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Hierarchically Learned View-Invariant
Representations for Cross-View

Action Recognition
Yang Liu , Zhaoyang Lu, Senior Member, IEEE, Jing Li , Member, IEEE, and Tao Yang , Member, IEEE

Abstract— Recognizing human actions from varied views is
challenging due to huge appearance variations in different views.
The key to this problem is to learn discriminant view-invariant
representations generalizing well across views. In this paper,
we address this problem by learning view-invariant representa-
tions hierarchically using a novel method, referred to as joint
sparse representation and distribution adaptation. To obtain
robust and informative feature representations, we first incor-
porate a sample-affinity matrix into the marginalized Stacked
Denoising Autoencoder to obtain shared features that are then
combined with the private features. In order to make the feature
representations of videos across views transferable, we then
learn a transferable dictionary pair simultaneously from pairs
of videos taken at different views to encourage each action
video across views to have the same sparse representation.
However, the distribution difference across views still exists
because a unified subspace, where the sparse representations of
one action across views are the same, may not exist when the view
difference is large. Therefore, we propose a novel unsupervised
distribution adaptation method that learns a set of projections
that project the source and target views data into respective
low-dimensional subspaces, where the marginal and conditional
distribution differences are reduced simultaneously. Therefore,
the finally learned feature representation is view-invariant and
robust for substantial distribution difference across views even
though the view difference is large. Experimental results on four
multi-view datasets show that our approach outperforms the
state-of-the-art approaches.

Index Terms— Action recognition, cross-view, dictionary learn-
ing, distribution adaptation.

I. INTRODUCTION

HUMAN action recognition aims to automatically recog-
nize an ongoing action from a video clip, which has

received great attention in recent years due to its wide
applications, including video surveillance [1], video label-
ing [2], video content retrieval [3], human-computer interac-
tion [4], and sports video analysis [5]. However, recent works
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Fig. 1. Examples of multi-camera-view on IXMAS dataset.

in [6]–[11] have demonstrated that recognizing action data in
cross-view scenario is challenging due to large appearance
variations in action videos captured by various cameras at
different locations. For example, the same action performed
by the same actor may be visually different from one view to
another view (Figure 1). In addition, different viewpoints of
cameras may result in different background, camera motions,
lighting conditions and occlusions. Therefore, developing
methods for cross-view action recognition that can recognize
an unknown action in the target view by using the features
extracted from some other source views remains a challenge.

In order to accurately recognize human actions from varied
views, a family of view-shared sparse representation based
approaches are proposed recently and demonstrated to achieve
good results [12]–[14]. They assume that samples from dif-
ferent views contribute equally in shared features and ignore
view-private features. However, this assumption is not always
valid, i.e, the top view should have lower contribution to the
shared features compared to other side views (e.g. the top
view and side views in Figure 1). Actually, shared features
of one action across views mainly encode the body and body
outline while private features mainly encode different limb
poses that represent the class information across views [14].
Therefore, the view-private features that capture motion infor-
mation particularly owned by one view should be incorporated
into view-shared features to learn more discriminative and
informative features. In addition, the distribution difference
across views still exists because a unified subspace where
the feature representations of one action across views are the
same may not exist when the view difference is large (e.g. the
top view and the side views in Figure 1). This will degrade
the overall performance of the cross-view action recognition
algorithm. Thus, we should learn a set of projections that
project different views into respective subspaces to obtain
new representations of respective views, and concurrently
encourage the subspace divergence to be small. In this way,
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Fig. 2. Framework of our proposed JSRDA. The framework is hierarchical as the view-invariant representation is learned in a coarse-to-fine fashion.

the learned representations can generalize well across views
even when the view difference is large.

In this paper, we focus on unsupervised cross-view action
recognition problem including the case when the view differ-
ence is large and learn view-invariant representations hierar-
chically by incorporating shared features learning, transferable
dictionary learning and distribution adaptation into a unified
framework named Joint Sparse Representation and Distrib-
ution Adaptation (JSRDA). An overview of the JSRDA is
present in Figure 2. The proposed method JSRDA mainly
consist of three stages.

In the first stage, a Sample-Affinity Matrix (SAM) intro-
duced in [15] is employed to measure the similarities between
video samples in different views, which facilitates accurately
balancing information transfer across views. Then the SAM is
incorporated into the marginalized stacked denoising Autoen-
coder [16] (mSDA) to learn more robust shared features.
In addition to shared features, private features that originated
from raw input features are combined with the obtained shared
features to yield more informative feature representations.

In the second stage, we learn a set of dictionaries that
correspond to training and testing views respectively. These
dictionaries are learned simultaneously from the sets of videos
taken at different views by encouraging each video in the set to
have the same sparse representations. After the dictionaries are
learned, we obtain the sparse representations of training and
testing videos respectively using the corresponding dictionary.
This procedure enables the transfer of sparse feature represen-
tations of videos in the source view(s) to the corresponding
videos in the target view.

However, the distribution difference across views still exists
after the second stage because a unified subspace where the
sparse representations of one action across views are the same
may not exist when the view difference is large (e.g. the top
view and the side views). Therefore, in the third stage, we pro-
pose a novel unsupervised distribution adaptation method that
learns a set of projections that project the source and target
views into respective subspaces where both the marginal and
conditional distribution differences between source and target
views are reduced simultaneously. After the projections, 1) the
variance of target view data is maximized to preserve the
embedded data properties, 2) the discriminative information of

source view data is preserved to effectively transfer the class
information, 3) both the marginal and conditional distribution
differences between source and target views are minimized,
4) the divergence of these projections is encouraged to be
small to reduce the domain divergence between source and
target views.

Finally, the view-invariant representations of action videos
from different views are obtained in their respective subspaces.
Then, we train a classifier in the source view(s) and test
it in the target view. Extensive experiments on four multi-
view datasets show that our approach significantly outperforms
state-of-the-art approaches.

The main contributions of this paper are as follows:
• To obtain more robust and informative feature representa-

tions for cross-view action recognition, a sample-affinity
matrix is incorporated into the marginalized stacked
denoising Autoencoder (mSDA) to learn shared features,
which are then combined with private features.

• To address the performance degradation problem when
the view difference is large, we propose a novel unsu-
pervised distribution adaptation method that learns a set
of projections that project the source and target views
into respective subspaces where both the marginal and
conditional distribution differences between source and
target views are reduced simultaneously.

• To obtain view-invariant feature representations that gen-
eralize well across views, we learn view-invariant repre-
sentations hierarchically by incorporating shared features
learning, transferable dictionary learning and distribution
adaptation into a unified framework, which is effective
and can learn robust and discriminative view-invariant
representations even on different datasets.

