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Abstract—Metric learning has attracted significant attentions
in the past decades, for the appealing advances in various real-
world applications such as person re-identification and face
recognition. Traditional supervised metric learning attempts to
seek a discriminative metric, which could minimize the pairwise
distance of within-class data samples, while maximizing the
pairwise distance of data samples from various classes. However,
it is still a challenge to build a robust and discriminative metric,
especially for corrupted data in the real-world application. In
this paper, we propose a Robust Discriminative Metric Learning
algorithm (RDML) via fast low-rank representation and denois-
ing strategy. To be specific, the metric learning problem is guided
by a discriminative regularization by incorporating the pair-wise
or class-wise information. Moreover, low-rank basis learning is
jointly optimized with the metric to better uncover the global
data structure and remove noise. Furthermore, fast low-rank
representation is implemented to mitigate the computational
burden and make sure the scalability on large-scale datasets.
Finally, we evaluate our learned metric on several challenging
tasks, e.g., face recognition/verification, object recognition, and
image clustering. The experimental results verify the effectiveness
of the proposed algorithm by comparing to many metric learning
algorithms, even deep learning ones.

Index Terms—Metric Learning, Fast Low-rank Representa-
tion, Denoising Strategy.

I. INTRODUCTION

METRIC learning [1], [2] has been extensively discussed
and well developed in computer vision and machine

learning fields in the past decades. Existing metric learning
models could be generally split into two main categories:
unsupervised and supervised metric learning. Specifically,
unsupervised metric aims to build a low-dimensional space
to keep the geometrical structure within the data, whilst
supervised one is developed to learn a distance metric, which
maximizes the separability of data from various categories.

Z. M. Ding is with the Department of Computer, Information and Technol-
ogy, Indiana University-Purdue University Indianapolis, 420 University Blvd
Indianapolis, IN 46202, USA. E-mail: zd2@iu.edu

Ming Shao is with the Computer and Information Science, University of
Massachusetts Dartmouth, MA, 02747 USA. E-mail: mshao@umassd.edu

Wonjun Hwang is with Dept. of Software and Computer Engineering,
College of Information Technology, Ajou University, Korea. E-mail: wjh-
wang@ajou.ac.kr

Sungjoo Suh, Jae-Joon Han, Changkyu Choi are with Software Solu-
tion Lab., Samsung Advanced Institute of Technology, 130, Samsung-ro,
Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea. E-mail: {sungjoo.suh, jae-
joon.han, changkyu choi}@samsung.com.

Yun Fu is with the Department of Electrical and Computer Engineering and
the College of Computer and Information Science, Northeastern University,
Boston, MA, 02115 USA. E-mail: yunfu@ece.neu.edu.

Before After

Transformation

o Fast low-rank representation
oDenoising Metric Learning

��

�	��������

����
�
���
����

Fig. 1. Framework of our designed robust metric, where the data with
the same shape denote the same identity. Originally, data points are mixed
together. Then it can be observed that the scatter points from the within class
are pulled compacter and points from between classes are pushed far away
after metric learning. Our metric learning is robust to noisy samples due to
the denoising strategy.

When the training data have labels, supervised metric learning
algorithms are more powerful and suitable to build recognition
models. Generally, metric learning could be converted to seek
linear/non-linear mappings [3], [4], [5], [6], [7], [8], [9].
However, conventional metric learning usually fails to well
handle the noisy data and meanwhile preserves the global data
structure in real world. This is especially useful for recognition
tasks, where classifier can be easily fooled by the corrupted
feature. For example, lighting, shadows or occlusions on
the face images could prevent face recognition, or messy
background in object samples would hurt object recognition
performance.

To build discriminative features from corrupted data, many
robust feature extractors have been proposed, e.g., sparse
representation [10] and low-rank representation [11]. Among
them, low-rank representation (LRR) [11] is capable of recov-
ering the global structure within the data by removing the noise
samples. However, low-rank based algorithms suffer a heavy
computational burden due to the trace-norm optimization,
which requires a full SVD operation to solve the proximal
operator of the trace norm in each iteration. Hence, it is not
scalable to large-scale data analysis challenge. Most recently,
many fast implementations of LRR have been proposed to
make it scalable to larger benchmarks in reality. Divide-and-
conquer strategy is widely explored in low-rank optimization
to deal with large-scale issue [12], [13]. Furthermore, Xiao et
al. reformulated the conventional LRR model to factorize data
with a novel optimization problem [14].

Deep learning can build hierarchical structure to distill
knowledge from the data and deal with the noise. Most
recently, the idea of metric learning has been proposed to___________________________________________________________________
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build the deep structure with a metric loss at the top layer
[15], [7], [6], [9], [16], [17], [18], [19], e.g., contrastive loss,
and triplet loss. However, the downside is that deep metric
learning usually requires large-scale data for training. For
some tasks, e.g., person re-identification, large-scale datasets
are not common, and therefore, shallow models are still of
great use. Notably, shallow models over pre-trained deep
features from other large vision datasets work fairly well
in this case. On the other hand, some deep metric learning
works only focus on fully-connected layer. This motivates
us to explore the shallow metric learning together with other
discriminant features including the deep ones.

