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Iterative Multiple Hypothesis Tracking
With Tracklet-Level Association

Hao Sheng , Jiahui Chen , Yang Zhang , Wei Ke, Zhang Xiong, and Jingyi Yu

Abstract— This paper proposes a novel iterative maximum
weighted independent set (MWIS) algorithm for multiple hypoth-
esis tracking (MHT) in a tracking-by-detection framework. MHT
converts the tracking problem into a series of MWIS problems
across the tracking time. Previous works solve these NP-hard
MWIS problems independently without the use of any prior
information from each frame, and they ignore the relevance
between adjacent frames. In this paper, we iteratively solve
the MWIS problems by using the MWIS solution from the
previous frame rather than solving the problem from scratch
each time. First, we define five hypothesis categories and a
hypothesis transfer model, which explicitly describes the hypoth-
esis relationship between adjacent frames. We also propose a
polynomial-time approximation algorithm for the MWIS problem
in MHT. In addition to that, we present a confident short tracklet
generation method and incorporate tracklet-level association into
MHT, which further improves the computational efficiency. Our
experiments on both MOT16 and MOT17 benchmarks show that
our tracker outperforms all the previously published tracking
algorithms on both MOT16 and MOT17 benchmarks. Finally,
we demonstrate that the polynomial-time approximate tracker
reaches nearly the same tracking performance.

Index Terms— Multiple object tracking, tracking-by-detection,
multiple hypothesis tracking, iterative maximum weighted inde-
pendent set, polynomial-time approximation.

I. INTRODUCTION

MULTIPLE object tracking estimates the spatio-temporal
trajectories of targeted, specific objects in video

sequences. It is widely used in a variety of applications such as
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video surveillance [1], human-computer interaction [2], trans-
portation management [3], etc. Although significant progress
was made in these areas, there are still existing problems such
as heavy occlusions, complex background, and illumination
variations that were not completely solved [4], especially in
crowd scenes where the targets are frequently either par-
tially or fully occluded. As such, visual tracking still remained
a challenge to resolve.

Multiple hypothesis tracking(MHT) is one of the earliest
successful tracking methods that was proposed by Reid [5].
Since the main drawback of MHT was the exponential
growth of hypotheses, the trackers attempt to maintain tracklet
hypotheses effectively through calculating the likelihood of
each tracklet and removing hypotheses with low confidence.
The best combination of tracklet hypotheses were calculated to
estimate the trajectories of multiple objects in each frame, and
the best combination finding problem was formulated as Maxi-
mum Weighted Independent Set(MWIS) problem. Pruning was
usually applied in order to keep the MWIS calculable, and the
performance of MHT heavily relies on hypothesis pruning,
which needs manual assumptions. The MWIS problem was
proven to be NP-hard [6], and the computation time cannot
be easily bounded. As such, MHT was considered to be
impractical for visual tracking.

With the advances in object detection and feature repre-
sentation, the tracking-by-detection paradigm was one of the
most popular frameworks in multiple object tracking. Target
hypotheses were extracted in advanced from video sequences
using object detectors, and then object hypotheses were linked
by tracking approaches to form trajectories. Multiple object
tracking was converted into a data association problem, and
the tracker was designed to find an optimal solution to produce
final tracking results.

MHT also benefits from both tracking-by-detection para-
digm and effective feature representation, and proved to be
practical in current visual tracking context in recent years [7].
By incorporating robust convolutional-neural-network-based
features and motion information, the number of tracklet
hypotheses was significantly reduced which in turn allowed
for less assumptions about tracking and explored a larger
hypothesis space. MHT converted the tracking problem into
a series of MWIS problems across the tracking time, but
previous works solved these problems independently.

In this paper, we present a novel iterative MWIS algorithm
for MHT. First, we define five tracklet hypothesis categories
and the hypothesis category transfer model between adjacent
frames. Following this, we propose an iterative algorithm to
deal with a series of MWIS problems in MHT that takes
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both previous MWIS solution and hypothesis category transfer
model into consideration. In addition to that, we also present
a polynomial-time approximation algorithm by converting the
MWIS problem in a subset of hypotheses into a bipartite graph
matching problem. In our formulation, the tracklet hypothesis
relevance between adjacent frames is explicitly described and
applied to improve the tracking performance and efficiency.
Our experimental results on the MOT16 and MOT17 bench-
marks demonstrate that our tracker is comparable to published
state-of-the-art trackers.

In summary, this paper makes the following contributions:

(1) Presents a new concept, tracklet hypothesis categories,
and the category transfer model, which explicitly
describes the relevance of tracklet hypotheses between
adjacent frames.

(2) Proposes a novel iterative MWIS algorithm, which uses
previous MWIS solution and avoids to solve MWIS prob-
lem from scratch at each frame with our proposed tracklet
category transfer model. It also significantly improves the
MWIS solving process in terms of speed and accuracy.

(3) Proposes a polynomial-time approximation algorithm for
the MWIS problem in MHT in order to solve the high
time complexity problem.

(4) Incorporates a tracklet-level association pruning method
into MHT to improve the computational efficiency.

(5) Demonstrates that our tracker outperforms all the previ-
ously published tracking algorithms on both MOT16 and
MOT17 benchmarks.

II. RELATED WORK

A. Multiple Object Tracking

Tracking-by-detection is a recent standard paradigm for
multiple object tracking [8]–[10], which is converted into a
data association problem within this framework. The tracking-
by-detection approaches can be categorized into recursive and
non-recursive methods.

Recursive methods are usually applied to real-time applica-
tions because they sequentially build trajectories based on the
frame-by-frame associations using the information provided
by only previous frames and current frame. Practical Kalman
filter based trackers [5], [11] belong to this category. However,
these methods tend to produce fragmented trajectories and
drift under occlusion and detection errors, because it is more
difficult to handle inaccurate detections(e.g. false positives and
false negative) compared to the non-recursive methods.

