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Abstract

Similarity-preserving hashing is a widely-used method
for nearest neighbour search in large-scale image retrieval
tasks. There has been considerable research on generating
efficient image representation via the deep-network-based
hashing methods. However, the issue of efficient search-
ing in the deep representation space remains largely un-
solved. To this end, we propose a simple yet efficient deep-
network-based multi-index hashing method for simultane-
ously learning the powerful image representation and the
efficient searching. To achieve these two goals, we intro-
duce the multi-index hashing (MIH) mechanism into the
proposed deep architecture, which divides the binary codes
into multiple substrings. Due to the non-uniformly dis-
tributed codes will result in inefficiency searching, we add
the two balanced constraints at feature-level and instance-
level, respectively. Extensive evaluations on several bench-
mark image retrieval datasets show that the learned bal-
anced binary codes bring dramatic speedups and achieve
comparable performance over the existing baselines.

1. Introduction

Nearest neighbor (NN) search has attracted increasing
interest due to the ever-growing large-scale data on the web,
which is a fundamental requirement in image retrieval [2].
Recently, similarity-preserving hashing methods that en-
code images into binary codes have been widely studied.
Learning good hash functions should require two principles:
1) powerful image representation and 2) efficient searching
in representation space. In this paper, we focus on deep-
network-based hashing for efficient searching and keep the
good performance.

In recent year, we have witnessed great success of deep
neural networks, which the success mainly comes from
the powerful representation learned from the deep network
architectures. The deep-networks-based hashing methods
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learn the image representations as well as the binary hash
codes. Lin et al. [13] proposed a method that learns hash
codes and image representations in a point-wised manner.
Li et al. [12] proposed a novel deep hashing method called
deep pairwise-supervised hashing (DPSH) to perform si-
multaneous hash code learning and feature learning. Zhao
et al. [37] presented a deep semantic ranking based method
for learning hash functions that preserve multilevel seman-
tic similarity for multi-label images. Further, Zhuang [38]
proposed a fast deep network for triplet supervised hashing.

Although the powerful binary codes have been learned
from the deep networks, linear scan of Hamming distance
is also time consuming in front of large-scale dataset (e.g.,
millions or billions images). Many methods have been pro-
posed for efficient searching in Hamming space. One popu-
lar approach is to use binary codes as the indices into a hash
table [24]. The problem is that the number of buckets grows
near-exponentially. Norouzi et al. [22] proposed multi-
index hashing (MIH) method for fast searching, which di-
vides the binary codes into smaller substrings and build
multiple hash tables. MIH assumes that binary codes are
uniformly distributed over the Hamming space, which is al-
ways not true. Liu et al. [16] and Wan et al. [28] proposed
data-oriented multi-index hashing, respectively. They firstly
calculated the correlation matrix between bits and then re-
arranged the indices of bits to make a more uniform dis-
tribution in each hash table. Ong et al. [23] relaxed the
equal-size constraint in MIH and proposed multiple hash
tables with variable length hash keys. Wang et al. [3 1] used
repeat-bits in Hamming space to accelerate the searching
but need more storage space. Song et al. [26] proposed a
distance-computation-free search scheme for hashing.

Most of the existing works firstly use the hashing models
(e.g., LSH [2], MLH [21]) to encode the image into the bi-
nary codes, followed by separate methods to rebalance the
binary codes distribution. Such fixed hashing models may
result in suboptimal searching. Ideally, it is expected that
hash models and balanced procedure can be learned simul-
taneously during the hash learning process.