A. Our Contribution

Low-rank based models have provided promising perfor-
mance in different applications (e.g., subspace clustering,
image classification and transfer learning) through uncov-
ering the global structure within the data [11], [20], [21].
However, unlike traditional metric learning, they cannot take
full advantages of global structure within the data to seek a
discriminative metric. Secondly, conventional metric learning
approaches are very sensitive when dealing with the corrupted
data. Therefore, the obtained metric has weak generalization
ability. To that end, we propose a Robust Discriminative Metric
Learning (RDML) framework, which is insensitive to various
sources of noises for discriminative metric learning, as Fig. 1
shows. The key idea behind our method is to jointly seek a
robust and discriminative denoising metric in a fast fashion,
meanwhile preserving more discriminative knowledge. Finally,
we summarize our contributions in three folds:

• We design a robust discriminative metric learning frame-
work by simultaneously uncovering the global structure
within the data and constructing a compact clean basis.
Specifically, low-rank model could help detect and rule
out noises within the data under the learned distance
metric, where all the features are reconstructed by a
clean compact basis. In this way, we fulfill our denoising
discriminative metric.

• A fast low-rank model is designed to make our algorithm
scalable to large-scale data in real world. In this way,
the time-consuming SVD operator in solving the trace
norm would be relaxed to a fixed-rank matrix factoriza-
tion problem. This is particularly useful in supervised
learning, as we could approximately estimate the rank
of feature matrix ahead of model training. The solutions
would finally factorize the original matrix into the product
of two low-rank matrices.

• Extensive experiments on various applications, e.g., face
recognition, object recognition, image clustering and per-
son re-identification, have been conducted to systemically
evaluate our algorithm. Experimental results have vali-
dated the superiority of our metric.

The left sections of this paper are organized as follows. In
section II, we briefly discuss related works. Then, we provide
the proposed robust discriminative metric learning, optimized
solutions and complexity/convergence analysis in Section III.

Experimental evaluations are reported in Section IV, following
by our conclusion in Section V.

II. RELATED WORK

In this part, we briefly introduce two lines of works related
to our algorithm: metric learning and fast low-rank represen-
tation.

A. Metric Learning

Metric learning [2], [1] becomes appealing in the fields
of computer vision and machine learning for decades. It is
designed to build a discriminative metric to boost the perfor-
mance of learning algorithms. Lots of metric learning models
attempt to build a Mahalanobis-like distance metric M (Mis
positive semi-definite), which could be further decomposed
into two smaller matrices, i.e., M = PP>.

Following this, there are many metric learning algorithms
proposed recently in different applications, e.g., kinship ver-
ification [22], [6], [23], co-saliency detection [24], image-
set classification [25], face verification [9], [16], person re-
identification [26], and multi-view learning [27]. Specifically,
Xing et al. designed to reduce the distances of similar data
pairs whilst maximizing those of different data pairs [28].
Later on, Ding et al. proposed a transfer metric to improve the
recognition of unlabeled target data with the help of labeled
source data lying different distributions [29]. Notably, a few
works recently incorporated a regularizer (e.g., group sparsity
or low-rankness) to guide the metric learning, and therefore,
most of non-informative features could be removed [30], [31].
For example, Liu et al. presented a rank-constrained metric
framework by using a bilinear matrix factorization, which is
applicable to high-dimensional data domains [32].

Most recently, deep metric learning has been paid great at-
tentions. The primary idea of deep metric learning is designing
different loss functions by exploring the positive and negative
information at certain layers of the deep architecture [25], [33],
[9], [16], [34], [6], [9], [33]. Along this line, Bromley et al.
explored the idea of deep learning and proposed a Siamese
metric model for signature verification [35]. Schroff et al.
developed FaceNet by using triplet embedding to learn low-
dimensional representations for face recognition [15]. Cheng
et al. proposed a novel duplex metric learning with two
progressive metrics, which was not only explored to seek
effective features but also well explored to build a generic
classifier [25]. Song et al. designed deep metric learning
framework based on structured loss functions, and therefore,
such methods could capture the global structure within the
data [36], [17]. Later, Duan et al. presented to seek multiple
fine-grained localized metrics based on K local subspaces [9],
which targets at capturing the global structure within the data
and build various metric models per local patch.

B. Fast Low-rank Representation

Low-rank representation (LRR) [11] attempts to capture the
global structure within the data. Specifically, LRR aims to
learn a new representation amongst all samples constrained by
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a very low rank. As a result, LRR generates a block structural
representation coefficient matrix, which discovers the multiple
subspace structures within the samples. However, low-rank
based algorithms suffer a heavy computational burden due
to the trace-norm optimization, which requires a full SVD
operation to address the proximal operator of the trace norm
per iteration. That is, for a matrix D ∈ Rd×n, the time
complexity of SVD would be O(min(n2d, d2n)). Hence, the
repeated full SVD operations in optimization are computation-
ally expensive, which makes low-rank methods scale poorly
in real-world large-scale applications.

There are two strategies to handle the heavy computational
cost of trace-norm for large-scale data: one is devide-and-
conquer strategy; the other is replacing trace-norm with other
constraint to speed up the solutions. Along the first line,
Xiao et al. fasten the low-rank learning by proposing a novel
optimization objective with factorized data [14]. Divide-and-
Conquer strategy is also proposed to decompose large-scale
data into small ones [12], [13]. Along the second line, Kim
et al. developed a low-rank matrix factorization approach with
an elastic-net regularization [37]. For our proposed work, we
explore the idea of bi-linear matrix factorization to speed up
the low-rank metric learning.

