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Abstract—It remains a huge challenge to design effective and
efficient trackers under complex scenarios, including occlusions,
illumination changes and pose variations. To cope with this
problem, a promising solution is to integrate the temporal
consistency across consecutive frames and multiple feature cues
in a unified model. Motivated by this idea, we propose a novel cor-
relation filter-based tracker in this work, in which the temporal
relatedness is reconciled under a multi-task learning framework
and the multiple feature cues are modeled using a multi-view
learning approach. We demonstrate the resulting regression
model can be efficiently learned by exploiting the structure
of blockwise diagonal matrix. A fast blockwise diagonal matrix
inversion algorithm is developed thereafter for efficient online
tracking. Meanwhile, we incorporate an adaptive scale estima-
tion mechanism to strengthen the stability of scale variation
tracking. We implement our tracker using two types of features
and test it on two benchmark datasets. Experimental results
demonstrate the superiority of our proposed approach when
compared with other state-of-the-art trackers. MATLAB code
is available from our project homepage http://bmal.hust.edu.cn/
project/KMF2JMTtracking.html.

Index Terms—Visual Tracking, Multi-task Learning, Multi-
view Learning, Blockwise Diagonal Matrix, Correlation Filters.

I. INTRODUCTION

V ISUAL tracking is one of the most important components
in computer vision system. It has been widely used in

visual surveillance, human computer interaction, and robotics
[1], [2]. Given an annotation of the object (bounding box) in
the first frame, the task of visual tracking is to estimate the
target locations and scales in subsequent video frames. Though
much progress has been made in recent years, robust visual
tracking, which can reconcile different varying circumstances,
still remains a challenging problem [1]. On the one hand,
it is expected that the designed trackers can compensate for
large appearance changes caused by illuminations, occlusions,
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etc. On the other hand, the real-time requirement in real
applications impedes the usage of overcomplicated models.

Briefly speaking, there are two major categories of modern
trackers: generative trackers and discriminative trackers [1],
[3]. Generative trackers typically assume a generative process
of the target appearance and search for the regions most similar
to the target model, while discriminative trackers usually train
a classifier to distinguish the target from the background.
Among discriminative trackers, correlation filter-based track-
ers (CFTs) drawn an increasing number of attentions since
the development of Kernel Correlation Filter (KCF) tracker
[4]. As has been demonstrated, KCF can achieve impressive
performance on accuracy, robustness and speed on both the
Online Tracking Benchmark (OTB) [5] and the Visual Object
Tracking (VOT) challenges [6].

Despite the overwhelming evidence of success achieved
by CFTs, two observations prompt us to come up with our
tracking approach. First, almost all the CFTs ignore the
temporal consistency or invariance among consecutive frames,
which has been demonstrated to be effective in augmenting
tracking performance [7], [8]. Second, there is still a lack of
theoretical sound yet computational efficient model to integrate
multiple feature cues. Admittedly, integrating different channel
features is not new under the CFTs umbrella. However,
previous work either straightforwardly concatenating various
feature vectors [9], [10] (i.e., assuming mutual independence
of feature channels) or inheriting high computational burden
which severely compromises the tracking speed [11], [12].

In this paper, to circumvent these two drawbacks simulta-
neously, we embark on the basic KCF tracker and present a
multi-frame multi-feature joint modeling tracker ((MF)2JMT)
to strike a good trade-off between robustness and speed. In
(MF)2JMT, the interdependencies between different feature
cues are modeled using a multi-view learning (MVL) approach
to enhance the discriminative power of target appearance
undergoing various changes. Specifically, we use the view con-
sistency principle to regularize the objective function learned
from each view agree on the labels of most training samples
[13]. On the other hand, the temporal consistency is exploited
under a multi-task learning (MTL) framework [14], i.e., we
model M (M ≥ 2) consecutive frames simultaneously by con-
straining the learned objectives from each frame close to their
mean. We extend (MF)2JMT to its kernelized version (i.e.,
K(MF)2JMT) and develop a fast blockwise diagonal matrix
inversion algorithm to accelerate model training. Finally, we
adopt a two-stage filtering pipeline [9], [15], [16] to cope with
the problem of scale variations.
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To summarize, the main contributions of our work are
twofold. First, a novel tracker, which can integrate multiple
feature cues and temporal consistency in a unified model, is
developed for robust visual tracking. Specifically, instead of
simply concatenating multiple features into a single vector, we
demonstrate how to reorganize these features by taking into
consideration their intercorrelations. Moreover, we also present
an advanced way to reconcile temporal relatedness amongst
multiple consecutive frames, rather than naively using a forget-
ting factor [10], [17]. Second, a fast blockwise diagonal matrix
inversion algorithm is developed to speed up training and
detection. Experiments against state-of-the-art trackers reveal
the underline clues on the importance of “intelligent” feature
integration and temporal modeling, and also illustrate future
directions for the design of modern discriminative trackers.

The rest of this paper is organized as follows. In section
II, we introduce the background knowledge. Then, in sec-
tion III, we discuss the detailed methodology of (MF)2JMT
and extend it under kernel setting. A fast algorithm for
blockwise diagonal matrix inversion is also developed to
speed up training and detection. Following this, an adaptive
scale estimation mechanism is incorporated into our tracker in
section IV. The performance of our proposed approach against
other state-of-the-art trackers is evaluated in section V. This
paper is concluded in section VI.
Notation: Scalars are denoted by lowercase letters (e.g.,

x), vectors appear as lowercase boldface letters (e.g., x), and
matrices are indicated by uppercase letters (e.g., X or X).
The (i, j)-th element of X (or X) is represented by Xij (or
Xij), while [·]T denotes transpose and [·]H denotes Hermitian
transpose. If X (or X) is a square matrix, then X−1 (or
X−1) denotes its inverse. I stands for the identity matrix with
compatible dimensions, diag(x) denotes a square diagonal
matrix with the elements of vector x on the main diagonal.
The i-th row of a matrix X (or X) is declared by the row
vector xi, while the j-th column is indicated with the column
vector xj . If | · | denotes the absolute value operator, then,
for x ∈ Rn, the `1-norm and `2-norm of x are defined as
‖x‖1 ,

∑n
i=1 |xi| and ‖x‖2 ,

√∑n
i=1 x

2
i , respectively.

II. RELATED WORK

In this section, we briefly review previous work of most
relevance to our approach, including popular conventional
trackers, the basic KCF tracker and its extensions.

A. Popular conventional trackers

Success in visual tracking relies heavily on how discrim-
inative and robust the representation of target appearance is
against varying circumstances [18], [19]. This is especially im-
portant for discriminative trackers, in which a binary classifier
is required to distinguish target from background. Numerous
types of visual features have been successfully applied for
discriminative trackers in the last decades, including color
histograms [20], [21], texture features [22], Haar-like features
[23], etc. Unfortunately, none of them can handle all kinds
of varying circumstances individually and the discriminant
capability of a unique type of feature is not stable across

the video sequence [20]. As a result, it becomes prevalent to
take advantage of multiple features (i.e., multi-view represen-
tations) to enable more robust tracking. For example, [24], [25]
used the AdaBoost to combine an ensemble of weak classifiers
to form a powerful classifier, where each weak classifier is
trained online on a different training set using pixel colors
and a local orientation histogram. Note that, several generative
trackers also have improved performance by incorporating
multi-view representations. [26] employed a group sparsity
technique to integrate color histograms, intensity, histograms
of oriented gradients (HOGs) [27] and local binary patterns
(LBPs) [28] via requiring these features to share the same
subset of the templates, whereas [29] proposed a probabilistic
approach to integrate HOGs, intensity and Haar-like features
for robust tracking. These trackers perform well normally, but
they are far from satisfactory when being tested on challenging
videos.

