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Abstract—Visual saliency detection model simulates the human
visual system to perceive the scene, and has been widely used
in many vision tasks. With the development of acquisition
technology, more comprehensive information, such as depth cue,
inter-image correspondence, or temporal relationship, is available
to extend image saliency detection to RGBD saliency detection,
co-saliency detection, or video saliency detection. RGBD saliency
detection model focuses on extracting the salient regions from
RGBD images by combining the depth information. Co-saliency
detection model introduces the inter-image correspondence con-
straint to discover the common salient object in an image group.
The goal of video saliency detection model is to locate the
motion-related salient object in video sequences, which considers
the motion cue and spatiotemporal constraint jointly. In this
paper, we review different types of saliency detection algorithms,
summarize the important issues of the existing methods, and
discuss the existent problems and future works. Moreover, the
evaluation datasets and quantitative measurements are briefly
introduced, and the experimental analysis and discission are
conducted to provide a holistic overview of different saliency
detection methods.

Index Terms—Salient object, RGBD saliency detection, depth
attribute, co-saliency detection, inter-image correspondence,
video saliency detection, spatiotemporal constraint.

I. INTRODUCTION

UMAN visual system works as a filter to allocate more
attention to the attractive and interesting regions or
objects for further processing. Humans can exhibit visual
fixation, which is maintaining of the visual gaze on a single
location. Inspired by this visual perception phenomena, some
visual saliency models focus on predicting human fixations
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[1]. In addition, driven by computer vision applications, some
visual saliency models aim at identifying the salient regions
from the image or video [2]. In this survey, we mainly
review the latest progress of salient object detection, which
has been applied in image/video segmentation [3[], [4], im-
age/video retrieval [3]], [6], image retargeting [7]], [8], image
compression [9]], image enhancement [10]-[12], video coding
[13]], foreground annotation [ 14]], quality assessment [15], [[16],
thumbnail creation [[17]], action recognition [[18[], and video
summarization [19].

The last decade has witnessed the remarkable progress of
image saliency detection, and a plenty of methods have been
proposed and achieved the superior performances, especially
the deep learning based methods have yielded a qualitative
leap in performances. Following [2], image saliency detection
methods can be classified into bottom-up model [20]-[33]]
and top-down model [34]-[49]. Bottom-up model is stimulus-
driven, which focuses on exploring low-level vision features.
Some visual priors are utilized to describe the properties of
salient object based on the visual inspirations from the human
visual system, such as contrast prior [20], background prior
[24], [26], [31], and compactness prior [28]]. In addition, some
traditional techniques are also introduced to achieve image
saliency detection, such as frequency domain analysis [S0f,
sparse representation [22], cellular automata [25]], random
walks [26]], low-rank recovery [29], and Bayesian theory
[30]. Top-down model is task-driven, which utilizes super-
vised learning with labels and achieves high performance.
Especially, deep learning technique has been demonstrated
the powerful ability in saliency detection. Some hierarchical
deep networks for saliency detection are proposed, such as
SuperCNN [38]], and DHSNet [41]]. In addition, the multi-scale
or multi-context deep saliency network is proposed to learn
more comprehensive features, such as deep contrast network
[40], multi-context deep learning framework [46], multi-scale
deep network [47]], and network with short connections [43]].
The symmetrical network is also introduced in saliency detec-
tion, such as the encoder-decoder fully cnvolutional networks
[44]. Moreover, some deep weakly supervised methods for
salient object detection are proposed by using the image-level
supervision [48]] or noisy annotation [49].

In fact, the human visual system can not only perceive
the appearance of the object, but also be affected by the
depth information from the scene. With the development of
imaging devices, the depth map can be acquired conveniently,
which lays the data foundation for RGBD saliency detection
[51]. Generally, there are three options for 3D depth imaging,
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Fig. 1. Some illustrations of saliency detection with and without depth cue.
The first three columns shows the RGB image, depth map, and ground truth.
The fourth column shows the image saliency detection result using the RC
method [20]. The fifth column represents the RGBD saliency detection result
using the ACSD method [64].

i.e., structured light [52f], TOF (Time-of-Flight) [53]], and
binocular imaging [54]. The structured light pattern (e.g.,
Kinect) captures the depth information via the change of
light signal projected by the camera, which can obtain high-
resolution depth map. The TOF system (e.g., Camcube) esti-
mates the depth through the round-trip time of the light pulses,
which has good anti-jamming performance and wider viewing
angle. The stereo imaging system takes photo pair via stereo
camera and calculates the object’s disparity based on two-
view geometry. Depth map can provide many useful attributes
for foreground extraction from the complex background, such
as shape, contour, and surface normal. Some examples of
saliency detection with and without depth cue are shown
in Fig. [Il As can be seen, utilizing the depth cue, RGBD
saliency model achieves superior performance with consistent
foreground enhancement. However, how to effectively exploit
the depth information to enhance the identification of salient
object has not yet reached a consensus, and still needs to
be further investigated. Considering the ways of using depth
information, we divide the RGBD saliency detection model
into depth feature based method [55]-[62] and depth measure
based method [63]-[70]. Depth feature based method focuses
on taking the depth information as a supplement to color
feature, and depth measure based method aims at capturing
comprehensive attributes from the depth map (e.g., shape)
through the designed depth measurements.

In recent years, with the explosive growth of data volume,
human need to process multiple relevant images collabora-
tively. As an emerging and challenging issue, co-saliency
detection gains more and more attention from researchers,
which aims at detecting the common and salient regions from
an image group containing multiple related images, while
the categories, intrinsic attributes, and locations are entirely
unknown [71]. In general, three properties should be satisfied
by the co-salient object, i.e., (1) the object should be salient
in each individual image, (2) the object should be repeated in
most of the images, and (3) the object should be similar in
appearance among multiple images. Some visual examples of
co-saliency detection are provided in Fig. [2| In the individual
image, all the cows should be detected as the salient objects.
However, only the brown cow is the common object from

Fig. 2. Examples of the co-saliency detection model on the iCoseg dataset.
The first row presents the input images, and the second row shows the ground

truth for co-saliency detection.
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Fig. 3. Examples of the video saliency detection model on the DAVIS dataset.
The first row is the input video frames, and the second row shows the ground
truth for video saliency detection.
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the image group. Therefore, the inter-image correspondence
among multiple images plays a useful role in representing
the common attribute. On the whole, co-saliency detection
methods are roughly grouped into two categories according
to whether the depth cue is introduced, i.e., RGB co-saliency
detection [72]-[88]] and RGBD co-saliency detection [89]-
[92]. Then, the RGB co-saliency detection methods are further
divided into some sub-classes based on different correspon-
dence capturing strategies, i.e., matching based method [72]-
[79], clustering based method [80], rank analysis based method
[81]], [82], propagation based method [83], [84], and learning
based method [85]—[88]].

Different from image data, video sequences contain more
abundant appearance information and continuous motion cue,
which can better represent the characteristics of the target in
a dynamic way. However, the clustered backgrounds, complex
motion patterns, and changed views also bring new challenges
to interpret video content effectively. Video saliency detection
aims at continuously locating the motion-related salient object
from the given video sequences by considering the spatial and
temporal information jointly. The spatial information repre-
sents the intra-frame saliency in the individual frame, while the
temporal information provides the inter-frame constraints and
motion cues. Fig. §]illustrates some examples of video saliency
detection. In this camel video, both two camels appeared from
40th frame should be detected as the salient objects through a
single image saliency model. However, only the front one is
continuously moving and repeating, which is the salient object
in this video. The differences between co-saliency detection
and video saliency detection lie in two aspects, i.e., (1) The
inter-frame correspondence has the temporal property in video
saliency detection rather than in co-saliency detection. For co-
saliency detection in an image group, the common salient
objects have the consistent semantic category, but are not
necessarily the same object. By contrast, the salient objects
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Fig. 4. Relationships between different visual saliency detection models.

in video are continuous in the time axis and consistent among
different frames; (2) In video saliency detection model, motion
cue is essential to distinguish the salient object from the
complex scene. However, this cue is not included in co-
saliency detection model. Similar to the classification strategy
of image saliency detection, we divide the video saliency
detection methods into two categories, i.e., low-level cue
based method [93]-[105] and learning based method [[106]—
[110]. For clarity, the low-level cue based method is further
grouped into fusion model and direct-pipeline model according
to feature extraction method, and the learning based method
is further divided into supervised method and unsupervised
method.

As stated above, the major relationships among four dif-
ferent visual saliency detection models are summarized in
Fig. [4] where the image saliency detection model is the basis
for other three models. With the depth cue, RGBD saliency
map can be obtained from an image saliency detection model.
Introducing the inter-image correspondence, image saliency
detection model can be transformed into a co-saliency detec-
tion method. Video saliency detection can be derived from an
image saliency detection model by combining the temporal
correspondence and motion cue, or from a co-saliency detec-
tion method by integrating the motion cue. In practice, in order
to obtain superior performance, it is necessary to design a
specialized algorithm to achieve co-saliency detection or video
saliency detection, rather than directly transplanting the image
saliency detection algorithms.