Differently, we design a robust metric learning algorithm,
which attempts to jointly capture the global structure within
data via low-rank recovery and discriminative local knowl-
edge through pair-wise positive/negative side information. This
work is the journal extension of our prior conference version
[38], whose key differences lie in two folds. First, the low-rank
model could help detect and rule out noises within the data
under the learned distance metric, where all the features are
reconstructed by a clean compact basis. In this way, we fulfill
our denoising discriminative metric. Second, a fast low-rank
model is designed to make our algorithm scalable to large-
scale data in real world. In this way, the time-consuming SVD
operator in solving the trace norm would be relaxed to a fixed-
rank matrix factorization problem. This is particularly useful
in supervised learning, as we could approximately estimate the
rank of feature matrix ahead of model training. The solutions
would finally factorize the original matrix into the product of
two low-rank matrices.

III. THE PROPOSED ALGORITHM

In this part, we develop a robust discriminative metric
through fast low-rank representation and denoising strategy.

A. Discriminative Metric Learning
Given a training dataset with n labeled samples {X,Y } =
{(x1, y1), (x2, y2), · · · , (xn, yn)}, in which xi ∈ Rd is the i-
th data point with its label yi. Conventional supervised metric
models [28], [4], [39] were designed to seek a distance metric
M in order to keep the intra-class data compact while making
inter-class data discriminative enough. Generally, the objective
loss function can be formulated in the following:

min
M

∑
(xi,xj)∈S

‖xi − xj‖2M

s.t. M∈ Sd+,
∑

(xi,xj)∈D
‖xi − xj‖2M ≥ 1,

(1)
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Fig. 2. Illustration of robust discriminative metric learning, in which each
sample x is reconstructed using the metric M to x̌ = Mx. We notice that
the metric serves as encoding (P ) and decoding (P>) in one step. The loss
function d− x̌ attempts to reduce the reconstruct error and make our metric
denoise the data to a clean low-rank basis D = {di}n1 . Simultaneously,
discriminative term enforces pair-wise constraint into the hidden layer.

in which ‖xi − xj‖M denotes
√

(xi − xj)>M(xi − xj). S
and D mean the within-class pair sets and between-class pair
sets, respectively.

Therefore, Eq. (1) could be transformed to:

M = arg min
M∈Sd+

tr(XLSX>M)

tr(XLDX>M)

= arg min
M∈Sd+

tr(XLSX>(XLDX>)†M)

= arg min
M∈Sd+

tr(AM)

(2)

in which tr(·) represents the trace of a matrix. LS and LD
denote two Laplacian matrices of S and D. † is pseudo-inverse
operator of a matrix. We transform the trace ratio problem into
a ratio-trace problem and A = XLSX>(XLDX>)†.

B. Denoising Metric Learning

In general,M∈ Rd×d could be factorized intoM = PP>,
in which P ∈ Rd×p and p ≤ d is the rank of metric matrix.
Therefore, we could further reformulate ‖xi−xj‖M as ‖xi−
xj‖M = ‖P>(xi − xj)‖2. Following the idea of principle
component analysis (PCA), we could also formulate the metric
reconstruction into a PCA-like fashion as follows:

Ωd = ‖X − PP>X‖2F = ‖X −MX‖2F, (3)

where ‖ · ‖F means Frobenius norm of the matrix.
Inspired by denoising fashion, e.g., Denoising Auto-Encoder

(DAE) [40], [41] or its marginalized variants (mDAE) [42],
[43], [44], we attempt to generate a noise-free metric M.
Hence, we proposed a denoising metric learning framework
by jointly seeking a low-rank basis as the target to constrain
the reconstructed data as follows:

Ωd = rank(D) + λ‖MX −D‖2F, (4)

where we could notice that our metric would reconstruct the
real-world data to be as similar as possible to a low-rank basis.
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rank(·) is the rank operator of a matrix and λ is the balanced
parameter.
Remark: The proposed denoising metric is much different from
mDAE [42] and DAE [40], since our metric could be converted
to seek a denoising transformation P (M = PP>). On one
hand, we can illustrate our denoising metric learning as an
auto-encoder format (Fig. 2). P>X could be viewed as the
hidden-layer representation (encoding), and MX = PP>X
could be viewed as the reconstruction of original input X
(decoding). On the other hand, mDAE only seeks a linear
rotation to transform the intentionally corrupted data to its
original one. Hence, such rotation cannot capture the structure
information in the feature space. Furthermore, we assume the
real-world data already contain different kinds of noise, e.g.,
illumination and corruption, which always happens in image
representation scenario.

C. Overall Objective Function

To sum up, we formulate our robust discriminative metric
objective function by integrating denoising metric and discrim-
inative metric together as follows:

min
M∈Sd+,D

rank(D) + λ‖MX −D‖2F + αtr(AM), (5)

in which α is the trade-off parameter. With (5), we are
able to build a robust and discriminative metric for better
image representation, which not only captures the intrinsic
structure knowledge in sample space, but also builds more
robust knowledge in feature space.