B. The basic KCF tracker and its extensions

Much like other discriminative trackers, the KCF tracker
needs a set of training examples to learn a classifier. The
key idea of KCF tracker is that the augmentation of negative
samples is employed to enhance the discriminative ability of
the tracking-by-detection scheme while exploring the structure
of the circulant matrix to speed up training and detection.

Following the basic KCF tracker, numerous extensions have
been conducted to boost its performance, which generally
fall into two categories: application of improved features and
conceptual improvements in filter learning [30]. The first
category lies in designing more discriminative features to deal
with challenging environments [31], [32] or straightforwardly
concatenating multiple feature cues into a single feature vec-
tor to boost representation power [9], [33]. A recent trend
is to integrate features extracted from convolutional neural
networks (CNNs) trained on large image datasets to replace
the traditional hand-crafted features [34], [35]. The design or
integration of more powerful features often suffers from high
computational burden, whereas blindly concatenating multiple
features assumes the mutual independence of these features
and neglects their interrelationships. Therefore, it is desirable
to have a more “intelligent” manner to reorganize these
features such that their interrelationships are fully exploited.

Conceptually, the theoretical extension on the filter learning
also drawn lots of attentions. Early work focused on accurate
and efficient scale estimation as the basic KCF assumes a fixed
target size [11], [15]. The most recent work concentrated on
developing more advanced convolutional operators. For exam-
ple, [36] employed an interpolation model to train convolution
filters in continuous spatial domain. The so-called Continuous
Convolution Operator Tracker (C-COT) is further improved
in [37], in which the authors introduce factorized convolution
operators to drastically reduce the number of parameters C-
COT as well as the number of filters.

Apart from these two extensions, efforts have been made
to embed the conventional tracking strategies (like part-based
tracking [38]) on KCF framework. For example, [39] de-
veloped a probabilistic tracking reliability metric to measure
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how reliable a patch can be tracked. On the other hand, [40]
employed an online random fern classifier as a re-detection
component for long-term tracking, whereas [16] presented a
biology-inspired framework where short-term processing and
long-term processing are cooperated with each other under a
correlation filter framework. Finally, it is worth noting that,
with the rapid development of correlation filters on visual
tracking, several correlation filter-based thermal infrared track-
ers (e.g., [41]–[43]) have been developed in recent years. This
work only focuses on visual tracking on color video sequences.
We leave extension to thermal infrared video sequences as
future work.

III. THE MULTI-FRAME MULTI-FEATURE JOINT
MODELING TRACKER ((MF)2JMT)

The (MF)2JMT made two strategic extensions to the basic
KCF tracker. Our idea is to integrate the temporal information
and multiple feature cues in a unified model, thus providing
a theoretical sound and computational-efficient solution for
robust visual tracking. To this end, instead of simply concate-
nating different features, the (MF)2JMT integrates multiple
feature cues using a MVL approach to better exploit their
interrelationships, thus forming a more informative representa-
tion to target appearance. Moreover, the temporal consistency
is taken into account under a MTL framework. Specifically,
different from prevalent CFTs that learn filter taps using a
ridge regression function which only makes use of template
(i.e. circulant matrix X) from the current frame, we show that
it is possible to use examples from M (M ≥ 2) consecutive
frames to learn the filter taps very efficiently by exploiting the
structure of blockwise diagonal matrix.

Before our work, there are two ways attempting to in-
corporate temporal consistency into KCF framework. The
Spatio-Temporal Context (STC) tracker [10] and its exten-
sions (e.g., [17]) formulate the spatial relationships between
the target and its surrounding dense contexts in a Bayesian
framework and then use a temporal filtering procedure together
with a forgetting factor to update the spatio-temporal model.
Despite its simplicity, the tracking accuracy of STC tracker
is poor compared with other state-of-the-art KCF trackers
(see Section V-F). On the other hand, another trend is to
learn a temporally invariant feature representation trained on
natural video repository for visual tracking [31]. Although
the learned feature can accommodate partial occlusion or
slight illumination variation, it cannot handle the scenarios
where there are large appearance changes. Moreover, the ef-
fectiveness of trained features depends largely on the selected
repository which suffers from limited generalization capability.
Different from these two kinds of methods, we explicitly
model multiple consecutive frames in a joint cost function
to circumvent abrupt drift in a single frame and to reconcile
temporal relatedness amongst frames in a short period of time.
Experiments demonstrate the superiority of our method.

A. Formulation of (MF)2JMT

We start from the formulation of the basic (MF)2JMT.
Given M training frames, we assume the number of candidate
patches in the t-th (t = 1, 2, · · · ,M ) frame is n. Suppose the

dimensions for the first and second types of features are p
and q respectively1, we denote Xt ∈ Rn×p (Zt ∈ Rn×q) the
matrix consists of the first (second) type of feature in the t-th
frame (each row represents one sample). Also, let yt ∈ Rn×1

represent sample labels. Then, the objective of (MF)2JMT can
thus be formulated as:

min
w0,pt,v0,qt

J =

M∑
t=1

(
‖yt −Xtwt‖22 + λ1 ‖yt − Ztvt‖

2
2

+λ2‖Xtwt − Ztvt‖22
)

+
γ1

M

M∑
t=1

‖pt‖
2
2

+γ2‖w0‖22 +
η1

M

M∑
t=1

‖qt‖
2
2 + η2‖v0‖22,

s.t. wt = w0 + pt

vt = v0 + qt (1)

where λ1, λ2, γ1, γ2, η1, η2 are the non-negative regularization
parameters controlling model complexity. w0 is the regression
coefficients shared by M frames for the first type of feature
and pt denotes the deviation term from w0 in the t-th frame.
The same definition goes for v0 and qt for the second type
of feature.

The problem (1) contains three different items with distinct
objectives, namely the MTL item, the MVL item and the reg-
ularization item. The MTL item, i.e.,

∑M
t=1 ‖yt −Xtwt‖22 +

γ1
M

∑M
t=1 ‖pt‖

2
2 (or

∑M
t=1 ‖yt − Ztvt‖

2
2 + η1

M

∑M
t=1 ‖qt‖

2
2), is

analogous to the formulation of regularized multi-task learning
(RMTL) [14], as it encourages wt (or vt) close to the mean
value w0 (or v0) with a small deviation pt (or qt). The MVL
item ‖yt −Xtwt‖22 +λ1 ‖yt − Ztvt‖

2
2 +λ2‖Xtwt−Ztvt‖22

employs the view consistency principle that widely exists
in MVL approaches (e.g., [44]) to constrain the objectives
learned from two views agree on most training samples.
Finally, the regularization term ‖w0‖22 (or ‖v0‖22) serves to
prevent the ill-posed solution and enhance the robustness of
selected features to noises or outliers.

B. Solution to (MF)2JMT

Minimization of J has a closed-form solution by equating
the gradients of (1) w.r.t. w0,pt,v0 and qt to zero. Albeit
its simplicity, reorganizing linear equation array into standard
form is intractable and computational expensive herein. As an
alternative, we present an equivalent yet simpler form of (1),
which can be solved with matrix inversion in one step.