In this paper, we review different saliency detection models
with comprehensive information, and the rest of this paper is
organized as follows. Section II surveys the existing RGBD
saliency detection models. Section III introduces some co-
saliency detection methods. Section IV summarizes the related
works of video saliency detection. The experimental compar-
isons and discussions are presented in Section V. Finally, the
conclusion and future work are summarized in Section VL.

II. RGBD SALIENCY DETECTION

Different from image saliency detection, RGBD saliency
detection model considers the color information and depth cue
together to identify the salient object. As a useful cue for
saliency detection, depth information is usually utilized in two
ways, i.e., directly incorporating as the feature and designing
as the depth measure. Depth feature based method [55[—[62]]
focuses on using the depth information as a supplement to
color feature. Depth measure based method [63]-[70] aims at
capturing comprehensive attributes from the depth map (e.g.
shape and structure) through the designed depth measures.

A. Depth Feature Based RGBD Saliency Detection

To achieve RGBD saliency detection, the depth feature is
directly embedded into the feature pool as the supplement of
color information. In [57]], color, luminance, texture, and depth
features were extracted from the RGBD images to calculate
the feature contrast maps. Then, the fusion and enhancement
schemes were utilized to produce the final 3D saliency map.
In [59], multi-level features were used to generate the various
saliency measures at different scales, then the discriminative
saliency fusion strategy was designed to fuse the multiple
saliency maps and obtain the final saliency result. Moreover,
a bootstrap learning based salient object segmentation method
was proposed. In addition, inspired by the observation that the
salient regions are distinctly different from the local or global
backgrounds in the depth map, “depth contrast” was calculated
as a common depth property. In [55], global depth contrast
and domain knowledge were calculated to measure the stereo
saliency. Peng et al. [58] calculated the depth saliency through
a multi-contextual contrast model, which considers the contrast
prior, global distinctiveness, and background cue of depth map.
Moreover, a multi-stage RGBD saliency model combining
the low-level feature contrast, mid-level region grouping, and
high-level prior enhancement was proposed.

Recently, deep learning is also successfully applied to
RGBD saliency detection [60]-[62]. Qu ef al. [60] designed a
CNN to automatically learn the interaction between low-level
cues and saliency result for RGBD saliency detection. The
local contrast, global contrast, background prior, and spatial
prior were combined to generate the raw saliency feature
vectors, which are embedded into a CNN to produce the initial
saliency map. Finally, Laplacian propagation was introduced
to further refine the initial saliency map and obtain the final
saliency result. In addition to the multi-modal fusion problem
that previous RGBD salient object detection focus on, Han
et al. [61] firstly exposed the cross-modal discrepancy in the
RGBD data and proposed two cross-modal transfer learning
strategies to better explore modal-specific representations in
the depth modality. This work is the pioneering one that
involves the cross-modal transfer learning problem in RGBD
salient object detection. In [[62], Chen er al. innovatively
modelled the cross-modal complementary part including the
RGB and depth data as a residual function for RGBD saliency
detection. Such a re-formulation elegantly posed the problem
of exploiting cross-modal complementarity as approximating
the residual, making the multi-modal fusion network to be
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Fig. 5. Different quality depth maps. (a) Good depth map, Ay = 0.8014. (b)
Common depth map, Ay = 0.3890. (c) Poor depth map, Ay = 0.0422.
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really complementarity-aware. In this work, the high-level
contexts and low-level spatial cues were well-integrated, and
the saliency maps were enhanced progressively.

B. Depth Measure Based RGBD Saliency Detection

In order to capture the comprehensive and implicit attributes
from the depth map and enhance the identification of salient
object, some depth measures, such as anisotropic center-
surround difference measure [64], local background enclosure
measure [66], and depth contrast increased measure [68],
are designed in different methods. Ju et al. [64] proposed
an Anisotropic Center-Surround Difference (ACSD) measure
with 3D spatial prior refinement to calculate the depth-aware
saliency map. Combining the ACSD measure with color
saliency map, Guo et al. [[65] proposed an iterative propagation
method to optimize the initial saliency map and generate
the final result. Since the backgrounds always contain the
regions that are highly variable in depth map, some high
contrast background regions may induce false positives. To
overcome this problem, Feng er al. [|66] proposed a Local
Background Enclosure (LBE) measure to directly capture
salient structure from depth map, which quantifies the pro-
portion of object boundary located in front of the background.
The salient objects are always placed at different depth levels
and occupy small areas according to the domain knowledge
in photography. Based on this observation, Sheng et al. [6§]]
proposed a depth contrast increased measure to pop-out the
salient object through increasing the depth contrast between
the salient object and distractors. Wang et al. [69] proposed
a multistage salient object detection framework for RGBD
images via Minimum Barrier Distance (MBD) transform and
multilayer cellular automata based saliency fusion. The depth-
induced saliency map was generated through the FastMBD
method, and the depth bias and 3D spatial prior were used to
fuse different saliency maps at multiple stages.

C. Discussion

Depth feature based method is an intuitive and explicit way
to achieve RGBD saliency detection, which uses the depth in-
formation as an additional feature to supplement color feature,
but ignores the potential attributes (e.g., shape and contour)
in the depth map. By contrast, depth measure based method
aims at exploiting these implicit information to refine the
saliency result. However, how to effectively exploit the depth
information to enhance the identification of salient object is
a relatively difficult work. In addition, limited by the depth
imaging techniques, sometimes the quality of the depth map
is not satisfactory, as shown in Fig. 5{c). A good depth map
benefits for the saliency detection, whereas a poor depth map

may degenerate the saliency measurement. Therefore, Cong et
al. [[70] proposed a depth confidence measure to evaluate the
quality of depth map, which works as a controller to constrain
the introduction of depth information in the saliency model.
The depth confidence measure Ay is defined as follows:

Aa=exp((1—my)-CV-H)—1 ()

where my is the mean value of depth map, C'V denotes the
coefficient of variation, and H represents the depth frequency
entropy, which describes the randomness of depth distribution.
With the depth confidence measure, the RGBD saliency map
was generated by combining the depth-aware compactness
saliency and depth-guided foreground saliency. Fig. [3] illus-
trates some different quality depth maps. As visible, the
depth confidence measure \; effectively distinguishes different
quality depth maps according to the statistical characteristics
of depth map.

III. CO-SALIENCY DETECTION

Co-saliency detection aims at detecting the common and
salient regions from an image group containing multiple
related images, which has been applied in foreground co-
segmentation [[73[], object co-detection [I111], and image
matching [112f]. In co-saliency detection, the inter-image cor-
respondence is introduced as the common attribute constraint
to discriminate the common objects from all the salient ob-
jects. To achieve co-saliency detection, some low-level or high-
level features are firstly extracted to represent each image unit
(e.g., superpixels), where the low-level feature describes the
heuristic characteristics (e.g., color, texture, luminance), and
the high-level feature captures the semantic attributes through
some deep networks. Then, using these features, intra and inter
saliency models are designed to explore the saliency represen-
tation from the perspectives of the individual image and inter
image, respectively. For inter-image constraints capturing, dif-
ferent techniques are introduced, such as clustering, similarity
matching, low rank analysis, and propagation. Finally, fusion
and optimization schemes are utilized to generate the final co-
saliency map.

We discuss two categories of co-saliency detection methods
according to the different data, i.e., RGB co-saliency detection
and RGBD co-saliency detection. Obviously, different from
the RGB co-saliency detection, RGBD co-saliency detection
model needs to combine the depth constraint with inter-image
correspondence jointly. In addition, similar to the RGBD
saliency detection, the depth cue can be used as an additional
feature or a measure in RGBD co-saliency detection methods.