Non-recursive methods [12]–[14] utilize the detections of all
sequence frame together to build long tracks robustly against
occlusion and inaccurate detections. In general, given a set of
detections, short tracklets are generated first by linking indi-
vidual detections, and then the tracklets are globally associated
into long tracklets [15]. As such, global association in these
approaches is very important, and many methods for the global
association have been proposed [16]–[18] recently. However,
the performance of the non-recursive methods is still limited
in crowded scenarios. Since these methods usually require
the detections for the whole sequence beforehand in addition
to heavy computation to generate globally optimized tracks,

it is hard to apply the non-recursive methods in real-time
applications. Our research belongs to non-recursive methods.

Milan et al. [19] introduced a conditional random field to
model different types of information jointly for multiple target
tracking, including appearance, motion. Butt and Collins [20]
proposed a min-cost flow based method to handle the motion
model of targets. Chari et al. [21] proposed a pairwise cost
to enforce or penalize tracklets. Dehghan et al. [22] proposed
a hierarchical schema to form the tracks iteratively. The cost
functions of all of the aforementioned approaches contained
only unary and pairwise terms, which were restrictive in
modeling high-order information.

MHT permits complex constraints by converting the track-
ing tasks into multiple dimensional assignments [23], [24].
Since it was too slow and consumed too much memory,
MHT was considered impractical in current tracking task.
However, with the development of object detection technology
and feature representation, MHT has become more practical.

Kim et al. [7] incorporated long-term appearance modeling
into multiple hypothesis tracking, in which the tracker esti-
mated the online appearance feature for each tracklet. In this
method, only detections coupled with the previous tracklet
were allowed to updated the tracklets. This reduced the number
of hypotheses in order to better simplify manual constraints
on tracking so as to make the algorithm more practical. This
method focused on filtering tracklet hypotheses through more
accuracy features instead of improving MHT itself. Chen et al.
[25] proposed an enhancing detection model that introduced
new conflict constraints to the tracking tasks, by considering
full detection information, including the detection-scene model
and the detection-detection model. However, additional con-
straints made the MWIS problem even more complex.

B. Maximum Weighted Independent Set

MWIS had been explored to solving tracking problem
within the computer vision community. Papageorgiou and
Salpukas [6] converted the tracking tasks into a data asso-
ciation problem and optimized it as an MWIS problem.
The method applied an n-scan sliding window to maintain
the element number, and then use the maximum weighted
independent set algorithm to solve the problem from scratch
in each frame.

Brendel et al. [26] also introduced MWIS into visual track-
ing. In this particular work, detection pairs were extracted from
two consecutive frames and were used to build the graph. This
work focused on model tracking constraints into MWIS model
and proved that MWIS was suitable for tracking purpose.
However, the special property of MWIS in MHT continues
to be ignored.

In mathematics, the MWIS problem was often reformulated
as the maximum weight clique(MWC) problem that uses a
dual graph of the original [27]. Since the traditional algorithm
had a drawback of high space complexity and time complexity,
it was not suitable to use on massive graph. Rossi and
Ahmed [28] proposed the MCP algorithm for those that relied
on the k-Core. Cai [29] proposed a heuristic search method
to make the local search even more efficient. Research in the
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mathematics community focused on solving the massive graph
problem from scratch [30], because researches in mathematics
field addressed the problem that solving a massive graph only
once from scratch.

This paper focuses on solving a series of MWIS problem in
MHT. Sec.III proposes a special property of the MWIS prob-
lem in tracking problem. Compared to the traditional MWIS
problem, the MWIS problems in MHT need to be solved
across the the tracking time instead of solving these problems
independently from scratch. MWIS problems between two
adjacent frames are highly relevant.

III. ITERATIVE MULTIPLE HYPOTHESIS TRACKING

This work adopts the tracking-by-detection paradigm [7].
The detections of each frame are given in pre-processing.
The detection set is denoted as D. In order to fairly compare
against published trackers, we used the public object detection
responses on the MOT16 and MOT17 benchmarks [31].

Reid [5] proposed the earliest multiple hypothesis track-
ing(MHT) framework. Delayed data association decision is
the key strategy of MHT, which generates multiple track
hypotheses corresponding to one object, and resolves data
association ambiguities when further information is obtained.
MHT consists of three processes:

(i) Tracklet Hypothesis Updating: the tracklet hypothesis
updating process maintains multiple possible trajectories
for one target. At each frame, new object observations are
assigned to existing tracklet hypotheses within tracklet-
detection based gating, i.e., motion and appearance.

(ii) Global Hypothesis Generation: this resolves the data
association ambiguities and finds the best tracklet hypoth-
esis combination, which is explained in a physically
plausible way. The selection problem is formulated as
maximum weighted independent set (MWIS) problem,
known to be NP-hard.

(iii) Tracklet Hypothesis Pruning: as the number of track-
let hypotheses exponentially grows, tracklet hypothesis
pruning helps to keep the algorithm practical.

MHT algorithm is challenging due to its two opposed
objectives: Storing multiple hypotheses for one target until
sufficient information is gained to make confident decisions,
while simultaneously maintaining as few tracklet hypothe-
ses as possible to keep the method efficient regarding both
computation and memory. Both tracklet hypothesis updating
and tracklet hypothesis pruning try to strike the right balance
between these two constraints. In addition, solving the NP-
hard tracklet hypothesis selection problem in global hypothesis
tracking in an efficient way is also challenging. In this paper,
we address the aforementioned problems.

