
ar
X

iv
:2

30
3.

00
43

3v
1

 [
ee

ss
.I

V
]

 1
 M

ar
 2

02
3

1

Motion Estimation for Fisheye Video with an

Application to Temporal Resolution Enhancement
Andrea Eichenseer, Michel Bätz, and André Kaup, Fellow, IEEE

Abstract—Surveying wide areas with only one camera is a
typical scenario in surveillance and automotive applications.
Ultra wide-angle fisheye cameras employed to that end produce
video data with characteristics that differ significantly from con-
ventional rectilinear imagery as obtained by perspective pinhole
cameras. Those characteristics are not considered in typical
image and video processing algorithms such as motion estimation,
where translation is assumed to be the predominant kind of
motion. This contribution introduces an adapted technique for
use in block-based motion estimation that takes into account the
projection function of fisheye cameras and thus compensates for
the non-perspective properties of fisheye videos. By including

suitable projections, the translational motion model that would
otherwise only hold for perspective material is exploited, leading
to improved motion estimation results without altering the source
material. In addition, we discuss extensions that allow for a better
prediction of the peripheral image areas, where motion estimation
falters due to spatial constraints, and further include calibration
information to account for lens properties deviating from the
theoretical function. Simulations and experiments are conducted
on synthetic as well as real-world fisheye video sequences that
are part of a data set created in the context of this work. Average
synthetic and real-world gains of 1.45 and 1.51 dB in luminance
PSNR are achieved compared against conventional block match-
ing. Furthermore, the proposed fisheye motion estimation method
is successfully applied to motion compensated temporal resolution
enhancement, where average gains amount to 0.79 and 0.76 dB.

Index Terms—Fisheye Camera, Wide-Angle Lens, Motion
Estimation, Block Matching, Temporal Resolution Enhancement.

I. INTRODUCTION

V
IDEO surveillance systems often require cameras with

a very large field of view (FOV) to be able to survey

a wide area with a single camera, be it a mounted or a

wearable device. For perspective lenses based on the pinhole

model, the FOV increases with a decreasing focal length.

However, manufacturing lenses with very short focal lengths

is highly sophisticated and expensive. What is more, an FOV

of 180◦ can never be achieved as this would require a focal

length equal to zero. To increase the FOV using a realistic

focal length, one has to abandon the pinhole model and

employ a different approach, such as a fisheye projection.

In the literature, four fisheye projection functions [1], [2] are

found: the equidistant, the equisolid, the stereographic, and the

At the time of this work, all authors were with the Chair of
Multimedia Communications and Signal Processing, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany (E-mail:
andrea.eichenseer@fau.de, michel.baetz@fau.de, andre.kaup@fau.de). This
work was supported by the Research Training Group 1773 “Heterogeneous
Image Systems”, funded by the German Research Foundation (DFG).

orthographic projection function. All of them differ from the

conventional pinhole model of typical cameras in that they are

able to accommodate a much larger FOV of 180◦ and more.

Contrary to perspective wide-angle lenses, which also capture

a larger than usual FOV, fisheye lenses possess an inherent

radial distortion as it is not possible to project a hemisphere

onto an image plane without changing the mapping function.

As a result, straight structures are no longer depicted by

straight lines in the resulting fisheye images. Employing a

fisheye camera for surveillance purposes provides a number

of advantages. Instead of multiple perspective cameras, one

fisheye camera at a single vantage point may be used, which

reduces hardware cost and additional software licensing cost

and also avoids increased expenditure for the installation and

maintenance of multiple cameras. Furthermore, there are no

blind spots as would occur when using a standard perspective

camera with a fixed point of view and a highly limited field of

view. Important surveillance applications include object track-

ing [3] and the generation of multiple perspective views from

one image [4], for example. What is true for surveillance can

also be applied to automotive applications. Driver’s assistance

systems have multiple tasks: they detect traffic features, thus

helping the driver while parking or keeping the lane [5]–

[8], but they also protect pedestrians [9], [10] and play an

important role in self-driving vehicles [11].

In many signal processing applications, a fundamental task

is the estimation of motion between video frames. A popular

motion estimation (ME) method that is also well-established

in the context of video coding is the block matching algo-

rithm [12]. Block matching finds the best match for each

block of the current frame in a reference frame by minimizing

an error criterion. The motion information is thus limited to

one vector per block and can be transmitted inexpensively

by further exploiting correlations between neighboring motion

vectors. The video compression standards H.264/AVC [13]

and its successor H.265/HEVC [14] are well-known examples

that employ block matching in order to exploit temporal

redundancies. Motion estimation is also important for various

other applications, such as temporal error concealment [15],

spatial and temporal resolution enhancement [16]–[18], or de-

blurring [19] and denoising [20]. While block matching works

quite well with perspective data, this is not the case when using

fisheye images. As the predominant kind of motion in video

sequences is commonly assumed to be translational motion, a

translational motion model is the basis of block matching. In

perspective images, local or global translations of objects or

the camera can be easily compensated by rearranging blocks of

the reference frame into a compensated image as indicated by

http://arxiv.org/abs/2303.00433v1

2

Fig. 1. Comparison of a circular fisheye image (left), a full-frame fisheye image (middle), and a perspective image (right) using the same sensor area.
Evidently, perspective projection is highly limited in terms of FOV. While the fisheye images cover an FOV of up to 185◦ , the perspective image only covers
about 60◦. The yellow line exemplifies that straight structures are only straight in perspective images.

the obtained motion vectors. This does not work as effectively

for fisheye videos. Due to the inherently different projection

function, a translation of an object does not result in just a

shift of said object between fisheye video frames. Rather, the

object also changes its shape. Furthermore, a one-dimensional

object translation results in a two-dimensional offset in the

fisheye images.

In this work, we present a fisheye motion estimation tech-

nique that employs suitable projections to account for the

fisheye characteristics. The method was originally introduced

in [21] and is now revisited to provide a more in-depth discus-

sion of the algorithm, its challenges, and possible solutions. A

new contribution is made by applying the introduced fisheye

motion estimation to temporal resolution enhancement, an im-

portant task in surveillance or entertainment systems that con-

verts a low temporal input resolution to a higher target frame

rate. As temporal artifacts such as motion judder—causing a

seemingly stuttering video—prove distracting, motion com-

pensated frame rate up-conversion techniques aim to create a

smooth motion between available frames and newly created

intermediate frames. The problems arising for estimating the

motion between fisheye frames thus directly apply to motion

compensated temporal resolution enhancement and require

dedicated treatment. Previous work in the context of fisheye

motion estimation includes an investigation of the HEVC

coding efficiency when compressing original and distortion-

corrected fisheye videos [22], which could confirm the need

for a fisheye adaptation within video coding frameworks.

One such adaptation calculates pixel-wise differences between

motion vectors and was tested for perspective sequences that

were warped using a fisheye model [23]. The main idea is

similar to [21]. Another adaptation makes use of elastic motion

compensation [24] to account for global motion. In contrast

to these, this work focuses on block-based motion estimation

and is designed for authentic circular fisheye video sequences

with a focus on translation as the predominant type of motion.

The remainder of this paper is structured as follows. In Sec-

tion II, we introduce the typical fisheye projection functions

known from the literature and how they relate to perspective

projection as defined by the pinhole model. In Section III,

we will then show how this knowledge can be used to adapt

conventional block-based motion estimation to fisheye video

sequences by employing suitable coordinate projections. We

further provide extensions that include calibration information

and compensate for ultra wide angles. The fisheye data set

we created and used for evaluating our motion estimation

approach is introduced in Section IV, while the evaluation

results are presented and discussed in Section V. Section VI

provides the application to temporal resolution enhancement,

including the description of the method and its evaluation.

Section VII concludes this paper with a brief summary and

an outlook on related signal processing tasks that benefit from

the proposed method.

II. PERSPECTIVE AND FISHEYE PROJECTION

Most images and videos are taken with cameras which use

conventional lenses that follow the pinhole model. Due to

the limited FOV of around 40–60◦, most perspective lenses

can be categorized as narrow-angle lenses. In contrast, wide-

angle lenses typically employ a shorter focal length than

narrow-angle lenses so as to capture a larger FOV. However,

even wide-angle lenses are not able to capture an FOV of

180◦ and more. That is where fisheye lenses come into play.

A fisheye lens [1] is constructed in a way such that rays

hitting the lens even at 90◦ and more are bent toward the

image sensor. Obviously, such a lens can no longer follow

the pinhole model. Even though the image sensor dimensions

limit the spatial resolution and field of view, fisheye lenses

are able to capture the whole hemisphere—and more—in

front of the camera. Depending on both sensor size and focal

length, the maximum FOV of a fisheye camera may correspond

to a diagonal FOV only (full-frame fisheye) or apply to all

directions (circular fisheye); both types of fisheye imagery are

shown in Fig. 1 along with a comparison to a conventional

perspective image. In the following, the pinhole model and

the four classical fisheye projection functions found in the

literature are recapitulated.