In this paper, we propose a deep architecture for fast
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Figure 1. An overview of the proposed deep multi-index hashing architecture. It firstly (A) encodes the images into the image representa-
tions via stacked convolutional and fully-connected layers. Then the intermediate features are divided into m slices with equal length. After
that, we propose a similarity-preserving objective with two constraints for learning more uniformly distributed binary codes at feature-level
and instance-level, respectively. The feature-level constraint (B) requires that there is an equal distance in each substring for any two binary

codes, and the instance-level (C) lets the hash table buckets contai

searching and efficient image representation by incorpo-
rating the MIH approach into the network. As shown in
Figure. 1, our architecture consists of three main building
blocks. The first block is for learning the good image repre-
sentation by the stacked convolutional and fully-connected
layers followed by a slice layer which divides intermediate
image features into multiple substrings, each substring cor-
responding to one hash table as the MIH approach. And the
second and third blocks learn the uniform codes distribu-
tion, which balances the binary codes in feature-level and
instance-level, respectively. In feature-level, we make the
bits distributed as uniform as possible in each substring hash
table by adding a new balanced constraint in the objective.
And the instance-level is used to punish the buckets contain
too many items, which will cost much time for checking
many candidate codes. Finally, a similarity-preserving ob-
jective with two balanced constraints is proposed to capture
the similarities among the images, and a fast hash model is
learned to encode all the images into more uniformed binary
codes.
The main contributions of this work are two-folds.

e We propose a deep multi-index hashing, which learns
the hash functions for both the powerful image repre-
sentation and fast searching.

e We conduct extensive evaluations on several bench-
mark datasets. The empirical results demonstrate the
superiority of the proposed method over the state-of-
the-art baseline methods.

n balanced items.

2. Related Work

The learning-to-hash methods learn the hash functions
from the training data for generating better binary represen-
tation. The representative methods include Iterative Quan-
tization (ITQ) [3], Kernerlized LSH (KLSH) [10], Anchor
Graph Hashing (AGH) [18], Spectral Hashing (SH) [32],
Semi-Supervised Hashing (SSH) [29], Kernel-based Su-
pervised Hashing (KSH) [17], Minimal Loss Hashing
(MIH) [21], Binary Reconstruction Embedding (BRE) [9]
and so on. The comprehensive survey can be found in [30].

Deep-network-based hashing method has been emerged
as one of the leading approaches. Many algorithms [7,

, 15, 36, 38, 13, 34, 35, 37] have been proposed, in-
cluding the point-wise approach, the pair-wise approach
and the ranking-based approach. The point-wise methods
take a single image as input and the loss function is built
on individual data. For example, Lin et al. [13] showed
that the binary codes can be learned by employing a hid-
den layer for representing the latent concepts that dominate
the class labels, thus they proposed to learn the hash codes
and image representations in a point-wised manner. Yang
et al. [34] proposed a loss function defined on classification
error and other desirable properties of hash codes to learn
the hash functions. The pair-wise methods take the image
pairs as input and the loss functions are used to character-
ize the relationship (i.e., similar or dissimilar) between a
pair of two images. Specifically, if two images are similar,
then the hamming distance between the two images should



be small, otherwise, the distance should be large. Repre-
sentative methods include deep pairwise-supervised hash-
ing (DPSH) [12], deep supervised hashing (DSH) [14] and
so on. The ranking-based methods cast learning-to-hash as
the ranking problem. Zhao et al. [37] proposed a deep se-
mantic ranking-based method for learning hash functions
that preserve multi-level semantic similarity between multi-
label images. Zhuang [38] proposed a fast deep network for
triplet supervised hashing.

Although obtaining the powerful image representation
via the deep learning-to-hash methods, existing works al-
ways do not consider the fast searching in the learned codes
space. Multi-index hashing [4, 22] is an efficient method
for finding all r-neighbors of a query by dividing the binary
codes into multiple substrings. While, binary codes learned
from the deep network always not be uniformly distributed
in practice, e.g., all images with the same label indices with
a similar key as shown in Figure 2, which will cost much
time to check many candidate codes. In this paper, we solve
this problem by adding two balanced constraints in our net-
work, and learn more uniformly distributed binary codes.

3. Background: Multi-Index Hashing

In this section, we briefly review MIH [22].

MIH is a method for fast searching in large-scale
datasets, which the binary code h is partitioned into m dis-
joint substring, h") ... h("™) each substring consists of
[/m bits, where [ is the length of bits and we assume [ is di-
visible by m for convenience presentation. One hash table
is built for each of the m substrings.