A. Notation

Before the technical details are provided, we first introduce
the notation. D = {D1, . . . , Dt , . . . , DT } is the set of all
input detections, and T is the frame number of the video
sequence. All D(t) detections in frame t are represented by
the detection set Dt = {dt

1, dt
2, . . . , dt

D(t)}, where dt
k means

the k-th detection at frame t .

TABLE I

NOTATION. EACH BLOCK SUMMARIZES THE SYMBOLS FOR VIDEO
SEQUENCE, DETECTIONS, MULTIPLE HYPOTHESIS TRACKING

The detection sequence (d1, d2, . . . , dk) is defined as a
tracklet hypothesis at frame k, and dt ∈ Dt ∪ {∅}. When
dt ∈ Dt , it means detection dt ∈ Dt is selected at frame t in
this tracklet; when dt = ∅, it means that a dummy detection is
assigned to this tracklet to deal with a missing detection. Note
that for the notational convenience, we make all the tracklet
hypotheses from the first frame, but the actual tracklet starts
from the first actual detection. Therefore, global hypothesis is
defined as a set of tracklet hypotheses that are not in conflict;
for instance, tracklets should not share detections.

Let V t = {V t
1 , V t

2 , . . . , V t
Nt } be the tracklet hypothesis set

at frame t , and Nt is the hypothesis number. Then Gt =
{Gt

1, Gt
2, . . . , Gt

nt } is the global hypothesis at frame k, whose
elements are selected in the current global hypothesis.

B. Framework Overview

The tracker maintains tracklet hypotheses for tracked tar-
gets and calculates the likelihood of each tracklet. Following
this, the best combination of tracklet hypotheses is found
to estimate the trajectories of multiple objects. However,
the number of potential hypotheses grows exponentially across
the tracking time, and the performance of MHT heavily relies
on hypothesis pruning, which needs manual assumptions. The
combination selection problem is formulated as the maximum
weighted independent set(MWIS) problem, and that is proven
to be NP-hard [6]. As such, the computation time cannot be
easily bounded,so the MHT is considered to be impractical
for visual tracking. This section introduces the traditional
multiple hypothesis tracking under the framework of tracking-
by-detection.

MHT constructs tracklet hypotheses for all potential tra-
jectories, and updates these hypotheses in a frame-by-frame
manner. MHT attempts to find a most-likely global hypothesis
from all tracklet hypotheses at each frame for either pruning
purpose or the trajectory generation. It consists of three
processes:

1) Tracklet Hypothesis Updating: MHT maintains possible
tracklets from the first frame to the current frame. At each
frame, tracklet hypotheses are constructed to represent new
tracklets starting from current detections. Existing tracklet
hypotheses also need to be updated. (1) Previous tracklet
hypotheses are extended by dummy detections to account for
missing detections, and (2) the previous tracklet hypotheses
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Fig. 1. Hypothesis Category Transfer. Uppercase letters represent tracklets; lowercase letters represent detections; ∅ represents dummy detections. The
combination of a uppercase letter and a lowercase letter(or ∅) means a tracklet updated with a detection(or dummy detection). Note that the combination of
∅ and a lowercase letter means a new tracklet starting with a detection. Current tracklet hypotheses are divided into five categories according to Table II.

are also updated with current detections, which are similar to
the tracklets in some aspects, i.e., appearance and motion.

2) Global Hypothesis Generation: Throughout this process,
a subset of tracklet hypotheses is selected to form a global
hypothesis. Before the selection, the score of tracklet hypothe-
ses needs to be calculated, and then the best selection problem
is solved as an MWIS problem.

We construct an undirected graph G = (V , E) to model the
MWIS. Each vertex denotes one tracklet hypothesis h with
weight wh . When the two tracklet hypotheses i and j are in
conflict, an edge (i, j) ∈ E connects these two vertices. Then
MWIS problem is formulated as follows:

max
x

�hwh xh (1)

s.t . xi + x j <= 1, (i, j) ∈ E (2)

xi ∈ {0, 1}, (3)

where xh is an indicator. When xh = 1, it means that
hypothesis h is selected in the current global hypothesis; when
xh = 0, it means that the hypothesis h is not selected. Eq. 3
represents that two tracklets cannot be simultaneously selected
when they are in conflict.

3) Tracklet Hypothesis Pruning: Since the number of track-
let hypotheses grows exponentially, tracklet hypothesis prun-
ing is an essential process that reduces the tracklet hypotheses
which deviate significantly from the current global hypothesis.

To summarize, traditional MHT updates tracklet hypotheses
at each frame, and seeks the best feasible combination known
as global hypothesis independently. Note that MWIS problem
is an NP-hard problem, which is both time-consuming or sub-
optimal and leads to inaccurate tracking result.

Given that tracklet hypothesis set V k and global hypothesis
Gk at frame k, the goal is to generate a new tracklet hypothesis
set V k+1 at frame k + 1 and to effectively solve the global
hypothesis generation problem to find the global hypothesis
Gk+1. Note that for the first frame, V 1 is the tracklet hypoth-
esis set, whose elements are tracklets with only one detection
of D1. G1 selects all the elements in V 1 to form the global
hypothesis, since no detections are shared by tracklets.

C. Tracklet Hypothesis Updating and Tracklet Category
Transfer Model

V k and Gk are respectively the tracklet hypothesis set
and the global hypothesis set at frame k. The elements of
V k can be divided into two categories as shown in Fig. 1.