This paper is organized as follows: Section II briefly reviews
related state-of-the-art works. Section III introduces the pro-
posed approach JSRDA for cross-view action recognition.
Experimental results and related discussions are presented
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

A. Cross-View Action Recognition

Recently, many approaches have been proposed to
address the problem of cross-view action recognition.
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Farhadi and Tabrizi [17] employed maximum margin cluster-
ing (MMC) to generate split-based features of source view
and then transferred the split values to the target view.
Zhang et al. [18] added a temporal regularization on the
traditional MMC. These works require feature-to-feature cor-
respondence at the frame-level. Liu et al. [19] presented a
bipartite-graph-based method to bridge the domain shift across
view-dependent vocabularies. Zheng et al. [14] exploited
the video-to-video correspondence and proposed a dictionary
learning based method to jointly learn a set of view-specific
dictionaries for specific views and a common dictionary shared
across different views. Li and Zickler [7] proposed “virtual
views” that connect the source and target views by a virtual
path, which is associated with a linear transformation of the
action descriptors. Similarly, Zhang et al. [8] intended to
bridge the source view and the target view by a continuous
virtual path keeping all the visual information. Wang et al. [20]
proposed a statistical translation framework by estimating the
visual word transfer probabilities across views for cross-view
action recognition. Kong et al. [15] addressed the cross-
view action recognition problem by learning view-specific
and view-shared features using a marginalized autoencoder
based deep models. Yan et al. [21] proposed a Multi-
Task Information Bottleneck (MTIB) clustering method to
explore the shared information between multiple action clus-
tering tasks to improve the performance of individual task.
Ulhaq et al. [22] proposed an advanced space-time filtering
framework for recognizing human actions despite large view-
point variations. Rahmani et al. [23] proposed a 3D human
model based cross-view action recognition method that learns
a single model to transform any action from any viewpoints to
its respective high level representation without requiring action
labels or knowledge of the viewing angles.

Different from above-mentioned cross-view action recogni-
tion approaches [7], [8], [14], [15], [17]–[23], our proposed
approach exploits both the view-private and view-shared fea-
tures to learn view-invariant representations hierarchically by
incorporating shared feature learning, transferable dictionary
learning and distribution adaptation into a unified cross-
view action recognition framework. To address the problem
of performance degradation when view difference is large,
we learn a set of projections that project the source and
target views into respective subspaces to make the learned
representation generalize well across views. In this way, our
approach can learn robust and discriminative view-invariant
representations for cross-view action recognition even with
large view difference or different datasets.

B. Transfer Learning on Heterogeneous Features

From the perspective of transfer learning, our work
is related to the subspace based methods [24]–[27].
Wang and Mahadevan [24] proposed a manifold alignment
based method to learn a common feature subspace for all
heterogeneous domains by preserving the topology of each
domain, matching instances with the same labels and separat-
ing instances with different labels. However, this method needs
class labels of both source and target domains and requires that
the data should have a manifold structure, while our method

is unsupervised and does not require the manifold assumption
of data. Long et al. [25] proposed a distribution adaptation
method to find a common subspace where the marginal and
conditional distribution shifts between domains are reduced.
Zhang et al. [26] relaxed the assumption that there exists a
unified projection to map source and target domains into a uni-
fied subspace, they learned two projections to map the source
and target domains into their respective subspaces where
both the geometrical and statistical distribution difference are
minimized. Long et al. [27] introduced a unsupervised domain
adaptation method that reduces the domain shift by jointly
finding a common subspace and reweighting the instances
across domains.

Different from previous distribution adaptation meth-
ods [24]–[27], we do not assume that there exists a unified
projection since this assumption is invalid when the distri-
bution difference across views is large. Instead, we learn a
set of projections that project the source and target views
into respective subspaces to obtain new representations of
respective views, and concurrently encourage the subspace
divergence across views to be small.

III. JOINT SPARSE REPRESENTATION AND

DISTRIBUTION ADAPTATION

The purpose of this work is to learn view-invariant represen-
tations that allow us to train a classifier on one (or multiple)
view(s), and test on the other view.

A. Shared Features Learning

This subsection aims to obtain new informative feature rep-
resentations of action videos for further transferable dictionary
learning and distribution adaptation.

1) Sample-Affinity Matrix (SAM): To fix notation, we con-
sider training videos of V views: {Xv , yv}V

v=1. The data
instances of the v-th view Xv consist of N action videos:
Xv = [xv1, · · · , xvN ] ∈ R

d×N with corresponding labels
yv = [yv1 , · · · , yvN ], where xvi (i = 1, · · · , N) denotes the
feature of the video i of the v-th view and d denotes the
dimensionality of the video feature. We employ the Sample-
Affinity-Matrix (SAM) introduced in [15] to measure the
similarity between pairs of video samples in multiple views.
The SAM S ∈ R

V N×V N is defined as a block diagonal matrix:

S = diag(S1, · · · ,SN ), Si =

⎛
⎜⎜⎜⎝

0 s12
i · · · s1V

i
s21

i 0 · · · s2V
i

...
...

...
...

sV 1
i sV 2

i · · · 0

⎞
⎟⎟⎟⎠,

where diag(·) creates a diagonal matrix, and suv
i = exp

(‖xvi − xu
i ‖2/2c) parameterized by c calculates the distance

of the i -th video sample between two views. In this paper,
we use c = 2 in all the experiments according to the default
setting in [28].

Actually, SAM S captures both intra-class between-view
information and between-class intra-view information. A block
Si in S tells us how an action varies if view changes because it
characterizes appearance variations in different views within
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one class, which allows us to transfer information between
views and learn robust cross-view features. In addition, the
off-diagonal blocks in SAM S are set to zeros to limit
information sharing between classes in the same view. As a
result, the features from different classes but in the same view
are encouraged to be distinct, which enables us to differen-
tiate various action classes if they appear similarly in some
views.

2) Autoencoders: Our shared features learning approach
builds upon a popular deep learning approach Autoen-
coder (AE) [29] and a AE based domain adaptation method
marginalized stacked denoising Autoencoder [16] (mSDA).
The objective of AE is to encourage similar or identical input-
output pairs where the reconstruction loss is minimized. In this
way, the hidden unit is a good representation of the inputs as
the reconstruction process captures the intrinsic structure of the
input data. Different from the two-level encoding and decoding
in AE, marginalized stacked denoising Autoencoder (mSDA)
learns robust data representation using a single mapping W =
arg minW

∑N
i=1 ‖xi − W x̃i‖2 by recovering original features

from data that are artificially corrupted with noise, where x̃i

is the corrupted version of xi obtained by randomly setting
each feature to 0 with a probability p, and N is the number
of training samples. mSDA performs m times over the training
set with different corruptions each time, which essentially per-
forms a dropout regularization on the mSDA [30]. By setting
m → ∞, mSDA effectively uses infinitely many copies
of noisy data to compute the mapping matrix W that is
robust to noise. mSDA is stackable and can be computed in
closed-form.

3) Single-Layer Shared Features Learning: Actually,
an action from one view has some similar appearance infor-
mation with that from other views. This motivates us to
reconstruct an action data from one view (target view) using
the action data from other view(s) (source view(s)). In this
way, shared information between views can be refined and
transferred to the target view. Inspired by the mSDA, we incor-
porate SAM S into the mSDA to balance information transfer
between views and learn discriminative shared features across
multiple views. We learn shared features using the following
objective function that define the discrepancy between data
of the v-th target view and the data of all the V source
views:

arg min
W
ψ =

N∑
i=1

V∑
v=1

‖W x̃vi −
∑

u

xu
i suv

i ‖2

= ‖W X̃ − X S‖2
F , (1)

where suv
i is a weight measuring the contributions of the u-th

view action in the reconstruction of the action sample xvi of
the v-th view. W ∈ R

d×d is the mapping matrix for the
corrupted input x̃vi of all the views. S ∈ R

V N×V N is a sample-
affinity matrix encoding all the weights {suv

i }. Matrices X ,
X̃ ∈ R

d×V N denote the input training matrix and the corre-
sponding corrupted version of X , respectively [16].