A. RGB Co-saliency Detection

As mentioned earlier, the inter-image correspondence plays
an important role in co-saliency detection. In this subsection,
we review some RGB co-saliency detection models based
on different correspondence capturing strategies, i.e, matching
based method [72]—[79]], clustering based method [80]], rank
analysis based method [81f], [82], propagation based method
[83]], [84], and learning based method [85]—[88]. A brief
summary is presented in Table [l
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TABLE I
BRIEF INTRODUCTION OF RGB CO-SALIENCY DETECTION

Model Year Inter—lrr'lage Main technique
capturing

CSP [72] 2011 matching normalized single-pair SimRank
UEM [73] 2011 matching repeatedness representation

SA [74] 2013 matching superpixel-level graph matching
CSM [75] 2013 matching similarity ranking and matching
RFPR [76] 2014 matching inter-region dissimilarity
HSCS [77] 2014 matching global similarity

SCS [78] 2015 matching ranking scheme

HCM [79] 2018 matching hierarchical consistency measure
CCS [80] 2013 clustering clustering with multiple cues
SAW [81] 2014 rank analysis rank one constraint
LRMF [82] 2015 rank analysis multiscale low-rank fusion
CSP [83] 2016 propagation two-stage propagation
CFR [84] 2017 propagation color feature reinforcement
LDW [85] 2015 learning deep learning, Bayesian
GCS [86] 2017 learning FCN framework, end-to-end
SPMI [87] 2015 learning self-paced multi-instance learning
UML [88] 2017 learning metric learning

Similarity Matching. In most of the existing methods,
the inter-image correspondence is simulated as a similarity
matching process among basic units. As a pioneering work,
Li and Ngan [72]] proposed a co-saliency detection model
for an image pair, where the inter-image correspondence is
formulated as the similarity between two nodes through the
normalized single-pair SimRank on a co-multilayer graph.
However, this method is only applicable to image pairs. Tan et
al. [74] proposed a self-contained co-saliency detection model
based on affinity matrix, which evaluates the co-saliency ac-
cording to the bipartite superpixel-level graph matching across
image pairs. Li et al. [[75] combined the intra and inter saliency
maps to achieve co-saliency detection, where the inter-image
corresponding relationship is measured by pairwise similarity
ranking with pyramid features and minimum spanning tree
image matching. Liu et al. [[77]] proposed a hierarchical seg-
mentation based co-saliency detection model, where the inter-
image correspondence is formulated as the global similarity
of each region. Li et al. [78] proposed a saliency-guided co-
saliency detection method, where the first stage recovers the
co-salient parts missing in the single saliency map through the
efficient manifold ranking, and the second stage captures the
corresponding relationship via a ranking scheme with different
queries. This model can make the existing saliency models
work well in co-saliency scenarios.

Clustering is an effective way to build the inter-image cor-
respondence, where the co-salient regions should be assigned
to the same category. A cluster-based co-saliency detection
algorithm without heavy learning for multiple images was
proposed in [80]. Taking the cluster as the basic unit, an
inter-image clustering model was designed to represent the
multi-image relationship by integrating the contrast, spatial,
and corresponding cues. The proposed method achieved a
substantial improvement in efficiency.

Rank Analysis. Ideally, feature representations of co-salient

objects should be similar and consistent, thus, the rank of
feature matrix should appear low. Cao et al. [81] proposed
a fusion framework for co-saliency detection based on rank
constraint, which is valid for multiple images and also works
well on single image saliency detection. The self-adaptive
weights for fusion process were determined by the low-rank
energy. Moreover, this method can be used as a universal
fusion framework for multiple saliency maps. Huang et al.
[82] proposed a multiscale low-rank saliency fusion method
for single image saliency detection, and the Gaussian Mixture
Model (GMM) was used to generate the co-saliency map via
a co-saliency prior.

Propagation scheme among multiple images is presented to
capture the inter-image relationship. Ge et al. [83] proposed a
co-saliency detection method based on two-stage propagation,
where the inter-saliency propagation stage is utilized to dis-
cover common properties and generate the pairwise common
foreground cue maps, and the intra-saliency propagation stage
aims at further suppressing the backgrounds and refining the
inter-saliency propagation maps. Based on the observation
that co-salient objects appear similar color distributions in an
abundant color feature space, Huang et al. [[84] proposed a co-
saliency detection method without single saliency residuals by
using color feature reinforcement. In this method, eight color
features with four exponents were formed into an abundant
color feature space, and co-saliency indication maps were
obtained with the help of feature coding coefficients and
salient foreground dictionary.

Learning Model. Recently, learning based methods for
RGB co-saliency detection attract more and more attention
and achieve competitive performance.

Deep learning has been demonstrated to be powerful in
learning the high-level semantic representation, and some
heuristic studies of co-saliency detection based on deep learn-
ing have been proposed. Zhang et al. [85] proposed a co-
saliency detection model from deep and wide perspectives un-
der the Bayesian framework. From the deep perspective, some
higher-level features extracted by the convolutional neural
network with additional adaptive layers were used to explore
better representations. From the wide perspective, some visu-
ally similar neighbors were introduced to effectively suppress
the common background regions. This method is a pioneering
work to achieve co-saliency detection by using deep learning,
which mainly uses the convolutional network to extract better
feature representations of the target. With the FCN framework,
Wei et al. [86] proposed an end-to-end group-wise deep co-
saliency detection model. First, the semantic block with 13
convolutional layers was utilized to obtain the basic feature
representation. Then, the group-wise feature representation
and single feature representation were captured to represent
the group-wise interaction information and individual image
information, respectively. Finally, the collaborative learning
structure with the convolution-deconvolution model was used
to output the co-saliency map. The overall performance of this
method is satisfactory, but the boundary of the target needs to
be sharper.

The Multi-Instance Learning (MIL) model aims to learn
a predictor for each instance through maximizing inter-class
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Fig. 6. Illustration of DSP descriptor. From the left to right in a group are
the RGB image, depth map, and DSP map.

distances and minimizing intra-class distances. The Self-
Paced Learning (SPL) theory is to gradually learn from
the easy/faithful samples to more complex/confusable ones.
Integrating the MIL regime into SPL paradigm, Zhang et al.
[87] proposed a novel framework for co-saliency detection.

Metric learning works on learning a distance metric to make
the same-class samples closer and different-class samples as
far as possible. Han et al. [88] introduced metric learning
into co-saliency detection, which jointly learns discriminative
feature representation and co-salient object detector via a new
objective function. This method has the capacity to handle
the wide variation in image scene and achieves superior
performance.

B. RGBD Co-saliency Detection

The superiority of depth cue has been proved in RGBD
saliency detection. Combining the depth cue with inter-image
correspondence, RGBD co-saliency detection can be achieved.
For this task, there are two commonly used datasets, i.e.,
RGBD Cosegl83 dataset [89] and RGBD Cosall50 dataset
[91]. Limited by the data sources, only a few of methods are
proposed to achieve RGBD co-saliency detection.

Clustering with Depth Feature. In [90], Song et al
proposed a bagging-based clustering method for RGBD co-
saliency detection. The inter-image correspondence was ex-
plored via feature bagging and regional clustering. Moreover,
three depth cues, including average depth value, depth range,
and the Histogram of Oriented Gradient (HOG) on the depth
map, were extracted to represent the depth attributes of each
region.

Similarity Matching with Depth Feature. Fu er al. [89]
introduced the RGBD co-saliency map into an object-based
RGBD co-segmentation model with mutex constraint, where
the depth cue is utilized to enhance identification of common
foreground objects and provide local features for region com-
parison. Introducing the depth cue as an additional feature,
Cong et al. [91] proposed a co-saliency detection method for
RGBD images by using the multi-constraint feature matching
and cross label propagation. The inter-image relationship was
modeled at two scales, i.e., multi-constraint based superpixel-
level similarity matching and hybrid feature based image-level
similarity matching. Finally, cross label propagation scheme
was designed to refine the intra and inter saliency maps in a
cross way and generate the final co-saliency map.

Similarity Matching with Depth Measure. In [92], an
iterative co-saliency detection framework for RGBD images
was proposed, which integrates the addition scheme, deletion
scheme, and iterative scheme. The addition scheme aimed at

introducing the depth information and improving the perfor-
mance of single saliency map. The deletion scheme focused
on capturing the inter-image correspondence via the designed
common probability function. The iterative scheme was served
as an optimization process through a refinement-cycle to
further improve the performance. Notably, a novel depth
descriptor, named Depth Shape Prior (DSP), was designed to
exploit the depth shape attribute and convert the RGB saliency
map into RGBD scenarios. Fig. [6] provides an illustration
of DSP descriptor, which effectively describes the shape of
salient object from the depth map. In other words, any RGB
saliency map can be converted to an RGBD saliency map by
using the DSP descriptor.

C. Discussions

Compared with image saliency detection, co-saliency de-
tection is still an emerging topic, where the inter-image
correspondence is crucial to represent the common attribute.
The accurate inter-image constraint can effectively eliminate
non-common saliency interference and improve the accuracy.
On the contrary, the inaccurate inter-image correspondence,
like noise, will degenerate the performance. The matching and
propagation based methods usually capture relatively accurate
inter-image relationship, but they are very time-consuming.
In addition, the inter-image modeling among multiple images
is a problem worth pondering in learning based method, and
the stack strategy may be not a good choice for performance
improvement. Of course, how to exploit the depth attribute to
enhance the identification of co-salient object also needs to be
further investigated.

IV. VIDEO SALIENCY DETECTION

Video sequences provide the sequential and motion infor-
mation in addition to the color appearance, which benefit for
the perception and identification of scene. The salient object in
video is defined as the repeated, motion-related, and distinctive
target. The repeated attribute constrains the salient object that
should appear in most of the video frames. The motion-related
characteristic is consistent with the human visual mechanism
that the moving object attracts more attention than the static
one. The distinctive property indicates the object should be
prominent with respect to the background in each frame.

Most of the video saliency detection methods are dedicated
to exploiting the low-level cues (e.g., color appearance, motion
cue, and prior constraint) [93]-[105]]. Only a few works focus
on learning the high-level features and extracting the salient
object in video through a learning network [106]]—[110]. In the
following, we will detail these two types of methods.