The red nodes in previous tracklet hypotheses represent the
selected tracklet hypotheses which are elements of last MWIS
solution Gk , as well as the gray nodes in previous tracklet
hypotheses represent the unselected tracklet hypotheses which
are elements of V k \ Gk . Given detection set Dk+1 at frame
k + 1, then the tracklet hypotheses are updated as follows:

(1) Previous tracklet hypotheses are extended by appending
dummy detections to represent the tracklets with missing
detections at frame k + 1. The dummy detections are used to
account for the missing detections. We define that the selected
hypotheses(Gk) updated with dummy detections belong to the
category C1, and the unselected hypotheses(V k \ Gk) updated
with dummy detections belong to the category C2. In Fig. 1,
hypotheses of C1 are in red, and hypotheses of C2 are in gray.

(2) For each detection in Dk+1, we create a new tracklet
hypothesis that represents a new target entering the scene and
we define that these hypotheses are in the category of C3.
In Fig. 1, hypotheses of C3 are in purple.

(3) Previous tracklet hypotheses are updated with current
detection set Dk+1. Note that each tracklet hypothesis only
updates with detections that are reasonable regarding motion
and appearance. We define that the selected hypotheses(Gk)
updated with current detections belong to the category C4,
and the unselected hypotheses(V k \Gk) updated with dummy
detections belong to the category C5. In Fig. 1, hypotheses of
C4 are in blue, and hypotheses in C5 are in green.

Given tracklet hypothesis set V k and global hypothesis
set Gk at frame k, tracklet hypothesis set V k+1 is updated
with current detection set Dk+1 or dummy detections. Based
on the original tracklet hypothesis and current detection,
we divide new tracklet hypotheses into five categories as
shown in Table II.

D. Tracklet Hypothesis Reduction

Tracklet hypothesis reduction is used to reduce the number
of tracklet hypotheses when a feasible solution is found.
We decrease the number of tracklet hypotheses and make the
MWIS problem more likely to get an exact solution instead of
an approximation solution. Tracklet hypothesis reduction also
speeds up the process.

We first define two notations, F(v) and F[v]. The feasible
tracklet hypothesis set of tracklet v at frame k is defined as
follows:

F(v) = {u ∈ V k |u and v is not in conflict}, (4)
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TABLE II

TRACKLET HYPOTHESIS CATEGORY

where V k is the tracklet hypothesis set at frame k. Only
elements in F(v) can be selected in global tracklet hypothesis
at frame k, when tracklet v is selected. Moreover, we denote
F[v] = F(v) ∪ {v}.

In order to reduce the number of hypotheses, we estimate
the weight upper bound for each hypothesis and remove the
hypotheses whose upper bound is less than the weight of the
current solution. Let U B(v) be the upper bound of the weight
of independent set containing v.

Let n∗ be the tracklet hypothesis with the maximum weight
in F(v), then U B(v) is calculated as follows:

U B(v) = max{w(F[v])−w(n∗),
w(v) +w(n∗)+w(F(v) ∩ F(n∗)}, (5)

where w is the weight function, which is the sum of weights
of all the elements. We calculate the upper bounds for two
cases: When n∗ is not selected, the feasible tracklet hypothesis
candidate set is F(v) = F([v]) \ {n∗}, and the upper bound
is w(F[v])−w(n∗); when n∗ is selected, the feasible tracklet
hypothesis candidates should be F(v) ∩ F(n∗) and the upper
bound should be w(v)+w(n∗)+w(F(v) ∩ F(n∗)).

U B(v) is the upper bound of weight when tracklet hypoth-
esis v is selected in the solution. So if a tracklet hypothesis
v with U B(v) less than the weight current feasible solution,
there is no chance the tracklet hypothesis v is selected in the
solution. So we remove the hypothesis v from our hypothesis
set and U B(v) is the evidence of our hypothesis reduction
before MWIS is applied.

Once we get a feasible solution, we apply our tracklet
hypothesis reduction to simplify the MWIS problem, as shown
in Alg.1. First, we calculate the upper bounds for each
hypothesis(line 2-5). Following this, we remove the unlikely
hypotheses from our tracklet hypothesis set(line 9). Note that
once a tracklet hypothesis u is removed, we update the upper
bound of F(u) and find new unlikely hypotheses for further
removing(line 10-14).

IV. TRACKLET-LEVEL ASSOCIATION

MHT tracks multiple objects in a frame-by-frame manner.
In each frame, the current detections are assigned to existing
tracklets or regarded as newly initiated tracklet. In order

Algorithm 1 Tracklet Hypothesis Reduction
Input: Tracklet hypothesis set V , a feasible solution S0
Output: Reduced tracklet hypothesis set V
1: for each v ∈ V do
2: if U B(v) ≤ w(S0) then
3: RmT racklets← RmT racklets ∪ {v}
4: end if
5: end for
6: while RmT racklets is not empty do
7: u ← pop a tracklet from RmT racklets
8: Remove u from V
9: for each v ∈ V do

10: if U B(v) ≤ w(S0) then
11: RmT racklets← RmT racklets ∪ {v}
12: end if
13: end for
14: end while
15: return V

to maintain efficiency, a tracklet-detection gating is usually
applied when assigning detections to existing tracklets, so that
only the tracklet-detection association is considered in this
process. The detections produced by object detector are noisy,
so the MHT has to store a large number of tracklet hypotheses
to make the actual track. The mechanism leads to the efficiency
problem. In this work, we incorporate the tracklet-level asso-
ciation in the tracklet hypothesis updating process.

A. Short Tracklet Generation

In frame-by-frame tracking method, only relationships
between detections in consecutive frames are taken into con-
sideration when forming the tracklets. The appearance differ-
ence gradually increases along with the time gap, to eventually
result in an ID switch problem. Moreover, these errors are
propagated to the final solution because the ID switch caused
by this reason is difficult to aware.