The solution to optimization problem in Eq. (1) can be
expressed as the well-known closed-form solution for ordinary

least squares [16], [31]:

W = (X SX̃T)(X̃ X̃T)−1 (2)

It should be noted that X SX̃T and X̃ X̃T are computed by
repeating the corruption m → ∞ times. By the weak law of
large numbers [16], X SX̃T and X̃ X̃T can be computed by their
expectations E p(X SX̃T) and E p(X̃ X̃T) with the corruption
probability p, respectively.

Although the mSDA can be designed to have deep archi-
tecture by layer-wise stacking, we use only one layer in this
paper considering the extra training time using multiple layers.
To obtain the shared features, a nonlinear squashing function
σ(·) is applied on the output of one layer: Hs = σ(W X),
where X denotes the raw features of training data and Hs

denotes the shared features. Throughout this paper, we use
tanh(·) as the squashing function. Besides the information
shared across views, private features that capture discrimina-
tive information exclusively exists in each view should also
be taken into consideration. Therefore, original features X
is considered as private features Hp and concatenated with
the obtained shared feature Hs to form the new informative
representation Hsp = [Hs, Hp] ∈ R

2d×N .

B. Transferable Dictionary Learning

Although the obtained new representation Hsp contains both
shared and private features, it cannot capture view-invariant
information due to the variations in feature representations of
the same action from different views. Therefore, we employ
transferable dictionary learning method introduced in [14] to
learn sparse representation for each action video based on the
new representation Hsp. Specifically, we learn a set of view-
specific dictionaries where each dictionary corresponds to one
camera view. These dictionaries are learned simultaneously
from the sets of corresponding videos taken at different views
with the aim to encourage each video in the set to have the
same sparse representation. In this way, videos of the same
action class from source and target views will tend to have the
same sparse codes when reconstructed from the corresponding
view-specific dictionary.

In this paper, we consider unsupervised transferable dictio-
nary learning where labels of correspondence videos are not
available. In addition, we require that the number of training
actions videos in each view should be the same. Suppose
there are p source views and one target view. To be noticed,
the cross-view problem is a special case of multi-view problem
when p = 1. Let Ds,i ∈ R

2d×K and Dt ∈ R
2d×K denote

the view-specific dictionary of the i -th source view and the
target view, respectively. K is the number of dictionary atoms
and each view-specific dictionary is of the same size. Ys,i ∈
R

2d×N and Yt ∈ R
2d×N denote the feature representation of

the i -th source view and the target view, respectively. The
sparse representations X ∈ R

K×N are obtained by solving the
following objective function:

arg min
{Ds,i }p

i=1,Dt ,X

p∑
i=1

‖Ys,i − Ds,i X‖2
2 + ‖Yt − Dt X‖2

2

s.t . ∀i, ‖xi‖0 ≤ γ (3)
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Since we have the same number of action videos in each view,
Eq. (3) can be rewritten as:

arg min
D,X

‖Y − DX‖2
2

s.t . ∀i, ‖xi‖0 ≤ γ (4)

where Y =

⎡
⎢⎢⎣

Ys,1
· · ·

Ys,p

Yt

⎤
⎥⎥⎦, D =

⎡
⎢⎢⎣

Ds,1
· · ·

Ds,p

Dt

⎤
⎥⎥⎦ and ‖xi‖0 ≤ γ is

the sparsity constraint. As for the optimization of the view-
specific dictionaries D, they can be learned by the K-SVD [32]
algorithm. After obtaining these dictionaries, the OMP [33]
algorithm can be employed to compute the sparse feature
representations. Consequently, all videos in all views are pro-
jected into a unified view-invariant sparse feature space. This
procedure enables the transfer of sparse feature representations
of videos in the source view(s) to the corresponding videos in
the target view.

C. Distribution Adaptation

Although the obtained sparse representations of one action
in all views are the same, the distribution difference across
views still exists because a unified subspace where the sparse
representations of one action across views are the same may
not exist when the view difference is large (e.g. the top view
and the side views). This will degrade the overall performance
of the cross-view action recognition algorithm. Thus, we relax
this strong assumption that there exists a unified subspace
where the feature representations of one action in all views
should be strictly equal. Instead, we learn a set of projections
that project different views into respective subspaces to obtain
new representations of respective views, and concurrently
encourage the subspace divergence to be small.

1) Problem Definition: Suppose there are p source views
and one target view with a total of C classes. To fix the
definitions of terminologies, the data from the i -th source view
denoted as Xs,i ∈ R

K×Ns,i are draw from marginal distribution
Ps,i (Xs,i) and the target view data Xt ∈ R

K×Nt are draw from
marginal distribution Pt (Xt ), where K is the dimension of the
data instance, Ns,i and Nt are the number of samples in the i -th
source view and the target view, respectively. In unsupervised
distribution adaptation, there are sufficient labeled source view
data and unlabeled target domain data in the training stage.
We assume that the features and label spaces between source
and target views are the same. Due to the domain divergence
between views, for any i ∈ {1, · · · , p}, marginal distribution
Ps,i (Xs,i) �= Pt (Xt ) and conditional distribution Ps,i(Ys,i |
Xs,i) �= Pt (Yt | Xt ), where Ys,i ∈ R

1×Ns,i and Yt ∈ R
1×Nt

are the class labels of the i -th source view data and the target
view data, respectively. Different from previous distribution
adaptation methods, we do not assume that there exists a
unified transformation T that Ps,i (T(Xs,i)) = Pt (T(Xt )) and
Ps,i (Ys,i | T(Xs,i)) = Pt (Yt | T(Xt )), since this assumption
becomes invalid when the distribution shift across views is
large. Instead, we propose a novel distribution adaptation
method that learns a set of projections that project the source

and target views into respective subspaces to obtain new rep-
resentations of respective views, and encourage the subspace
divergence to be small at the same time.

2) Formulation: Our proposed distribution adaptation
approach is formulated by finding a set of projections (Fs,i for
the i -th source view and Ft for the target view) to obtain new
representations of respective views, such that 1) the difference
in marginal distribution and conditional distribution across
views is small, 2) the divergence between source and target
subspaces is small, 3) the variance of target view domain is
maximized, 4) the discriminative information of source view
domain is preserved.

To reduce the difference between the marginal distributions
Ps,i(Xs,i ) and Pt (Xt ), we follow [25] and [34]–[36] and
employ the empirical Maximum Mean Discrepancy (MMD)
to compute the distance between the sample means of the
source and target data in the k-dimensional embeddings,

min
{Fs,i }p

i=1,Ft

p∑
i=1

‖ 1

Ns,i

∑
xk∈Xs,i

FT
s,i xk − 1

Nt

∑
x j∈Xt

FT
t x j‖2

F (5)

In order to reduce difference between the conditional distri-
butions Ps,i (Ys,i | Xs,i) and Pt (Yt | Xt ), sufficient labeled
data in target view is need. However, there are no labeled
data in the target view in unsupervised scenario. To address
these issues, Long et al. [25] utilized target view pseudo labels
predicted by source view classifier to represent the conditional
distribution in the target view domain. The pseudo labels
in target view domain are iteratively refined to reduce the
difference in conditional distributions with the source view
domains. We follow this idea to minimize the conditional
distribution difference between domains,

min
{Fs,i }p

i=1,Ft

p∑
i=1

C∑
c=1

‖ 1

N (c)
s,i

∑

xk∈X (c)s,i

FT
s,i xk − 1

N (c)
t

∑

x j ∈X (c)t

FT
t x j‖2

F

(6)

where X (c)s,i is the set of data instances from class c in the i -th

source view and N (c)
s,i is the number of data instances in X (c)s,i .