A. Low-level Cue Based Video Saliency Detection

According to the way of spatiotemporal extraction, low-
level cue based video saliency detection method is classified
into fusion model and direct-pipeline model, as shown in Fig.
For the fusion model, the spatial and temporal features are
extracted to generate the spatial saliency and temporal saliency
respectively, then they are combined to produce the final
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TABLE II
BRIEF SUMMARY OF LOW-LEVEL CUE BASED VIDEO SALIENCY
DETECTION METHODS

Spatial
Saliency
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Video
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Fusion Model

Temporal
feature

Temporal
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Fig. 7. Framework of low-level cue based video saliency detection.

spatiotemporal saliency. By contrast, the direct-pipeline model
directly extracts the spatiotemporal feature to generate the final
spatiotemporal saliency in a straightforward and progressive
way without any branches. A brief summary of the state-of-
the-art methods is presented in Table

Fusion model fuses the spatial saliency and temporal
saliency to achieve video saliency, where the spatial cue
represents the intra-frame information in each frame and the
temporal cue describes the inter-frame relationship among
multiple frames.

For spatial saliency detection, some techniques and priors
in image saliency detection can be used, such as sparse re-
construction, low-rank analysis, center-surround contrast prior,
and background prior. In [93]], the sparse reconstruction was
utilized to discover the regions with high center-surround
contrast. Fang et al. [95]] generated the static saliency map via
feature contrast in compressed domain by using the luminance,
color, and texture features. In [97], the global contrast and
spatial sparsity were used to measure the spatial saliency of
each superpixel. Xi et al. [102] utilized the background prior
to calculate the spatial saliency. In [[103]], color contrast was
used to define the color saliency.

For temporal saliency, the motion cue is exploited to rep-
resent the moving objects in the video. In [93]], the target
patch was reconstructed by overlapping patches in neigh-
boring frames. In [95], the motion vectors extracted from
the video bitstream were used to calculate the feature dif-
ferences between DCT blocks. In [97], the superpixel-level
temporal saliency was evaluated by motion distinctiveness of
motion histograms. In [102], the SIFT flow and bidirectional
consistency propagation were used to define the temporal
background prior. In [103]], the motion gradient guided contrast
computation was used to define the temporal saliency.

In most of the fusion based models, fusion strategy is not
a key issue. In [935]], a fusion scheme considering the saliency
characteristic was designed. In [97]], an adaptive fusion method
at the pixel level was utilized to generate the pixel-level
spatiotemporal saliency map. In [[102], the spatial and temporal
saliency maps were fused via a simple addition strategy.
In [103]], the modeling-based saliency adjustment and low-
level saliency fusion were conducted to produce the fusion
result. Furthermore, the low-rank coherency guided spatial-
temporal saliency diffusion and saliency boosting strategies
were adopted to improve the temporal smoothness and saliency
accuracy.

Model Year Low-level cue Type
SSR [93] 2012 sparse. reconétruction,
motion trajectory
VSCD [95] 2014 DCT coefficients, .luminance,
color, texture, motion features
SCUW [96] 2014 luminancej color, texture, op.tical fusion
flow, spatiotemporal uncertainty
lobal contrast, spatial model
ol st, s
SS[97] | 2014 gt rast, sp
sparsity, motion histogram
STBP [102] | 2017 spatiote.mporal background
prior, SIFT flow
SFLR [[103]] | 2017 spatiotemporal gradient contrast
LRSD [94] 2012 low-rank, sparse decomposition
dient flow field,
CVS [98] | 2015 gradient Tow fie
local and global contrasts
random walk with restart,
RWRYV [99] 2015 motion distinctiveness, temporal direct
consistency, abrupt change .
tial edge, motion pipeline
spatia ,
SG [101) | 2018 spatial ecge, mott model
boundary, geodesic distance
SGSP [104] | 2017 global motion histogram,
shortest path on graph
vSoP (10s] | 2017 object proposrflls, baclﬁground
and contrast priors, optical flow

Direct-pipeline model directly extracts the spatiotemporal
feature to generate the final spatiotemporal saliency in a
straightforward and progressive way.

In [94], the stacked temporal slices along X-T and Y-T
planes were used to represent the spatiotemporal feature, and
the motion saliency was calculated by low-rank and sparse
decomposition, where the low-rank component corresponds
to the background, and the sparse proportion represents the
moving foreground object.

Optical flow and its deformations are utilized to define
the spatiotemporal feature. Wang et al. [98|] presented a
spatiotemporal saliency model based on gradient flow field
and energy optimization, which is robust to complex scenes,
various motion patterns, and diverse appearances. The gradient
flow field represented the salient regions by incorporating
the intra-frame and inter-frame information. Liu et al. [104]
presented a progressive pipeline for video saliency detection,
including the superpixel-level graph based motion saliency,
temporal propagation, and spatial propagation. The motion
saliency was measured by the shortest path on the superpixel-
level graph with global motion histogram feature. Guo et
al. [[105] introduced a salient object detection method for
video from the perspective of object proposal via a more
intuitive visual saliency analysis. The salient proposals were
firstly determined by spatial saliency stimuli and contrast-
based motion saliency cue. Then, proposal ranking and voting
schemes were conducted to screen out non-salient regions
and estimate the initial saliency. Finally, temporal consistency
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and appearance diversity were considered to refine the initial
saliency map. It is worth learning that object proposal provides
a more comprehensive and high-level representation to detect
the salient object.

In addition, motion knowledge is used to capture the spa-
tiotemporal feature. In [99], the random walk with restart was
exploited to detect the salient object in video, where the tem-
poral saliency calculated by motion distinctiveness, temporal
consistency, and abrupt change is employed as the restarting
distribution of random walker. In [100], [1O1]], the spatial edge
and motion boundary were incorporated as the spatiotemporal
edge probability cue to estimate the initial object on the intra-
frame graph, and the spatiotemporal saliency was calculated
by the geodesic distance on the inter-frame graph.

In summary, the fusion model is a more intuitive method
compared with the direct-pipeline model. Moreover, the exist-
ing image saliency methods can be directly used to compute
the spatial saliency, which lays the foundation for spatiotem-
poral saliency calculation. Therefore, most of the methods pay
more attention to this type.

B. Learning Based Video Saliency Detection

Recently, learning based video saliency detection has
achieved more competitive performance, which can be roughly
divided into supervised learning method [107]-[109] and
unsupervised learning method [110].

The supervised learning method aims at learning the spa-
tiotemporal features for video saliency detection by means of
a large number of labelled video sequences. Le et al. [107]
proposed a deep model to capture the SpatioTemporal deep
Feature (STF), which consists of the local feature produced
by a region-based CNN and the global feature computed
from a block-based CNN with temporal-segments embedding.
Using the STF feature, random forest and spatiotemporal
conditional random field models were introduced to obtain
the final saliency map. Wang et al. [108] designed a deep
saliency detection model for video, which captures the spatial
and temporal saliency information simultaneously. The static
network generated the static saliency map for each individual
frame via the FCNs, and the dynamic network employed
frame pairs and static saliency map as input to obtain the
dynamic saliency result. It is worth mentioning that, a video
augmentation technique was proposed to generate the labeled
video training data from the existing annotated image datasets,
which effectively alleviates the problem of insufficient training
samples.

Most of the deep learning based video saliency detection
methods focus on designing a separated network rather than
an end-to-end network. In [109], Le et al. firstly proposed an
end-to-end 3D fully convolutional network for salient object
detection in video. The Deeply Supervised 3D Recurrent Fully
Convolutional Network (DSRFCN3D) contained an encoder
network and a decoder network. The encoder network was
used to extract the 3D deep feature from the input video
block, and the decoder network aimed at computing the
accurate saliency voxel. Moreover, a refinement mechanism
with skip-connection and 3D Recurrent Convolution Layer

(RCL3D) was designed to learn the contextual information.
The loss function combined the saliency prediction loss and
3D deconvolution loss jointly, which is represented as:

M

L(G, UJ) = Cpred(97wpred) + Z CdecSD (0; Wgzc;gD) (2)
m=1

where 0 is the overall network parameters, wp.q denotes the

weights of saliency prediction network , wg..3p represents the

weights of 3D deconvolution network, M is the number of 3D

deconvolution layers, and ¢ denotes the binary cross-entropy

function.

Compared with supervised learning methods, only a few
works focus on unsupervised learning model. As a pioneering
work, Li et al. [110] proposed an unsupervised approach for
video salient object detection by using the saliency-guided
stacked autoencoders. First, saliency cues extracted from the
spatiotemporal neighbors at three levels (i.e., pixel, superpixel,
and object levels) were combined as a high-dimensional fea-
ture vector. Then, the stacked autoencoders were learned in
an unsupervised manner to obtain the initial saliency map.
Finally, some post-processing operations were used to further
highlight the salient objects and suppress the distractors. In
this method, manual intervention will be further reduced if
the hand-crafted saliency cues are automatically learned from
the network.