In order to handle this issue, we introduce a net structure for
detection association in a temporal domain inspired by [22].
Instead of solely considering the correlation between two con-
secutive frames, we form the tracklets based on all correlation
between any two detections. In order to make this tracklet
generation algorithm effective, we split the video sequence
into small windows so as to generate the short tracklet within
five frames.

B. K-Partite Detection Graph

Given the detection set of a K frame window, with-
out loss of generality, we denote the detection set D =
{D1, D2, . . . , DK }. Then, we build a k-partite graph G =
(V1, V2, . . . , VK ; E;W ) to formulate our short tracklet gen-
eration as shown in Fig. 2. Relationships between detections
in a temporal windows are modeled in the k-partite graph.
Note that although all relationships between detections are
considered, we only link two detections with high similarity
in different frames. In this way, a clique in the k-partite graph
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Fig. 2. K-partite Graph for Short Tracklet Generation. (a) is the original
k-partite detection graph. Based on connectivity, (a) is divided into two
subgraph (b) and (c).

form the track of an object: In a clique, all nodes connect to
each other, and any two detections in this clique have high
similarity. In order to find the global optimization solution,
we simultaneously consider all cliques.

Node Set: For each node set Vi , let Vi = Di . Each node set
corresponds to detections in a frame and each node represents
a detection.

Edge Set: For each pair of nodes, there is an edge when
two detections are similar with each other. Note that for each
pair of nodes in one node set, there are no edges.

Weight Set: For each edge, we assign a weight to describe
the similarity between two linked detections. Our experiments
use the cosine distance of the convolutional-neural-network-
based features.

Then we estimate the best cliques, which is formulated as
follows:

max
ei j

�ei j wi j ei j (6)

s.t . ei j form cliques (7)

ei j = 0, sim(i, j) < α (8)

ei j ∈ {0, 1} (9)

ei j = e j i (10)

Eq. 6 tells that we use the sum of all edge weights in a
clique to evaluate the clique.

Eq. 7 ensures the edges form cliques. We make the con-
straints as follows: For each three nodes in three different
node set should satisfy

ei j + e jk <= eik + 1 (11)

The constraint means that for any three nodes i, j, k, if i and
j connect to each other and j and k connect to each other,
then i and k also needs to be connected.

The similarity used in Eq. 8 is the cosine distance between
features of two detections. The detection features is a gener-
ated by VGG16 network [32].

Due to the unimodular property, the solution of the opti-
mization problem is all integer solution. We apply linear
program method to get the optimization solution.

After we get the solution of the problem, we get ei j . And ei j

form a clique set C = {C1, C2, . . . , Cn}. For each clique Ci in
C , Ci contains several nodes in k-partite graph and for each
Vi , at most one node is included. In the end, the maximum
element number of Ci is k, and all these k nodes form the

track of an object and in each frame, the object is extracted
by object detector. For other cliques whose element number
is less than k, there are two situations: 1) the actual trajectory
of the object is less than k frame long, and 2) the object is
missed by detector in some frames.

C. Speed-Up

We need to enumerate all three nodes in different clusters
due to the clique constraint set, but this leads to a large number
of constraints, and low effectiveness. Based on the connectivity
of the k-partite graph, we divide the graph into several sub-
graphs and there is no edges between any subgraphs. As shown
in Fig. 2, the original four-partite graph is divided into two
subgraphs.

We know that the combination of solution in each subgraph
is the solution of the whole k-partite graph. The number of
constraints decrease significantly based on Eq. 7.

D. Tracklet Updating With Tracklet-Level Association

The tracklet updating process generates tracklet hypotheses
with previous existing tracklet hypotheses and current detec-
tions. In a traditional method, detections have to satisfied the
gating with a existing tracklet in terms of some aspects, i.e.
motion and appearance. Then, the existing tracklet hypotheses
is extended by the detection to form new tracklet hypothe-
sis. In this way, only relationship between a tracklet and a
detection is considered in this process. Besides traditional
distance and motion gating, we also introduce our novel
tracklet-level association. As introduced in Sec.IV-A, we first
generate the short tracklet set in every k frame window, and
these frame windows are non-overlapped, e.g., frame 1 ∼ k,
frame k + 1 ∼ 2k. Then we have the short tracklet sets from
each window, and each tracklet is regarded as the tracking
unit rather than detections as the tracking unit in traditional
multiple hypothesis tracking. Then the average position and
the average appearance feature vector of all detections are
used to describe the motion and appearance information. The
tracklet-level association significantly reduces the hypothesis
number.

V. ITERATIVE MAXIMUM WEIGHTED INDEPENDENT SET

Our proposed iterative MWIS algorithm takes advantages of
previous MWIS solution instead of solving the problem from
scratch each time. Based on our tracklet hypothesis category
transfer model, we estimate a feasible solution and simplify
current MWIS problem according to tracklet hypothesis reduc-
tion introduced in Sec.III-D. The reduction process is applied
once we get a better solution.

Alg.2 presents the pseudo code of our method. Aside
from current hypothesis candidates, a feasible solution is also
required as the input of our algorithm, so we introduce the
initial feasible solution generation.

Given the current tracklet hypothesis set V , and we divide
V into five categories according to Table I, then V = C1+C2+
C3 + C4 + C5. One feasible MWIS solution is C1 + C3. As the
elements in C1 correspond to the previous solution, elements in
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Algorithm 2 Iterative Maximum Weighted Independent Set
Input: Tracklet hypothesis set V , a feasible solution S0
Output: Maximum weighted solution C∗
1: V = TH_Reduction(V , S0)
2: while V is not empty do
3: u← tracklet with maximum weight in V
4: C ← {u}
5: Candidates← F(u)
6: while Candidates is not empty do
7: v ← tracklet with maximum benef i t (v)
8: if w(C) + w(v) + w(F(v) ∩ Candidates) ≤ w(S0)

then
9: Break

10: end if
11: C ← C ∪ v
12: Candidates← Candidates\{v}
13: Candidates← Candidates ∩ F(v)
14: end while
15: if w(C) > w(C∗) then
16: C∗ ← C
17: V ← T H _Reduction(V , C∗)
18: if V is empty then
19: return C∗
20: end if
21: end if
22: end while
23: return C∗

this category do not share any detections. In addition, elements
in C3 correspond to different detections in the current frame,
so they are also feasible. Lastly, C1 and C3 do not have any
detections in common, as the detections in C1 are in previous
frames, while detections in C3 are current detections. Note
that in Sec.VI, we introduce another initial solution generation
method.