However, rank minimization in Eq. (5) is an NP-hard issue.
Along the literature, there exist many solutions to fight off the
rank minimization challenge [11]. To this end, we convert Eq.
(5) into the equivalent problem:

min
M∈Sd+,D

‖D‖∗ + λ‖MX −D‖2F + αtr(AM) (6)

in which ‖·‖∗ denotes the nuclear norm of a matrix. In general,
Eq. (6) suffers a heavy computational burden when dealing
with large-scale data [11], since SVD is employed to address
the nuclear-norm based objective function at each iteration.
Then, low-rank minimization problem could be transformed
to a fixed rank problem and we could transform Eq. (6) into
an equivalent formulation:

min
M∈Sd+,D,U,V

1

2
(‖U‖2F + ‖V ‖2F) + λ‖MX −D‖2F

+αtr(AM), s.t. D = UV.

(7)

To sum up, the newly proposed model above fulfills our
purpose of fast low-rank representation in denoising data
reconstruction scheme for robust metric learning. Specifically
the time consuming nuclear norm ‖D‖∗ has been replaced
by the sum of two Frobenius norms: ‖U‖2F + ‖V ‖2F, with
an additional constraint D = UV . The internal dimension r
gives rise to a fixed-rank decomposition scheme, and therefore
avoids the time-consuming trace-norm.
Remark: Our goal is to seek a denoising metric by borrowing
the idea of denosing auto-encoder. In real-world applications,

data are usually contaminated and finding discriminative fea-
tures is challenging. This is true even for deep features. In
our framework, to simulate the denoising process, the learned
metric should be able to transform the original feature to a low-
rank basis. In supervised learning cases, we know the class
number for the data, which could be set as the rank of D,
while for unsupervised learning, we would have a preferred
rank number.

D. Solution Optimization

To address the minimization problem of Eq. (7), we first
transform it to the equivalent optimization issue by applying
the augmented Lagrangian function:

L =
1

2
(‖U‖2F + ‖V ‖2F) + λ‖MX −D‖2F + αtr(AM)

+〈Υ, Z − UV 〉+
µ

2
‖D − UV ‖2F, (8)

in which Υ is the Lagrange multiplier while µ is a small
positive penalty parameter. Moreover, we obtain the optimiza-
tion result using an iterative strategy, since we cannot jointly
optimize all the variable together. Before that, we convert the
optimization issue of Eq. (8) to two sub-problems: the first one
is to optimize M by treating D,U, V as constant; the second
one is updating the D,U, V by fixing the metric as constant.
Learning Robust Representation: First of all, we fix metric
M to optimize the low-rank basis variables D,U, V in a leave-
one-out fashion. Let’s denote the variables at t-th iteration as
Dt, Ut, Vt. Hence, the updating to each variable at (t+1)-th
iteration could be obtained as:
Updating D:

Dt+1 = arg min
D

λ‖MtX −D‖2F +
µ

2
‖D − UtVt +

Υt

µ
‖2F,

(9)
which has a closed-form solution as:

Dt+1 = (2λMtX + µUtVt −Υt)/(2λ+ µ). (10)

Updating U :

Ut+1 = arg min
U

1

2
‖U‖2F + 〈Υt, Dt+1 − UVt〉

+
µ

2
‖Dt+1 − UVt‖2F,

(11)

which has a closed-form solution as:

Ut+1 = (µDt+1V
>
t + ΥtV

>
t )(Ir + µV >t Vt)

−1. (12)

Updating V :

Vt+1 = arg min
V

1

2
‖V ‖2F + 〈Υt, Dt+1 − Ut+1V 〉

+
µ

2
‖Dt+1 − Ut+1V ‖2F,

(13)

which has a closed-form solution as:

Vt+1 = (Ir + µU>t+1Ut+1)−1(µU>t+1Dt+1 − U>t+1Υt). (14)

Robust Discriminative Metric Learning: With positive semi-
definite constraint, we are not easy to directly update the
metric M with D fixed. Thus, we define h(M) = λ‖MX −
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Algorithm 1 Solving Eq. (8)
Input: X,λ, α
Initialize: D0 = U0 = V0 = Υ0 = 0, µ0 = 10−6

ρ = 1.1,maxµ = 106, ε = 10−6, η = 10−2.

while not converged do
1. Update Dt+1 with others fixed through Eq. (10).
2. Update Ut+1 with others fixed through Eq. (12).
3. Update Vt+1 with others fixed through Eq. (14).
4. Update Mt+1 with others fixed through Eq. (15).
5. Update Υt+1 through Υt+1 = Υt + µt(MtX −Dt+1);
6. Update the µt+1 through µt+1 = min(ρµt,maxµ)

7. Check the convergence
‖Dt+1 − Ut+1Vt+1‖∞ < ε.

8. t = t+ 1.
end while
output: M, D, U, V .