A. The Pinhole Model

The pinhole model is a simplified assumption used to

describe the projection of a point in 3D Cartesian space onto

a 2D image plane by means of a conventional camera. It de-

scribes a perspective projection, also referred to as rectilinear

projection, or gnomonic projection. According to projective

geometry, perspective projection maps straight lines of a scene

onto straight lines in the resulting image and produces no

visually annoying distortions. This is shown in the right image

3PSfrag replacements

X

Y

Z

XP

YP

ZP

x

y

xp

yp rp

f

θ

optical axis

lens

center

P

image plane

P p
P e

Fig. 2. Projection of a point P in 3D Cartesian space onto the 2D image
plane using perspective projection (gray, P p, with |P p| = rp) and equisolid
fisheye projection (orange, P e).

of Fig. 1, where the yellow line highlights a straight edge that

is still straight after perspective projection. Fig. 2 visualizes

the pinhole model by showing how a ray of light originating

from point P = (XP , YP , ZP)⊤ passes through the lens

located at origin (0, 0, 0)⊤, thus projecting P onto P p on the

2D image plane (shown in gray). For the sake of simplicity,

we let the world coordinate system coincide with the camera

coordinate system. The angle θ between the vector P and the

Z-axis corresponds to the incident angle of light measured

against the optical axis, which in turn coincides with the Z-

axis. The emergent angle corresponds to the incident angle θ
and the distance of the projected point P p to the image center

corresponds to the radius rp, which is equal to the vector

magnitude

|P p| =
√

x2
p + y2p = rp , (1)

where (xp, yp) describe the Cartesian coordinates of P p on the

image plane. With the focal length f describing the distance

between the pinhole—the lens—and the image plane, (xp, yp)
can be obtained via similar triangles:

xp =
f

ZP

XP and yp =
f

ZP

YP . (2)

Given θ in radians, the pinhole model is usually described as

a function of rp over θ by means of the simple trigonometric

relation:

rp = f tan θ . (3)

In Fig. 3, perspective projection is described by the gray curve

r(θ) = rp for a focal length of 1.8 mm. Up to an incident angle

of light of about 25–30◦, corresponding to an FOV of 50–60◦,

the pinhole model can be approximated by a linear function.

Beyond that, however, the sensor size necessary to capture

the incoming light rays increases rapidly. Since the sensor

dimensions are limited, the pinhole model is not suitable

when dealing with large FOVs as required in surveillance or

automotive applications, for instance.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

Incident angle θ in degrees

R
ad

iu
s
r

in
m

m

Perspective

Stereographic

Equidistance

Equisolid

Orthographic

Fig. 3. Perspective and fisheye projections plotted as functions of the radius
r over the incident angle of light θ. The focal length used here is 1.8 mm.

B. The Four Classical Fisheye Projection Functions

A solution to the problem of limited FOV is given by replac-

ing perspective projection by a fisheye projection. In literature,

there exist four classical fisheye projection functions [1], [2].

The first is equidistance projection, which projects θ linearly

and thus equidistantly according to

rf = fθ , (4)

where rf describes the radius in the context of fisheye projec-

tions. In Fig. 3, equidistance projection is represented by the

purple line and corresponds to r(θ) = rf . In theory, this model

is able to accommodate a maximum angle θmax of infinite

degrees due to its non-periodic nature; this, however, would

require a sensor of infinite dimensions. But even with a sensor

of limited size, the equidistance projection is easily able to

capture an FOV of 180◦.

The second fisheye projection function is based on equisolid

projection, also called equisolid angle projection. A fisheye

lens which employs this projection is sometimes referred to

as equal-area fisheye as it employs a uniform mapping of the

solid angle. The equisolid projection function is given as

rf = 2f sin(θ/2) (5)

and is represented in orange in Figs. 2 and 3. For an FOV

of up to about 100◦, it is very similar to the equidistance

mapping, but due to its sinusoidal form, it deviates from this

linear function for larger FOVs. The maximum possible FOV

captured by this projection corresponds to 360◦.

The third fisheye model is based on orthographic projec-

tion—sometimes also called orthogonal projection—defined

as

rf = f sin(θ) (6)

and shown in blue in Fig. 3. This model conducts a parallel

projection using projection lines that are orthogonal to the

image plane. The maximum FOV is limited to exactly 180◦,

corresponding to a hemisphere. With incident angles of more

than 90◦, the function would no longer be bijective, thus

preventing a necessary unique mapping.

The fourth fisheye model found in the literature is based on

stereographic projection. It is given by

rf = 2f tan(θ/2) (7)

4

PSfrag replacements

Reference frame

Current frame

Fig. 4. Motion estimation via block matching between two fisheye frames
with the current block highlighted in green, the motion vector and the best
match found in blue and the search area in yellow. The block size and motion
between frames is exaggerated for visualization purposes.

and shown in green in Fig. 3. Stereographic projection is

conformal, thus preserving angles between curves but not

distances or areas. Since this projection is very similar to the

pinhole model, albeit allowing a twice as large range of θ, the

maximum possible FOV is greater than 180◦ but much less

than 360◦.

To better understand the derivations of the four fisheye pro-

jection functions, visual interpretations can be found in [25],

for instance. Without loss of generality, we employ only the

equisolid fisheye projection as an exact function in our method

as this is the function the synthetic part of the test set is

based on. It should be noted that apart from the trigonometric

projection functions discussed above, there also exist a number

of fisheye models [25], [26] based on approximated functions

and polynomials, for example. In the scope of this paper, a

polynomial is made use of in the context of calibration to

describe the fisheye projection function of a real-world camera.

III. BLOCK-BASED MOTION ESTIMATION AND

COMPENSATION FOR FISHEYE VIDEO

This section starts with a brief recap of conventional block

matching as applied in hybrid video coding, for example.

Following that, the proposed fisheye motion estimation method

along with two extensions is introduced in detail.

A. Motion Estimation via Block Matching

Block matching [12] is a widely employed motion esti-

mation technique based on matching blocks from the current

video frame Icur to a temporally neighboring reference frame

I ref, thus exploiting temporal correlations between subsequent

frames. To that end, Icur is divided into square blocks and

the current block being processed is described as Bcur =
Icur(x, y), where (x, y) ∈ Bcur. Here, (x, y) describe the spatial

Cartesian coordinates of the frame and Bcur describes the set

of pixel coordinates that belong to the block Bcur. For a

predefined search range in the reference frame, all possible

blocks within this search range are matched to the current

block and evaluated via an error metric such as the sum of

absolute differences (SAD)

SAD =
∑

(x,y)∈Bcur

∣

∣Icur(x, y)− Iref(x +∆x, y +∆y)
∣

∣ (8)

or the sum of squared differences (SSD)

SSD =
∑

(x,y)∈Bcur

(

Icur(x, y)− Iref(x+∆x, y +∆y)
)2

. (9)

The candidate block that minimizes the residual error, i. e., that

yields the biggest similarity to the current block, is chosen

as the best match and the motion vector m = (∆x,∆y)
that describes the displacement between the current block

and this best match is stored as motion information. Fig. 4

provides a visualization of the current block in green, the best

match found in the reference frame and the corresponding

motion vector in blue, and the search range in yellow. During

motion compensation, m is used to extract the corresponding

luminance values from the reference frame and create the

compensated image block B̃cur:

B̃cur = Iref(x+∆x, y +∆y) , with (x, y) ∈ Bcur . (10)

This procedure is repeated for each block of the current frame,

thus creating the compensated frame Ĩcur which can be used

as a prediction signal. An important application for this kind

of temporal prediction is hybrid video coding and it can in

fact be found in both the H.264/AVC [27] and HEVC [28]

video coding standards. While block matching works very

well with translational motion, there is a drawback when

dealing with radially distorted imagery such as fisheye videos.

Since fisheye images do not follow the projective geometry

principle of mapping a straight line again onto a straight line

for translational motion, a motion compensation method based

thereon cannot yield optimum results. This is exemplified for

one match in Fig. 4. In the following, we describe our proposed

fisheye motion estimation method.

B. Fisheye Motion Estimation via Equisolid Re-Projection

With perspective projection, a translational motion of an

object or even the whole 3D scene parallel to the image plane

equally corresponds to a translation in the image. This is easily

shown by considering a single 3D point P = (XP , YP , ZP)⊤

that moves to position (XP + ∆X , YP +∆Y , ZP)⊤, i. e., it

does not change the depth ZP it is located at. Using (2), the

perspective projection of the translated point is given as

xp =
f

ZP

(XP +∆X) and yp =
f

ZP

(YP +∆Y) . (11)

A change of the X-coordinate thus never affects the projected

yp; conversely, a change of the Y -coordinate does not affect

xp.

