features for simplicity
on methods based on hand-crafted features. We take [15]
and [62] for representative of methods based on hand-crafted
features, since all the other methods [61], [71], [77] utilize
dense trajectory features as [62] or improved dense trajectory
features as [15], so that the efficiency results of [15] and [62]
can relatively accurately show the efficiency of the methods
based on hand-crafted features. From Table IX, we can see that

our proposed TCLSTA approach outperforms all the compared
methods except [1] and [66], both of which utilize relatively
shallow networks. With the cost of slightly lower efficiency
than [1] and [66], our proposed TCLSTA approach clearly
outperforms them on accuracy, as shown in Table V.

V. CONCLUSIONS

This paper has proposed the two-stream collaborative learn-
ing with spatial-temporal attention approach (TCLSTA) for
video classification, which consists of spatial-temporal atten-
tion model and static-motion collaborative model. Spatial-
temporal attention model adopts a spatial-level attention net-
work to emphasize the salient regions of frame, and uses a
temporal-level attention network to exploit the discriminative
frames in video. Both of them are jointly optimized and
mutually boosted to exploit discriminative features. Static-
motion collaborative model employs the discriminative static
and motion features extracted by spatial-temporal attention
model, to mutually boost the representation and optimize
the combining weight of frame and optical flow for video
classification. Experiments on 4 widely-used video classifi-
cation datasets show that our TCLSTA approach achieves the
best performance compared with more than 10 state-of-the-art
methods.

The future works lie in two aspects: First, we will focus
on exploiting better spatial-temporal attention, and learning
more discriminative static-motion representation. Second, we
will also attempt to apply unsupervised learning into our work,
which can make full use of large amount of unlabeled videos
on the Internet. Both of them will be jointly employed to
further improve the performance of video classification.
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