D‖2F +αtr(AM). Next, we explore a linear approximation to
h(M) to address the optimization by following [32]. Define
Mt is the result at t-th iteration, then Mt+1 is achieved at
(t+1)-th iteration as:
Updating M:

Mt+1 = arg min
M∈Sd+

h(M)

= arg min
M∈Sd+

1
2η‖M−Mt‖2F + h(Mt)

+ 〈∇Mh(M)|M=Mt
,M−Mt〉

= arg min
M∈Sd+

1
2η‖M− (Mt − ηHt)‖2F

= PSd+(Mt − ηHt),

(15)

in which Ht = ∇Mh(M)|M=Mt = λ(2MtXX
>−DtX

>−
D>t X) +αA and η > 0 denotes the step size, which is set as
0.01 in our experiments. Moreover, PSd+(·) means the projec-
tion operator to Sd+. That is to say, PSd+(K) can be formulated

as
∑d
i=1[γi]+kik

>
i for a symmetric matrix K ∈ Rd×d, where

{ki, γi}|di=1 mean the eigenvector-eigenvalue pairs.
Algorithm 1 lists the detailed steps of the optimization to

our model. To be specific, the parameters µ0, ρ, ε, η and maxµ
are set empirically, while other parameters λ, and α need to
be tuned using cross-validation during the experiments. To
achieve a fast convergence in optimization, we initialize M
using Eq. (2). For other variables, e.g., D,U, V,Υ, we initialize
with zero matrices for simplicity. In experiments, we observed
that their initial values do not affect the convergence much.

E. Complexity Analysis

In this part, we would present time complexity analysis of
our proposed method.

The major time-consuming components are matrix multipli-
cation and inverse in Step 1, 2, 3, and SVD-projection in Step
4. Specifically, step 1 would take about O(d2n) for D ∈ Rd×n
(Generally, the feature dimensionality d is smaller than the
sample size n). Step 2 takes about O(d2r) while Step 3 would
take about O(n2r). Step 4 takes O(d3) when mappingM onto
Sd+ via SVD-based projection. When d is large, it is very time
consuming to updateM. Fortunately, we could explore recent
advances in efficient metric learning, e.g., incremental SVD

Fig. 3. Samples of COIL-100 dataset, where the first row is the original
images whilst the second row is the 10% corrupted images.

TABLE I
RECOGNITION RESULTS (%) OF 7 ALGORITHMS ON COIL-100 IN

DIFFERENT EVALUATION SIZES, FROM 20 TO 100 OBJECTS.

Methods 20 40 60 80 100 Average
DML-eig [46] 86.62 82.98 79.25 78.93 76.37 80.83

ITML [47] 87.12 83.32 80.18 79.65 78.45 81.74
SILD [4] 85.54 82.88 78.74 76.34 72.32 79.16

Sub-SML [39] 90.38 89.49 84.68 84.12 82.92 86.32
SRRS [20] 92.03 92.51 90.82 88.75 85.12 89.85
DLML [38] 91.83 91.91 90.95 88.98 85.83 89.90

Ours 93.14 93.16 92.16 90.49 87.48 91.29

[45] to save the optimization time. LetM be a rank-p matrix.
Ht can be decomposed to AtA

>
t , where At ∈ Rd×q . Then,

the Eigen-decomposition of Mt − ηHt can be calculated in
O(d(p+ q)2 + (p+ q)3), which is almost linear to d.

IV. EXPERIMENTAL RESULTS

In this part, we evaluate our presented algorithm from
different image representation tasks by comparing with other
state-of-the-art metrics. In this end, we analyze some proper-
ties including parameter influence, optimization stability, and
model convergence.

A. Object Classification

The COIL-100 dataset1 is composed of 100 different objects
with different illuminations under 72 different views, which
are captured 5 degree apart. We first convert the images to
gray-scale and resize them to 32 × 32. We also evaluate the
robustness of different methods to noisy data, where we add
10% random corruption to the original images in pixel level
by replacing original values with 0 (Fig. 3). The pixel value
is directly adopted as the feature input. We randomly choose
10 samples per object for training, while the rest for testing.
We do 20 trials to calculate the average recognition rates.
Additionally, we conduct scalability evaluations, by tuning the
size of objects.

In the experiments, we compare our proposed model with
DML-eig [46], ITML [47], SILD [4], Sub-SML [39], SRRS
[20], DLML [38]. The comparison results are provided in
TABLE I for original data and Table II for 10% corrupted data.
We observe that our algorithm outperforms the competitive
methods in the original data. Furthermore, in the corrupted
data situations, our algorithm could outperform other algo-
rithms with a large margin, which further demonstrates the
superiority of our proposed algorithm.

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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TABLE II
RECOGNITION RESULTS (%) OF 7 ALGORITHMS ON 10% CORRUPTED

COIL-100 IN DIFFERENT EVALUATION SIZES, FROM 20 TO 100 OBJECTS.

Methods 20 40 60 80 100 Average
DML-eig [46] 58.76 48.89 43.42 39.13 37.79 45.60

ITML [47] 66.35 65.78 62.92 59.98 54.24 68.85
SILD [4] 48.34 46.24 44.68 40.68 38.12 43.61

Sub-SML [39] 73.43 72.23 70.56 68.20 65.18 69.92
SRRS [20] 86.45 82.03 82.05 79.83 74.95 81.06
DLML [38] 82.52 79.54 71.15 54.68 39.69 65.58

Ours 87.42 87.12 86.12 84.84 83.26 85.75

TABLE III
RECOGNITION RESULTS (%) OF 7 ALGORITHMS ON CMU-PIE IN

DIFFERENT TRAINING SIZES, FROM 10 TO 60 SAMPLES PER SUBJECT.