The r-neighbor of a query q is denoted as R"(q) which
differ from q in 7 bits or less from all codes in the database.
To search the r-neighbor of a query q with substrings
{qU )};»”:1, MIH searches the all substring hash tables for
entries that are within a Hamming distance of ' = r/m .
The set of candidates from the j-th substring hash table
is denoted as /\/']T/ (q). Then, the union of all the m sets,
NT(q) = Ujz, J\/;’/ (q), is the superset of the r-neighbors
of q. The false positives that are not true r-neighbors of q
are removed by computing the full Hamming distance.

The kNN search problem can be formulated as the 7-
near neighbor problem. By initializing integer ' = 0, we
can progressive increment of the search radius 7/ until the
specified number of neighbors is found.

4. Deep Multi-Index Hashing

This section describes deep multi-index hashing archi-
tecture that allows us to 1) obtain powerful binary codes
and 2) efficient search inside the binary codes space.

!For ease of presentation, here we assume r is divisible by m. In prac-
tice, if r = m X r’ 4+ a with 0 < a < m, we can set the search radii of
the first a + 1 hash tables to be 7 and the rests to be v’ — 1.
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Figure 2. An example of powerful binary codes while bad search-
ing in codes space.

We firstly introduce notations. There is a labeled train-
ing set {I;, y; }_,, where I, is the i-th image, y; is the class
name/label of the i-th image, and the number of training
samples is n. Suppose that each binary code comprises
l bits, the goal of deep multi-index hashing is to learn a
deep hash model, in which the similarities among the bi-
nary codes should be preserved and also quick searching in
large-scale binary codes space.

As shown in Figure 1, the purposes of the proposed
architecture are two: 1) a deep network with multiple
convolution-pooling layers to capture an efficient represen-
tation of images, and followed by a slice layer to partition
the feature into m disjoint substrings, and 2) a balanced
codes module designed to address the ability to quickly
search inside the binary codes space. It generates the binary
codes distributed as uniform as possible in each substring
hash table from two aspects: feature-level and instance-
level. In the following, we will present the details of these
parts, respectively.

4.1. Efficient Representation via Deep Network

The deep network, e.g., AlexNet [8], VGG [25], Google-
LeNet [27] and residual network [5], is used for learning
the powerful efficient image representation, which is made
following structural modifications for image retrieval task.
The first modification is to remove the last fully-connected
layer (e.g., fc8). The second is to add a fully-connected
layer with [ dimensional intermediate features. The inter-
mediate features are then fed into a tanh layer that restricts
the values in the range [—1,1]. The MIH contains m sep-
arate hash tables. Inspired by that, the third modification
is to add a slice layer to divide the features into m slices
with equal length I/m. According to the suggestion of the
MIH, the number of substring hash tables is setted to be
m = | —— |, which shows the best empirical performance

logy, n
shown in [22]. Finally, the output of network is denoted as

h; = F(I;),h; = b, -+ ' h{™], where I; is the input
image and F is the deep network.



The deep-network based methods can learn a very pow-
erful image representation for the image retrieval, while
they do not consider the ability to efficiently search in-
side the representation space. An example of powerful im-
age representation for binary codes while bad searching is
shown in Figure 2. Here the substring of length 4. Sup-
pose that there are 2 class labels, and each class consists of
50,000 images. Without loss of generality, the first 50,000
images whose labels are 1, the labels of the rest 50,000 im-
ages are 2. The hash table is built for the 100,000 learned
binary codes shown in Figure 2, where the similar codes
locate in the same bucket (with a similar key) and the dis-
similar codes have largest Hamming distance, i.e., 4, in the
hash table. The learned binary codes are very good for ac-
curacy while they are very bad for searching. Given a query,
it needs to check so many candidate items (e.g., 50,000
items). It is necessary for finding a new way to generate
more balanced binary codes.

4.2. Fast Searching via the Deep Multi-Index Hash-
ing

We first give the following proposition.