C. Discussions

For video saliency detection, motion cue is crucial to
suppress the backgrounds and static salient objects, especially
in the case of multiple objects. In general, optical flow is a
common technique to represent the motion attribute. However,
it is time-consuming and sometimes inaccurate, which will
degenerate the efficiency and accuracy. Therefore, some deep
learning based methods directly embed the continuous multi-
ple frames into the network to learn the motion information
and avoid the optical flow calculation. Of course, the video
frame and optical flow can be simultaneously embedded into
the network to learn the spatiotemporal feature. However, the
first option may be better in terms of efficiency. In addition,
the salient objects should be consistent in appearance among
different frames. Therefore, some techniques, such as energy
function optimization, are adopted to improve the consistency
of the salient object.

In Table we further summarize the characteristics of
different types of saliency models, including RGBD saliency
detection, co-saliency detection, and video saliency detection.

V. EVALUATION AND DISCUSSION
A. Evaluation Metrics

In addition to directly comparing the saliency map with
ground truth, some evaluation metrics are developed to quan-
titatively evaluate the performance of saliency detection meth-
ods, such as Precision-Recall (PR) curve, F-measure, Receive
Operator Characteristic (ROC) curve, Area Under the Curve
(AUC) score, and Mean Absolute Error (MAE).

Precision-Recall (PR) curve and F-measure. By thresh-
olding the saliency map with a series of fixed integers from
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TABLE III
A SUMMARY OF SALIENCY DETECTION MODELS WITH COMPREHENSIVE INFORMATION

Model Category Key points Descriptions
depth use as an additional feature, directly embed into the feature pool as the supplement of color information
RGBD feature a heuristic and intuitive strategy or calculate the “depth contrast” as a common depth property [55]—[62]
saliency depth design a depth measure to capture design some depth measures to fully exploit the effective -
measure the shape and structure attribute information from depth map (e.g., shape and structure) [63]-[70]
RGB inter-image constraint, low-level appear- inter-image correspondence can be modelled as a similarity matching,
Co- co-saliency ance and high-level semantic features clustering, rank analysis, propagation, or learning process [72[—[88]
saliency RGBD a new topic, inter-image constraint, depth cue as a feature or a measure to enhance identification perf;rmance,
co-saliency depth attribute (feature or measure) combine the depth cue with inter-image correspondence [[89]-[92]
low-level direct pipeline: spatiotemporal feature explore the inter-frame constraint and motion information (e.g., optical flow),
Video cue based fusion model: spatial, temporal saliencies fusion model is more intuitive and popular [93]-[105]
saliency learning unsupervised: stacked autoencoder learn to the spatiotemporal features and achieve competitEe performance,
based supervised: symmetrical deep structure multiple frames or optical flow is embedded to represent motion cue [[106]—[110]

0 to 255, the binary saliency masks are achieved. Therefore,
the precision and recall scores are calculated by comparing
the binary mask with the ground truth. The PR curve is
drawn under different precision and recall scores, where the
vertical axis denotes the precision score, and the horizontal
axis corresponds to the recall score. The closer the PR curve
is to the upper left, the better performance achieves. In order
to comprehensively evaluate the saliency map, a weighted
harmonic mean of precision and recall is defined as F-measure
[2], which is expressed as:

(1 + B%)Precision x Reall
B2 x Precision + Recall

Fy = 3)
where 32 is generally set to 0.3 for emphasizing the precision
as suggested in [50].

Receive Operator Characteristic (ROC) curve and AUC
score. The ROC curve describes the relationship between the
false positive rate (FPR) and true positive rate (TPR), which

is represented as:

ISFNGF| SF(GB]
|G F| |G Bl

where Sr, G, and Sp denote the set of detected foreground
pixels in the binary saliency mask, the set of foreground pixels
in the ground truth, and the set of background pixels in the
ground truth, respectively. The closer the ROC curve is to the
upper right, the better performance achieves. AUC score is the
area under the ROC curve, and the larger, the better.

Mean Absolute Error (MAE) score. MAE score directly
evaluates the difference between the continuous saliency map
S and ground truth G directly:

TPR = ,FPR = “)

1 w h

r=1y=1
where w and h represent the width and height of the image,
respectively. The smaller the MAE score is, the more similar
to the ground truth, and the better performance achieves.

B. Datasets

In this section, we introduce the datasets for (RGBD) image
saliency detection, co-saliency detection, and video saliency
detection, respectively.

For image saliency detection, a number of datasets have
been constructed over the past decade, including some large
datasets with pixel-level annotations, such as DUT-OMRON
(32, MSRAI10K [113]], HKU-IS [47]], and XPIE [114], as
listed in Table Benefiting from the growth of data volume,
deep learning based RGB saliency detection methods have
achieved superior performance.

In contrast, the datasets with pixel-wise ground truth anno-
tations for RGBD saliency detection are relatively inadequate,
which only consist of NLPR dataset [58] and NJUD dataset
[64], as listed in the last two rows of Table The NLPR
dataset includes 1000 RGBD images with the resolution of
640 x 640, where the depth maps are captured by Microsoft
Kinect. The NJUD dataset is released on 2015, which includes
2000 RGBD images with the resolution of 600 x 600. The
depth map in the NJUD dataset is estimated by the stereo
images.

For co-saliency detection, five RGB datasets and two RGBD
datasets are commonly used for evaluation, as listed in Table
MSRC [115]] is a challenging dataset with complex back-
ground, which contains 7 image groups of totally 240 images
with manually pixel-wise ground truth. The iCoseg [116]]
dataset consists of 38 image groups of totally 643 images,
and the manually labeled pixel-wise ground-truth masks is also
provided. Image Pair [[72]] dataset only contains image pairs,
whereas other datasets usually include more than two images
in each group. A larger co-saliency detection dataset named
RGBD Cosal2015 is constructed in [[117], which consists of
2015 RGB images distributed in 50 image groups with pixel-
wise ground truth. INCT2016 [[118] is a more challenging
dataset with larger appearance variation, indefinite number
of targets, and complicated backgrounds, which contains 291
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TABLE IV
BRIEF INTRODUCTION OF SALIENCY DETECTION FOR RGB IMAGE AND RGBD IMAGES

Image Max . . Background Publish
Dataset Depth attribute Object property Best performance
number | Resolution property year
ACSD [50] 1000 400 x 400 — single, moderate clean, simple 2009 Fg: 0.94; MAE: 0.03
ECSSD [21] 1000 400 x 400 — single, large clean, simple 2012 Fg: 0.88; MAE: 0.08
DUT-OMRON [32] 5168 400 x 400 — single, small complex 2013 Fg: 0.77; MAE: 0.07
MSRAI10K [113]] 10000 | 400 x 400 — single, largre clean, simple 2014 Fg: 0.93; MAE: 0.04
PASCAL-S [33] 1000 500 x 500 — multiple, moderate simple 2014 Fp: 0.81; MAE: 0.11
HKU-IS [47] 850 400 x 400 — multiple, moderate clean 2015 Fg: 0.86; MAE: 0.06
XPIE [114] 4447 300 x 300 — single, moderate complex 2017 Fg: 0.72; MAE: 0.12
NLPR [58] 1000 640 x 640 | Kinect capturing single, moderate diverse 2014 Fg: 0.82; AUC: 0.98
NJUD [64] 2000 600 x 600 depth estimation single, moderate diverse 2015 Fg: 0.81; AUC: 0.98
TABLE V
BRIEF INTRODUCTION OF CO-SALIENCY DETECTION DATASETS
Image Group Group Depth . Object Background Publish
Dataset Resolution Best performance
number | number size attribute property property year
MSRC [115] 240 7 30-53 — 320 x 210 | complex | clean, simple 2005 Fg: 0.84; AUC: 0.70
iCoseg [[116] 643 38 4-42 — 500 x 300 | multiple diverse 2010 Fg: 0.85; AUC: 0.85
Image Pair [72] 210 115 2 — 128 x 100 single clustered 2011 Fg: 0.93; AUC: 0.97
Cosal2015 [117] 2015 50 26-52 - 500 x 333 | multiple clustered 2016 Fg: 0.71; AUC: 0.90
INCT2016 [118] 291 12 15-31 - 500 x 375 | multiple complex 2016 —
RGBD Kinect . clustered,
183 16 12-36 640 x 480 | multiple 2015 Fg: 0.71; MAE: 0.06
Cosegl183 [89] capturing complex
RGBD depth . .
150 21 2-20 600 x 600 single diverse 2018 Fg: 0.84; MAE: 0.14
Cosall50 [91] estimation
TABLE VI
BRIEF INTRODUCTION OF VIDEO SALIENCY DETECTION DATASETS
Frame Video Video . Object Background Publish
Dataset Resolution Best performance
number | number size property property year
SegTrackV1 [[119] 244 6 21-71 414 x 352 single diverse 2010 Fg: 0.88; MAE: 0.10
SegTrackV2 [[120] 1065 14 21-279 640 x 360 single diverse 2013 Fg: 0.92; MAE: 0.02
ViSal 98] 963 17 30-100 512 x 228 single diverse 2015 Fg: 0.85; MAE: 0.03
MCL [99] 3689 9 131-789 480 x 270 single, small complex 2015 -
DAVIS [121] 3455 50 25-104 1920 x 1080 multiple complex 2016 Fg: 0.82; MAE: 0.03
UVSD [104] 6524 18 71-307 352 x 288 single, small | clustered, complex 2017 Fg: 0.51; MAE: 0.10
VOS [110] 116103 200 ~ 500 800 x 800 single complex 2018 Fg: 0.78; MAE: 0.05

images distributed in 12 categories with pixel-level ground
truth. There are two commonly used datasets with pixel-level
hand annotations for RGBD co-saliency detection. One is the
RGBD Cosegl83 dataset [89]], which contains 183 RGBD
images in total that distributed in 16 image groups. The other
one is the RGBD Cosall50 dataset [91], which collects 21
image groups containing a total of 150 RGBD images.