For fisheye projections, the behavior of the projected motion

differs. Without loss of generality, we focus on equisolid

projection in this contribution. Using (5) and eliminating any

trigonometric expressions, one obtains

xf = fg(P)XP and yf = fg(P)YP , (12)

5

−40
−20

0 20
40

−40
−20

0
20

40

−40

0

40

XP
YP

xp

−40
−20

0 20
40

−40
−20

0
20

40

−2

0

2

XP
YP

xf

Fig. 5. The projected Cartesian coordinates xp (perspective, top) and xf

(equisolid fisheye, bottom) as functions over the 3D-coordinates XP and YP

and a fixed ZP = f , where f denotes the focal length. The non-linearity and
dependency of xf on YP is clearly evident in the bottom plot.

with

g(P) =

√

2(1− ZP ‖P ‖−1
2)

‖P ‖22 − Z2
P

. (13)

Here, ‖ · ‖2 describes the Euclidean norm, which corresponds

to the magnitude of vector P , defined as

‖P ‖2 =
√

X2
P + Y 2

P + Z2
P . (14)

Given these projected Cartesian coordinates (xf , yf), it is

evident that shifting a 3D point by ∆X would not only change

the resulting xf , but also yf . In the same fashion, a shift by ∆Y

would affect both xf and yf in a non-linear way. The projected

motion thus no longer follows a translational model. Fig. 5

compares xp and xf and clearly shows the non-linear relation

between translated points in the case of equisolid projection.

Note that for XP or YP tending towards infinity, one obtains:

lim
|X

P
|→∞

rf = lim
|Y

P
|→∞

rf =
√
2f , with rf =

√

x2
f + y2f . (15)

As the translational motion model does not hold for fish-

eye video sequences due to their non-perspective projection

functions, the main idea of our proposal now builds on the

fact that translational motion of the scene does indeed result

in translational motion between video frames when using the

pinhole model. We therefore suggest to include a fisheye-to-

pinhole projection into the block matching process so as to be

able to exploit the aforementioned property. A corresponding

re-projection back into the fisheye domain then allows for

a motion compensation of the fisheye images. Since both

projections are performed on the pixel coordinates, no actual

distortion correction of the fisheye images is conducted, no

information is lost at the boundary of the images, and the

original fisheye form is retained. The details of the proposed

method are given in the following. Please note that, as before,

the subscript “f” denotes coordinates in the fisheye domain,

whereas the subscript “p” describes representations in the

perspective domain.

The pixel coordinates (xf , yf) of the fisheye image to be

predicted Icur are assumed to be given on a regular Cartesian

grid, the origin of which coincides with the image center at

position (0, 0). All coordinates are given in integer accuracy.

As both the pinhole model as well as the fisheye projection

function can be expressed as functions of the distance to the

image center (the radius) over the incident angle of light, the

polar coordinates rf and φf are acquired by converting the

Cartesian coordinates xf and yf . While the radius rf simply

corresponds to

rf =
√

x2
f + y2f , (16)

the angle φf is defined depending on the signs of the Cartesian

coordinates:

φf =

arctan(yf

xf

) if xf > 0

arctan(yf

xf

) + π if xf < 0 and yf ≥ 0

arctan(yf

xf

)− π if xf < 0 and yf < 0
π
2 · sign(yf) if xf = 0 and yf 6= 0

undefined if xf = 0 and yf = 0 .

(17)

For practical purposes, φf is set to zero if xf = yf = 0.

This conversion can be done for the entire image at once

and the corresponding coordinates of the current block can

be extracted accordingly. Please note that while it is possible

to do all processing steps in Cartesian coordinates, a polar

representation is much more intuitive and thus preferable for

the description of our method. As previously mentioned, this

contribution focuses on equisolid projection. The following

steps are performed in a block-by-block manner.

With the fisheye polar coordinates (rf , φf) ∈ Bcur of the

current block Bcur available, they are now projected into the

perspective domain using the fisheye-to-pinhole projection

rp = f tan

(

2 arcsin

(

rf
2f

))

and φp = φf . (18)

The radius is obtained by solving the equisolid projection

function for θ and putting it into the pinhole model. The

angles φf are not affected by this transform and thus remain

unchanged in the perspective domain. For the next step,

Cartesian coordinates are computed from the perspective polar

coordinates:

xp = rp cosφp and yp = rp sinφp . (19)

The pixel coordinates of the current block are now rep-

resented in the perspective domain, where the translational

motion model holds. Therefore, the motion vector candidate

6

PSfrag replacements

Motion vector candidate

Projection to

perspective

Re-projection to

equisolid fisheye

(xf , yf) (xf,m, yf,m)I ref

Bcur

B̃cur

Motion compensation

and SSD calculation

Fig. 6. Block diagram of the proposed fisheye motion estimation method based on equisolid re-projection for one image block Bcur and one motion vector

candidate. Iref and B̃cur denote the reference frame and the compensated block, respectively. The initial Cartesian fisheye pixel coordinates (xf , yf) of the
current block as well as the manipulated coordinates (xf,m, yf,m) obtained after the re-projection step are schematically represented in blue.

m = (∆x,∆y) can now be added to the perspective block

coordinates:

xp,m = xp +∆x and yp,m = yp +∆y . (20)

Prior to the re-projection back into the fisheye domain, the

shifted Cartesian coordinates (xp,m, yp,m) are transformed

into polar coordinates (rp,m, φp,m) according to (16) and (17).

The re-projection is then performed by:

rf,m = 2f sin

(

1

2
arctan

(

rp,m
f

))

and φf,m = φp,m . (21)

A final polar-to-Cartesian transform according to (19) yields

(xf,m, yf,m), which describe the Cartesian coordinates of the

initial block coordinates modified by the motion vector m.

These coordinates are used to extract the according luminance

pixels from the reference frame I ref, which are then stored at

positions (xf , yf) ∈ Bcur in the compensated frame Ĩcur:

Ĩcur(xf , yf) = Iref(xf,m, yf,m) . (22)

Repeating these steps for all blocks of Icur, the entire compen-

sated frame Ĩcur is created. Please note that all steps starting

from (20) describe an iterative procedure over all motion

vector candidates within a predefined square search area of

(2s + 1)2 pixels, where s describes the search range, i. e.,

the maximum distance to the current block. Fig. 6 provides

a visualization of one iteration. The final motion vector to be

stored is obtained by minimizing the residual error between

B̃cur and Bcur. The minimization criterion may be based on

SAD or SSD, for example.

Another point worth mentioning is the accuracy of the

coordinates in the perspective domain. These coordinates no

longer describe integer values, but can become arbitrarily accu-

rate. Furthermore, a bounding box around the block positions

no longer yields a square block. The re-projection back into

the fisheye domain also yields non-integer coordinates, which

cannot be directly used to extract luminance values from the

reference frame. A practical solution is thus to limit the non-

integer coordinates to a certain accuracy and, consequently,

to upscale and interpolate the reference frame accordingly.

In this contribution, a quantization to 1/8-pixel precision

for the coordinates was found to provide a good trade-off

between accuracy and practicability and, correspondingly, a

factor of 8 was used for upscaling the reference frame by

cubic interpolation.

C. Ultra Wide-Angle Compensation

As discussed in Section II, the pinhole model is unable to

accommodate large incident angles. Our proposed motion es-

timation method, however, uses a fisheye-to-perspective trans-

form and hence also includes the limiting tangent function.

By employing the transform (18) as is, a negative radius is

returned for all θ > π/2, resulting in a wrong mapping

of the actual image content during motion compensation.

Consequently, when dealing with an FOV of more than

180◦, we have to consider the peripheral fisheye regions

where θ exceeds 90◦ separately. To that end, we introduce

an ultra wide-angle compensation procedure which handles

the problem of faulty mappings [29]. Before discussing this

proposed extension in detail, we first define rmax and r180◦ ,

which are obtained by solving the equisolid fisheye projection

function (5) for θ = FOV/2·π/180 and θ = π/2, respectively.

rmax then denotes the maximum possible radius of the fisheye

image for a given FOV. r180◦ denotes the radius that is obtained

for a light ray that hits the camera at an incident angle of 90◦

and thus describes the critical circle where the FOV exceeds

180◦. If the current image block contains pixels that are

located at a distance larger than r180◦ from the image center,

these pixels and their according coordinates are subjected to

the proposed ultra wide-angle compensation as follows.

After performing the fisheye-to-perspective transform (18),

the first step of the compensation consists of inverting the

motion vector candidate m for all coordinates that were

assigned a negative radius rp:

m =

{

(−∆x,−∆y), ∀ {(xp, yp) | rp < 0}
(∆x,∆y), otherwise.

(23)

In the second step, the angle φp,m, obtained after the motion

vector addition and subsequent polar coordinate transform, is

adjusted so as to perform a mirroring of the coordinates to the

other half of the fisheye. This is achieved by subtracting 180◦:

φ′
p,m =

{

φp,m − π, ∀ rp < 0

φp,m, otherwise.
(24)

After the re-projection of the manipulated perspective

coordinates (rp,m, φ′
p,m) to their fisheye representation

(rf,m, φ′
f,m), we determine the distance of the corresponding

pixel position to the circle defined by r180◦ and then add twice

that distance to the pixel position. This step mirrors the pixel

position to the other side of the circle:

r′f,m =

{

rf,m + 2(r180◦ − rf,m), ∀ rp < 0

rf,m, otherwise.
(25)

This extension results in a fisheye image that again contains

proper content for all θ > 90◦. Please note that the proposed

7

ultra wide-angle compensation is again purely based on coor-

dinates and does not make use of image distortion correction or

compute actual perspective images. Thus, the original circular

form of the fisheye sequences is preserved and no peripheral

content is lost.