Correspondingly, X (c)t is the set of data instances from class c
in the target view and N (c)

t is the number of data instances in
X (c)t . Since we have the same number of action videos in each
view, the marginal distribution difference minimization term
Eq. (5) and conditional distribution difference minimization
term Eq. (6) can be combined to obtain the final distribution
divergence minimization term,

min
Fs ,F

Tr(
[
FT

s FT
] [

Ms Mst

Mts M

] [
Fs

F

]
) (7)

where the formulation of Fs , F , Ms , Mst , Mts and M can be
found in Appendix A.

To reduce the divergence between source and target sub-
spaces, we use the following term to encourage the source
and target subspaces to be close,

min
{Fs,i }p

i=1,Ft

p∑
i=1

‖Fs,i − Ft‖2
F (8)
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We rewrite Eq. (8) as follows,

min
Fs ,F

‖Fs − F‖2
F (9)

where Fs =
⎡
⎣

Fs,1
· · ·
Fs,p

⎤
⎦ and F =

⎡
⎣

Ft

· · ·
Ft

⎤
⎦ is obtained by replicating

Ft p times.
To maximize the variance of target view data and preserve

its embedded data properties, we use the following term to
achieve this purpose,

max Tr(FT SF) (10)

where S = [St , · · · , St ] is obtained by replicating St p times,
St = Xt Ht XT

t is essentially a covariance matrix, and Ht =
It − 1

Nt
1t 1T

t is the centering matrix while 1t ∈ R
Nt ×1 is the

column vector with all ones and It ∈ R
Nt ×Nt is the identity

matrix.
Since the label information in the source views is available,

we can utilize this to preserve the discriminative information
in source views. Therefore, we use following terms to achieve
this purpose,

max
{Fs,i }p

i=1

p∑
i=1

T r(FT
s,i Sb,i Fs,i ) (11)

min
{Fs,i }p

i=1

p∑
i=1

T r(FT
s,i Sω,i Fs,i ) (12)

where Sb,i is the inter-class variance matrix of the data from
the i -th source view domain and Sω,i is the intra-class variance
matrix, which are defined as follows,

Sb,i =
C∑

c=1

N (c)
s,i (m

(c)
s,i − m̄s,i)(m

(c)
s,i − m̄s,i)

T (13)

Sω,i =
C∑

c=1

X (c)s,i H (c)
s,i (X

(c)
s,i )

T (14)

where X (c)s,i ∈ R
K×N (c)

s,i is the set of data instance from class

c in the i -th source view, m(c)
s,i = 1

N (c)
s,i

∑N (c)
s,i

k=1 x (c)k , m̄s,i =
1

Ns,i

∑Ns,i
k=1xk , H (c)

s,i = I (c)s,i − 1
N (c)

s,i

1(c)s,i (1
(c)
s,i )

T is the centering

matrix of data from class c, I (c)s,i ∈ R
N (c)

s,i ×N (c)
s,i is the identity

matrix. 1(c)s,i ∈ R
N (c)

s,i ×1 is the column vector with all ones, N (c)
s,i

is the number of data from class c in the i -th source view.
Similarly, Eq. (11) and Eq. (12) can be rewritten as follows,

max
Fs

T r(FT
s Sb Fs) (15)

min
Fs

T r(FT
s SωFs) (16)

where Fs =
⎡
⎣

Fs,1
· · ·
Fs,p

⎤
⎦ , Sb = [Sb,1, · · · , Sb,p] and Sω =

[Sω,1, · · · , Sω,p ].

We formulate our distribution adaptation method by incor-
porating the above five terms Eq. (7), (9), (10), (15) and (16)
into a unified objective function as follows:

max
μ{T-Var} + β{S-Inter-Var}

{Dis-Dif} + λ{Sub-Div} + β{S-Intra-Var} + μ{F-C}
where T-Var, S-Inter-Var, Dis-Dif, Sub-Div, S-Intra-Var and
F-C terms denote the target view data variance, source view
inter-class variance, distribution difference, subspace diver-
gence, source view intra-class variance and the scale constraint
of F , respectively. And λ,μ, β are the parameters to balance
the importance of each terms. We follow [37] to impose a
constraint that Tr(FT F) is small to control the scale of F .
Specifically, we aim at finding a set of projections Fs and F
by solving the following optimization problem,

max
Fs ,F

Tr([FT
s FT]

[
βSb 0

0 μS

] [
Fs

F

]
)

T r([FT
s FT]

[
Ms + λI + βSω Mst − λI

Mts − λI M + (λ+ μ)I

] [
Fs

F

]
)

(17)

where I is the identity matrix.
Actually, minimizing the denominator of Eq. (17) encour-

ages small difference of marginal and conditional distributions,
small subspace divergence between the source and target
views, and small intra-class variance of the source view. Maxi-
mizing the numerator of Eq. (17) encourages the large variance
of the target view and large inter-class variance of source
views. In addition, we also iteratively update the pseudo labels
of target view domain data using the learned transformations
to improve the labelling quality until convergence.

3) Optimization: To optimize Eq. (17), we rewrite [FT
s FT]

as W T. Then the objective function can be rewritten as follows:

max
W

Tr(W T
[
βSb 0

0 μS

]
W )

Tr(W T

[
Ms + λI + βSω Mst − λI

Mts − λI M + (λ+ μ)I

]
W )

(18)

Note that the objective function Eq. (18) is invariant to
rescaling of W . Therefore, the objective function Eq. (18) can
be rewritten as follows:

max
W

T r(W T
[
βSb 0

0 μS

]
W )

s.t . T r(W T
[

Ms + λI + βSω Mst − λI
Mts − λI M + (λ+ μ)I

]
W ) = 1

(19)

According to the constrained optimization theory, we denote
� = diag(φ1, · · · , φk) ∈ R

k×k as the Lagrange multiplier and
derive the Lagrange function for Eq. (19) as:

L = T r(W T
[
βSb 0

0 μS

]
W )

+ Tr((W T
[

Ms + λI + βSω Mst − λI
Mts − λI M + (λ+ μ)I

]
W − I )�

(20)
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Setting ∂L
∂W = 0, we obtain the problem of generalized

eigendecomposition,
[
βSb 0

0 μS

]
W =

[
Ms + λI + βSω Mst − λI

Mts − λI M + (λ+ μ)I

]
W�

(21)

where � = diag(φ1, · · · , φk) are the k smallest eigenvec-
tors. Finally, finding the optimal transformation matrix W is
reduced to solve Eq. (21) for the k smallest eigenvectors W =
[W1, · · · ,Wk]. Once the transformation matrix W is obtained,

the corresponding subspace projections Fs =
⎡
⎣

Fs,1
· · ·
Fs,p

⎤
⎦ and Ft

can be easily obtained.
The distribution adaptation method can be extended

to nonlinear problems in a Reproducing Kernel Hilbert
Space (RKHS) using kernel mapping ψ : x 	→ ψ(x),
or ψ(X) = [ψ(x1), · · · , ψ(xN )], and kernel matrix K =
ψ(X)Tψ(X) ∈ R