For video saliency detection, many datasets have been
released, such as ViSal [98]], MCL [99]], UVSD [104]], VOS
[110], SegTrackV1 [119], SegTrackV2 [120], and DAVIS

[121]), as listed in Table The DAVIS dataset is a com-
monly used and challenging dataset, which contains 50 video
sequences with the fully-annotated pixel-level ground truth for
each frame. The UVSD dataset is a specially designed and
newly established dataset for video saliency detection, which
consists of 18 unconstrained videos with complicated motion
patterns and cluttered scenes, and the pixel-wise ground truth
for each frame is available. A very large video saliency
detection dataset named VOS is constructed, which consists of
116103 frames in total that distributed in 200 video sequences.
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Fig. 8. Visual examples of different methods on different datasets. (a) NJUD dataset. (b) RGBD Coseg183 dataset. (c) DAVIS dataset.

In this dataset, 7467 frames are annotated into binary ground
truth, which is suitable for training and learning a deep model
to extract the salient object in video.

C. Comparison and Analysis

We report some visual examples and quantitative com-
parisons in this section, and the related results on different
datasets are shown in Figs. [§}[9] and Tables Xl All the

results are directly provided by the authors or implemented
by the source codes.

Image Saliency Detection vs RGBD Saliency Detection.
We evaluate the RGB saliency detection methods (HS [21]],
BSCA [25], RRWR [26], DCLC [28]], SMD [29]], DCL [40],
and DSS [43]]) and RGBD saliency detection methods (SS
[55], ACSD [64], DCMC [70], and DF [60]]) on the NJUD
and NLPR datasets, where the DCL, DSS, and DF are the
deep learning based methods.
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Fig. 9. PR and ROC curves of different methods on different datasets. (a) NJUD dataset. (b) NLPR dataset. (c) RGBD Cosal150 dataset. (d) RGBD Coseg183

dataset. (e) UVSD dataset. (f) DAVIS dataset.

TABLE VII
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON NJUD AND
NLPR DATASETS, WHERE “*” DENOTES THE DEEP LEARNING BASED
METHODS

NJUD Dataset NLPR Dataset

Fg AUC MAE Fg AUC MAE

HS [21] 0.6494 | 0.8390 | 0.2516 | 0.6659 | 0.8785 | 0.1918
BSCA [25] | 0.6672 | 0.8709 | 0.2148 | 0.6702 | 0.9207 | 0.1768
RRWR [26] | 0.6520 | 0.8510 | 0.2161 | 0.6804 | 0.9038 | 0.1575
DCLC [28] | 0.6527 | 0.8526 | 0.2007 | 0.6662 | 0.8992 | 0.1381
SMD [29] | 0.6900 | 0.8635 | 0.1950 | 0.7138 | 0.9229 | 0.1300
DCL* [40] | 0.7863 | 0.9393 | 0.1236 | 0.7995 | 0.9617 | 0.0727
DSS* [43] | 0.7971 | 0.8940 | 0.1147 | 0.8384 | 0.9360 | 0.0583
SS 551 0.6128 | 0.8103 | 0.2227 | 0.4712 | 0.8007 | 0.1752
ACSD [64] | 0.7459 | 0.9259 | 0.1939 | 0.6695 | 0.9229 | 0.1635
DCMC [70] | 0.7591 | 0.9258 | 0.1716 | 0.6975 | 0.9289 | 0.1168
DF* [60] 0.6383 | 0.8338 | 0.2022 | 0.6407 | 0.8801 | 0.1156

Fig. [§(a) presents some visual examples on the NJUD
dataset, where the first three columns correspond to the input
RGBD images and ground truth. The foreground object is
effectively popped out, and the background is suppressed in
the first three depth maps. In other words, the depth map can
provide useful information to enhance the identification of the
salient object. For the unsupervised RGB saliency detection
methods (BSCA [25] and SMD [29]), some backgrounds are
wrongly detected, such as the shadow in the first image and
the trees in the third image. Introducing the depth cue, the
consistency of salient object and the false positive in back-
ground regions are obviously improved. For example, the trees
in the second and third images are effectively suppressed by
the DCMC method [70]]. For the supervised learning method,
the DCL method [40] shows the competitive performance
benefitting from the deep learning technique with a large
number of labelled training data. However, limited by the
annotated RGBD saliency data, the DF method [60] cannot

TABLE VIII
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON RGBD
C0SAL150 AND RGBD COSEG183 DATASETS, WHERE “*” DENOTES THE
DEEP LEARNING BASED METHODS

RGBD Cosall50 Dataset RGBD Cosegl83 Dataset

Fp AUC MAE Fp AUC MAE
HS [21] 0.7101 | 0.8644 | 0.2375 | 0.5645 | 0.8540 | 0.2018
BSCA [25] | 0.7318 | 0.8914 | 0.1925 | 0.5678 | 0.9164 | 0.1877
RRWR [26] | 0.7106 | 0.8797 | 0.1967 | 0.6089 | 0.9163 | 0.1504
DCLC [28] | 0.7385 | 0.8913 | 0.1728 | 0.5994 | 0.9073 | 0.1097
SMD [29] | 0.7494 | 0.8863 | 0.1774 | 0.5760 | 0.9161 | 0.1229
DCL* [40] | 0.8345 | 0.9580 | 0.1056 | 0.5531 | 0.9448 | 0.0967
DSS* [43] | 0.8540 | 0.9404 | 0.0869 | 0.5972 | 0.9200 | 0.0783
SS [55] 0.6744 | 0.8453 | 0.2052 | 0.2567 | 0.7295 | 0.1716
ACSD [64] | 0.7788 | 0.9410 | 0.1806 | 0.4787 | 0.9226 | 0.1940
DCMC [70] | 0.8348 | 0.9551 | 0.1498 | 0.6169 | 0.9253 | 0.1009
DF* [60] 0.6844 | 0.8510 | 0.1945 | 0.4840 | 0.8654 | 0.1077
CCS [80] 0.6311 | 0.8242 | 0.2138 | 0.5383 | 0.8563 | 0.1210
SCS [78] 0.6724 | 0.8515 | 0.1966 | 0.5553 | 0.8797 | 0.1616
BC [90] - — — 0.8262 | 0.9746 | 0.0541
MCLP [91] | 0.8403 | 0.9550 | 0.1370 | 0.6365 | 0.9294 | 0.0979

completely suppress the backgrounds (e.g., the trees in the
third image) and lose some foreground details (e.g., the chair
legs in the fourth image).

The PR and ROC curves are shown in Fig. Eka)—(b). As
can be seen, on both two datasets, the deep learning based
RGB saliency detection methods (DSS [43] and DCL [40])
achieve the top two performances on the PR and ROC curves,
and the unsupervised RGBD saliency model (DCMC [70])
reaches the third precision on the ROC curve. Table
reports the quantitative measures of different saliency methods
on these two datasets, including the F-measure, AUC score,
and MAE score. The overall trend of quantitative compar-
isons is consistent with the visualization results, that is, the
performances of the unsupervised RGBD saliency models
(e.g., ACSD [64] and DCMC [[70]]) are significantly superior
to the unsupervised RGB saliency detection methods, with
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TABLE IX
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON UVSD AND
DAVIS DATASETS, WHERE “*” DENOTES THE DEEP LEARNING BASED
METHODS