At the beginning of the algorithm, we remove some
hypotheses by applying our tracklet hypothesis reduction with
a feasible solution S0 = C1+C3. V remains the rest hypothesis
candidates(lines 2). Then, the algorithm executes the main
loop until an exact solution is found or there is no feasible
candidate. In each iteration, we form a feasible combination
of tracklet hypothesis(lines 4-16). Once a better solution is
found, we update the current solution and remove candidates
according to Alg.1.

The score of tracklet hypothesis T = (i1, i2, . . . , i k) is
defined as follows:

sc(T ) =
k∑

m=1

Con(im)+
k−1∑

m=1

Aff(im, im+1), (12)

where Con(im) is the confident of short tracklet and
Aff(im, im+1) is the affinity between two tracklets. Eq. 12
is used to calculate the weights of tracklets.

The tracklet-level affinity is defined as follows:

Aff(im, im+1) = cos(

∑
d∈im App(d)

|im| ,

∑
d∈im+1 App(d)

|im+1| ),

(13)

Fig. 3. MWIS Reformulation. Uppercase letters represent tracklets; lowercase
letters represent detections; ∅ represents dummy detections. The combination
of a uppercase letter and a lowercase letter(or ∅) means a tracklet updated
with a detection(or dummy detection). Note that the combination of ∅ and a
lowercase letter means a new tracklet starting with a detection.

where |i | is the detection number in tracklet i . The detection
features is a generated by VGG16 network [32].

VI. POLYNOMIAL-TIME APPROXIMATION

In the previous section, we present the iterative MWIS
algorithm, which simplifies the problem by taking advantage
of previous solution and category transfer model. However,
the algorithm is still an NP-hard problem and no existing
polynomial-time method produces the optimal solution. In this
section, we propose a polynomial-time approximation method
to solve the MWIS problem in MHT.

We first propose two proposition as follows:
Proposition 1: Given the current tracklet hypothesis set V ,

and we divide V into five categories according to Table I, then
V = C1+C2+C3+C4+C5. V134 = C1+C3+C4 is the subset
of V . Then the maximum weighted independent set problem of
V134 can be reformulated as the maximum bipartite matching
problem.

Proof: Since C1 is the solution of previous MWIS
problem, its elements are independent of each other: any two
tracklets do not share detections. In addition, C3 only contains
tracklets with one current detection, so the elements in C1 and
C3 are independent of each other. C1+C3 is a feasible solution.
Tracklet hypothesis v in C4 are only in conflict with an element
of C1 and an element of C3. Assuming there are respectively
m, n, k elements in C1, C3 and C4.

Afterwards, we construct a bipartite graph G = (S, T ; E) as
shown in Fig. 3, where S has m real vertices corresponding to
elements in C1 and n virtual vertices corresponding to elements
in C3; T has m virtual vertices corresponding to elements in
C1 and n real vertices corresponding to elements in C3; E is
defined as follows:

(1) For each tracklet hypothesis h in C1, we link real vertex
corresponding to h in S and virtual vertex corresponding to h
with weight w(h). These edges are in red in Fig. 3.
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(2) For each tracklet hypothesis h in C3, we link virtual
vertex corresponding to h in S and real vertex corresponding
to h with weight w(h). These edges are in purple in Fig. 3.

(3) For each tracklet hypothesis h in C4, h is corresponding
to a tracklet hypothesis h1 in C1 and a tracklet hypothesis h2
in h3. We link real vertex corresponding to h1 in S and real
vertex corresponding to h2 with weight w(h). These edges are
in blue in Fig. 3.

This way, the MWIS problem is reformulated as a maximum
bipartite matching problem, which can be solved by using
Hungarian Algorithm in polynomial time.

Proposition 2: Given the current tracklet hypothesis set V ,
and we divide V into five categories according to Table I, then
V = C1+ C2+ C3+ C4+ C5. V1234 = C1+ C2+ C3+ C4 is the
subset of V . Then the elements of C2 are not selected in the
maximum weighted independent set.

Proof: As C1 ∪ C2 equals to the MWIS problem in last
frame, then we have

F(C1 + C2) = w(C1), (14)

where F is the maximum weight of MWIS in C12 and w is
the weight function, which is the sum of weights of all the
elements. And according to Proposition 1, we have F(C1 +
C3 + C4) = w(C1)+w(C3)+ f (C1, C3), where f (C1, C3) ≥ 0
is the weight gain from V4. Based on Hungarian Algorithm,
we have

C ′1 ⊂ C1, C ′3 ⊂ C3 ⇒ f (C ′1, C ′3) ≤ f (C1, C3) (15)

Based on the selection of C2, the maximum weight of V1234
can be defined as

F(V1234) = max
C′2

w(C ′1)+w(C ′2)+w(C3)+ f (C ′1, C3), (16)

where the selected set C ′2 in C2 only affect selection in C1.
We know that when C ′2 = ∅, both terms w(C ′1) + w(C ′2)
and f (C ′1, C3) are at their maximum according to Eq. 14 and
Eq. 15. As such, we prove that elements in C2 are not be
selected.