1This paper only considers two types of features, but the developed objec-
tive function (1) and associated solution can be straightforwardly extended to
three or more feature cues.
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Denote

µ1 =
Mγ2

γ1
, (2)

µ2 =
Mη2

η1
, (3)

Xt =
( Xt√

µ1
,0, · · · ,0︸ ︷︷ ︸

t−1

, Xt,0, · · · ,0︸ ︷︷ ︸
M−t

)
, (4)

Zt =
( Zt√

µ2
,0, · · · ,0︸ ︷︷ ︸

t−1

, Zt,0, · · · ,0︸ ︷︷ ︸
M−t

)
, (5)

w =


√
µ1w0

p1
...

pM

 , v =


√
µ2v0

q1
...

qM

 , (6)

where 0 denotes a zero matrix of the same size as Xt in Xt

(or Zt in Zt), we have:

Xtw = Xtw0 +Xtpt = Xtwt, (7)
Ztv = Ztv0 + Ztqt = Ztvt, (8)

‖w‖22 =

M∑
t=1

‖pt‖22 + µ1‖w0‖22

=

M∑
t=1

‖pt‖22 +
Mγ2

γ1
‖w0‖22, (9)

‖v‖22 =

M∑
t=1

‖qt‖22 + µ2‖v0‖22

=

M∑
t=1

‖qt‖22 +
Mη2

η1
‖v0‖22. (10)

Substituting (7)-(10) into (1) yields:

min
w,v

J =

M∑
t=1

(∥∥yt −Xtw
∥∥2

2
+ λ1

∥∥yt − Ztv∥∥2

2

+ λ2‖Xtw − Ztv‖22
)

+
γ1

M
‖w‖22 +

η1

M
‖v‖22 .

(11)

Denote

y =

 y1
...

yM

 , X =

 X1

...
XM

 , Z =

 Z1

...
ZM

 , (12)

then (11) becomes:

min
w,v

J = ‖y −Xw‖22 + λ1 ‖y − Zv‖22 + λ2‖Xw − Zv‖22

+
γ1

M
‖w‖22 +

η1

M
‖v‖22 . (13)

Equating the gradients of J w.r.t. w and v to zero. With
straightforward derivation, we have:(

(1 + λ2)XTX + γ1
M I −λ2X

TZ

−λ2Z
TX (λ1 + λ2)ZTZ + η1

M I

)(
w
v

)
=

(
XTy

λ1Z
Ty

)
.

(14)

Denote ξ .
= (w,v)T , the solution of J is given by [45]:

ξ =
(
UTDU + R

)−1

UTY

= R−1UT
(
UR−1UT + D−1

)−1

D−1Y, (15)

where

D =

(
(1 + λ2)I −λ2I
−λ2I (λ1 + λ2)I

)
,U =

(
X 0
0 Z

)
,

R =

(
γ1
M I 0
0 η1

M I

)
,Y =

(
y
λ1y

)
. (16)

Having computed wt and vt, the responses of candidate
samples z in the next frame for the trained (MF)2JMT model
can be computed as:

f(z) = Unewξ

= UnewR−1UT
(
UR−1UT + D−1

)−1

D−1Y,

(17)

where

Unew =

(
Xnew 0

0 Znew

)
, (18)

in which Xnew and Znew are feature matrices constructed
from features in the new frame. Specifically, let Xnew =
(X

new

1 , ..., X
new

M )T ∈ RMn×(M+1)p consist of the first type
of feature, we construct X

new

M with feature in the new frame
as defined in (4) and set X

new

1 , ..., X
new

M−1 as zero matrices to
coincide with the size of X in (12). In this sense, only wM

and vM contribute to f(z). The same goes for Znew and Z
new

t

(t = 1, ...,M ).

C. Kernel extension and fast implementation

Although (15) gives a tractable solution to (1), it con-
tains the inversion of UTDU + R with the computational
complexity O(n3) when using the well acknowledged Gaus-
sian elimination algorithm [46]. In this section, for a more
powerful regression function and a fast implementation, we
demonstrate how to incorporate the dense sampling strategy
in the basic (MF)2JMT under the kernel setting to speed up
its tracking and detection. A computational-efficient optimiza-
tion method is also presented by exploiting the structure of
blockwise diagonal matrix.

The dense sampling was considered previously to be a
drawback for discriminative trackers because of the large
number of redundant samples that are required [3]. However,
when these samples are collected and organized properly, they
form a circulant matrix that can be diagonalized efficiently
using the DFT matrix, thereby making the dual rigid regression
problem can be solved entirely in the frequency domain [4].
Due to this attractive property, we first show that it is easy to
embed the “kernel trick” on (MF)2JMT, we will also show
that it is possible to obtain non-linear filters as fast as linear
correlation filters using the dense sampling, both to train and
evaluate. We term this improvement kernel multi-frame multi-
feature joint modeling tracker (K(MF)2JMT).
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Denote

Kxxnew .
= XnewXT ,

Kzznew .
= ZnewZT ,

Kxx .
= XXT ,

Kzz .
= ZZT , (19)

we have

UnewR−1UT =

(
M
γ1

Kxxnew 0

0 M
η1

Kzznew

)
, (20)

and
UR−1UT + D−1 = (

M
γ1

Kxx + τ−1(λ1 + λ2)I
) (

τ−1λ2I
)(

τ−1λ2I
) (

M
η1

Kzz + τ−1(1 + λ2)I
)  ,

(21)

where τ = (1 + λ2)(λ1 + λ2)− λ2
2 = λ1 + λ2 + λ1λ2.

According to (12), Kxxnew consists of M × M block
matrices and the (i, j)-th (i, j = 1, ...,M ) block matrix can
be represented as:

Kxxnew

ij = X
new

i X
T

j = (
1

µ1
+ δij)X

new
i XT

j , (22)

where δij = 1{i=j} with 1{·} denotes the indicator function.
If we project X and Z onto the Reproducing Kernel Hilbert

Space (RKHS), i.e., applying a non-linear transform φ to both
X and Z, we can obtain the kernelized version of (1), i.e.,
K(MF)2JMT. According to [4], (22) can be represented as:

Kxxnew

ij =

(
1

µ1
+ δij

)
C(kxjx

new
i ), (23)

where C(x) denotes a circular matrix generated by x (see
Appendix A for more details). Similarly,

Kxx
ij =

(
1

µ1
+ δij

)
C(kxjxi), (24)

Kzznew

ij =

(
1

µ2
+ δij

)
C(kzjz

new
i ), (25)

Kzz
ij =

(
1

µ2
+ δij

)
C(kzjzi). (26)

Note that C(kxjx
new
i ), C(kxjxi), C(kzjz

new
i ) and C(kzjzi)

are circular matrices, thus can be made diagonal as expressed
below [47]:

C(kxjx
new
i ) = Fdiag(k̂

xix
new
j

)FH ,

C(kxjxi) = Fdiag(k̂
xixj

)FH ,

C(kzjz
new
i ) = Fdiag(k̂

zjz
new
i

)FH ,

C(kzjzi) = Fdiag(k̂
zizj

)FH . (27)

where F is the DFT matrix. Combining (20)-(27), according
to Appendix A, the f(z) (defined in (17)) under kernel setting
can be computed as:

f(z) = UnewR−1UT
(
UR−1UT + D−1

)−1

D−1Y

= FΩ1F
H
(
FΩ2F

H
)−1

D−1Y

= FΩ1Ω−1
2 FHD−1Y, (28)

where Ω1 and Ω2 are given in (29) and F is a
block diagonal matrix with blocks F on its main diagonal.