Methods 10 20 30 40 50 60
DML-eig [46] 58.24 68.65 74.28 80.64 84.72 88.24

ITML [47] 65.60 70.46 84.84 87.72 90.74 91.92
SILD [48] 69.62 79.54 88.12 91.24 92.92 93.76

Sub-SML [39] 69.70 79.62 89.72 92.13 93.04 93.82
SRRS [20] 70.38 80.17 89.24 92.38 93.86 94.78
DLML [38] 71.15 82.52 90.26 92.85 94.12 94.93

Ours 75.72 85.24 92.16 95.43 96.26 96.84

Besides, we could observe that our conference version
DLML [38] could achieve competitive performance in the
original data; however, its performance degrades significantly
in the corrupted data. That demonstrates our statement that the
pre-learned low-dimensional features would introduce noises
into the low-rank constraint and in turn contaminate the metric.
Our proposed model could well handle this problem, since we
optimize a clean and compact basis in our algorithm instead of
low-dimensional pre-learned features. In this way, our current
version can still achieve very good results in the corrupted
data and beat competitive methods.

B. Face Recognition

1) CMU-PIE Face Dataset: is composed of 68 subjects
and each individual in CMU-PIE has 21 kinds of illumination
variations with environmental illuminations changing. We pick
up five pose images (C05, C07, C09, C27, C29) with large
variance for each subject for evaluations. We cropped the
images and resized into 32 × 32, and then we used the raw
feature as the input. In this dataset, we compare with DML-
eig [46], ITML [47], SILD [4], Sub-SML [39], SRRS [20],
DLML [38]. Faces under five poses are combined together
first, and then we randomly select l(l = 10, 20, 30, 40, 50, 60)
samples per subject for training while the rest samples are
adopted as the testing data. We do 50 random trials. The
nearest neighbor classifier (NNC) is adopted to evaluate all
the algorithms. Table III reports the recognition performance
of 7 different algorithms.

From Table III, we observe that our model can consistently
perform better than other baselines. For face recognition, pose
variations can be treated one kind of real-world noises. Our
experimental results show that our model could handle such
pose variation well.

Fig. 4. Samples of face images from LFW, where a column denotes one pair.

TABLE IV
COMPARISON RESULTS (%) ON LFW DATASET IN THE IMAGE

RESTRICTED SETTING WITH LBP-LD AND LBP-HD FEATURES.

Methods LBP-LD LBP-HD
Xing [28] 74.64±0.45 80.82±0.38

DML-eig [46] 82.28±0.41 87.94±0.55
SILD [4] 80.07±1.35 86.04±1.45

ITML [47] 79.98±0.39 85.94±0.25
LDML [49] 80.65±0.47 86.64±0.75

KISSME [50] 83.37±0.52 88.92±0.61
Sub-SML [39] 85.47±0.55 91.02±0.62

DDML [6] - 92.62±0.35
SvDML [27] 85.70±0.41 91.22±0.45
DLML [38] 85.35±0.51 91.15±0.59

Ours 86.56±0.48 92.38±0.54

C. Face Verification

In this part, we aim to testify our robust discriminative
metric on large-scale data. As we know, Labeled Faces in
the Wild (LFW) is one of the most challenging real-world
facial datasets including over 13000 face images from 5749
individuals (Fig. 4). LFW is collected online and the face
samples have large variations in expression, illumination, age
and other factors [51]. We adopt the standard protocol using
“view 2” that contains 3000 positive pairs and 3000 negative
pairs. The samples will be further averagely divided into 10
folds, and 9 folds would be used to train the model while the
left fold is used to evaluate. We adopt the restricted scenario,
where only similar/dissimilar pairs are accessible while the
identities of samples are unavailable.

In these experiments, we compare our algorithm with sev-
eral shallow metric learning approaches, e.g., Xing [28], SILD
[4], DML-eig [46], ITML [47], LDML [49], KISSME [50],
DLML [38] and two deep metric methods, i.e., DDML [6] and
SvDML [27]. Specifically, we adopt the image restricted set-
ting of LFW and use two different types of LBP features [52]:
one is low-dimensional LBP (LBP-LD) with 5900 dimensions
and the other is high-dimensional LBP (LBP-HD) with 127440
dimensions2.

The results are reported in Table IV, where we could
notice that our method outperforms other competitive meth-
ods in both LBP-LD and LBP-HD features. Compared with
DDML, we can achieve comparable performance over LBP-
HD features. Since most of the individuals have a small
number of samples, it is hard for low-rank representation to
uncover the global structures. Therefore, our algorithm only
slightly improves the verification performance compared to
other competitors.

2http://home.ustc.edu.cn/∼chendong/
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(a) KinFaceW I (b) KinFaceW II
Fig. 5. Samples from KinFaceW-I (a) and KinFaceW-II (b) datasets. Four
relationships, i.e., F-S, F-D, M-S and M-D are provided from top to bottom.

TABLE V
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON

DIFFERENT SUBSETS OF THE KINFACEW-I DATA SET

Features Methods F-S F-D M-S M-D Avg.