N×N , where N is the number of all samples
in source and target views. We use the Representer theorem
to kernelized the objective function Eq. (17) as follows:

max
Fs ,F

T r([FT
s FT]

[
βSb 0

0 μS

] [
Fs

F

]
)

T r([FT
s FT]

[
Ms + λK +βSω Mst − λK

Mts − λK M + (λ+ μ)K

] [
Fs

F

]
)

(22)

where K = ψ(X)Tψ(X), X = [Xs, Xt ], all the Xt are
replaced by ψ(Xt ) and all the Xs are replaced by ψ(Xs)
in Sb, S, Sω,Ms ,M,Mst and Mts in the kernelized version.
Once the kernelized objective function Eq. (22) is obtained,
we can simply solve it in the same way as the original
objective function to compute Fs and Ft . The Algorithm for-
mat of the proposed JSRDA can be seen on the website
https://xdyangliu.github.io/JSRDA/ due to the limited space of
the paper.

IV. EXPERIMENTS

In this section, we evaluate our proposed approach on
four public multi-view action datasets: the IXMAS action
dataset [38], the Northwestern UCLA Multiview Action 3D
(NUMA) dataset [39], the WVU action dataset [40] and the
MuHAVi dataset [41].

We consider both cross-view and multi-view action recogni-
tion scenarios in this paper. The former one trains a classifier
on one view (source view) and test it on the other view (target
view), while the latter trains a classifier on V −1 views (source
views) and test it on the remaining one view (target view).
1-Nearset Neighbor Classifier (NN) is adopted as the classifier.
We adopt the improved dense trajectories (iDTs) [42] features
with trajectory shape, HOG, HOF, MBHx, and MBHy as the
low-level action video representation. The total length of the
feature vector is 426. Then we adopt Locality-constrained
Linear Coding (LLC) [43] scheme to represent the iDTs by
5 local bases, and the codebook size is set to be 2, 000
for all training-testing partitions. Thus, the dimension of the
encoded iDTs features is 2, 000. To reduce the complexity

Fig. 3. Exemplar frames from the IXMAS dataset. Each row shows one
action captured by five cameras.

when constructing the codebook, only 200 local iDTs are
randomly selected from each video sequence according to the
default setting in [28].

For shared features learning, we fix noise probability
Np = 0.6 and number of layers L = 1 in all the experiments.
For transferable dictionary learning, we set dictionary size
K = 1000 and sparsity factor γ = 50. For distribution
adaptation, we fix λ = 1, μ = 1 for all the experiments,
such that the distribution difference, subspace divergence and
target view variance are treated as equally important, while
the values of parameters β and k are chosen differently for
various datasets.

For the action recognition task, it is hard to do eigendecom-
position in the original data space since the dimensionality of
data is high. Therefore, the experimental results are obtained
using the RBF kernel in distribution adaptation, which is
proved to be a good kernel for addressing the nonlinear
problem by previous works [25], [44]. For fair compari-
son, we adopt the leave-one-action-class-out training strategy
in [12] and [19]. At each time, only one action class is used for
testing in the target view. In order to evaluate the effectiveness
of our proposed approach, all the videos in this action class
are excluded from the feature learning procedure including
LLC encoding and the proposed JSRDA, while these action
videos can be seen in training the classifiers. We report the
classification accuracy by averaging all possible combinations
for selecting testing action classes.

On Intel (R) CoreTM i7 system with 32GB RAM and un-
optimized Matlab code excluding the process of iDTs extrac-
tion and LLC encoding, we get average run-time for training
videos as 1.53 seconds and testing videos as 0.17 seconds
for cross-view action recognition on the IXMAS dataset.
For multi-view action recognition, we get average run-time
for training videos as 4.99 seconds and testing videos as
0.99 seconds. Each video on the IXMAS dataset lasts for
4 seconds in average. We have released some extra experimen-
tal results and codes on the website https://xdyangliu.github.io/
JSRDA/ due to the limited space of the paper.

A. IXMAS Dataset

The IXMAS dataset has 1, 650 action samples with 11
action classes recorded by 4 side view cameras and 1 top
view camera. These actions are check watch, cross arms, get
up, kick, pick up, punch, scratch head, sit down, turn around,
walk and wave. Figure 3 shows some example frames.

1) Cross-View Action Recognition: In this experiment,
we evaluate our proposed JSRDA approach for cross-view
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TABLE I

CROSS-VIEW ACTION RECOGNITION RESULTS OF VARIOUS APPROACHES UNDER 20 COMBINATIONS OF SOURCE (TRAINING) AND TARGET (TESTING)
VIEWS ON THE IXMAS DATASET UNDER UNSUPERVISED MODE. 0 TO 4 DENOTE CAMERA0 TO CAMERA4 RESPECTIVELY

TABLE II

MULTI-VIEW ACTION RECOGNITION RESULTS ON THE IXMAS
DATASET. EACH COLUMN CORRESPONDS TO A TEST VIEW

action recognition on the IXMAS dataset. We compare our
approaches with [12], [14], [15], [19], [22], [23], [28], and
report recognition results in Table I. Our proposed approach
achieves the best performance in 15 out of 20 combinations
and the overall performance is significantly better than all the
comparison approaches especially when the view difference is
large (C4). In addition, our approach achieves nearly perfect
performance on the IXMAS dataset with eight 100% accu-
racies, which verifies that our proposed approach is robust
to viewpoint variations and can achieve good performance
in cross-view action recognition with learned view-invariant
representations.

2) Multi-View Action Recognition: In this experiment,
we evaluate the performance of our proposed JSRDA approach
for multi-view action recognition on the IXMAS dataset and
make comparisons with existing approaches [6], [12], [14],
[15], [19], [22], [23], [28], [45], [46]. The importance of
shared feature learning, transferable dictionary learning and
distribution adaptation are also evaluated. The No-JSRDA
represents the results of 1-NN classifier without using our
approach, while the No-SFL, No-TDL and No-DA represent
the results of JSRDA method without shared features learning,
transferable dictionary learning and distribution adaptation,
respectively.

Table II shows that our proposed approach JSRDA achieves
competitive recognition performance compared with other
approaches. Although Kong et al. [15] achieves nearly perfect

performance, our approach achieves comparable performance
and achieves slightly better accuracies in C4 where C4 is the
top view camera and there exists larger domain divergence
between the top view and other side views. In addition,
the overall performance of our method (99.6%) is comparable
to Kong et al. [15] (99.8%). To be noticed, Zheng et al. [14]
achieves satisfactory performance in C0, C1, C2 and C3 but
the performance drops a lot when the target view is C4.
On the contrary, our approach can still achieve satisfactory
performance even when the target view is C4. These validate
that our learned action representations is view-invariant and
generalizes well across views even when the view difference
is large.