UVSD Dataset DAVIS Dataset
Fg AUC MAE Fg AUC MAE
HS [21] 0.3258 | 0.7288 | 0.2727 | 0.4552 | 0.8170 | 0.2495
BSCA [25] 0.3059 | 0.8320 | 0.2227 | 0.4731 | 0.8602 | 0.1945
RRWR [26] | 0.3931 | 0.8152 | 0.1842 | 0.5138 | 0.8328 | 0.1678
DCLC [28] 0.3878 | 0.7899 | 0.1249 | 0.4812 | 0.8250 | 0.1337
SMD [29] 0.4521 | 0.8599 | 0.1347 | 0.5434 | 0.8774 | 0.1506
DCL* [40] 0.5759 | 0.9376 | 0.0593 | 0.7200 | 0.9647 | 0.0630
DSS* [43] 0.5967 | 0.9362 | 0.0480 | 0.7564 | 0.9576 | 0.0500
CCS [80] 0.3124 | 0.7303 | 0.1107 | 0.3485 | 0.7418 | 0.1506
SCS [78] — — - 0.2305 | 0.7166 | 0.2569
CVS [98] 0.5122 | 0.9052 | 0.1031 | 0.6251 | 0.9162 | 0.0995
SG [100] 0.4851 | 0.9310 | 0.1050 | 0.5600 | 0.9485 | 0.1027
STBP [102] | 0.4914 | 0.8443 | 0.0840 | 0.5859 | 0.8842 | 0.1016
SGSP [104] | 0.6016 | 0.9505 | 0.1585 | 0.6944 | 0.9504 | 0.1375
VECN* [108] — — - 0.7488 | 0.9637 | 0.0588

the maximum percentage gain of 18% on the NJUD dataset
in terms of the F-measure. Benefitting from the supervised
learning with a large number of labelled data, deep learn-
ing based image saliency detection methods (DCL [40] and
DSS [43]) yield the decent performance, even superior to
the RGBD saliency methods. For different RGBD saliency
detection methods, SS method [55] only focuses on some
straightforward domain knowledge from the depth map, thus
the performance is unsatisfactory. ACSD method [64] designs
a novel depth measure to fully capture the depth attributes,
and achieves appreciable performance. However, it does not
have the ability to distinguish different quality of depth map.
Introducing the depth confidence measure, DCMC method
[70] is more robust to the poor depth map, and achieves
more stable performance. For the deep learning based RGBD
saliency detection method (i.e., DF [60]), due to the lack of
labelled RGBD images, the performance is not satisfactory.

Image Saliency Detection vs Co-saliency Detection. We
evaluate four types of saliency detection methods on the
RGBD Cosall50 and RGBD Cosegl83 datasets, including
image saliency detection methods (HS [21], BSCA [25],
RRWR [26], DCLC [28]], SMD [29]], DCL [40], and DSS
[43]]), RGBD saliency detection methods (SS [S5], ACSD [64],
DCMC [70]], and DF [60]), co-saliency detection methods
(CCS [80] and SCS [78]), and RGBD co-saliency detection
methods (BC [90]] and MCLP [91]).

In Fig. [§[b), we present an image group with one common
salient object (i.e., black computer) and cluttered backgrounds.
From the figure, we can see that the image saliency detection
methods (i.e., BSCA [25] and DCL [40]) cannot achieve
better visual result with consistently highlighted salient objects
and effectively suppressed background regions. For example,
the desk with high luminance is wrongly detected by the
unsupervised BSCA method [25]], and the salient objects are
not effectively highlighted by the deep learning based DCL

TABLE X
COMPARISONS OF THE AVERAGE RUNNING TIME (SECONDS PER IMAGE)
ON THE RGBD COSAL150 DATASET

Method ‘ DCLC [28] ‘ SMD [29] ‘ DF [60] ‘ CCS [80] ‘ MCLP [o1]

Time ‘ 1.96 ‘ 7.49 ‘ 12.95 ‘ 2.65 ‘ 41.03

method [40] due to the complex and cluttered backgrounds.
By contrast, considering the inter-image corresponding rela-
tionship, some backgrounds (e.g., the desk) are effectively
suppressed by the RGB co-saliency detection method (e.g.,
SCS [78]]). Moreover, the performance of RGBD co-saliency
detection method with the depth constraint is superior to the
RGB co-saliency detection method. For example, the MCLP
method [91] achieves the best visual performance compared
with other methods in Fig. [§(b). The computer in each image
is highlighted more consistent and homogeneous, while the
backgrounds (e.g., the desk) and non-common objects (e.g.,
the yellow flashlight, red hat, and orange can) are effectively
eliminated. However, the flashlights with the same color as the
computer are mistakenly reserved. The main reason is that, the
low-level feature based method primarily focuses on capturing
the color appearances from the image, while ignoring the
high-level semantic attributes. The consistent conclusion can
be drawn from the quantitative results in Fig. [9fc)-(d) and
Table On the RGBD Coseg183 dataset, compared with
the deep learning based DCL method [40], RGB co-saliency
detection SCS method [78] achieves better performance in
terms of F-measure. Moreover, benefitting from the depth cue
and inter-image constraint, RGBD co-saliency models achieve
more competitive performances. For example, the percentage
gain of the BC method [90] reaches at least 33.9% in terms
of F-measure compared with others on the RGBD Cosegl83
dataset, which indirectly proves the importance role of these
information in co-saliency detection.

For evaluating the running time, we tested the typical
saliency detection methods, including single image saliency
(DCLC [28]] and SMD [29]), RGBD saliency (DF [60]]), co-
saliency (CCS [80]), and RGBD co-saliency (MCLP [91]),
on a Quad Core 3.7GHz workstation with 16GB RAM. The
codes are provided by the authors, which are implemented
by using MATLAB 2014a. The comparisons of the average
running time on the RGBD Cosall50 dataset are listed in
Table The single image saliency detection method only
considers the visual information from the individual image and
costs less running time. For example, DCLC method [28]] only
costs 1.96 seconds to process one image. As a deep learning
based RGBD saliency detection method, DF method [60]
takes 12.95 seconds for testing one image, which is relatively
slow. Co-saliency detection algorithm needs to build the global
corresponding constraint from the multiple images, thus it
generally requires more computation time, especially for the
matching based methods (such as MCLP [91]). Although
the matching based co-saliency detection algorithm may be
slower, it tends to achieve better performance. Moreover, the
computations can be further accelerated on GPUs using C++.
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Image Saliency Detection / Co-saliency Detection vs
Video Saliency Detection. We compare the video saliency de-
tection methods with image saliency detection and co-saliency
detection models on the UVSD and DAVIS datasets, and the
results are presented in Figs. [§}{9] and Table Video saliency
detection is a more challenging task due to the complex motion
patterns, cluttered backgrounds, and diversity spatiotemporal
features. Five video saliency detection methods, including four
unsupervised methods (CVS [98[], SG [100], STBP [102],
SGSP [[104])), and a deep learning based method (VFCN [108]])
are used for comparison.

From the qualitative examples show in Fig. [§[c), the un-
supervised image saliency detection methods cannot achieve
superior performances due to the lack of temporal and motion
constraints. For example, the background regions cannot be
effectively suppressed by the RRWR method [26], as shown
in the third column of Fig. [§[c). Although the co-saliency
detection model considers the inter-image relationship, it is
still insufficient to fully represent the continuous inter-frame
correspondence. Coupled with the lack of motion description,
the salient object in video is not vigorously highlighted by the
co-saliency model, such as the fifth column of Fig. [§|c). By
contrast, video saliency detection methods achieve more sat-
isfying performances both qualitatively and quantitatively. For
example, the moving woman is highlighted homogeneously
with clean background interference through the CVS method
[98]I.

From the quantitative results reported in Fig. Ofe)-(f) and
Table all the measurements of unsupervised video saliency
models are superior to the unsupervised image saliency and co-
saliency detection methods on these two datasets. For example,
on the DAVIS dataset, the maximum percentage gain reaches
52.5% in terms of F-measure. On the UVSD dataset, the F-
measure can be improved from 0.3059 to 0.6016, with the
percentage gain of 96.7%. Notably, the deep learning based
methods demonstrate excellent performance improvement, es-
pecially including the image saliency detection method (DCL
[40] and DSS [43]]). On the DAVIS dataset, the VFCN and
DSS methods are comparable in performance and superior to
the DCL method. Compared the visual examples of the DSS
and VFCN methods in Fig. [§[c), the DSS method obtains
more consistent salient regions, while the static object (i.e.,
the bench) is mistakenly reserved. By contrast, the bench
can be partially suppressed by the VFCN method due to the
introduction of motion cue and inter-frame continuity.

Summary. Taking the depth information as a supplementary
feature of color information is a heuristic and intuitive strategy
to achieve RGBD saliency detection. This type of method is
easy to implement, and the performance can be improved by a
reasonable saliency framework with depth cue. By contrast, the
depth measure based method often yields better performance,
because of it can further capture effective depth attributes from
the original depth map rather than only focusing on some low-
level statistical features. However, it is a tricky question, which
requires researchers to gain insight into the characteristics
of depth data, and to comprehensively explore the depth
attributes of salient objects. In addition, there is an interesting
phenomenon, the performance of deep learning based RGBD

saliency detection method did not exceed the unsupervised
methods due to the lack of annotated RGBD saliency training
data. Thus, the data augmentation and network designing need
to be further investigated for the deep learning based RGBD
saliency detection method.

Compared with image saliency detection, co-saliency detec-
tion is a more challenging task because the multiple images
need to be processed jointly. Therefore, the inter-image cor-
respondence is crucial to determine the common attribute of
salient objects and suppress the background regions. However,
the inaccurate inter-image correspondence, like noise, may
degenerate the detection performance, even not as good as
some image saliency detection methods. Combining the inter-
image constraint and depth cue, RGBD co-saliency detection
is achieved, where the depth cue is utilized as an additional
feature rather than a depth measure in most of the existing
methods. Benefitting from the introduction of depth cue and
inter-image constraint, the performance of RGBD co-saliency
detection model is obviously improved, and the percentage
gain reaches more than 30% as shown in Table At
present, the research on RGBD co-saliency detection is rela-
tively preliminary, and mainly focuses on unsupervised meth-
ods. Therefore, how to extract the depth and color features,
capture the inter-image constraint relationship, and guarantee
the consistency of salient regions are the research priorities of
co-saliency detection in the future.