D. Calibrated Re-Projection

So far, the equisolid projection function has been employed

to perform the fisheye-to-perspective projection as well as the

perspective-to-fisheye re-projection. This projection function

can be substituted by any function that describes the fisheye

mapping. Such a substitution is necessary for actual fisheye

cameras, the lenses of which rarely follow an exact trigono-

metric relation as introduced in Section II. When employing

the equisolid projection function with real-world sequences

captured by a fisheye camera, it is highly likely that an actual

distortion correction would not result in straight lines being

depicted as straight lines as there would still be residual radial

distortion contained in the image. The same holds true for the

fisheye-to-perspective coordinate projection performed in the

proposed motion estimation technique. The obvious solution to

this problem is camera calibration, e. g., via [30]. By obtaining

the camera’s underlying fisheye projection, it is possible to

produce a more accurate perspective representation of the

fisheye coordinates and, consequently, the translational motion

model valid in the perspective domain is better exploited [29].

In the context of this extension, we assume that the final

calibration result is a function that relates θ to rf in the form

of a polynomial:

rf = p(θ) , with p(θ) =

n
∑

i=0

aiθ
i . (26)

The polynomial can be either used directly or realized as a

look-up table. The fisheye-to-perspective transform (18) is then

obtained by using the inverse polynomial p−1(rf):

rp = f tan
(

p−1 (rf)
)

and φp = φf . (27)

The re-projection into the fisheye domain (21) accordingly

becomes:

rf,m = p

(

arctan

(

rp,m
f

))

and φf,m = φp,m . (28)

With this extension, the original equisolid re-projection is

replaced by a calibrated re-projection that is better suited

for real-world fisheye video sequences. The calibration results

obtained for the data used in this work are shown in Fig. 9 and

discussed along with the test sequences in the next section.

IV. FISHEYE DATA SET

When dealing with fisheye lenses, two types of imagery may

occur: full-frame fisheyes and circular fisheyes (cf. Fig. 1).

Circular fisheye images are the result of using a sufficiently

large sensor area in combination with a sufficiently short

focal length. That way, only part of the sensor area is hit

by light rays and the typical circular images on a black

background are created. As the more extreme—and general—

of the two variants, only circular fisheye imagery is considered

in this contribution. In this section, all fisheye video sequences

relevant to the evaluation are introduced, comprising both

synthetically generated as well as actually captured sequences.

The sequences are part of a data set that has previously been

made available for research purposes [31].

A. Synthetic Sequences

To inspect the behavior of fisheye imagery in typical image

processing algorithms, we decided to create synthetic fisheye

video sequences that exactly follow a predefined projection

function. To that end, the 3D graphics software Blender [32]

was employed as it offers the use of perspective as well as

panoramic lenses. For the latter category, virtual lenses follow-

ing the equisolid and equidistant fisheye projection functions

are implemented. We chose the equisolid lens for our synthetic

sequences. A typical focal length of f = 1.8 mm is selected as

this corresponds to the focal length of the fisheye lens we used

for capturing the real-world sequences. For the same reason,

the FOV was set to 185◦. In order to generate circular equisolid

fisheye images based on these characteristics, we derived the

maximum radius to be captured:

rmax = 2f sin

(

θmax

2

)

≈ 2.6 , with θmax =
FOV

2
· π

180
. (29)

Assuming 2rmax to be equal to the sensor width, we thus

obtained a virtual sensor size of 5.2 mm by 5.2 mm that is

just able to capture the full 185◦. The resolution of the final

fisheye images was set to 1088×1088 pixels so as to match the

real-world sequences as closely as possible. More information

on the Blender configuration can be found in [31].

Fig. 7 shows example frames of the seven synthetic se-

quences used in this paper. The sequences Street, PoolA,

PoolB, PoolNightA, PillarsC, LivingroomC, and HallwayD

describe realistic scenes, for which various object models—

available via Blend Swap [33]—were combined and sub-

sequently rendered into fisheye video sequences. They all

include individual camera paths. As the proposed motion

estimation method is designed for translational motion, the

selection of sequences was accordingly limited to sequences

with translational camera motion. It should be noted that

no motion blur was simulated for the synthetic sequences.

More details on each sequence are found in the original

publication [31].

B. Real-World Sequences

The data set also contains real-world sequences that were

captured using an actual fisheye lens. The camera employed

was a Basler ace acA2000-50gc which is able to record up

to 50 frames per second with a resolution of 2048 × 1086
pixels. As a lens, the Fujinon FE185C057HA-1 fisheye was

used. This fisheye lens has a focal length of 1.8 mm and

allows capturing an FOV of 185◦. Along with the camera’s

2/3 inch sensor, circular fisheye images are thus obtained.

Since these circular fisheye images occupy a roughly square

area, the width of all images recorded was further cropped

to a final resolution of 1088 × 1086 pixels. All sequences

were created in uncompressed PNG format. Fig. 8 provides

example frames of the seven used real-world sequences. The

8

Fig. 7. Example frames of the synthetic sequences. Left to right: Street, PoolA, PoolB, PoolNightA, PillarsC, LivingroomC, and HallwayD.

Fig. 8. Example frames of the real-world sequences. Left to right: TestchartA, AlfaA, LibraryB, LibraryD, ClutterA, LectureB, and DriveE.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

Incident angle θ in degrees

R
ad

iu
s
r

in
p

ix
el

s

Equisolid fisheye

Calibrated fisheye

Equidistant fisheye

Synth. calibration

Fig. 9. Equisolid and calibrated projection functions. For comparison pur-
poses, equidistant projection and synthetic calibration are also drawn in.

sequences TestchartA and AlfaA show a large, horizontally

moving planar object and were captured with a static camera.

For all other sequences, the camera was in motion. LibraryD

includes translational camera motion in arbitrarily changing

directions, while for all other sequences, the camera was

moved in a translational manner in horizontal direction only.

The camera motion is intentionally kept small so as to avoid

motion blur. For more details, the reader is referred to [31] as

well as the publicly available sequences.

To obtain the underlying projection function of the fisheye

camera, we included calibration images in the data set. These

images show a checkerboard pattern at different angles and

positions and have been successfully tested for calibration via

Scaramuzza’s OCamCalib Toolbox [30], [34], where a 4th-

order polynomial is reported to yield the best results. We hence

used n = 4 for the polynomial as a toolbox setting and created

a look-up table from the calibration results relating the radius

rf to the incident angle θ—which is given in steps of 0.01
degrees—for further use. The projection function thus derived

is represented in Fig. 9 by the solid dark red line. It clearly

differs from the equisolid projection function (shown in solid

orange), and despite its linear appearance, it does not match

the equidistant projection function (shown in dashed purple),

either. Incorporating the calibration information into the mo-

tion estimation process compensates for this divergence.

V. SIMULATIONS AND EXPERIMENTS

In this section, the proposed method and its extensions

are validated using the synthetic sequences introduced in the

previous section; experiments on the real-world data confirm

the validity of those findings.

A. Nomenclature and Test Setup

The following list summarizes the abbreviations of the

considered methods as used throughout the tests:

• TME describes translational motion estimation based on

conventional block matching.

• EME+ denotes the proposed fisheye motion estimation

method using equisolid re-projection as well as the pro-

posed ultra wide-angle compensation.

• CME+ replaces the equisolid re-projection in EME+ by

the proposed calibrated re-projection.

For explicit analyses that compare EME+ against its non-

extended variant, the interested reader is referred to [29].

Please note that for the synthetic sequences, CME+ is of no

relevance since calibration—while possible—obviously is not

required due to the exact equisolid model employed during

the generation of the sequences. In Fig. 9, the dotted black

curve shows that the calibration results obtained by calibrating

the synthetic sequences approximate the equisolid projection

function and as such, CME+ is only analyzed for the real-

world sequences.

The test set comprises seven synthetic and seven real-

world fisheye video sequences. As the proposed fisheye motion

estimation method is designed for translational motion, the test

set is defined accordingly. Therefore, a representative segment

of 30 consecutive frame pairs, corresponding to approximately

one second, is extracted from each sequence. All these video

segments are selected to exhibit uniform translational motion,

mostly resulting from a horizontal camera translation. For

analyses that also include other motion types, we refer to our

previous work [21], [29], [31], in which a hybrid method is

used instead of the standalone solution employed here.

The first frame of each frame pair always serves as the

reference frame, while the second represents the current frame

to be predicted. We used four block sizes (8 × 8, 16 × 16,

32 × 32, and 64 × 64 pixels) and a search range of s =
64 pixels, which means that motion vector candidates in a

neighborhood of 64 pixels in each direction were evaluated,

totaling (2s + 1)2 = 16641 candidates to be considered per

9

TABLE I
AVERAGE LUMINANCE PSNR RESULTS IN DB OBTAINED FOR THE

SYNTHETIC SEQUENCES USING A SEARCH RANGE OF 64 PIXELS AND

A BLOCK SIZE OF 16 × 16 PIXELS.