The No-JSRDA performs very poorly and the recognition
accuracy for most tasks is less than 20% due to the existence
of domain divergence across views. Our proposed approach
outperforms No-SFL, which verifies the effectiveness of the
share features. Without shared features, No-SFL only utilize
the private features which are not discriminative enough as
some motion information only exist in one view and cannot be
shared across views. There is a large margin between the accu-
racies of Ours and that of the No-TDL, which demonstrates
that transferable dictionary learning can encourage the samples
from different views to have the same sparse representation
and thus reduce the domain divergence effectively. In addition,
the accuracy gap between Ours and No-DA suggests the ben-
efit of distribution adaptation for learning more robust view-
invariant representations that generalize well across views
especially when the view difference is large. More importantly,
the shared features learning (SFL), transferable dictionary
learning (TDL) and distribution adaptation (DA) are com-
plementary and indeed encourage us to learn view-invariant
features hierarchically.

3) Parameter Analysis: We analyse the sensitivity of para-
meters Np , L, K , β, k and T in this experiment while fixing
λ = 1, μ = 1 and γ = 50. We conduct experiments on
the multi-view action recognition task C0. The results of
other multi-view action recognition tasks or cross-view action
recognition tasks are not given here as it shows similar results
to the C0.

Np is the corruption probability in shared features learning
stage, we evaluate its performance given values Np ∈ {0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Results in Figure 4(a)
indicate that the performance increases if we increase the noise
probability Np . When Np is lower than 0.3, the performance
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Fig. 4. Performance analysis of the JSRDA on IXMAS dataset with various
values of parameters Np , L , K , β, k and T . (a) Value of parameter Np .
(b) Number of layers L. (c) Value of parameter K. (d) Value of parameter β.
(e) Value of parameter k. (f) Number of iterations T.

is poor. As the random corruption is essentially adding
dropout regularization, too lower corruption probability cannot
guarantee obtaining the informative corrupted data which is
different from raw data. When Np exceeds 0.3, the accuracy
increases a lot and reach its optimum value when Np = 0.6.
If we go on increasing the values of Np , the performance
becomes decreasing. The underlying reason is that adding too
much noise in raw data (Np > 0.6) reduces the amount of
shared information between views. Thus, the discriminative
power of shared features is decreased and lead to a relatively
lower recognition accuracy. Considering these issues, we use
Np = 0.6 in this work.

L is the number of layers in mSDA, we evaluate its perfor-
mance given values L ∈ {1, 2, 3, 4}. From Figure 4(b), we can
see that the performance of L = 1 and L = 2 is the same, then
the performance decreases when L > 2 due to the redundant
information results from multiple layers. Considering the extra
training time using multiple layers, we use L = 1 in this
work.

K is the dictionary size in transferable dictionary learning
stage, we fix the sparsity factor γ = 50 and vary the dictionary
size from 300 to 1200 in multiples of 100 as in the range
{300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200} due to
the fact that the dictionary size must be larger than the number
of samples in the IXMAS dataset of each view to guarantee the
sparsity. From Figure 4 (c), we observe that the performance
increases as the dictionary size increases and keep stable from
K = 600 to K = 1000. However, when the dictionary size K
is too large (K > 1000), the redundancy in dictionaries will
affect the sparse representation of action samples and thus
performance may decrease. Therefore, we choose K = 1000
in this work considering both the sparsity and the performance.
β is the trade-off parameters of intra-class and inter-class

variance of source view. A large range of β (β ∈ [10−10, 1])
are selected to evaluate its effect on the overall performance.
If β is too small, the class information of source view is not
considered. If β is too large, the classifier may be overfit
to the source view. As can be seen from Figure 4 (d),
the performance is stable and good when β is neither too small
nor too big. To make a balance between the class information
and the overfit problem, we use β = 10−6 in this work.

Fig. 5. Exemplar frames from the Northwestern UCLA dataset. Action
classes: Sit down and Throw.

k is the dimension of the learned view-invariant features,
which is essentially the number of the chosen eigenvec-
tors in eigendecomposition at distribution adaptation stage.
We illustrate the relationship between various k and the overall
accuracy given values k ∈ {200, 400, 600, 800, 1000, 1200,
1400, 1600, 1800, 2000}. From Figure 4 (e), we can observe
that the performance becomes stable when k is larger than
a certain value (800). This is because much information of
feature representation may lose in eigendecomposition process
when k is too small. Thus, discriminability of the feature is
not enough and the overall performance is unsatisfactory. But
when k exceeds a certain value, information can be reserved
well and k has little impact on the overall performance except
for the computational complexity. Although we can choose
k ∈ {800, 2000} to obtain view-invariant representations due
to their good performance, we use k = 1000 in this work
considering the time efficiency.

The convergence of the proposed method is also verified by
analyzing the number of iterations T . As can be seen from
Figure 4 (f), the accuracy converges to the optimum value
only after 2 iterations and then keep stable. Therefore, we use
T = 5 in this work.

B. Northwestern UCLA Multiview Action 3D Dataset

The NUMA dataset has 1, 509 action samples with 10 action
classes captured by 3 Kinect cameras in 5 environments. These
actions includes pick up with one hand, pick up with two
hands, drop trash, walk around, sit down, stand up, donning,
doffing, throw and carry. Figure 5 shows exemplar frames of
four action classes taken by three cameras.

1) Cross-View Action Recognition: In this experiment, we
evaluate our proposed JSRDA approach for cross-view action
recognition on the NUMA dataset. Our method is compared
with [24], [28], and [47]–[50]. Results in Table III show
that our proposed JSRDA approach achieves the best per-
formance in all combinations and outperforms all the com-
parison approaches by a significantly large accuracy margin.
In addition, our approach achieves nearly perfect performance
on the NUMA dataset with two 100% accuracies and four
nearly perfect accuracies (99.9%), which verifies that our
proposed approach is robust to viewpoint variations and
can achieve good performance in cross-view action recog-
nition with learned view-invariant representations. Compared
with [48] and [49], our better performance may be due to the
utilization of unlabeled target view data. These data contributes
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TABLE III

CROSS-VIEW ACTION RECOGNITION RESULTS OF VARIOUS APPROACHES
ON THE NUMA DATASET UNDER UNSUPERVISED MODE. EACH ROW

CORRESPONDS TO A TRAINING VIEW AND EACH COLUMN A

TESTING VIEW. 0 TO 2 DENOTE VIEW1 TO

VIEW3 RESPECTIVELY

TABLE IV

MULTI-VIEW ACTION RECOGNITION RESULTS ON THE NUMA DATASET.
EACH COLUMN CORRESPONDS TO A TEST VIEW. THE SYMBOL

‘N/A’ DENOTES THAT THE RESULT IS NOT REPORTED

IN THE PUBLISHED PAPER

to cope with the data-distribution mismatch. The explanation
for the better performance of ours than [24] and [50] may
be the lack of strong manifold structure on these cross-
view datasets. Approach [47] assumes that there exists a
common subspace where the modality gap between datasets
can be reduced effectively, but this assumption is invalid when
the view difference is large. Such remarkable improvements
demonstrate the benefit of using both shared and private
features for modeling cross-view feature representation, and
learning a set of projections that project the source and
target domains into respective subspaces without the manifold
structure assumption.

2) Multi-View Action Recognition: In this experiment,
we evaluate the performance of our proposed JSRDA for
multi-view action recognition on the NUMA dataset. Our
approach is compared with [15], [23], [28], [39], [47],
[51], and [52]. As most of the published papers only report the
average accuracies in the multi-view scenario, we only quote
the given accuracies in Table IV. The importance of shared
features learning (SFL), transferable dictionary learning (TDL)
and distribution adaptation (DA) are also evaluated.