Proposition 1. When the buckets in the substring hash ta-
bles that differ from q\9) within ' bits, i.e., D(h'9), q\¥)) <
7', then we have R"(q) C U/_, N7 (q), where r =
r’m+7— 1

For example, suppose that ' = 0, when searching in
the first substring hash table, we obtain a set of candidates
N?(q), then the 0-neighbor (i.e., r = r'm +i —1 = 0)
of query q is the subset of the candidates, that is R°(q) C
N?(q). Similar, we have R'(q) € U7, N?(q), R*(q) C
U?Zl N?(q) and etc. When searching in the substring hash
tables differs by 7’ bits or less, we can obtain all r-neighbor
of the query, where r'm < r < (7' + 1)m.

According to the above proposition, we can see that the
running time of MIH for kNN mainly contains two parts:
index lookups and candidate codes checking. To achieve
faster searching, we should reduce 1) the number of distinct
hash buckets to examine, i.e., the smaller r’, the better. 2)
the number of candidate codes to check, i.e., the smaller
Uj=1 _er’ () — R"(q), the better.

4.2.1 Balanced binary codes in Instance-level

To reduce the running time for index lookups, the binary
codes of similar images should be indices with a similar
key as shown in Figure 2. In such case, v’ = 0. Unfortu-
nately, we need to check so many candidate binary codes,
making the inefficient searching. Thus, the number of each
bucket should be not too small and not too large. Balanced
binary codes in instance-level are learned for addressing the
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Figure 3. An example for rebalancing the items in the bucket. Here
the codes is split into 2 hash tables H W and H®. We require
each bucket contains at most 4 items. Since the haskey (0101) in
hash table H™ has 16 items, we first use full Hamming distance
to split the items into 2 groups. Then the items in groups are fur-
ther randomly splitted into subgroups until all subgroups contain
not more than &’ items.

problem, which require that each bucket in the hash table
contains at most k items.

Formally, all the buckets in all substring hash tables
that have more than &’ items were found. Let Pi(J ) =
{p1, -+ ,pc} is denoted as the items in the i-th bucket of
the j-th substring hash table. We use the following steps to
rebalance these items as shown in Figure 3.

1) The full Hamming distance is used to split these items
into several groups, each group contains the samples which
have the same binary codes. If the number of all groups are
less than k', stop the procedure.

2) Otherwise, if the number of the group is more than &/,
we further randomly split it into n,/k’ subgroups with the
equal sizes, making sure each subgroup consists of at most
k' items, where n, is the number of items in the group.

A key principle should be ensured is that do not change
the similarities among these images, that is the distance
between p, and py, i.e., D(hl(,{?, hg,i)), should preserve
relative similarities of the form “(p,, pp in the same sub-
group) < (pg,pp in the same group) < (p,, pp in the dif-
ferent groups)”. Thus, the objective can be formulated as:

¢(PY (i) =
D) wg))
max(0, 1 — D(hy!) hy)))
max (0,2 — D(hl(fa), hgb))) if p,, pp in different groups,

if pg, Py in same subgroup
if p,, pp in same group

where we let the Hamming distances of j-th substring be-
tween the examples in P) (7)) from 0 to be 0,1,2 to rebal-
ance the items.

4.2.2 Balanced binary codes in Feature-level

To reduce the running time for candidate codes checking,
the false positives in candidate set should be small, that



/\/'JT/ (q) — R"(q). To achieve it, the

. /\/']?"I (q) should not contains too many items which are
not true r-neighbors of query. That is, when the substring
h() and q) differ by 7/ bits, the full Hamming distant be-
tween g and h should differ by (' 4+ 1)m bits or less. This
leads to the follow proposition:

is to minimize (J]_,

Proposition 2. Suppose that for all h and D(q,h) = r,
we have D(q®, W) = ¢ + 1,Vi = 1,---,a, and
D(q(i),_h(’:)) =7 Vi=a+1,---,m, wherer = mxr'+a,
then \J]_, N7 (@) — R"(q) = 0.