Sequence Frames TME EME+ Gain

Street 251–280 33.04 33.42 +0.38
PoolA 61– 90 38.96 39.43 +0.47
PoolB 701–730 38.45 39.61 +1.16
PoolNightA 1– 30 35.03 36.17 +1.14
PillarsC 1– 30 40.35 42.30 +1.95
LivingroomC 1– 30 42.49 44.28 +1.79
HallwayD 1– 30 34.84 38.06 +3.22

Mean — 37.59 39.04 +1.45

block. For DriveE only, s = 128 pixels was used because

of the large motion between frames. As a cost metric, the

SSD (SAD) is used: the motion vector candidate that yields

the minimum SSD (SAD) then describes the final motion

vector used for motion compensation. Note that since both

metrics yield very similar results, especially with regard to the

gains achieved, only the SSD results are explicitly provided.

For implementation purposes, the focal length f is converted

from millimeters to pixels by multiplying it with the image

width in pixels divided by the sensor width in millimeters and

the real-world sequences are zero-padded to a resolution of

1088 × 1088 pixels. PSNR evaluations are conducted on the

luminance channel only and restricted to the relevant circular

fisheye image area.

B. Simulation Results

Following an exact predefined function, the synthetic se-

quences are suitable material for verifying the behavior of the

proposed method. Table I summarizes the luminance PSNR

results obtained for block size 16 × 16, averaged over 30
frames per each sequence—further block sizes are evaluated

within the scope of the experiments. Note that the first frame

of each frame pair is denoted in the table, i. e., the reference

frames are given. The first pair of Street, for example, thus

comprises frames 251 and 252. EME+ achieves an average

gain of 1.45 dB over TME. For comparison purposes, the

average SSIM [35] results amount to 0.9662 for TME and

0.9720 for EME+. It is apparent from the absolute PSNR

values that only a small motion is present in LivingroomC

and PillarsC. Despite having close to no visual impact on the

human observer, the gains achieved for these sequences still

prove the benefit of the fisheye adaptation. In contrast, the

remaining five sequences exhibit a more pronounced motion

that also creates a visual difference in the compensated frames.

This is demonstrated in Fig. 10, where visual comparisons of

the compensation results are provided that show the benefit of

EME+. By using the proposed ultra wide-angle compensation,

no erroneous projection occurs at the border of the images.

For EME, a ring of faulty image content would be apparent,

denoting the area of pixels where θ > π/2. The visual

comparison also includes detail examples (highlighted in blue),

that—when closely scrutinized—show the blocking artifacts

that may occur for TME. These artifacts are the result of

one-dimensional object motion being translated to a two-

dimensional motion when using fisheye projection. For EME+,

PSfrag replacements

TME

EME+

34.81 dB

38.05 dB

38.48 dB

39.70 dB

Fig. 10. Visual comparison of TME and EME+ for PoolB (frame 711, bottom)
and HallwayD (frame 6, top) using a block size of 16 × 16 pixels. For the
latter, the absolute error is also visualized (contrast enhanced for visualization
purposes; white means zero error). The blue boxes provide details (best viewed
enlarged on screen).

these blocking artifacts are largely suppressed. As confirmed

by both the PSNR results and the visual example, EME+

is able to consistently outperform TME for an underlying

translational motion between frames.

C. Experimental Results

In the previous section, the proposed motion estimation

method has been evaluated with the help of synthetically

generated fisheye video sequences which exactly follow the

equisolid projection function. In this section, we show the

results of the proposed fisheye motion estimation method and

its extensions when performed on real-world data that has

been captured by an actual fisheye camera. As demonstrated

by Fig. 9, an adjustment to the projection function obtained

via calibration is necessary for real-world sequences so as to

achieve a more precise representation of the coordinates in

the perspective domain. For the seven real-world sequences,

CME+ is thus evaluated in addition to TME and EME+. Most

of the captured sequences exhibit only a very small motion

between frames. To also provide motion compensation results

for a more pronounced motion, each original sequence was

temporally downsampled by a certain factor prior to motion

estimation. This was realized by discarding frames. Since

we assume that the exposure time does not change between

the original high frame rate sequence and the downsampled

low frame rate sequence, no additional temporal filtering was

used. The downsampled sequences are labeled by an affix

10

TABLE II
AVERAGE LUMINANCE PSNR RESULTS IN DB OBTAINED FOR THE

REAL-WORLD SEQUENCES USING A SEARCH RANGE OF 64 PIXELS (128
PIXELS FOR DriveE) AND A BLOCK SIZE OF 16× 16 PIXELS.

Sequence Frames TME EME+ Gain CME+ Gain

TestchartA 101–130 38.74 39.56 +0.82 39.95 +1.21
AlfaA 101–130 37.07 38.87 +1.80 39.83 +2.76
LibraryB 101–130 37.45 39.16 +1.71 39.56 +2.11
LibraryD 101–130 36.56 38.09 +1.53 38.63 +2.07
ClutterA 101–130 40.87 41.24 +0.37 41.28 +0.41
LectureB 101–130 35.70 36.46 +0.76 36.75 +1.05
DriveE 101–130 34.19 34.85 +0.66 34.88 +0.69

Mean — 37.23 38.32 +1.09 38.70 +1.47

TestchartA_d8 101–253 36.21 38.28 +2.07 38.49 +2.28
AlfaA_d8 101–253 34.16 37.13 +2.97 37.32 +3.16
LibraryB_d2 101–139 36.63 38.47 +1.85 38.84 +2.21
LibraryD_d4 101–177 35.85 37.17 +1.32 37.46 +1.61
ClutterA_d8 101–253 36.05 36.88 +0.82 36.97 +0.92
LectureB_d2 101–139 34.68 35.10 +0.42 35.07 +0.39
DriveE_d2 101–139 32.32 32.58 +0.26 32.33 +0.01

Mean — 35.13 36.52 +1.39 36.64 +1.51

denoting the corresponding downsampling factor, e. g., “_d2”

for a factor of 2. All luminance PSNR results are collected

in Table II, again averaged over the frames denoted. For the

downsampled sequences, the reference frames are given in

steps of the downsampling factor. The results are explicitly

listed for a block size of 16× 16 pixels.

The PSNR results obtained for the original sequences show

an average gain of 1.47 dB for CME+ compared against

TME. For sequences that were captured with the camera

very close to the foreground objects (AlfaA, TestchartA, and

LibraryB+D), the PSNR gains are typically higher than those

achieved for sequences, where the scene is further away

from the lens. With global translational camera motion (Li-

braryB+D), the movement of objects close to lens is more

pronounced than the motion of faraway objects. This effect

can be explained with binocular disparity, as a horizontal

camera motion may be interpreted as a sequence of different

spatial camera views—provided the scene observed is static.

A more pronounced motion between frames is more strongly

distorted by a fisheye projection, thus increasing the potential

of improvement when using an adapted motion estimation

method. This observation is also true for the static-camera

sequences AlfaA and TestchartA. As the moving foreground

objects occupy almost the whole image area, the gains behave

similar to those achieved for global motion. The smaller gains

yielded by ClutterA and DriveE can be explained by a very

small and a rather large motion, respectively. While the search

range proves limiting for DriveE due to the large differences

between frames, ClutterA exhibits only minor offsets as is

also apparent from the absolute PSNR results obtained. For

comparison purposes, Table II also includes the gains achieved

by EME+, thus emphasizing the contribution of calibration.

The corresponding SSIM results averaged over the seven

sequences amount to 0.9563 for TME, 0.9621 for EME+,

and 0.9629 for CME+. Fig. 11 provides a visual comparison

between the three variants.

The PSNR results obtained by the downsampled sequences

show that for a more pronounced motion, it is even more im-

PSfrag replacements

TME

EME

EME+

CME

CME+

36.96 dB

38.65 dB

39.81 dB

35.97 dB

38.30 dB

39.05 dB

Fig. 11. Visual comparison of TME, EME+, and CME+ for AlfaA (frame
111, top) and LibraryD (frame 121, bottom) using a block size of 16 × 16
pixels. For the latter, the absolute error is also visualized (white means zero
error). The blue boxes provide details (best viewed enlarged on screen).

portant to take the underlying projection function into account.

Only LectureB and DriveE, the original versions of which

already contain a comparatively large motion between frames,

show a somewhat inconsistent behavior. The decreasing gains

result from a limited search range as well as the employed

motion model. Motion at the image border (FOV > 180◦)

cannot be fully captured by the translational model and the

stronger the motion in this region, the worse the estimation

results. Furthermore, using the calibrated projection function

increases the problematic border image area (cf. Fig. 9) and

thus explains the performance of CME+. The average SSIM

results obtained for the downsampled sequences amount to

0.9483 for TME, 0.9563 for EME+, and 0.9564 for CME+.

As a further analysis, the experiments were also conducted

for blocks of size 8 × 8, 32 × 32, as well as 64 × 64 pixels.