Table IV shows that our proposed JSRDA achieves nearly
perfect performance in the NUMA dataset with two 100%
accuracies. Compared with other approaches, ours performs
significantly better with a large accuracy margin. These
demonstrate that our proposed JSRDA can learn robust
and discriminative view-invariant representations for multi-
view action recognition. Without the JSRDA, the No-JSRDA
performs very poorly due to the existence of domain

Fig. 6. Performance analysis of the JSRDA on NUMA dataset with various
values of parameters β, k and T . (a) Value of parameter β. (b) Value of
parameter k. (c) Number of iterations T.

divergence across views. Thus, directly applying the classi-
fier trained on one view to another view will degrade the
performance. The No-SFL performs worse than the JSRDA
demonstrates the effectiveness of shared features which are
complementary to the private features. A large accuracy mar-
gin exists between ours and the No-TDL, which shows that
transferable dictionary learning is a key stage for reduce the
domain divergence across views by encouraging the samples
from different views to have the same sparse representations.
In addition, the accuracy gap between Ours and No-DA
suggests the benefit of distribution adaptation for addressing
the performance degradation problem caused by the large
view difference. More importantly, the shared features learn-
ing (SFL), transferable dictionary learning (TDL) and distribu-
tion adaptation (DA) are complementary and indeed encourage
us to learn view-invariant representations hierarchically.

3) Parameter Analysis: The sensitivity of parameters β, k
and T are evaluated while fixing other parameters λ = 1,
μ = 1, γ = 50, Np = 0.6, L = 1 and K = 1000 according
to the sensitivity analysis results from the IXMAS dataset.
We conduct experiments on the multi-view action recognition
task C0.
β is the trade-off parameters of intra-class and inter-class

variance of source view. A large range of β (β ∈ [10−10, 1])
are selected to evaluate its effect on the overall performance.
As can be seen from Figure 6 (a), our approach is insensitive to
the parameter β with small accuracy variation (0.25%) when
β is small. When β is too large, the classifier may be overfit to
the source view and thus the performance degrades. To make a
balance between the class information and the overfit problem,
we use β = 10−6 in this work.

k is the dimension of the learned view-invariant features.
We illustrate the relationship between various k and the
overall accuracy given values k ∈ {200, 400, 600, 800, 1000,
1200, 1400, 1600, 1800, 2000}. From Figure 6 (b), we can
observe that we can choose k ∈ {400, 1600} to obtain view-
invariant features due to their good performance. We make a
compromise between the time efficiency and performance and
use k = 1000 in this work.

The convergence of the proposed method is also verified by
analysing the number of iterations T . As can be seen from
Figure 6 (c), the accuracy converges to the optimum value
within only 1 iteration and then keep stable. Therefore, we use
T = 5 in this work.

C. WVU Action Dataset

The WVU dataset is collected from a network of
8 embedded cameras with 12 action classes and each action
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TABLE V

CROSS-VIEW ACTION RECOGNITION RESULTS OF VARIOUS APPROACHES ON THE WVU DATASET UNDER UNSUPERVISED MODE. EACH
ROW CORRESPONDS TO A TRAINING VIEW AND EACH COLUMN A TESTING VIEW. C0 TO C7 DENOTE VIEW1 TO VIEW8

RESPECTIVELY. THE THREE ACCURACY NUMBERS IN THE BRACKET ARE THE AVERAGE RECOGNITION

ACCURACIES OF [14], [20], AND OUR PROPOSED APPROACH RESPECTIVELY

Fig. 7. Exemplar frames from the WVU dataset. Each row shows one action
viewed across eight camera views.

has 65 video samples. There are a total of 6, 240 video
samples in this dataset, which is a relatively large multi-view
action dataset compared with the IXMAS and the NUMA
datasets. These actions includes standing still, nodding head,
clapping, waving one hand, waving two hands, punching,
jogging, jumping jack, kicking, picking, throwing and bowling.
Figure 7 shows exemplar frames of two action classes taken
by eight cameras.

1) Cross-View Action Recognition: In this experiment,
we evaluate our proposed JSRDA approach for cross-view
action recognition on the WVU dataset. Our method is com-
pared with two approaches in [14] and [20]. Results in Table V
show that our approach achieves similar performance com-
pared with [14]. Some accuracies in [14] are better demon-
strates the effectiveness of transferable dictionary learning
proposed in [14], but when the distribution divergence across
views are large, transferable dictionary learning cannot address
the cross-view problem well without considering distribution
adaptation. For example, when the source view is C2, C5
and C6, our proposed approach outperforms all the pairwise
views by a large margin compared with the approach [14].
In addition, we achieve the best average accuracies in 6 out
of 8 tasks including C0, C1, C2, C3, C5 and C7. These verify
that our approach can effectively address the cross-view action
recognition problem by learning view-invariant representations
using the novel JSRDA framework.

2) Parameter Analysis: We also evaluate the sensitivity of
our approach to parameters β, k and T while fixing other
parameters λ = 1, μ = 1, γ = 50, Np = 0.6, L = 1 and
K = 1000 according to the sensitivity analysis results from
the IXMAS dataset and the NUMA dataset. We conduct exper-
iments on the cross-view action recognition task C0→C1.
β is the trade-off parameters of intra-class and inter-class

variance of source view. A large range of β (β ∈ [10−10, 1])
are selected to evaluate its effect on the overall performance.
As can be seen from Figure 8 (a), our approach is insensitive

Fig. 8. Performance analysis of the JSRDA on WVU dataset with various
values of parameters β, k and T . (a) Value of parameter β. (b) Value of
parameter k. (c) Number of iterations T.

to the parameter β when it is small, and achieves the best
performance when β = 1. Therefore, we use β = 1 in this
work.

k is the dimension of the learned view-invariant features.
We illustrate the relationship between various k and the
overall accuracy given values k ∈ {200, 400, 600, 800, 1000,
1200, 1400, 1600, 1800, 2000}. From Figure 8 (b), we can
observe that we can choose k ∈ {800, 1200} to obtain view-
invariant features due to their good performance. We make a
compromise between the time efficiency and performance and
use k = 1000 in this work.

The convergence of the proposed method is also verified by
analysing the number of iterations T . As can be seen from
Figure 8 (c), the accuracy converges to the optimum value
within 5 iterations. Therefore, we use T = 5 in this work.

D. MuHAVi Dataset

The MuHAVi dataset [41] contains 17 human action classes:
WalkTurnBack, RunStop, Punch, Kick, ShotGunCollapse,
PullHeavyObject, PickupThrowObject, WalkFall, LookInCar,
CrawlOnKnees, WaveArms, DrawGraffiti, JumpOverFence,
DrunkWalk, ClimbLadder, SmashObject and JumpOverGap.
Each action video is performed by 7 actors and recorded using
8 CCTV Schwan cameras located at 4 sides and 4 corners of
a rectangular platform. To reduce the computational burden
and have a fair comparison with other works, we follow
[14] and [53] to choose the action videos captured by four
cameras (i.e. two side cameras and two corner cameras) in our
experiments. Figure 9 shows exemplar frames of two action
classes taken by four cameras.

Table VI shows the recognition accuracies of our proposed
JSRDA for cross-view action recognition. Although both
WSCDD [28] and un-RLTDL [14] are based on transferable
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Fig. 9. Exemplar frames from the MuHAVi dataset. Action classes:
DrawGraffiti and WaveArms.