Denote

Lx =
M

γ1

((
1

µ1
+ δij

)
diag(kxjxi)

)M
i,j=1

,

Lz =
M

η1

((
1

µ2
+ δij

)
diag(kzjzi)

)M
i,j=1

, (30)

then

Ω2 =

 Lx + τ−1(λ1 + λ2)I
(
τ−1λ2I

)(
τ−1λ2I

)
Lz + τ−1(1 + λ2)I

 . (31)

According to the Equation (2.76) of [45], we have:

Ω−1
2 = (

Lz + τ−1(1 + λ2)I
)
A−1

(
− τ−1λ2I

)
B−1(

− τ−1λ2I
)
A−1

(
Lx + τ−1(λ1 + λ2)I

)
B−1

 ,

(32)

where

A =
(
Lx + τ−1(λ1 + λ2)I

) (
Lz + τ−1(1 + λ2)I

)
− τ−2λ2

2I,

B =
(
Lz + τ−1(1 + λ2)I

) (
Lx + τ−1(λ1 + λ2)I

)
− τ−2λ2

2I

= AT . (33)

It is obvious that A and B are Mn × Mn
blockwise diagonal matrix that can be partitioned into
M × M diagonal matrices of size n × n. According
to Theorem 1, the computational cost for A−1 or B−1

is O(nM3). Besides, it takes nM3 product operations
to compute Lx × Lz ,

(
Lz + τ−1(1 + λ2)I

)
× A−1 and(

Lx+τ−1(λ1 +λ2)I
)
×B−1. In this sense, the computational

cost for Ω−1
2 is still O(nM3). On the other hand, the DFT

bounds the cost at nearly O(n log n) by exploiting the
circulant structure [4]. Therefore, the overall cost for
computing f(z) is O(Mn log n + nM3) given that there are
2M inverse DFTs in (28).

Theorem 1: Given an invertible blockwise diagonal matrix
S that can be partitioned into M ×M diagonal matrices of
size n×n, the computational complexity of S−1 is O(nM3).

Proof: Denote Sij (i, j = 1, ...,M ) the (i, j)-th block
of S, where Sij is a diagonal matrix of size n × n. After a
series of elementary matrix operations, e.g., pre-multiply or
post-multiply the matrix S by different elementary matrices,
we can interchange the rows and columns of S arbitrarily.
Therefore, there exists an invertible matrix P with PPT = I,
such that the matrix S̃ = PSPT , (S̃ĩj̃)ĩ,j̃=1,··· ,n satisfies:
the elements of S̃ĩj̃ come from S with row indices (̃i, n +

ĩ, 2n+ ĩ, · · · , (M−1)n+ ĩ) and column indices (j̃, n+ j̃, 2n+
j̃, · · · , (M − 1)n + j̃). Obviously, S̃ĩj̃ = 0 for ĩ 6= j̃. Thus,

S̃
−1

can be represented as:

S̃
−1

=


S̃−1

11 0 · · · 0

0 S̃−1
22 · · · 0

...
...

. . .
...

0 0 · · · S̃−1
nn

 . (34)
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Ω1 =

 M
γ1

((
1
µ1

+ δij
)
diag(kxjx

new
i )

)M
i,j=1

0

0 M
η1

((
1
µ2

+ δij
)
diag(kzjz

new
i )

)M
i,j=1


=


((

1
γ2

+ M
γ1
δij
)
diag(kxjx

new
i )

)M
i,j=1

0

0
((

1
η2

+ M
η1
δij
)
diag(kzjz

new
i )

)M
i,j=1

 ,

Ω2 =

 M
γ1

((
1
µ1

+ δij
)
diag(kxjxi )

)M
i,j=1

+ τ−1(λ1 + λ2)I
(
τ−1λ2I

)
(
τ−1λ2I

)
M
η1

((
1
µ2

+ δij
)
diag(kzjzi )

)M
i,j=1

+ τ−1(1 + λ2)I


=


((

1
γ2

+ M
γ1
δij
)
diag(kxjxi )

)M
i,j=1

+ τ−1(λ1 + λ2)I
(
τ−1λ2I

)
(
τ−1λ2I

) ((
1
η2

+ M
η1
δij
)
diag(kzjzi )

)M
i,j=1

+ τ−1(1 + λ2)I

 .

(29)

Given that S−1 = PT S̃
−1

P, which means S−1 can be
obtained by allocating the elements of S̃−1

ĩ̃i
to locations with

row indices (̃i, n+ ĩ, 2n+ ĩ, · · · , (M − 1)n+ ĩ) and column
indices (j̃, n + j̃, 2n + j̃, · · · , (M − 1)n + j̃). The main
computational cost of S−1 comes from the calculation of
S̃−1

ĩ̃i
, i = 1, · · · , n. The size of S̃ĩ̃i is M × M , thus the

computational complexity of S̃ĩ̃i is O(M3). As a result, the
computational complexity of S−1 is O(nM3).

IV. SCALE ADAPTIVE K(MF)2JMT

To further improve the overall performance of K(MF)2JMT,
we follow the Integrated Correlation Filters (ICFs) framework
in [16] to cope with scale variations. The ICF is a cascading-
stage filtering process that performs translation estimation and
scale estimation, respectively (same as the pipeline adopted
in [15] and [9]). Unless otherwise specified, the K(MF)2JMT
mentioned in the following experimental parts refers to the
scale adaptive one.

Specifically, in scale adaptive K(MF)2JMT, the training of
basic K(MF)2JMT is accompanied by the training of another
1D Discriminative Scale Space Correlation Filter (DSSCF)
[15] and this new trained filter is performed for scale estima-
tion. To evaluate the trained DSSCF, S image patches centered
around the location found by the K(MF)2JMT are cropped
from the image, each of size asL × asN , where L × N is
the target size in the current frame, a is the scale factor, and
s ∈ {−S−1

2 , ...S−1
2 }. All S image patches are then resized to

the template size for the feature extraction. Finally, the final
output from the scale estimation is given as the image patch
with the highest filtering response. Similar to K(MF)2JMT, the
model parameters are also updated in an interpolating manner
with learning rate η. We refer readers to [15] for more details
and the implementation of DSSCF.

V. EXPERIMENTS

We conduct four groups of experiments to demonstrate the
effectiveness and superiority of our proposed K(MF)2JMT.
First, we implement K(MF)2JMT and several of its base-
line variants, including multi-feature-only tracker (MFT),
multi-frame-only tracker (MFT-2), scale-adaptive-only tracker
(SAT), scale-adaptive multi-feature tracker (SAMFT) and

scale-adaptive multi-frame tracker (SAMFT-2), to analyze and
evaluate the component-wise contributions to the performance
gain. We then evaluate our tracker against 33 state-of-the-
art trackers on Object Tracking Benchmark (OTB) 2015 [5].
Following this, we present results on Visual Object Tracking
(VOT) 2015 challenge [48]. Finally, we compare K(MF)2JMT
with several other representative CFTs, including MOSSE
[49], SAMF [9], MUSTer [16] and the recently published C-
COT [36], to reveal the properties of our proposed tracker
among CFTs family and also illustrate future research direc-
tions for modern discriminative tracker design.

A. Experimental setup

To make a comprehensive evaluation, we use all the color
video sequences in OTB 2015 dataset (77 in total). These
sequences are captured in various conditions, including occlu-
sion, deformation, illumination variation, scale variation, out-
of-plane rotation, fast motion, background clutter, etc. We use
the success plot to evaluate all trackers on OTB dataset. The
success rate counts the percentage of the successfully tracked
frames by measuring the overlap score S for trackers on each
frame. The average overlap measure is the most appropriate
for tracker comparison, which accounts for both position and
size. Let BT denote the tracking bounding box and BG denote
the ground truth bounding box, the overlap score is defined as
S = |BT∩BG|

|BT∪BG| , where ∩ and ∪ represent the intersection and
union of two regions, and | · | denotes the number of pixels in
the region. In success plot, S is varied from 0 to 1, and the
ranking of trackers is based on the Area Under Curve (AUC)
score. We also report the speed of trackers in terms of average
frames per second (FPS) over all testing sequences.