Fig. 12 presents a summary of this analysis in form of the

overall PSNR results averaged over the seven original real-

world sequences. Looking at the gains achieved by EME+

over TME, one observes a comparatively stable behavior. For

CME+, the gain even rises slightly with an increasing block

size. All in all, CME+ was shown to work well as a motion

estimation method for real-world fisheye video sequences. The

next section focuses on a practical application.

11

8×8 16×16 32×32 64×64
36

37

38

39

40

Block size in pixels

A
v
er

ag
e

P
S

N
R

in
d

B TME

EME+

CME+

Fig. 12. Luminance PSNR averaged over the seven real-world sequences
using four different block sizes.

Fig. 13. Given a low frame rate video sequence, frame rate up-conversion
aims to create intermediate frames between each available frame pair, thus
enhancing the temporal resolution.

VI. APPLICATION TO MOTION COMPENSATED

TEMPORAL RESOLUTION ENHANCEMENT

In this section, the proposed fisheye motion estimation

method is used as part of a motion compensated technique

for enhancing the temporal resolution of a given fisheye video

sequence. Temporal resolution enhancement, also referred to

as frame rate up-conversion (FRUC) [18], plays an important

role in surveillance or entertainment systems, where the frame

rate of the sequence to be played back may be lower than

the refresh rate of the display. A higher frame rate may also

facilitate tasks such as object tracking by creating sequences

with a smoother motion between frames. The problem of

temporal resolution enhancement is visualized in Fig. 13.

A. Conventional Frame Rate Up-Conversion

Given two consecutive frames of a low frame rate video

sequence I(x, y, t − 1) and I(x, y, t), where x and y are the

spatial indices and t denotes the temporal index, FRUC creates

an intermediate frame I(x, y, t− α) at time instance (t− α),
with 0 < α < 1. The simplest way to conduct FRUC is frame

repetition, which copies the most recent available frame to the

desired target position in time: I(x, y, t− α) = I(x, y, t− 1).
This, however, typically leads to a visible motion judder, i. e.,

motion that seems to stutter. Using the linear average (LA) of

the two given frames is the next obvious possibility:

I(x, y, t− α) = αI(x, y, t− 1) + (1− α)I(x, y, t) . (30)

PSfrag replacements

m(p, t− 1) m(p, t− α) −m(p, t)

Fig. 14. Central weighted median applied to forward and backward motion
information, yielding the final motion vector for the blue position.

This may lead to severe artifacts in areas where motion occurs,

though, resulting in visible ghosting. In this contribution, we

investigate a third straightforward option to conduct FRUC:

motion compensated linear averaging (MCLA). MCLA com-

putes the average of two frames after compensating for the

motion between them. As the performance of this method

highly depends on the performance of the employed motion

estimation technique, the problem statement for fisheye video

sequences also applies here. We thus propose to incorpo-

rate the fisheye motion estimation method previously intro-

duced into MCLA. In the following, conventional MCLA and

fisheye-adapted MCLA are briefly discussed, followed by an

evaluation of the generated intermediate frames. More details

on the mentioned FRUC methods can be found in [36].

B. Motion Compensated Linear Average for Fisheye Video

MCLA averages two motion compensated intermediate

frames. To that end, motion estimation is performed twice

per frame pair: a motion estimation from the previous to the

next frame yields the forward motion information m(p, t−1),
while an estimation from the next to the previous frame yields

the backward motion information m(p, t). For reasons of

legibility, the shorthand p = (x, y) is synonymously used to

describe the Cartesian pixel coordinates. Irrespective of the

employed motion estimation technique, both m(p, t− 1) and

m(p, t) are assumed to be dense and thus contain motion

information for each single pixel position p. Vector field re-

timing as proposed in [36] is used to create motion vectors

valid at the desired point in time (t − α). More specifically,

a central weighted median (CWM), visualized in Fig. 14, is

employed for each pixel position p:

m(p, t− α) = CWM{m(p, t− 1),−m(p, t)} . (31)

Here, CWM{·} assigns a weight of 7 to the central motion

vector (purple) and a weight of 1 to the relevant neighboring

motion vectors (green), totaling 2 · (7 + 4 · 3) = 38 values

for which the median value is then determined. Apart from

creating motion vectors m(p, t−α) valid at the intermediate

point in time, this operation also provides a smoothing and

thus eliminates coarse motion outliers. Note that due to the

block-based nature of the motion estimation, the neighboring

motion vectors are extracted in steps of the block size b, as

proposed in [36], rather than in steps of 1 pixel. Disregarding

b defies the idea of CWM, as the cross dimensions would

12

be smaller than the employed block size and all neighboring

motion vectors would be equal. With the intermediate motion

information m(p, t − α) available, the motion compensated

frames to be averaged can be computed:

Ifw(p, t− α) = I(p+ αm(p, t− α), t) , (32)

Ibw(p, t− α) = I(p− (1 − α)m(p, t− α), t − 1) . (33)

Either of these frames can already serve as the final interme-

diate frame. In this contribution, we will use Ibw(p, t−α) as a

comparison result; the procedure is referred to as motion com-

pensated fetching (MCF). For MCLA, the last step comprises

the eponymous averaging, thus creating the final intermediate

frame at time instance (t− α):

I(p, t− α) =
1

2
Ifw(p, t− α) +

1

2
Ibw(p, t− α) . (34)

As forward and backward motion estimation forms the

crucial step in the aforementioned FRUC approach, it stands to

reason to substitute the conventional motion estimation step by

the proposed fisheye motion estimation if the low frame rate

sequence to be up-converted is a fisheye video. For consistency

purposes, the CWM cross again extracts neighboring pixels

in steps of b as the motion estimation in the perspective

domain also evaluates the vector candidates in a block-based

manner. In the fisheye domain, however, each pixel is assigned

a distinct motion vector according to the re-projection (21).

In the context of fisheye motion estimation, an ultra wide-

angle compensation was introduced that enables improved

prediction of the peripheral parts of the fisheye images. Due to

arbitrary motion types that result from a translational camera

motion in these regions (translation becomes a zoom for

θ = 90◦, for instance) and due to the resulting consistency

problems between the forward and backward motion vectors

that result in erroneous motion information for the intermedi-

ate frame, we choose to employ a different approach for frame

rate up-conversion. More specifically, we employ a hybrid

technique that uses the proposed fisheye motion estimation for

all blocks that are contained entirely within an FOV of 170◦.

For all other blocks, conventional block matching is employed

to obtain the corresponding motion information. In contrast

to our previous work on hybrid motion estimation [21], this

hybridization is based on predefined image areas and thus does

not require two motion estimation methods to be executed in

parallel. It should be noted that CWM produces erroneous

motion vectors predominantly in the peripheral ultra wide-

angle regions, where the forward and backward estimation

yield diverging results, and areas within an FOV of about 170◦

are more likely to produce motion vectors close to the actual

true motion. The following section provides an evaluation of

the proposed approach.

C. Simulations and Experiments

In this contribution, an up-conversion factor of 2 is regarded,

i. e., between each available frame pair, one new intermediate

frame is to be created. Furthermore, α = 0.5 is used through-

out all tests. To be consistent with the motion estimation

tests of Section V, the block size is set to 16 × 16 pixels,

PSfrag replacements

Ground truth

MCLA

CMCLA

Fig. 15. Visual detail comparison of MCLA and CMCLA against the ground
truth for AlfaA_d8 (frame 105, top) and TestchartA_d8 (frame 105, bottom)
using a block size of 16× 16 pixels..

while a search range of 64 pixels in all directions is defined.

One exception is made for the sequence DriveE, for which

a search range of 128 pixels is again allowed to account for

the large motion between frames. To evaluate the proposed

fisheye MCLA approach (denoted as EMCLA if equisolid

re-projection is used and CMCLA if calibrated re-projection

is employed), it is compared against standard MCLA, frame

repetition, and linear averaging. Additionally, MCF as given

by (33) is adapted (denoted as EMCF and CMCF) and used

as a comparison method. Unless otherwise noted, the original

synthetic sequences are temporally downsampled by a factor

of 2, denoted by “_d2”, whereas the real-world sequences are

downsampled by factors ranging from 2 to 8 so as to create

a more pronounced motion between frames. As previously

described, this is achieved by discarding frames. The discarded

frames that used to be located in the middle between each

remaining frame pair then serve as ground truth frames.