Based on the two above mentioned propositions, the con-
clusion is that if we ignore C5, MWIS problem of C1234 can
be solved in polynomial time. Moreover, elements in C2 are
not selected in the current global hypothesis.

As the updated hypotheses from the unselected hypotheses
with dummy detections are unlikely to be chosen at the
current frame, we assume that the hypotheses updated from the
unselected hypotheses with current detections are also unlikely
to be chosen at the current frame. The experiments analyze the
reasonableness of the assumption. Based on the two aforemen-
tioned propositions, we conclude that if we can ignore C5,
MWIS of V1234 can be solved in polynomial time. Then our
algorithm is given in Alg.3. For each frame, we first update
previous selected tracklets update with dummy detections and
current detections in order to get new hypothesis set C1(line 1)
and C4(line 3). New tracklet hypotheses starting from current
detections are also generated(line 2). Lastly, we reformulated
the WMIS problem as maximum bipartite graph matching
problem according to Proposition 1. The Algorithm also can

Algorithm 3 Approximation Method
Input: Previous solution Spre, currentdetectionset Dk

Output: Solution S
1: V1← Spre updating with dummy detections
2: V3← new tracklets starting from Dk

3: V4← Spre updating with Dk

4: S← MW I S(V1, V3, V4) according to Proposition 1
5: return S

be applied to generate initial feasible solution for our iterative
MWIS algorithm introduced in Sec.V.

VII. EXPERIMENTS

Dataset: We tested our approach on the MOT16 and
MOT17 benchmark [31] and achieved very competitive results.
There were seven training sequences and seven test sequences
in the MOT16 benchmark, along with twenty-one training
sequences and twenty-one test sequences in the MOT17 bench-
mark. Sec.VII-A gives the details about short tracklet gener-
ation. Sec.VII-B demonstrates the evaluation results on the
training sequences in order to verify the effectiveness of
tracklet hypothesis reduction; Sec.VII-C verified our proposed
iterative MWIS algorithm; Sec.VII-D analyzes our track-
ing performance of the approximation algorithm; Sec.VII-E
compares our method with other state-of-the-art tracking meth-
ods. In order to maintain a fair comparison, we used the public
detection set given by MOT16 and MOT17 as our algorithm
input. All tracking approaches are based on the same input.

Evaluation Metric: We follow the standard CLEAR MOT
metrics [38] for evaluating tracking performance. The metrics
includes multiple object tracking accuracy (MOTA↑), which
combines identity switches (ID Sw.↓), false positives (FP↓),
and false negatives (FN↓). Beside we also report mostly
tracked (MT↑), mostly lost (ML↓) and fragmentation (Frag↓).
Researchers usually use multiple object tracking accuracy
(MOTA) to compare different trackers. However, it has been
pointed out that MOTA does not properly account for identity
switches [39], [40], as shown in the left of Fig. 4. More
adapted metrics have therefore been proposed. For example,
IDF1 is computed by matching trajectories to ground-truth
so as to minimize the sum of discrepancies between corre-
sponding pairs [41]. Unlike MOTA, it penalizes switches over
the whole trajectory fragments assigned to the wrong identity,
as shown in the right side of Fig. 4. In this section, we report
results both in terms of MOTA and IDF1, to highlight the
drop in identity switches. ↑ is a positive indicator meaning
the higher the value, the better, while ↓ means the lower the
value, the better.

A. Short Tracklet Verification

In this subsection, we discuss the short tracklet generation.
We first give the runtime of the short tracklet generation with
different window size, as shown in the Fig. 6(a). All these
results are calculated in the most crowded sequence in MOT
benchmark, as shown in Fig. 6(b), the process speed is much
faster in easy sequences. In this experiment, we change the
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TABLE III

SHORT TRACKLET ACCURACY

Fig. 4. Effect of ID Switch on tracking overall metrics, MOTA and IDF1.
The solid lines represent the ground-truth trajectories and the dotted lines is
the recovered trajectories.

TABLE IV

NUMBER OF DIFFERENT HYPOTHESIS REMOVING PERCENTAGE

window size from 3 to 7 and record the runtime of tracklet
generation. As the number of constraints grows exponentially
with the window size according to Eq. 3, the average process
time also increase. To balance the tracklet length and compu-
tational efficiency, we set the frame size to 5 in our tracking
experiments.

Then we demonstrate the accuracy of short tracklet as shown
in Table III. ID switch is the most serious problem in this
step because the ID switch error in short tracklet propagates
to final trajectories. So we give the total number of short
tracklets, as well as, the number of tracklet with and without
ID switch in the table. We generated respectively 10,705 and
37,700 short tracklets in MOT16 and MOT17 benchmarks,
and more than 98.2% of these tracklets are correct without
ID switch errors. It proves that our proposed maximum-multi-
clique based method is able to procedure confident tracklets.

B. Hypothesis Reduction

Our first experiment focused on analyzing the effectiveness
of hypothesis reduction in our iterative MWIS algorithm.
To this end, we calculated the proportion of the removed
tracklet hypothesis candidates after hypothesis reduction and
then counted the number and frequency. Note that an initial
feasible solution was necessary in order to reduce the hypothe-
sis candidates, so we applied the method introduced in Sec.VI
to generate that. Table IV gives the frequency of five tracklet
hypothesis categories.

TABLE V

NUMBER OF DIFFERENT TRACKLET CATEGORIES IN MWIS SOLUTION

In Table IV, 100% means all hypothesis candidates are
removed because all of them cannot form a better feasi-
ble solution according to our upper bound estimation. Our
hypothesis reduction process works the best in this situation;
0%-24% represents less than 25% of candidates that are
removed in the hypothesis reduction, while most others still
remain. The MWIS problem is not simplified significantly,
and our hypothesis reduction process works the least in this
situation.