We also test tracker performance on VOT 2015 dataset
containing 60 video sequences. The VOT challenge is a
popular competition for single object tracking. Different from
OTB 2015 dataset, a tracker is restarted in the case of a failure
(i.e., there is no overlap between the detected bounding box
and ground truth) in the VOT 2015 data set. For the VOT
2015 dataset, tracking performance is evaluated in terms of
accuracy (overlap with the ground-truth), robustness (failure
rate) and the expected average overlap (EAO). EAO is obtained
by combining the raw values of accuracy and failures. Its score
represents the average overlap a tracker would obtain on a
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typical short-term sequence without reset. For a full treatment
of these metrics, interested readers can refer to [48].

B. Implementation details of the proposed tracker

We set the regularization parameters to λ1 = 0.5, λ2 =
1.32, γ1 = 0.0006, γ2 = 0.005, η1 = 0.001, η2 = 0.005.
These parameters are tuned with a coarse-to-fine procedure.
In the coarse module, we roughly determine a satisfactory
range for each parameter (for example, the range of γ1 is
[0.0001 0.001]). Here, the word “satisfactory” means that the
value in the range can achieve higher mean success rate at
the threshold 0.5 in the OTB 2015 dataset. Then, in the fine-
tuning module, we divide these parameters into three groups
based on their correlations: (1) {λ1, λ2}; (2) {γ1, γ2}; and (3)
{η1, η2}. When we test the value of one group of parameters,
other groups are set to default values, i.e., the mean value of
the optimal range given by the coarse module. In each group,
the parameters are tuned with grid search (for example, γ1

in the first group is tuned at the range [0.0001 0.001] with
an interval 0.0001). We finally pinpointed the specific value
as the one that can achieve the highest mean success rate
(for example, the final value of γ1 is 0.0006). Besides, we
set the learning rate to η = 0.025 as previous work [4], [9],
[15] and model three consecutive frames in the MTL module,
i.e., M = 3. We select HOGs [27] and color names [50]
for image representation in the MVL module. The HOGs
and color names are complementary to each other, as the
former puts emphasis on the image gradient which is robust
to illumination and deformation while the latter focuses on
the color information which is robust to motion blur. For
HOGs, we employ a variant in [51], with the implementation
provided by [52]. More particular, the cell size is 4 × 4
and number of orientations is set to 9. For color names,
we map the RGB values to a probabilistic 11 dimensional
color representation which sums up to 1. All the experiments
mentioned in this work are conducted using MATLAB on
an Intel i7-4790 3.6GHz Quad-Core PC with 8GB RAM.
MATLAB code is available from our project homepage http:
//bmal.hust.edu.cn/project/KMF2JMTtracking.html.

C. Evaluation on component-wise contributions

Before systematically evaluating the performance of our
proposed tracker, we first compare K(MF)2JMT with its
baseline variants to demonstrate the component-wise con-
tributions to the performance gain. To this end, we imple-
ment seven trackers with various degraded settings, including
multi-feature-only tracker (MFT) which just uses multiple
feature cues, multi-frame-only tracker (MFT-2) which just
uses the temporal relatedness across consecutive frames, scale-
adaptive-only tracker (SAT) which just concerns scale varia-
tions, scale-adaptive multi-feature tracker (SAMFT) and scale-
adaptive multi-frame tracker (SAMFT-2). Besides, to validate
the efficiency of modeling multiple feature cues under a MVL
framework rather than simply concatenating them, we also
implement Multiple Feature tracker with feature concatenation
(MFT-C). Note that, the KCF [4], which only uses the HOG
feature without temporal modeling and scale searching (i.e.,

TABLE I
A COMPARISON OF OUR K(MF)2JMT WITH DIFFERENT BASELINE
VARIANTS. THE MEAN OVERLAP PRECISION (OP) SCORE (%) AT

THRESHOLD 0.5 OVER ALL THE 77 COLOR VIDEOS IN THE OTB DATASET
ARE PRESENTED. THE BEST TWO RESULTS ARE MARKED WITH RED AND

BLUE RESPECTIVELY. MF, TM AND SA ARE THE ABBREVIATION OF
MULTIPLE FEATURES, TEMPORAL MODELING AND SCALE ADAPTIVE,

RESPECTIVELY.

MF TM SA mean success rate
KCF no no no 51.0
MFT yes no no 54.2

MFT-C yes no no 53.7
MFT-2 no yes no 54.3

SAT no no yes 56.4
SAMFT yes no yes 60.1

SAMFT-2 no yes yes 61.7
K(MF)2JMT-2 yes yes no 58.1
K(MF)2JMT yes yes yes 64.3

λ1 = λ2 = 0, η1 = γ1 = +∞, M = 1), serves as a baseline
in this section.

Table I summarized the differences between these trackers,
where K(MF)2JMT-2 denotes the basic kernel multi-frame
multi-feature joint modeling tracker without scale estimation.
In this table, we report the mean success rate at the threshold
of 0.5, which corresponds to the PASCAL evaluation crite-
rion [53]. Although these trackers share one or more common
components, their tracking performances differ significantly.
This indicates that the visual features, temporal relatedness
and scale searching strategy all are essentially important to
the visual tracking tasks. KCF ranks the lowest among the
compared trackers as expected. MFT (or MFT-C), MFT-2 and
SAT extend KCF by augmenting the feature space with color
information, taking advantage of temporal information with
frame relatedness and introducing scale adaptive searching
strategy respectively, thus achieving a few improvements. MFT
outperforms MFT-C with a more “intelligent” feature fusion
strategy. Besides, it is obvious that the scale adaptive searching
can effectively handle scale variations, thus obtaining a large
improvement in success rate (see SAT, SAMFT, SAMFT-2
as against KCF, MFT and MFT-2 in Table I). Moreover, by
comparing MFT-2 with MFT and comparing SAMFT-2 with
SAMFT, one can see that the integration of multiple frames
plays a more positive role to improve tracking performance
than the integration of multiple features. Finally, it is interest-
ing to find that the success rate gains of MFT, MFT-2 and SAT
are 3.2%, 3.3% and 5.4% respectively compared with KCF,
while K(MF)2JMT gets a 13.3% improvement. This indicates
that the K(MF)2JMT is not just the simple combination of the
MFT, MFT-2 and SAT.

D. Comparison with state-of-the-art trackers

In this section, we provide a comprehensive comparison of
our proposed K(MF)2JMT with 33 state-of-the-art trackers on
OTB 2015 dataset: 1) 4 state-of-the-art trackers that do not
follow CFT framework yet achieved remarkable performance
on OTB 2015, that is MEEM [54], TGPR [55], LSST [56]
and MTMVTLAD [26]; 2) the 29 popular trackers provided
in [5], such as Struck [57], ASLA [58], SCM [59], TLD [60],
MTT [61], VTD [62], VTS [63] and MIL [64]. Note that, as

http://bmal.hust.edu.cn/project/KMF2JMTtracking.html
http://bmal.hust.edu.cn/project/KMF2JMTtracking.html
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(a) One pass evaluation (OPE)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of TRE
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(b) Temporal robustness evaluation (TRE)
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Success plots of SRE
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(c) Spatial robustness evaluation (SRE)

Fig. 1. Success plot showing the performance of our K(MF)2JMT compared to 33 state-of-the-art methods on the OTB dataset. The AUC score for each
tracker is reported in the legend. Only the top ten trackers are displayed in the legend for clarity in (a) OPE, (b) TRE and (c) SRE. Our approach provides
the best performance in OPE and the second best performance in TRE and SRE.
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Success plots of OPE - fast motion (35)