Taking the video sequences as some independent images,
the image saliency detection models cannot obtain satisfying
performance due to ignoring the inter-frame constraint and
motion cue, especially the unsupervised methods. Considering
the correspondence relationship between frames, the perfor-
mance of co-saliency models are also disillusionary. There are
two main reasons, i.e., (1) The salient objects in video are
continuous in temporal axis and consistent among different
frames. Thus, the inter-image correspondence in image group
is not equal to the inter-frame constraint in video. (2) Motion
information is essential to distinguish the salient object from
the complex scene. Therefore, the temporal and motion cues
should be fully utilized to highlight the salient object and
suppress the backgrounds. Furthermore, the deep learning
based methods have demonstrated the great superiority in
performance. The continuous multiple frames or optical flow
are embedded in the symmetrical network (e.g., convolution-
deconvolution, encoder-decoder) to learn the spatiotemporal
information and completely recover the salient regions. Al-
though only a few of the deep learning based video saliency
detection methods are available, it also points out an effort
direction for future research.

D. Applications

We briefly introduce two intuitive and novel applications of
saliency detection, i.e., Region-of-Interest (ROI) extraction in
remote sensing image and primary object detection in video.
The first task aims at extracting the ROI regions in remote
sensing image, which is similar to the image saliency de-
tection. The second one focuses on consecutively discovering
the primary object in video, which is analogous to the video
saliency detection.
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ROI
Extraction

Binary
Mask

(b)

Fig. 10. Examples. (a) Some remote sensing images and the corresponding
saliency region masks. (b) Flowchart of ROI extraction in remote sensing
image.

ROI Extraction in Remote Sensing Image. With the
development of imaging devices and sensors, the acquisition
of high-resolution remote sensing image becomes more and
more convenient and accurate. Fig. [[0[a) shows some remote
sensing images and the corresponding saliency masks. As
visible, the remote sensing image is very similar to the con-
ventional color image, except that the remote sensing image
is mainly photographed from a high angle shot. Therefore,
there are many small targets in remote sensing images. ROI
extraction technique in remote sensing image has been applied
in a variety of perception tasks, such as object detection,
land cover classification, and object recognition. Generally,
the saliency attribute of the object is used in most of the
existing methods to constrain the ROI extraction in remote
sensing image [[122[]-[128]], and the general flowchart is shown
in Fig. [I0fb). However, due to complex imaging mechanisms
and different image characteristics, it is difficult to achieve
satisfactory performance by directly transplanting the tradi-
tional RGB image saliency detection method to remote sensing
image. There are two urgent issues that need to be addressed,
i.e., (1) Extract the unique expression of salient object in
remote sensing image. (2) Handle the small targets in remote
sensing image. At present, this task has a very broad space
for development.

Primary Object Detection in Video. Video sequence can
be divided into two components, i.e., primary objects and
background regions. Primary object segmentation in video
aims at obtaining the pixel-level result of the primary object,
while primary object discovery locates the primary object
through a bounding box, as shown in Fig. [[Tfa-b). Fig.
[[T(c) provides the flowchart of primary object detection in
video, which mainly contains saliency model construction and
primary object detection. In most of the existing methods, the
primary object is directly defined as the salient object in video

Saliency
Detection

Fig. 11. Examples of primary object detection in video. (a) Primary object
segmentation in video. (b) Primary object discovery in video. (c) Flowchart
of primary object detection in video.

[129]]-[[134]. In fact, there are several differences and connec-
tions between them. First, the primary object may not be the
most salient one in all frames. Secondly, inter-frame corre-
spondence works as an important temporal cue for highlighting
the primary object and suppressing distractors. Thirdly, some
commonly used visual priors in saliency detection may no
longer be valid in video due to camera and object motion, such
as background prior. Last but not least, primary object should
be consistently detected from a varying scene, whereas salient
object detection only considers the individual and fixed scene.
Therefore, it is insufficient to only consider the image saliency
attribute. The motion cue and global appearance should be
introduced jointly to constrain the initial result generation. In
the future, some machine learning techniques, such as deep
learning and reinforcement learning, can be incorporated into
the model to achieve superior performance.

E. Challenges and Problems

In the last decades, a plenty of saliency detection methods
have been proposed to obtain the remarkable progresses and
performance improvements. However, there still exist many
issues that are not well resolved and needed to be further
investigated in the future.

For RGBD saliency detection, how to capture the accu-
rate and effective depth representation to assist in saliency
detection is a challenge. Taking the depth information as an
additional feature to supplement color feature is an intuitive
and explicit way, but it ignores the potential attributes in the
depth map, such as shape and contour. By contrast, depth
measure based method aims at exploiting these implicit in-
formation to refine the saliency result. For example, the depth
shape can be used to highlight the salient object and suppress
the background, and the depth boundary can be utilized to
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refine the object boundary and obtain sharper saliency result.
In addition, the whole object usually has high consistency in
the depth map. Therefore, the depth information can be used
to improve the consistency and smoothness of the acquired
saliency map. Generally, depth measure based methods can
achieve a better performance. However, how to effectively
exploit the depth information to enhance the identification of
salient object has not yet reached a consensus. On the whole,
combining the explicit and implicit depth information to obtain
a more comprehensive depth representation is a meaningful
attempt for RGBD saliency detection.

For co-saliency detection, how to explore inter-image
correspondence among multiple images to constrain the
common properties of salient object is a challenge. Inter-
image corresponding relationship plays an essential role in
determining the common object from all the salient objects,
which can be formulated as a clustering process, a matching
process, a propagation process, or a learning process. How-
ever, these methods may either be noise-sensitive or time-
consuming. The accuracy of corresponding relationship is
directly related to the performance of the algorithm. Thus,
capturing the accurate inter-image correspondence is an ur-
gent problem to be addressed. At present, there have been
some attempts to detect co-salient object using deep learning
network. However, these methods often simply cascade the
features produced from the single image and re-learn, rather
than designing a specific inter-image network to learn the
effective inter-image correspondence.

For video saliency detection, how to combine more in-
formation and constraints, such as motion cue, inter-frame
correspondence, and spatiotemporal consistency, is a chal-
lenge. Motion cue plays more important role in discovering
the salient object from the clustered and complex scene. The
inter-frame correspondence represents the relationship among
different frames, which is used to capture the common attribute
of salient objects from the whole video. The spatiotemporal
consistency constrains the smoothness and homogeneity of
salient objects from the spatiotemporal domain. The main
contributions of the existing methods are often concentrated
in these three aspects. In addition, the video saliency detection
algorithm based on deep learning is still immature, and only
a few methods have been proposed, which is a relatively
underexplored area. However, it is a challenging task to learn
the comprehensive features including intra-frame, inter-frame,
and motion through a deep network under the limited training
samples.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have conducted a survey on visual saliency
detection with comprehensive information, including depth
cue for RGBD saliency detection, inter-image correspondence
for co-saliency detection, and temporal constraint for video
saliency detection. We have reviewed the recent progress of
saliency detection, analyzed the different types of saliency
detection algorithms, and conducted experimental comparisons
and analysis. It has been demonstrated that the performance
has been improved by introducing the comprehensive in-
formation in an appropriate way. For example, the depth

measure based method often yields better performance, be-
cause of it can further capture effective depth attributes from
the depth map. Combining the inter-image correspondence
and depth cue, RGBD co-saliency detection models achieve
better performance. Through a symmetrical structure (e.g.,
convolution-deconvolution, encoder-decoder) with continuous
multiple frames input, the deep learning based video saliency
detection methods learn the high-level spatiotemporal feature
and improve the efficiency.

In the future, some research directions and emphases of
saliency detection can be focused on, i.e., (1) New attempts in
learning based saliency detection methods, such as small sam-
ples training, weakly supervised learning, and cross-domain
learning. Limited by the labelled training data, more work,
such as designing a special network, can be explored in
the future to achieve high-precision detection with small
training samples. In addition, weakly supervised salient object
detection method is a good choice to address the insuffi-
cient pixel-level saliency annotations. Furthermore, the cross-
domain learning is another direction that needs to be addressed
for learning based RGBD saliency detection method. (2)
Extending the saliency detection task in different data sources,
such as light filed image, RGBD video, and remote sensing
image. In the light filed image, the focusness prior, multi-view
information, and depth cue should be considered jointly. For
the RGBD video data, the depth constraint should be intro-
duced to assist in the spatiotemporal saliency. In the remote
sensing image, due to the high angle shot photographed, some
small targets and shadows are included. Thus, how to suppress
the interference effectively and highlight the salient object
accurately should be further investigated in the future.
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