Table III summarizes the luminance PSNR results averaged

over 20 intermediate frames per sequence and also provides

SSIM results averaged over all synthetic or real-world se-

quences for comparison purposes. The frame numbers specify

the first frame of each processed frame pair and are to be

counted in steps of the downsampling factor. Correspondingly,

the intermediate frame numbers are obtained by adding half

the downsampling factor. The table also provides the exposure

settings used in blender and the actual exposure times used for

the real-world sequences. It is evident that the fisheye adapta-

tions consistently outperform their non-adapted counterparts,

as substantiated by the visual comparison in Fig. 15. Problems

arising from large motion near the fisheye image border are

successfully mitigated by the hybrid approach as is especially

obvious from the results obtained for DriveE_d2. As MCF or

MCLA is employed in these challenging areas instead of an

adapted version, a larger search range that would otherwise

be defined in the perspective domain can be exploited. That

way, faster movement is more likely to be correctly detected

within the search range. However, the translational motion

model is still not able to perfectly describe the transformed

translation at the image border and other models should be

investigated. The PSNR results also show that compared to

one-sided prediction via MCF, two-sided prediction by means

of MCLA is able create intermediate frames of a much higher

13

TABLE III
AVERAGE LUMINANCE PSNR RESULTS IN DB OBTAINED FOR FRUC VIA FRAME REPETITION (REP), LINEAR AVERAGING (LA), MOTION COMPENSATED

FETCHING (MCF), MOTION COMPENSATED LINEAR AVERAGING (MCLA), AND THE CORRESPONDING EQUISOLID FISHEYE (EMCF, CMCF) AND

CALIBRATED ADAPTATIONS (CMCF, CMCLA). RESULTS ARE GIVEN FOR AN UPSAMPLING FACTOR OF 2 AND A BLOCK SIZE OF 16× 16 PIXELS.

Sequence Frames Exposure Rep LA MCF EMCF CMCF Max. gain MCLA EMCLA CMCLA Max. gain

Street_d2 251–289 1.0 24.23 26.85 31.72 32.40 — +0.68 33.39 33.48 — +0.10
PoolA_d2 51– 89 1.0 30.99 35.15 35.95 37.58 — +1.63 39.87 41.04 — +1.17
PoolB_d2 701–739 1.0 32.63 36.95 38.65 40.57 — +1.91 42.69 43.43 — +0.73
PoolNightA_d2 1– 39 1.0 29.53 32.86 34.13 35.53 — +1.39 36.64 37.33 — +0.69
PillarsC_d2 1– 39 1.0 33.11 36.58 39.16 40.63 — +1.47 41.86 42.48 — +0.62
LivingroomC_d4 1– 77 1.0 33.08 37.23 38.01 40.41 — +2.40 41.22 42.38 — +1.16
HallwayD_d2 1– 39 1.0 27.18 30.39 34.31 36.59 — +2.28 37.09 38.17 — +1.08

Mean — — 30.11 33.72 35.99 37.67 — +1.68 38.97 39.76 — +0.79

Mean SSIM — — 0.8995 0.9280 0.9631 0.9689 — — 0.9733 0.9755 — —

TestchartA_d8 101–253 10 ms 25.09 28.21 30.33 31.31 31.76 +1.43 32.33 32.79 33.24 +0.90
AlfaA_d8 101–253 10 ms 20.53 23.73 29.33 30.48 30.75 +1.42 30.97 31.80 32.04 +1.07
LibraryB_d2 101–139 20 ms 27.83 31.83 37.59 39.07 39.03 +1.47 40.31 40.70 40.75 +0.44
LibraryD_d4 101–177 20 ms 31.23 35.43 35.93 36.68 36.78 +0.84 37.87 38.05 38.22 +0.35
ClutterA_d8 101–253 30 ms 34.73 38.36 36.16 37.17 36.98 +1.01 38.57 39.09 39.06 +0.52
LectureB_d2 101–139 15 ms 32.34 35.92 33.41 35.20 34.63 +1.79 36.14 36.92 36.77 +0.78
DriveE_d2 101–139 5 ms 25.05 27.25 26.68 28.67 28.60 +1.99 29.18 30.40 30.46 +1.26

Mean — — 28.11 31.53 32.78 34.08 34.09 +1.42 35.05 35.68 35.79 +0.76

Mean SSIM — — 0.8910 0.9157 0.9380 0.9456 0.9450 — 0.9508 0.9552 0.9553 —

fidelity, thus decreasing the potential for further improvement

by a fisheye adaptation. The gains obtained by the adapted

methods still amount to 0.8 dB on average. In the context of

FRUC, including calibration information seems to achieve less

consistent PSNR results compared to pure motion estimation.

This may be explained by the merging of the forward and

backward motion information. If motion estimation is unable

to detect the actual true motion, CWM is likely to produce

motion vectors that point to suboptimal matches, which in

turn leads to decreased FRUC gains. It is thus not possible

to predict whether or not an additional calibration also leads

to additional gains. As the overall best PSNR per sequence

is achieved by either EMCLA or CMCLA, however, it can

be concluded that an adaptation to the fisheye characteristics

does indeed prove beneficial. For comparison purposes, mean

SSIM results are included in Table III that confirm the prior

observations.

VII. CONCLUSION AND OUTLOOK

This paper introduced a motion estimation technique for

equisolid fisheye video sequences that exploits knowledge

about the underlying projection function to improve the motion

compensation results. Moreover, the method was adapted to

real-world fisheye sequences by including camera calibration

information into the projections, thus further improving the

prediction results. An extension for compensating ultra wide

incident angles of more than 90◦ provided a solution for

otherwise wrongly projected coordinates that occur in pe-

ripheral areas where the FOV exceeds 180◦. The method

is easily adaptable to any kind of projection function or

camera model. Simulations on synthetically generated equi-

solid fisheye material showed that employing the proposed

and extended motion estimation technique achieves average

gains of 1.45 dB in luminance PSNR compared to using

translational block matching only. For actually captured real-

world sequences, the average gains amounted to 1.51 dB in

luminance PSNR for a standard block size of 16× 16 pixels.

The proposed method was also evaluated in the context of

motion compensated frame rate up-conversion, where it was

shown that a fisheye adaptation proves beneficial.

The fisheye motion estimation method and its extensions

work well for translational motion, whereas camera pans, tilts,

and zooms between frames are not as easily matched and need

further treatment. For an FOV of close to and beyond 180◦,

translational camera motion results in the image content to be

zoomed in the direction of translation, making the motion in

these image areas harder to predict with a translational motion

model. With this knowledge, an integration of a more general

motion model into the motion estimation process may be

investigated in order to better cope with arbitrary motion types.

Adverse lighting and sensor noise are additional factors to be

considered when matching blocks in real-world sequences and

compensation techniques in that regard may further contribute

to an improved motion estimation. Further research areas

for which the proposed motion estimation method has been

successfully tested include temporal error concealment [37],

spatial resolution enhancement [38], and view synthesis [39].

The proposed method is also being analyzed in the context of

video compression, with a particular focus on adaptive search

strategies.

In terms of frame rate up-conversion, further ensuring

that the true motion is captured by including cross-checking

procedures or overlapping blocks to create dense motion

information may be a step to further improve the temporal

resolution enhancement of fisheye video sequences. A dedi-

cated investigation should also be conducted with regard to

the motion vector refinement step after the motion between

frames is estimated. Building upon the insights gained from

this contribution, other, more advanced methods [40]–[46] may

moreover serve as the foundation for further investigations in

the context of motion compensated fisheye FRUC.

14

REFERENCES

[1] K. Miyamoto, “Fish Eye Lens,” Journal of the Optical Society of

America, vol. 54, no. 8, pp. 1060–1061, Aug. 1964.

[2] J. Kannala and S. Brandt, “A Generic Camera Model and Calibration
Method for Conventional, Wide-Angle, and Fish-Eye Lenses,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp.
1335–1340, Aug. 2006.

[3] Y. Kubo, T. Kitaguchi, and J. Yamaguchi, “Human Tracking Using
Fisheye Images,” in Proc. SICE Annual Conf., Takamatsu, Japan, Sep.
2007, pp. 2013–2017.

[4] M. Findeisen, L. Meinel, M. Heß, A. Apitzsch, and G. Hirtz, “A
Fast Approach for Omnidirectional Surveillance with Multiple Virtual
Perspective Views,” in Proc. IEEE Int. Conf. on Computer as a Tool,
Zagreb, Croatia, July 2013, pp. 1578–1585.

[5] C. Hughes, M. Glavin, E. Jones, and P. Denny, “Wide-Angle Camera
Technology for Automotive Applications: A Review,” IET Intelligent

Transport Systems, vol. 3, no. 1, pp. 19–31, Mar. 2009.

[6] S. Gehrig, “Large-Field-of-View Stereo for Automotive Applications,”
in Proc. Workshop on Omnidirectional Vision, Beijing, China, Oct. 2005,
pp. 1–8.

[7] S. Gehrig, C. Rabe, and L. Krüger, “6D Vision Goes Fisheye for
Intersection Assistance,” in Proc. Canadian Conf. on Computer and

Robot Vision, Windsor, Canada, May 2008, pp. 34–41.

[8] C. H. Kum, D. C. Cho, M. S. Ra, and W. Y. Kim, “Lane Detection
System with around View Monitoring for Intelligent Vehicle,” in Proc.

Int. SoC Design Conf., Busan, South Korea, Nov. 2013, pp. 215–218.

[9] D. Dooley, B. McGinley, C. Hughes, L. Kilmartin, E. Jones, and
M. Glavin, “A Blind-Zone Detection Method Using a Rear-Mounted
Fisheye Camera With Combination of Vehicle Detection Methods,”
IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 1, pp. 264–
278, Jan. 2016.