MEEM [0.522]
K(MF)^2JMT [0.503]
TGPR [0.431]
Struck [0.408]
MTMVTLAD [0.401]
TLD [0.392]
CXT [0.372]
LSK [0.336]
SCM [0.335]
ASLA [0.333]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE - background clutter (27)
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Success plots of OPE - motion blur (35)
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Success plots of OPE - deformation (27)
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Success plots of OPE - illumination variation (31)
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Success plots of OPE - in-plane rotation (49)
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Success plots of OPE - low resolution (4)
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Success plots of OPE - occlusion (37)
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Success plots of OPE - out-of-plane rotation (51)
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Success plots of OPE - out of view (12)
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Success plots of OPE - scale variation (44)
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Fig. 2. Success plots for each attribute on OTB dataset. The value presented in the title represents the number of videos corresponding to the attributes. The
success score is shown in the legend for each tracker. Our approach provides the best performance on 7 out of 11 attributes, namely motion blur, deformation,
illumination variation, low resolution, occlusion, out-of-plane rotation, and scale variation.

a generative tracker, MTMVTLAD has similar motivations as
our approach, as it also attempts to integrate multi-task multi-
view learning to improve tracking performance. However,
different from K(MF)2JMT, MTMVTLAD casts tracking as a
sparse representation problem in a particle filter framework.
Moreover, MTMVTLAD does not reconcile the temporal
coherence in consecutive frames explicitly.

The success plot of all the 34 competing trackers using One
Pass Evaluation (OPE) is shown in Fig. 1(a). For clarity, we
only show the top 10 trackers in this comparison. As can be
seen, our proposed K(MF)2JMT achieves overall the best per-

formance, which persistently outperforms the overall second
and third best trackers, i.e., MEEM [54] and TGPR [55]. If
we look deeper (see a detailed summarization in Table II), the
MEEM tracker, which uses an entropy-minimization-based en-
semble learning strategy to avert bad model update, obtains a
mean success rate of 60.9%. The transfer learning based TGPR
tracker achieves a mean success rate of 52.0%. By contrast, our
approach follows a CFT framework, while using an explicit
temporal consistency regularization to enhance robustness. The
MTMVTLAD tracker provides a mean success rate of 47.2%.
Our tracker outperforms MTMVTLAD by 17.1% in mean
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TABLE II
A DETAILED COMPARISON OF OUR K(MF)2JMT WITH MEEM [54],

TGPR [55] AND MTMVTLAD [26]. THE MEAN OVERLAP PRECISION
(OP) SCORE (%) AT THRESHOLD 0.5 OVER ALL THE 77 COLOR VIDEOS IN

THE OTB DATASET ARE PRESENTED.

mean success rate FPS
MEEM 60.9 13.53
TGPR 52.0 0.70

MTMVTLAD 47.2 0.30
K(MF)2JMT 64.3 30.46

success rate. Finally, it is worth noting that our approach
achieves superior performance while operating at real time,
while the mean FPS for MEEM, TGPR and MTMVTLAD
are approximately 13.53, 0.70 and 0.30, respectively.

We also report the tracking results using Temporal Ro-
bustness Evaluation (TRE) and Spatial Robustness Evalua-
tion (SRE). For TRE, it runs trackers on 20 sub-sequences
segmented from the original sequence with different lengths,
and SRE evaluates trackers by initializing them with slightly
shifted or scaled ground truth bounding boxes. With TRE
and SRE, the robustness of each evaluated trackers can be
comprehensively interpreted. The SRE and TRE evaluations
are shown in Fig. 1(b) and Fig. 1(c) respectively. In both
evaluations, our approach provides a constant performance
gain over the majority of existing methods. The MEEM
achieves better robustness than our approach. A possible
reason is that MEEM combines the estimates of an ensemble
of experts to mitigate inaccurate predictions or sudden drifts,
so that the weaknesses of the trackers are reciprocally com-
pensated. We also perform an attribute based analysis on our
tracker. In OTB, each sequence is annotated with 11 different
attributes, namely: fast motion, background clutter, motion
blur, deformation, illumination variation, in-plane rotation, low
resolution, occlusion, out-of-plane rotation, out-of-view and
scale variation. It is interesting to find that K(MF)2JMT ranks
the first on 7 out of 11 attributes (see Fig. 2), especially
on illumination variation, occlusion, out-of-plane rotation and
scale variation. This verifies the superiority of K(MF)2JMT on
target appearance representation and its capability on discover-
ing reliable coherence from short-term memory. However, the
overwhelming advantage no longer exists for fast motion and
out-of-view. This is because the temporal consistency among
consecutive frames becomes weaker in these two scenarios.
The qualitative comparison shown in Fig. 3 corroborates
quantitative evaluation results. It is worth noting that, we
strictly follow the protocol provided in [5] and use the same
parameters for all sequences.

E. VOT 2015 Challenge

In this section, we present results on the VOT 2015
challenge. We compare our proposed K(MF)2JMT with 62
participating trackers in this challenge. For a fair comparison,
the DSST [15] is substituted with its fast version (i.e., fDSST
[65]) raised by the same authors, as fDSST demonstrates
superior performance than DSST as shown in [65].

In the VOT 2015 benchmark, each video is annotated by
five different attributes: camera motion, illumination change,

occlusion, size change and motion change. Different from
OTB 2015 dataset, the attributes in VOT 2015 are annotated
per-frame in a video. Fig. 4 shows the accuracy and robustness
(AR) rank plots generated by sequence pooling and attribute
normalization. The pooled AR plots are generated by con-
catenating the experimental results on all sequences to directly
obtain a rank list, while the attribute normalized AR rank plots
are obtained based on the average of ranks achieved on these
individual attributes. Fig. 5 shows the EAO ranks. Only results
for the top-20 trackers in the VOT challenge are reported for
clarity.

It is easy to summarize some key observations from these
figures:
1) The CFTs (including our tracker K(MF)2JMT, Deep-
SRDCF [35], SRDCF [66], RAJSSC [67], NSAMF [48],
SAMF [9]) account for majority of the top-performing track-
ers. By fully exploiting the representation power of CNNs
or rotating candidate samples to augment candidate set, MD-
Net [68] and sPST [69] also demonstrate superior (or even the
best) performance. This result indicates that a well-designed
discriminative tracker with conventional tracking-by-detection
scheme and random sampling in the detection phase can
achieve almost the same tracking accuracy with state-of-the-
art CFTs coupled with dense sampling, at the cost of high
computational burden (as officially reported in [48]).
2) Among top-performing CFTs, K(MF)2JMT tied for the
first place with DeepSRDCF, SRDCF, RAJSSC and NSAMF
in terms of tracking accuracy. However, the robustness of
K(MF)2JMT is inferior to DeepSRDCF and SRDCF. Both
DeepSRDCF and SRDCF introduce a spatial regularization
penalty term to circumvent boundary effects caused by conven-
tional circular correlation, thus significantly mitigating inaccu-
rate training samples and restricted searching regions. How-
ever, one should note that these two trackers can hardly run
in real time. A thorough investigation between K(MF)2JMT
and DeepSRDCF is demonstrated in Section V-F.
3) Our tracker outperforms RAJSSC, NSAMF and SAMF in
terms of robustness and EAO values. All these trackers use
HOGs and color information to describe target appearance
under a scale-adaptive framework. The performance difference
indicates that our K(MF)2JMT enjoys an advanced feature fu-
sion scheme and the integration of multiple frames is beneficial
to performance gain.

Apart from these three observations, there are other in-
teresting points. For example, the NSAMF achieves a large
performance gain compared with SAMF. The main difference
is that NSAMF substitutes the color name with color proba-
bility. On the other hand, the EBT [70] reaches a fairly high
robustness and EAO value. However, its tracking accuracy
is desperately poor. One possible reason is that the adopted
contour information does not have desirable adaptability to
target scale and aspect ratio changes.