LBP

CSML [53] 63.7 61.2 55.4 62.4 60.7
LMNN [54] 62.7 63.2 57.4 63.4 61.7
NRML [22] 64.7 65.2 59.4 65.4 63.7
DSML [6] 70.8 67.2 72.5 74.0 71.1
DDML [6] 78.4 71.9 75.8 75.8 75.5

Ours 76.2 70.4 75.8 76.2 74.7

DSIFT

CSML [53] 66.5 60.0 60.0 56.4 59.8
LMNN [54] 69.5 63.0 63.0 59.4 62.8
NRML [22] 70.5 64.0 64.0 60.4 63.8
DSML [6] 70.0 70.9 73.9 78.1 73.2
DDML [6] 78.0 75.9 76.5 83.3 78.4

Ours 76.2 74.2 76.9 82.2 77.3

D. Kinship Verification

KinFaceW-I/II3[22] are two widely-used kinship datasets
collected publicly (Fig. 5). For each image per dataset, a
corresponding parent or child image is also provided. In total,
there exist four different kin relationships, i.e., mother-son
(M-S), father-son (F-S), mother-daughter (M-D) and father-
daughter (F-D). KinFaceW-I contains 156, 134, 116, and
127 pairs of kinship samples for four relationships. While
KinFaceW-II provides 250 pairs of kinship samples. For two
benchmarks, any aligned 64×64 sample is used for feature
extraction and two kinds of features are extracted, i.e., LBP
feature vector with 3776 dims, and Dense SIFT (DSIFT)
feature vector with 6272 dims. Similar to [22], we explore
5-fold cross validation using the image restricted setting. The
average verification results are reported in Tables V and VI.

From the results, we observe that our model achieves better
performance over several shallow metric learning approaches,
and obtain very close verification results to deep metric
learning algorithm, i.e., DDML.

E. Image Clustering

The CUB-200-2011 dataset4 consists of 200 bird categories
with 11,788 image samples in total. We adopt the first 100
birds for training (5,864 samples) while the remaining birds
to do evaluation (5,924 samples). As we know, birds are

3http://www.kinfacew.com/datasets.html
4http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

TABLE VI
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON

DIFFERENT SUBSETS OF THE KINFACEW-II DATA SET

Features Methods F-S F-D M-S M-D Avg.

LBP

CSML [53] 66.0 65.5 64.8 65.0 65.3
LMNN [54] 68.0 68.5 68.8 67.0 68.2
NRML [22] 69.0 69.5 69.8 69.0 69.5
DSML [6] 72.4 64.3 67.6 71.2 68.9
DDML [6] 81.4 73.8 78.1 77.2 77.6

Ours 77.6 69.2 75.4 76.3 74.6

DSIFT

CSML [53] 62.0 58.9 56.8 57.4 58.8
LMNN [54] 65.0 57.9 58.8 59.4 60.4
NRML [22] 68.9 60.9 60.8 61.4 62.8
DSML [6] 75.6 63.8 70.0 74.7 71.0
DDML [6] 82.5 75.7 79.1 79.2 79.1

Ours 79.3 72.3 77.4 78.3 76.8

TABLE VII
RETRIEVAL AND CLUSTERING PERFORMANCE ON THE CUB200 DATASET.

Methods R@1 R@2 R@4 R@8 NMI
FaceNet [15] 42.59 55.03 66.44 77.23 55.38

Lifted Struct [18] 43.57 56.55 68.59 79.63 56.50
Npairs [36] 45.37 58.41 69.51 79.49 57.24

Facility Location [17] 48.18 61.44 71.83 81.92 59.23
Proxy NCA [19] 49.21 61.90 67.90 72.40 59.53
GoogLeNet+Ours 49.68 62.46 73.25 80.32 60.78

notoriously challenging to recognize, as the intra-class vari-
ation is quite siginificant when compared to the inter-class
variation. Specifically, we compare with several deep metric
learning methods, e.g., FaceNet [15], Lifted Struct [18], Npairs
[36] and Proxy NCA [19]. For fair comparisons, we adopt
pool5 activation features with GoogLeNet [55] pre-trained on
ImageNet as the input features for metric learning.

Table VII lists the performance of the quantitative compar-
ison between our approach and other algorithms. We utilize
NMI score to measure the clustering result, also Recall@K
metric. From the results, we notice that our RDML can achieve
better results over the state of the art in most cases. That is to
say, based on deep features, shallow structure metric learning
could further improve the performance. More importantly, we
could adopt our proposed metric learning as the loss function
at the top layer of deep structure, thus, we could integrate our
metric learning into deep architecture to formulate a unified
framework.

F. Person Re-identification

Viewpoint Invariant Pedestrian Recognition (VIPer) [56]
includes 632 sample pairs of pedestrian collected from two
camera views in the wild. The benchmark shows large view-
point variations and relatively low resolution, and therefore
it is much challenging for person re-identification. Following
the standard single-shot protocol, i.e., one sample per person
per view, the dataset could be randomly split into training and
test sets, each with 316 image pairs. The performances for
all evaluations were achieved by averaging over 10 splits. We
adopted the local maximal occurrence (LOMO) representation
to illustrate each sample.