[10] S. Silberstein, D. Levi, V. Kogan, and R. Gazit, “Vision-Based Pedes-
trian Detection for Rear-View Cameras,” in Proc. IEEE Intelligent

Vehicles Symposium, Dearborn, MI, USA, June 2014, pp. 853–860.

[11] G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Motion Estimation for
Self-Driving Cars with a Generalized Camera,” in Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, Portland, OR, USA, June
2013, pp. 2746–2753.

[12] I. E. Richardson, The H.264 Advanced Video Compression Standard,
2nd ed. John Wiley & Sons, Ltd., 2010.

[13] ITU-T Recommendation H.264 and ISO/IEC 14496-10: Advanced video

coding for generic audiovisual services (AVC), Int. Telecomm. Union
Std., May 2003.

[14] ITU-T Recommendation H.265 and ISO/IEC FDIS 23008-2: High Effi-

ciency Video Coding (HEVC), Int. Telecomm. Union Std., Apr. 2013.

[15] J. Zhang, J. F. Arnold, and M. R. Frater, “A Cell-Loss Concealment
Technique for MPEG-2 Coded Video,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 10, no. 4, pp. 659–665, June 2000.

[16] S. C. Park, M. K. Park, and M. G. Kang, “Super-Resolution Image Re-
construction: A Technical Overview,” IEEE Signal Processing Magazine,
vol. 20, no. 3, pp. 21–36, May 2003.

[17] J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang,
and W. Shi, “Real-Time Video Super-Resolution with Spatio-Temporal
Networks and Motion Compensation,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, July 2017, pp.
2848–2857.

[18] U. S. Kim and M. H. Sunwoo, “New Frame Rate Up-Conversion
Algorithms with Low Computational Complexity,” IEEE Trans. Circuits

and Systems for Video Technology, vol. 24, no. 3, pp. 384–393, Mar.
2014.

[19] T. H. Kim, K. M. Lee, B. Schölkopf, and M. Hirsch, “Online Video
Deblurring via Dynamic Temporal Blending Network,” in Proc. IEEE

Int. Conf. on Computer Vision, Venice, Italy, Oct. 2017, pp. 4058–4067.

[20] B. Wen, Y. Li, L. Pfister, and Y. Bresler, “Joint Adaptive Sparsity and
Low-Rankness on the Fly: An Online Tensor Reconstruction Scheme
for Video Denoising,” in Proc. IEEE Int. Conf. on Computer Vision,
Venice, Italy, Oct. 2017, pp. 241–250.

[21] A. Eichenseer, M. Bätz, J. Seiler, and A. Kaup, “A Hybrid Motion
Estimation Technique for Fisheye Video Sequences Based on Equisolid
Re-Projection,” in Proc. IEEE Int. Conf. on Image Processing, Québec
City, Canada, Sep. 2015, pp. 3565–3569.

[22] A. Eichenseer and A. Kaup, “Coding of Distortion-Corrected Fisheye
Video Sequences Using H.265/HEVC,” in Proc. IEEE Int. Conf. on

Image Processing, Paris, France, Oct. 2014, pp. 4132–4136.

[23] G. Jin, A. Saxena, and M. Budagavi, “Motion Estimation and Compen-
sation for Fisheye Warped Video,” in Proc. IEEE Int. Conf. on Image
Processing, Québec City, Canada, Sep. 2015, pp. 2751–2755.

[24] A. Ahmmed, M. M. Hannuksela, and M. Gabbouj, “Fisheye Video
Coding Using Elastic Motion Compensated Reference Frames,” in Proc.

IEEE Int. Conf. on Image Processing, Phoenix, AZ, USA, Sep. 2016,
pp. 2027–2031.

[25] C. Hughes, P. Denny, E. Jones, and M. Glavin, “Accuracy of Fish-Eye
Lens Models,” Applied Optics, vol. 49, no. 17, pp. 3338–3347, June
2010.

[26] F. Devernay and O. Faugeras, “Straight Lines Have to Be Straight,”
Machine Vision and Applications, vol. 13, no. 1, pp. 14–24, Aug. 2001.

[27] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC Video Coding Standard,” IEEE Trans. Circuits and

Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.
[28] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec.
2012.

[29] A. Eichenseer, M. Bätz, and A. Kaup, “Motion Estimation for Fisheye
Video Sequences Combining Perspective Projection with Camera Cal-
ibration Information,” in Proc. IEEE Int. Conf. on Image Processing,
Phoenix, AZ, USA, Sep. 2016, pp. 4493–4497.

[30] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A Toolbox for Easily
Calibrating Omnidirectional Cameras,” in Proc. IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, Beijing, China, Oct. 2006, pp. 5695–
5701.

[31] A. Eichenseer and A. Kaup, “A Data Set Providing Synthetic and Real-
World Video Sequences,” in Proc. IEEE Int. Conf. on Acoustics, Speech

and Signal Processing, Shanghai, China, Mar. 2016, pp. 1541–1545,
available online: www.lms.lnt.de/fisheyedataset .

[32] “Blender Version 2.71,” http://www.blender.org.
[33] “Blend Swap,” http://www.blendswap.com.
[34] D. Scaramuzza, “OCamCalib: Omnidirectional Camera Calibra-

tion Toolbox for Matlab v2.0,” Oct. 2013, available online:
https://sites.google.com/site/scarabotix/

ocamcalib-toolbox .
[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004.

[36] G. de Haan, Digital Video Post Processing. Eindhoven: G. de Haan,
2010.

[37] A. Eichenseer, J. Seiler, M. Bätz, and A. Kaup, “Temporal Error
Concealment for Fisheye Video Sequences Based on Equisolid Re-
Projection,” in Proc. European Signal Processing Conf., Nice, France,
Sep. 2015, pp. 1611–1615.

[38] M. Bätz, A. Eichenseer, and A. Kaup, “Multi-Image Super-Resolution
for Fisheye Video Sequences Using Subpixel Motion Estimation Based
on Calibrated Re-Projection,” in Proc. European Signal Processing
Conf., Budapest, Hungary, Aug. 2016, pp. 1872–1879.

[39] A. Eichenseer, M. Bätz, and A. Kaup, “Disparity Estimation for Fisheye
Images with an Application to Intermediate View Synthesis,” in Proc.
IEEE Int. Workshop on Multimedia Signal Processing, Luton, United
Kingdom, Oct. 2017, pp. 1–6.

[40] W. H. Lee, K. Choi, and J. B. Ra, “Frame Rate Up Conversion Based
on Variational Image Fusion,” IEEE Trans. Image Processing, vol. 23,
no. 1, pp. 399–412, Jan. 2014.

[41] H. R. Kaviani and S. Shirani, “Frame Rate Upconversion Using Op-
tical Flow and Patch-Based Reconstruction,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 26, no. 9, pp. 1581–1594, Sep. 2016.

[42] T. H. Tsai, A. T. Shi, and K. T. Huang, “Accurate Frame Rate Up-
Conversion for Advanced Visual Quality,” IEEE Trans. Broadcasting,
vol. 62, no. 2, pp. 426–435, June 2016.

[43] D. Choi, W. Song, H. Choi, and T. Kim, “MAP-Based Motion Refine-
ment Algorithm for Block-Based Motion-Compensated Frame Interpo-
lation,” IEEE Trans. Circuits and Systems for Video Technology, vol. 26,
no. 10, pp. 1789–1804, Oct. 2016.

[44] N. Kim and J. W. Kang, “Bi-Directional Deformable Block-Based Mo-
tion Estimation for Frame Rate-Up Conversion of 360-Degree Videos,”
Electronics Letters, vol. 53, no. 17, pp. 1192–1194, Sep. 2017.

[45] Y. L. Huang, F. C. Chen, and S. Y. Chien, “Algorithm and Architecture
Design of Multirate Frame Rate Up-conversion for Ultra-HD LCD
Systems,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 27, no. 12, pp. 2739–2752, Dec. 2017.

[46] X. H. Van, “Statistical Search Range Adaptation Solution for Effective
Frame Rate Up-Conversion,” IET Image Processing, vol. 12, no. 1, pp.
113–120, Jan. 2018.

	I Introduction
	II Perspective and Fisheye Projection
	II-A The Pinhole Model
	II-B The Four Classical Fisheye Projection Functions

	III Block-Based Motion Estimation and Compensation for Fisheye Video
	III-A Motion Estimation via Block Matching
	III-B Fisheye Motion Estimation via Equisolid Re-Projection
	III-C Ultra Wide-Angle Compensation
	III-D Calibrated Re-Projection

	IV Fisheye Data Set
	IV-A Synthetic Sequences
	IV-B Real-World Sequences

	V Simulations and Experiments
	V-A Nomenclature and Test Setup
	V-B Simulation Results
	V-C Experimental Results

	VI Application to Motion Compensated Temporal Resolution Enhancement
	VI-A Conventional Frame Rate Up-Conversion
	VI-B Motion Compensated Linear Average for Fisheye Video
	VI-C Simulations and Experiments

	VII Conclusion and Outlook
	References