F. Comparison among correlation filter-based trackers (CFTs)

In the last section, we investigate the performance of 15
representative CFTs. Our goal is to demonstrate the effective-
ness of K(MF)2JMT and reveal its properties when compared
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Fig. 3. A qualitative comparison of our method with five state-of-the-art trackers. Tracking results are shown on four example videos from the OTB 2015
dataset. The videos show challenging situations, such as (a) occlusion, (b) illumination variation, (c) scale variations, and (d) out-of-plane rotation. Our
approach offers superior performance compared to the existing trackers in these challenging situations. (e) shows tracker legend.

with other CFT counterparts. We also attempt to illustrate the
future research directions of CFTs through a comprehensive
evaluation. Table III summarized the basic information of the
selected CFTs as well as their corresponding FPS values (some
descriptions are adapted from [71]).

Fig. 6 shows the AUC scores of success plots vs. FPS for
all competing CFTs in OPE, TRE and SRE, respectively. The
dashed vertical line (with a FPS value of 25 [72]) separates
the trackers into real-time trackers and those cannot run in
real time. Meanwhile, the solid horizontal line (mean of
AUC values for all competing CFTs) separates trackers into
well-performed trackers and those perform poorly in terms
of tracking accuracy. As can be seen, our method performs
the best in terms of accuracy among all real-time trackers,
thus achieving a good trade-off in speed and accuracy. This
suggests that our modifications on the basic KCF tracker
are effective and efficient. By contrast, although introducing
long-term tracking strategy (e.g., MUSTer, LCT) or imposing
spatial regularization penalty term (e.g., DeepSRDCF) can
augment tracking performance as well, most of these mod-
ifications cannot be directly applied in real applications where
the real-time condition is a prerequisite. This unfortunate fact
also applies to C-COT, in which the hand-crafted features
are substituted with powerful CNN features. Therefore, a
promising research direction is to investigate computational-
efficient long term tracking strategy or spatial regularization
with little or no sacrifice in speed.

Finally, it is worth mentioning that our approach provides a
consistent gain in performance compared to MvCFT, although
both methods employ the same feature under a MVL frame-
work. The MvCFT only fuses tracking results from different
view to provide a more precise prediction. By contrast, our
approach enjoys a more reliable and computational-efficient
training model. On the other hand, it is surprising to find
that SAMF can achieve desirable performance on both TRE
and SRE experiments. One possible reason is that the scale
estimation method in SAMF, i.e., exhaustively searching a
scaling pool, is more robust to scale variations (although time-

consuming).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed kernel multi-frame multi-feature
joint modeling tracker (K(MF)2JMT) to promote the original
correlation filter-based trackers (CFTs) by exploiting multi-
ple feature cues and the temporal consistency in a unified
framework. A fast blockwise diagonal matrix inversion algo-
rithm has been developed to speed up learning and detection.
An adaptive scale estimation mechanism was incorporated
to handle scale variations. Experiments on OTB 2015 and
VOT 2015 datasets show that K(MF)2JMT improves tracking
performance in contrast with most state-of-the-art trackers.
Our tracker performs well in terms of overlap success in the
context of large appearance variations caused by occlusion,
illumination, scale variation, etc. Our tracker also demonstrates
favorable tracking accuracy and robustness compared with
prevalent trackers from different categories (not limited to
CFTs). We finally show that K(MF)2JMT can achieve the best
tracking accuracy among state-of-the-art real-time correlation
filter-based trackers (CFTs).

In future work, we will study how to effectively handle
severe drifts and shot changes. For the problem of drifts,
possible solutions include closed-loop system design [75] or
tracking-and-verifying framework [72]. On the other hand, to
circumvent the existence of shot (or scene) changes, possible
modifications include assigning different weights to different
frames in the overall objective Eq. (1) or explicitly incorporat-
ing a short change detector (e.g., [76]), such that the tracker
can automatically detect the shot changes. Once a shot change
is confirmed, the tracker needs to re-identify the location of
the target (see Supplementary Material for initial results).
At the same time, we are also interested in investigating
computational efficient long term tracking strategy or spatial
regularization to further augment tracking accuracy.

APPENDIX A
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TABLE III
SELECTED COMPETING CFTS (INCLUDING SUMMARIZED MAJOR CONTRIBUTIONS) AND THEIR CORRESPONDING FPS VALUES (ADAPTED FROM [71]).

Published year Major contribution FPS
MOSSE [49] 2010 Pioneering work of introducing correlation filters for visual tracking. 367.31

CSK [73] 2012 Introduced Ridge Regression problem with circulant matrix to apply kernel methods. 336.00
STC [10] 2014 Introduced spatio-temporal context information. 572.03
CN [74] 2014 Introduced color attributes as effective features. 171.69

DSST [15] 2014 Relieved the scaling issue using feature pyramid and 3-dimensional correlation filter. 39.54
SAMF [9] 2014 Integrated both color feature and HOG feature; Applied a scaling pool to handle scale variations. 17.23
KCF [4] 2015 Formulated the work of CSK and introduced multi-channel HOG feature. 241.70
LCT [40] 2015 Introduced online random fern classifier as re-detection component for long-term tracking. 21.63

MUSTer [16] 2015 Proposed a biology-inspired framework to integrate short-term processing and long-term processing. 4.54
RPT [39] 2015 Introduced reliable local patches to facilitate tracking. 4.76
CF2 [34] 2015 Introduced features extracted from convolutional neural networks (CNN) for visual tracking. 10.76

DeepSRDCF [35] 2015 Introduced CNN features for visual tracking and a spatial regularization term to handle bound effect. 0.21
MvCFT [12] 2016 Introduced Kullback-Leibler (KL) divergence to fuse multiple feature cues. 7.07
C-COT [36] 2016 Employed an implicit interpolation model to train convolutional filters in continuous spatial domain. 0.22

K(MF)2JMT 2018 Integrated multiple feature cues and temporal consistency in a unified model. 30.46
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(e) Tracker legend

Fig. 4. The accuracy and robustness (AR) rank plots generated by (a)
sequence pooling and by (b) attribute normalization in the VOT 2015 dataset.
The accuracy and robustness rank are plotted along the vertical and horizontal
axis respectively. (c) and (d) demonstrate the zoomed-in figure of (a) and (b)
respectively, in which only top-10 accuracy and robustness ranks are plotted.
(e) shows the tracker legend. Our proposed K(MF)2JMT (denoted by the red
circle) achieves top-6 performance in terms of both accuracy and robustness
among 63 competitors in both experiments.

CIRCULAR MATRIX AND BLOCKWISE CIRCULAR MATRIX

Given a vector x = [x0, x1, ..., xn−1]T of length n and its
Discrete Fourier Transform (DFT) x̂ = F(x), the circular
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Fig. 5. The expected average overlap (EAO) graphs with trackers ranked
from right to left. The right-most tracker is the top-performing in terms of
EAO values. The grey solid line denotes the average performance of trackers
published at ICCV, ECCV, CVPR, ICML or BMVC in 2014/2015 (nine
papers from 2015 and six from 2014), beyond which a tracker can be thought
of as state of the art [48]. The green dashed line denotes the performance of
VOT 2014 winner (i.e., fDSST [65]). See Fig. 4 for legend.

matrix X = C(x) generated by x has the following form:

X = C(x) =


x0 x1 x2 · · · xn−1

xn−1 x0 x1 · · · xn−2

xn−2 xn−1 x0 · · · xn−3

...
...

...
. . .

...
x1 x2 x3 · · · x0

 . (35)

[47] proved that X can be diagonalized as:

X = Fdiag(x̂)FH , (36)

where F is known as the DFT matrix (x̂ =
√
nFx), and

diag(x̂) denotes a square diagonal matrix with elements of x̂
on the diagonal.