According to Proposition 2, we add the following new
balanced constraint in our objective

P(h,q) = Zmax(o,r’ — D(h(j),q(j)))
i=t (D

+ max(0, D(hW), q) — (' + 1)),

where ' = | D(h, q)/m]. The above formulation requires
the almost equal distance in each substring, which distance
of each substring should be less or equal to 7' 4 1 and larger
or equal to 7.

Overall, the similarity-preserving loss function for bal-
anced codes can be formulated as :

min > max(0, e+ D(h;, hy+) — D(hy, hy-)),

+AY (b hy)+ 8 ¢(PY (i)
i,J ,J
2)

where €, A, 8 are parameters, D(h;, h;) is the distance be-
tween two binary codes. For ease of optimization, we re-
place the Hamming distance with the euclidean distance. In
all our experiments, the € is setted to be {/2, A = 5 = 0.1,
and k' = 20. The first term of the objective is to preserves
relative similarities of the form “h; is more similar to h,+
than to h;-". The second term is for generating balanced
codes in feature-level and the third term is for balanced
codes in instant-level.

5. Experiments

In this section, we evaluate and compare the performance
of the proposed method with several state-of-the-art algo-
rithms.

5.1. Datasets and Experimental Setting

e SVHN [20] ? is obtained from house numbers in
Google Street View images, which contains over
600,000 images and 10 classes.

Zhttp://ufldl.stanford.edu/housenumbers/

e NUS-WIDE [1] 3 consists of 269,648 images and the
associated tags from Flickr. The labels extracted from
the tags associated to the images for the 81 concepts.

In NUS-WIDE, we follow the settings in [33, 18] for
fair comparison. The 21 most frequent labels are selected,
where each label associates with at least 5,000 images. We
randomly select 100 images from each of the selected 21
classes to form the query set of 2,100 images. The rest
images are used as the retrieval database. In the retrieval
database, 500 images from each of the selected 21 classes
are randomly chosen as the training set.

In SVHN, we randomly select 1,000 images (100 images
per class) as the query set, and 5,000 images (500 images
per class) from the rest images as the training set.

We implement the proposed method using the open-
source Caffe [0] framework. In this paper, we use
AlexNet [8] as our basic network. The weights of layers
are firstly initialized by the pre-trained AlexNet model *.

5.2. Results

In this subsection, we evaluate the query time of our
method by comparing it with the existing deep-network-
based method. To make a fair comparison, we compare two
methods:

e DeepHash. The hash functions are learned without the
assistance of the balanced constraints, i.e., only use the
first term of the objective (2).

e Deep Multi-Index Hashing (DMIH). The hash func-
tions are learned with the assistance of the balanced
constraints, i.e., using all terms in the objective (2).

Since the two methods use the same network and the
only difference is that using or not using the proposed bal-
anced constraints in feature-level and instance-level, these
comparisons can show us whether the balanced constraints
can contribute to the speed or not.

After obtaining the binary codes, we use the implemen-
tation of MIH > provided by the authors to report the accel-
erated ratios of the two methods compared to linear scan on
all the above databases. The speed-up factors of MIH over
linear scan of both the proposed method and DeepHash for
different kNN problems are shown in Table 1. Note that the
linear scan does not depend on the underlying distribution
of the binary codes, thus the running times of linear scan of
two methods are the same.

The results show that DMIH is more efficient than Deep-
Hash, especially for the small kNN problems. For instance,
for 1-NN in 96-bits codes on SVHN, the speed-up factor

3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
“http://dl.caffe berkeleyvision.org/bvlc_alexnet.caffemodel
Shttps://github.com/norouzi/mih



Table 1. Speed-up factors for MIH vs. linear scan.