We mainly compare with metric learning based methods,
ITML [47], LFDA [57], PCCA [58] and XQDA [59]. Tables
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Fig. 6. Some examples from the viewpoint invariant pedestrian recognition
(VIPeR) dataset. Each column is one of 632 same-person example pairs.

TABLE VIII
TOP RANKED MATCHING RATE (%) ON THE VIPER DATASET IN SAME

RESOLUTION.

Methods k = 1 k = 5 k = 10 k = 20

LFDA [57] 32.30 65.80 79.70 90.90
ITML [47] 24.64 35.93 48.76 60.08
PCCA [58] 19.27 48.89 64.91 80.28
XQDA [59] 40.00 68.13 80.51 91.08

Ours 42.25 70.58 87.32 94.20

TABLE IX
TOP RANKED MATCHING RATE (%) ON THE VIPER DATASET IN

DIFFERENT RESOLUTIONS.

Methods k = 1 k = 5 k = 10 k = 20

LFDA [57] 9.57 28.80 43.33 60.94
ITML [47] 8.92 26.32 34.26 46.26
PCCA [58] 8.55 27.39 41.17 58.68
XQDA [59] 23.26 53.86 70.03 84.68

Ours 27.12 59.34 74.26 87.42

VIII and IX show the top 1, 5, 10, and 20 matching rates
of our proposed approach, and other baselines on the VIPeR
benchmark. Here we do two experiments by using the original
images (Table VIII) and down-sampling images from one view
to the rate 1/8 (Table IX). The second experiment further
differentiates two views of images. We can see that our
proposed model outperforms all the other algorithms for all
the ranks, most cases with margins.

G. Property Analysis

In this part, we mainly evaluate some properties of our
proposed model, e.g., convergence, parameter, robustness to
noise and computational cost.

1) Convergence Analysis: First, we empirically analyze the
convergence of our proposed approach during optimization.
To be specific, we evaluate on CMU-PIE face dataset with 40
training images per individual. Fig. 7 reports he convergence
curve along with the recognition results in different iterations.

From Figure 7, we notice our proposed model converges
generally after about 100 iterations. Also, the recognition
performance reaches the peak after about 200 iterations while
remains there afterwards. Note that different scales of eval-
uation datasets need various iterations to converge. Usually,
large-scale datasets need more iterations compared to the small
ones.
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Fig. 7. Convergence curve (blue) and recognition curve (red) of our approach
on CMU-PIE face dataset with 40 training samples per subject. We report the
results in 1000 iterations with λ = 10−2, α = 102.
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Fig. 8. Recognition rates on COIL database with different levels of noise.

2) Robustness Evaluation: Secondly, we testify the in-
fluence of different noise levels by comparing with other
algorithms. To be specific, we adopt 0%, 5%, 10%, 20%,
30%, and 50% corruptions under the 20-objects COIL task.
Fig. 8 lists the robustness results, in which we notice that our
approach consistently works better than others. It indicates
that our proposed model is very robust to noise, especially
heavy noise, which makes our approach applicable to real-
world scenarios.

3) Parameter Analysis: Thirdly, we aim to evaluate two
parameters λ and α. To be specific, we jointly analyze two
parameters on CMU-PIE benchmark under 40 training images
per person. The impacts of parameters on performance are
reported in Fig. 9, where we notice that larger α would lead
to better results, which indicates the fact that the term tr(AM)
plays an important role in our discriminative metric learning.
Moreover, we also observe that λ influences a little to the final
performance. That means, in this minimization problem (Eq.
6), compared to the term ‖MX−D‖2F, we will need to punish
more on the trace norm. This can be observed from the Fig.
9, too, and we also tune our model parameters {α, λ} in this
way.

On the other hand, when removing the third term in Eq.
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6, we find that the overall performance is compromised. That
means the third term helps a lot. Therefore, we generally set
α = 102, λ = 10−2 as default in our experiments.

4) Computational Cost: We calculate the computational
costs of our conference work [38] and this current work. We
run experiments on three datasets ranged from small- to large-
scale in 20 iterations to calculate the training time. Specifically,
we evaluate on F-D from KinFaceW-I (LBP feature), CMU-
PIE (60 training samples per subject), and LFW. We evaluate
on Matlab 2017b with Intel i7-3770 CPU and 64GB memory.
Fig. 10 shows the training time (in second). Note that we use
log() to rescale the training time axis for better illustrations.

From the results, we witness that the proposed model
is more efficient than our previous conference work. The
most time-consuming part of our previous work is the low-
rank constraint on reconstruction coefficient matrix D with
SVD in the optimization. To address this, we speed up the
SVD by introducing a fixed-rank matrix decomposition, and
experimental results demonstrate that the speedup version in
this paper works fairly well on large-scale data, in terms of
both recognition performance and running time, especially on
real-world dataset.

V. CONCLUSIONS

In this paper, we proposed a robust discriminative metric
learning algorithm via seeking a fast low-rank representation
and building a compact basis in a unified framework. Specif-
ically, low-rank representation aimed to capture the global
structure within the data to facilitate the discriminative linear
projection learning. In addition, our algorithm was accelerated

so that it could well handle the large-scale datasets in real
world. Furthermore, a compact basis was incorporated for de-
noising linear projection, especially when data was corrupted.
Experimental evaluations on several datasets had witnessed
the effectiveness of our approach by comparing with other
methods.
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