We term X blockwise circular matrix if it consists of M×M
blocks Xij (i, j = 1, ...,M ) and each block Xij is a circular
matrix generated by xij of length n. We then denote F a block
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(c) Spatial robustness evaluation (SRE)

Fig. 6. Speed and accuracy plot of state-of-the-art CFTs on OTB 2015 dataset. We use the AUC score of success plots to measure tracker accuracy or
robustness. The dashed vertical line (with a FPS value of 25 [72]) separates the trackers into real-time trackers and those cannot run in real time. Meanwhile,
the solid horizontal line (mean of AUC values for all competing CFTs) separates trackers into well-performed trackers and those perform poorly in terms of
tracking accuracy. The proposed K(MF)2JMT achieves the best accuracy among all real-time trackers in terms of (a) OPE, (b) TRE and (c) SRE.

diagonal matrix with blocks F on the main diagonal:

F =

 F · · · 0
...

. . .
...

0 · · · F

 (37)

and Σ a blockwise diagonal matrix:

Σ =

 diag(x̂11) · · · diag(x̂1M )
...

. . .
...

diag(x̂M1) · · · diag(x̂MM )

 , (38)

then X can be decomposed as:

X = FΣFH . (39)
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SUPPLEMENTARY MATERIAL TO ROBUST VISUAL TRACKING USING MULTI-FRAME MULTI-FEATURE JOINT MODELING

A. K(MF)2JMT on video sequences with shot changes and possible modifications

In this section, we provide tracking results of K(MF)2JMT and five state-of-the-art trackers (i.e., MEEM [54], TGPR [55],
Struck [57], SCM [59], ASLA [58]) on five video sequences (three are from OTB 2015, the remaining two are from VOT2015
benchmark) with shot changes or scene cuts. We also suggest two modifications to our current K(MF)2JMT to alleviate the
negative effects incurred by the these changes.

The first modification is to give different weights to different frames in the overall objective of K(MF)2JMT (i.e., Eq. (1)
in the main text). The motivation is intuitive: in the scenarios of shot changes or scene cuts, the temporal coherence (from
previous frame) becomes weaker and the tracker needs to assign more weight to the most adjacent (or neighboring) frame to
better capture the instantaneous information. The second modification is to incorporate a shot change detector (e.g., [76], [77])
into our K(MF)2JMT, such that the system can automatically detect the shot changes. Once a shot change is confirmed, the
system needs to re-detect or re-identify the location of the target. However, one should note that, there is no guarantee that
the selected shot detector can reconcile with the given tracker. Moreover, the integration of shot detector will introduce more
hyper-parameters.

The selected videos are DragonBaby, BlurOwl, Soccer, Singer1 and Singer3. In the video DragonBaby, the shot change is
caused by varying camera-subject distances, i.e., there is shot change from full shot to medium shot2. In the video BlurOwl,
the shot change is caused by the sudden changes of camera point-of-view or angle. In the video Soccer, the shot change is
caused by either the gradual changes of camera point-of-view or the varying camera-subject distances. In the videos Singer1
and Singer3, the shot change is caused by (rapid) changes of both camera point-of-view and camera-subject distances.

We implement the first modification to validate its effectiveness due to its simplicity. Specifically, given M training frames
in the overall objective, the weight in the current frame is A0, then the weights in previous frames are decayed inversely
proportional to the square of the distance from the current frame (i.e., the weight in the most adjacent frame is A0/4, the
weight in the second most adjacent frame is A0/9, and the weight in the farthest frame is A0/M

2). We term this modification
K(MF)2JMT-M1 and set A0 = 5 in the following proof-of-concept experiment3. Fig. 7 plots the tracking results of our
K(MF)2JMT and K(MF)2JMT-M1 as well as their five competitors. Table IV summarizes the overlap precision (%) at threshold
0.5 for all competing trackers.

As can be seen, our basic K(MF)2JMT performs favorably in these videos, but it may miss the target or overestimate the
target size due to unconstrained shot changes. The simple modification can effectively alleviate the negative effects incurred
by these changes, thus further improving the performance of K(MF)2JMT. This result suggests that the precise utilization of
temporal information (coupled with a careful weighting strategy) is preferred in (unconstrained) videos containing shot changes
or scene cuts. At the same time, it also suggests the (possible) existence of the room for performance improvement with an
advanced strategy to address shot changes. We leave the implementation of the second modification as future work.

TABLE IV
A COMPARISON OF K(MF)2JMT AND K(MF)2JMT-M1 WITH FIVE STATE-OF-THE-ART TRACKERS. FOR EACH TRACKER, THE OVERLAP PRECISION (%)

AT THRESHOLD 0.5 IS PRESENTED. THE BEST TWO RESULTS ARE MARKED WITH RED AND BLUE RESPECTIVELY.

MEEM TGPR STRUCK SCM ASLA K(MF)2JMT K(MF)2JMT-M1
DragonBaby 65.5 73.5 8.8 23.0 15.0 46.0 66.4

BlurOwl 98.6 51.2 98.6 21.6 17.6 55.9 90.2
Soccer 36.0 13.0 15.6 23.7 12.5 56.6 78.6
Singer1 25.1 22.8 29.9 100 100 93.7 98.6
Singer3 15.3 15.3 24.4 15.3 16.0 17.6 37.4
Mean 48.1 35.2 35.5 36.7 32.2 54.0 74.2

2Please refer to [78] for definitions of full shot, medium shot, etc.
3The parameter A0 is selected, from the range [1, 10] with interval 1, as the one that achieves the highest mean success rate among all selected video

sequences with scene cuts.
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#0076 #0078 #0084 #0086 #0088 #0096 #0098

(a) Shot changes in DragonBaby: there are abrupt shot changes from full shot to medium shot (see frame 78 to frame 84) and from medium shot to full shot (see
frame 88 to frame 94).

#0360 #0365 #0375 #0380 #0385 #0390 #0395

(b) Shot changes in BlurOwl: there are abrupt shot changes due to the sudden change of camera point-of-view (see the transition between frame 375 and frame 380
or the transition between frame 390 and frame 395).

#0045 #0090 #0200 #0230 #0305 #0335 #0375

(c) Shot changes in Soccer: there are gradual shot changes due to the changes of camera point-of-view (see frame 45 to frame 90 and frame 335 to frame 375) or
incurred by varying camera-subject distances (see frame 200 to frame 230 and finally to frame 305).

#0002 #0052 #0102 #0152 #0202 #0252 #0302

(d) Shot changes in Singer1: there are shot changes due to the gradual changes of both camera point-of-view and camera-subject distances (see frame 2 to frame
102 and finally to frame 302).

#0006 #0016 #0026 #0036 #0046 #0116 #0126

(e) Shot changes in Singer3: there are shot changes due to the gradual (and rapid) changes of both camera point-of-view and camera-subject distances (e.g., frame
26 to frame 36). Our modification K(MF)2JMT-M1 may underestimate the target size due to the rapid changes, but it still provides the most accurate estimation
among others.

K(MF)^2JMT MEEM TGPR STRUCK SCM ASLA

(f) Tracker legend

Fig. 7. A qualitative comparison of our method and its modification with five state-of-the-art trackers. Tracking results are shown on five videos contain
scene cuts or shot transitions. DragonBaby, BlurOwl and Soccer are from OTB 2015, whereas Singer1 and Singer3 are from VOT2015 benchmark. The basic
K(MF)2JMT performs favorably in these videos. Our modification K(MF)2JMT-M1 offers the best performance. (f) shows tracker legend.
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