The results in Table IV show that our hypothesis reduction is
effective in both datasets: in the MOT16 benchmark, we solved
the MWIS problem for 128782 times, and we removed all
hypothesis candidates and directly got the optimal solution
before solving the NP-hard problem for 126944 times, which
is more than 98.5%; in the MOT17 benchmark, the number is
98.3%.

The results of hypothesis reduction prove our initial feasible
solution generally works well and the upper bound estimation
is tight. Both reasons lead to the effectiveness of hypothesis
reduction.

C. Tracklet-Level Association and Iterative MWIS Algorithm

We analyzed the effectiveness of our tracklet-level asso-
ciation and iterative MWIS algorithm. First, we compared
the tracking performance of MHT with and without tracklet-
level(TA) association as shown in Table VI and Table VII.
The ID switches and MOTA become better. It proves that
the tracklet-level association can reduce the IDS errors as
expected. Then we incorporated iterative MWIS algorithm
into MHT on the MOT16 and MOT17 benchmarks, and the
results are shown in Table VI and Table VII. We found that
the IMWIS improved MOTA in both datasets. It proves that
our IMWIS algorithm benefits the tracking performance. Note
that we set a dummy detection limitation (< 20) in our
method.

The computational time of the traditional MHT tracker on
the MOT16 and MOT17 benchmarks are respectively 8141s
and 22484s, while the computational time of tracker with our
IMWIS are respectively 4980s and 18215s. We found that our
iterative MWIS speeded up the tracking process.
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Fig. 5. Tracking results of our method on the MOT16 and MOT17 benchmark. More videos are available on the MOT Challenge website.

TABLE VI

RESULTS ON THE TRAINING SET OF MOT16 BENCHMARK

D. Iterative MWIS Approximation Algorithm
We analyzed our approximation algorithm in this subsec-

tion. Our first goal was to prove that our assumption, ignoring

the hypotheses in C5, was reasonable, and to prove that the
tracker with approximation algorithm can get nearly the same
performance as the original method.
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TABLE VII

RESULTS ON THE TRAINING SET OF MOT17 BENCHMARK

TABLE VIII

THE MOT16 BENCHMARK LEADERBOARD. ACCESSED ON 09/09/2018

Fig. 6. Short tracklet generation efficiency. (a) Runtime of the short tracklet
generation with different window size, (b) Complex sequence used to calculate
runtime.

The number of hypotheses, which are selected in the global
hypothesis at each frame is presented in Table V, where the
frequency of C5 is less than 0.2% and therefore proves that
our assumption, ignoring the hypotheses in C5, is a reasonable
one.

Moreover, the results of both the iterative MWIS track-
ers with and without the approximation algorithm on
the benchmark of MOT16 and MOT17 are given in

Table VI and Table VII. The results show that the tracking
performances of both are nearly the same.

The computational time of the original method on the
MOT16 and MOT17 benchmarks are respectively 4980s and
18215s, while the time of approximation method on these
two datasets are respectively 4567s and 16682s, which are
413s(8.3%) and 1533s(8.4%) faster. Note that from Table IV,
we know that even in the original method, more than 98% of
MWIS problem is directly solved by our tracklet hypothesis
reduction. The less than 2% of MWIS problems contribute
to more than 8% faster. The main reason for the runtime
improvement is utilizing the solution from previous frame as
describe in Alg.2.

The experimental results show our proposed approximation
method is practical in terms of both accuracy and efficiency.

E. Benchmark Comparison

Finally, we tested our proposed tracking method on both
MOT16 and MOT17 benchmarks, and the quantitative evalua-
tions of our approach, as well as the best previously published
approaches, are provided in Table VIII and Table IX. The
comparison can also be found in the MOT Challenge website1;
our tracker is named TLMHT(Tracklet-level Multiple Hypoth-
esis Tracking). Our tracker outperforms all the previously
published tracking algorithms.

In all these state-of-the-art trackers, MHT_DAM [7] and
EDMT [25] are the best MHT-based tracking methods, which
under the same framework with ours. Our tracker outperforms
them in both MOT16 and MOT17 benchmarks on MOTA.
It is noted that our ID switches and Fragment are significantly
less than other methods. The main reason is that tracklets
are regarded as tracking unit rather than detections in other
MHT methods. Moreover, when we generate short tracklets,
the tracker considers affinity of all detection pairs instead of
only adjacent detections.

1https://motchallenge.net
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TABLE IX

THE MOT17 BENCHMARK LEADERBOARD. ACCESSED ON 09/09/2018

VIII. CONCLUSION

Multiple hypothesis tracking solves the tracking tasks as a
series of maximum weighted independent set problem across
the tracking time. Unlike previous works, these NP-hard
MWIS problems are solved independently without any prior
information of each frame and ignore the relevance between
adjacent frames. This paper first defined a new concept of
hypothesis category and then presented the category transfer
model. By using the model, we presented a novel iterative
algorithm that solved the MWIS problem by taking advantages
of the previous solution. We also introduced a polynomial-time
approximation algorithm to convert the NP-hard problem into
a bipartite graph matching problem that can be solved in poly-
nomial time. In addition, we introduced a novel tracklet-level
association for multiple hypothesis tracking in order to main-
tain the tracklet hypothesis number. Our experimental results
showed that our iterative algorithm significantly improved
the efficiency in solving the MWIS problems in MHT. The
tracking performance of our approximate algorithm was quite
similar to the original one. We also compared our method
with the published state-of-the-art trackers in the benchmark
of MOT16 and MOT17, and the overall performance showed
that our results were competitive.
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