TABLE VI

CROSS-VIEW ACTION RECOGNITION RESULTS OF VARIOUS APPROACHES

ON THE MUHAVI DATASET UNDER UNSUPERVISED MODE. EACH
ROW CORRESPONDS TO A TRAINING VIEW AND EACH COLUMN

A TESTING VIEW. THE THREE ACCURACY NUMBERS IN THE

BRACKET ARE THE AVERAGE RECOGNITION ACCURACIES
OF WSCDD [28], UN-RLTDL [14] AND OUR

PROPOSED APPROACH RESPECTIVELY

TABLE VII

MULTI-VIEW ACTION RECOGNITION RESULTS OF VARIOUS APPROACHES

ON THE MUHAVI DATASET UNDER UNSUPERVISED MODE.
EACH COLUMN CORRESPONDS TO A TEST VIEW

dictionary learning, JSRDA achieves better performance than
WSCDD and un-RLTDL due to the benefits of shared features
and distribution adaptation. This demonstrates that JSRDA is
robust to viewpoint variations and can achieve satisfactory
performance in cross-view action recognition.

We also evaluate our approach for multi-view action recog-
nition on the MuHAVi dataset and the results can be seen
in Table VII. Although Zheng et al. [14] achieves good
performance in C4 and C6, its performance degrades when
the target view is C1 and C3 due to the existence of large
view difference. However, JSRDA can still achieve good
performance even when the view difference is large and the
overall performance is better than other approaches [14], [28],
[53]–[55]. This illustrates that JSRDA can learn robust and
discriminative view-invariant representations for multi-view
action recognition even with large view difference.

To evaluate whether our method can generalize both the
view and the action class, we use the leave-one-actor-out
strategy for training and testing which means that each time
one actor is excluded from both training and testing procedure.
We report the classification accuracy by averaging all possible
combinations for excluding actors. We conduct experiments
for multi-view action recognition task on the MuHAVi dataset.

TABLE VIII

PERFORMANCE COMPARISON OF MULTI-VIEW ACTION RECOGNITION
TASK C4 ON THE IXMAS DATASET FOR DIFFERENT COMBINATIONS

OF FEATURES AND CODEBOOK SIZES. D DENOTES

THE CODEBOOK SIZE

From Table VII, we can see that the performance of our
method using leave-one-actor-out strategy (JSRDA_actor) is
comparable to that of our method using leave-one-action-
class-out strategy (JSRDA). This verifies that our method can
generalize both the view and the action class.

E. Impact of Features Extraction Parameters

To have a more detailed study on how well our method
behaves for different choices of features, we use some possible
combinations of features (trajectory shape, HOG, HOF, MBHx
and MBHy) to form the iDTs to evaluate our method. To have
a more detailed study on how well our method behaves
for different choices of extraction parameters, we conduct
experiments for multi-view action recognition task C4 on the
IXMAS dataset with different codebook sizes while keep-
ing other parameters unchanged. The results can be seen
in Table VIII. We can see that the average accuracy is the best
when we combine trajectory shape (Tra), HOG, HOF, MBHx
and MBHy as the video feature. Although the accuracy of
D = 2000 is the same as that of D = 8000, we make a com-
promise between performance and computational complexity
and choose 2000 as the codebook size in our experiments.

V. CONCLUSION

In this paper, we propose a novel view-invariant represen-
tation learning approach for cross-view action recognition.
Our approach incorporates shared features learning, transfer-
able dictionary learning and distribution adaptation into a
unified framework and learns view-invariant representations
hierarchically. A sample affinity matrix is incorporated into
the marginalized stacked denoising Autoencoder (mSDA) to
learn shared features, and the shared features are combined
with the private features to obtain new informative feature
representation. Then, a transferable dictionary pair is learned
simultaneously from pairs of videos taken at different views
to encourage each action video across views to have the
same sparse representation. To address the problem of large
view difference, a novel unsupervised distribution adaptation
method is proposed to reduce the difference in both the
marginal distribution and conditional distribution across views
by learning a set of projections that project the source and
target views data into respective low-dimensional subspaces.
Finally, the view-invariant representations of action videos
from different views are obtained in their respective subspaces.
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Extensive experiments on the IXMAS, NUMA, WVU and
MuHAVi datasets show that our approach outperforms state-
of-the-art approaches for both cross-view and multi-view
action recognition.

APPENDIX A
THE FORMULATION OF EACH TERM IN (7)

Fs and F are defined in Eq. (23),

Fs =
⎡
⎣

Fs,1
· · ·
Fs,p

⎤
⎦, Xs = [Xs,1, · · · , Xs,p]

F =
⎡
⎣

Ft

· · ·
Ft

⎤
⎦ is obtained by replicating Ft p times.

X = [Xt , · · · , Xt ] is obtained by replicating Xt p times.

(23)

Ms is defined in Eq. (24),

Ms = Xs(Ls +
C∑

c=1

L(c)s )XT
s , Ls = [Ls,1, · · · , Ls,p],

Ls,i = 1

N2
s,i

1s,i1
T
s,i , 1s,i ∈ R

Ns,i ×1,

L(c)s = [L(c)s,1, · · · , L(c)s,p], i ∈ {1, · · · , p},

(L(c)s,i )m,n =

⎧⎪⎨
⎪⎩

1

(N (c)
s,i )

2
, xm, xn ∈ X (c)s,i

0, otherwise

(24)

Mst is defined in Eq. (25),

Mst = Xs(Lst +
C∑

c=1

L(c)st )X
T,

Lst = [Lst,1, · · · , Lst,p],
Lst,i = 1

Ns,i Nt
1s,i1T

t , 1s,i ∈ R
Ns,i ×1, 1t ∈ R

Nt ×1

L(c)st = [L(c)st,1, · · · , L(c)st,p], i ∈ {1, · · · , p},

(L(c)st,i)m,n =

⎧⎪⎨
⎪⎩

− 1

N (c)
s,i N (c)

t

, xm ∈ X (c)s,i , xn ∈ X (c)t

0, otherwise

(25)

Mts is defined in Eq. (26),

Mts = X (Lts +
C∑

c=1

L(c)t s )X
T
s , Lts = [Lts,1, · · · , Lts,p],

Lts,i = 1

Nt Ns,i
1t 1T

s,i , 1t ∈ R
Nt ×1, 1s,i ∈ R

Ns,i ×1

L(c)t s = [L(c)t s,1, · · · , L(c)t s,p], i ∈ {1, · · · , p},

(L(c)t s,i)m,n =

⎧⎪⎨
⎪⎩

− 1

N (c)
t N (c)

s,i

, xm ∈ X (c)t , xn ∈ X (c)s,i

0, otherwise

(26)

M is defined in Eq. (27),

M = X (L +
C∑

c=1

L(c))XT,

L = [Lt , · · · , Lt ] is obtained by replicating

Lt p times.

Lt = 1

N2
t

1t 1T
t , 1t ∈ R

Nt ×1,

L(c) = [L(c)t , · · · , L(c)t ] is obtained by replicating L(c)t

p times.

(L(c)t )m,n =
⎧⎨
⎩

1

(N (c)
t )2

, xm, xn ∈ X (c)t

0, otherwise
(27)

where 1s,i and 1t are the column vectors with all ones.
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