Dataset nbits Method 1-NN 2-NN 5-NN | 10-NN | 20-NN | 50-NN | 100-NN
64 DMIH 119.23 | 100.37 | 87.62 | 77.59 66.75 50.01 34.68
DeepHash | 56.17 55.28 49.34 43.79 36.82 30.70 22.71
96 DMIH 74.59 60.51 52.78 44.02 41.93 30.96 26.08
NUS-WIDE DeepHash | 40.83 34.25 33.08 20.06 21.18 16.61 12.08
128 DMIH 60.90 47.66 38.79 35.56 19.49 18.85 17.36
DeepHash | 30.95 24.00 21.30 19.97 11.82 10.11 9.37
756 DMIH 30.31 23.91 22.28 20.62 20.72 16.21 14.69
DeepHash | 15.24 12.75 12.45 13.42 12.45 9.51 8.62
64 DMIH 96.39 63.86 65.74 65.76 64.15 43.83 31.95
DeepHash | 10.06 10.33 10.29 10.25 10.03 10.93 9.79
96 DMIH 92.46 64.02 58.08 54.09 45.82 25.48 20.44
SVHN DeepHash 9.96 10.01 9.79 10.24 9.71 9.06 10.06
128 DMIH 56.82 49.35 22.17 18.33 16.33 17.94 17.59
DeepHash 9.12 9.34 7.56 6.21 6.16 6.97 6.39
756 DMIH 30.27 23.94 21.14 19.46 17.91 14.87 13.19
DeepHash 7.53 7.60 7.02 7.44 7.62 7.20 7.34

for DMIH is 92.46, compared to 9.96 for DeepHash. In
NUS-WIDE, our method shows about 2 speed-up ratio in
comparison with DeepHash.

The main reason is that the proposed method can learn
the more balanced hash codes than DeepHash. To give an
intuitive understanding of our method, we utilize an entropy
based measurement that is defined as

m 24

B(H) =~ 35" p(i) x logpli), @)

j=11i=1

where [; = [/m is the dimension of the j-th hash table, thus
there are 2% buckets in this table. And p(i) is the probability
of codes assigned to bucket ¢, which is defined as p(i) =
n(i)/N, where n(7) is the number of codes in bucket ¢ and
N is the size of database. Note that the higher entropy value
means better distribution of data items in hash tables.

Table 2. Distribution of data items in the hash tables of the two
methods.

Method [ 64 bits 96 bits 128 bits 256 bits
SVHN
DeepHash | 4.06 4.32 4.14 4.11
DMIH 1040  10.94 9.10 8.17
NUS-WIDE
DeepHash 9.23 9.59 8.99 8.97
DMIH 9.72 9.84 9.51 9.39

Again, for all databases and bits, our method yields the
higher entropy and beats the baseline. This is also can ex-
plain why our method can obtain the faster searching.

Further, we evaluate and compare the performance of the
proposed method with several state-of-the-art algorithms.
LSH [2], ITQ [3], ITQ-CCA [3], SH [32] and DeepHash
are selected as the baselines. The results of LSH, ITQ,
ITQ-CCA and SH are obtained by the implementations pro-
vided by their authors, respectively. Note that DeepHash

is very similar to the existing work One-Stage Hash [ 1],
which also divides the feature into several slices and uses
the triplet ranking loss for preserving the similarities. Since
the results of DeepHash and One-stage are almost the same,
thus we only report the results of DeepHash. To evaluate the
quality of hashing, we use Mean Average Precision (MAP)
and Precision curves w.r.t. different numbers of top returned
samples as the evaluation metrics. For a fair comparison, all
of the methods use identical training and test sets, and the
AlexNet model is used to extract deep features (i.e., 4096
dimensional features from fc7 layer) for LSH, ITQ, ITQ-
CCA and SH.

Figure 4 shows the comparison results on the two
datasets. We can see that 1) the deep network based meth-
ods show improvements over the baselines using fixed deep
features. 2) DMIH shows comparable performance against
the most related baseline DeepHash. These results verify
that adding new balanced constraints does not drop the per-
formance.

In summary, our method performs 2 to 10 times faster
than DeepHash with the comparable performance.

5.2.1 Effects of the Feature-level and Instance-level
Constraints

In this set of experiments, we show the advantages of the
proposed two balanced constraints. To give an intuitive
comparison, we show the results of using only the feature-
level/instance-level constraint, respectively.

Table 3 show the comparison results. The results show
that instance-level constraint is very useful for SVHN
while the feature-level constraint is helpful in NUS-WIDE
dataset. It depends on the data distributions of the learned
binary codes.
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Figure 4. The comparison results on SVHN and NUS-WIDE. (a) MAP w.r.t. different number of bits; (b) precision curves with 64 bits w.r.t different
numbers of top returned samples. (c) precision-recall curves of Hamming ranking with 64 bits;

Table 3. Speed-up factors for MIH vs. linear scan.

Method 1-NN | 10-NN | 100-NN
NUS-WIDE
Both 74.59 | 44.02 26.08

Feature-level 68.00 37.64 22.29
Instance-level | 45.48 30.22 17.82
SVHN

Both 92.46 54.09 20.44
Feature-level 11.73 10.43 9.99
Instance-level | 89.73 50.23 19.94

5.2.2 Effect of the End-to-end Learning

Our framework is an end-to-end framework. To show the
advantages of the end-to-end framework, we compare to
the following baseline, which adopts a two-stage strategy.
In the first stage, DeepHash is learned and the images are
encoded into binary codes. In the second stage, we rebal-
ance the binary codes by the data-driven multi-index hash-
ing [28].

Table 4 shows the comparison results. We can observe
that our method performs better than DeepHash and two-
stage method. It is desirable to learn the hash function and
balanced procedure in the end-to-end framework.

6. Conclusion

In this paper, we proposed a deep-network-based multi-
index hashing method for fast searching and good perfor-

Table 4. Speed-up factors for MIH vs. linear scan.

Method I-NN | 10-NN | 100-NN

NUS-WIDE

DMIH 74.58 | 44.02 26.08
DeepHash | 40.83 | 20.06 12.08
Two-stage | 60.55 | 29.97 17.95
SVHN

DMIH 92.46 | 54.09 20.44
DeepHash | 9.96 10.24 10.06
Two-stage | 11.50 10.40 10.33

mance. In the proposed deep architecture, an image goes
through the deep network with stacked convolutional lay-
ers and is encoded into high level image representation with
several substrings. Then, we proposed to learn more bal-
anced binary codes by adding two constraints. One is the
feature-level constraint, which is used to make the binary
codes distributed as balance as possible in each hash table.
Another is the instance-level constraint, which is used to let
the buckets in each substrings hash table contain balanced
items. Finally, the deep hash model for both the powerful
image representation and fast searing is learned simultane-
ously. Empirical evaluations on two datasets show that the
proposed method runs faster than the baseline and achieve
comparable performance.

In future work, we plan to apply DMIH in different net-
works and methods to exploit the effect of the proposed bal-
anced constraints. We also plan to accelerate the running



times of extracting the features from the deep network.

Appendices
Proof of Proposition 1

Suppose that there exists one binary code h, h € R"(q)
and h ¢ (J_; /\/'J?"/ (q). According to Proposition 1 in
paper [22], we have D(h(*),q(*)) < 7/ for a substring.
We discuss in two situations: 1) if z < j, then h €

’_, N7 (q) according to the definition of N7 (q), which
contradicts the premise. 2) if z > j and all the first j sub-
strings is strictly greater than 7/, then the total number of
bits that differ in the last m — jis at most r — j x (r' + 1) =
r'm+j—1—jr'—j = (m—j)r’ — 1. Using Proposition
1 in paper [22] again, we have D(h(*), q(*)) < ¢/ — 1, thus
he N (q) C J\/']?"l (q), which contradicts the premise.

Proof of Proposition 2

Suppose that |J/_, N7'(q) — R"(q) # 0, we have at
least one binary code b satisfies b € ngl NI (q) and b ¢
R"(q). Since b is not the r-neighbor of query q, then b
and q at least differ by r + 1 bits. Since b € U§=1 N (q),
wehaver = "m+j—1=1r'm+a, thusj = a + 1.
According to the assumption and D(q,h) = r + 1, we
have D(q¥),h@)) = ¢/ + 1, thus b ¢ |J/_, N7'(q) by
the definition of J\/jrl (q) , which contradicts the premise.
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