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Abstract

In this paper, we focus on triplet-based deep binary
embedding networks for image retrieval task. The
triplet loss has been shown to be most effective for
the ranking problem. However, most of the pre-
vious works treat the triplets equally or select the
hard triplets based on the loss. Such strategies do
not consider the order relations, which is impor-
tant for retrieval task. To this end, we propose an
order-aware reweighting method to effectively train
the triplet-based deep networks, which up-weights
the important triplets and down-weights the unin-
formative triplets. First, we present the order-aware
weighting factors to indicate the importance of the
triplets, which depend on the rank order of binary
codes. Then, we reshape the triplet loss to the
squared triplet loss such that the loss function will
put more weights on the important triplets. Exten-
sive evaluations on four benchmark datasets show
that the proposed method achieves significant per-
formance compared with the state-of-the-art base-
lines.

1 Introduction
With the rapid development of the Internet, the amount of
images grows rapidly. The large-scale image retrieval has
attracted increasing interest. Hashing methods that encode
images into binary codes have been widely studied since the
compact binary codes are suitable for fast search and efficient
storage. There are a multitude of hashing methods in the lit-
erature [Wang et al., 2017; Wang et al., 2016].

Among these methods, the supervised information is given
with triplet labels, which have been shown to be most effec-
tive since hashing is actually a ranking problem [Zhuang et
al., 2016; Lai et al., 2015]. In these works, the triplet ranking
loss is defined to learn binary codes that preserve relative sim-
ilarity relations. In [Lai et al., 2015], an architecture based
on deep convolutional neural networks (CNNs) with triplet
ranking loss is proposed for image retrieval. In [Zhao et al.,
2015], it presents a deep semantic ranking based method to
learn hash functions that preserve multi-level semantic sim-
ilarity between multi-label images. The FaceNet [Schroff et

al., 2015] also uses the triplet ranking loss for face recog-
nition and clustering. Due to the huge number of triplets, a
collaborative two-stage approach [Zhuang et al., 2016] is em-
ployed to reduce the training complexity of the triplet-based
deep binary embedding networks.

Not all triplets are of equal importance. In [Hermans et
al., 2017], it finds that the triplet loss relatively quickly learns
to correctly map most trivial triplets, which makes a large
fraction of all triplets uninformative after some point. Thus,
the loss decreases quickly at the beginning and slows down
drastically after some point [Schroff et al., 2015]. For in-
stance, the triplet (bird1, bird2, dog3) is easier than the triplet
(bird1, bird2, bird3) in which three images are from the fine-
grained bird database. Intuitively, the hash model which was
told over and over again that bird and dog are dissimilar can-
not further improve the performance. Hence, up-weighting
the informative triplets and down-weighting the uninforma-
tive triplets become a crucial problem.

However, most of the existing hashing methods treat the
triplets equally [Lai et al., 2015]. Few works select the hard
triplets based on the loss [Wu et al., 2017]. For instance,
semi-hard negative mining [Schroff et al., 2015] is proposed
in FaceNet. It uses all anchor-positive pairs in a mini-batch
and selects the negative examplars that are further away from
the anchor than the positive examplar. [Wang and Gupta,
2015] investigated to select top K hard negative triplets with
highest losses and the other triplets are ignored. In summary,
all existing methods use the loss to select the hard triplets or
treat them equally, and totally ignore the order relations in
the rank list, which is important in retrieval task. Since hash-
ing problem is a ranking problem, the losses in the rank lists
might not be sufficiently accurate than the order relations.

Inspired by that, we propose an order-aware reweighting
method for triplet-based deep binary embedding networks,
which up-weights the informative triplets and down-weights
the uninformative triplets. We firstly introduce a weighting
factor for each triplet. In practice, the weighting factor can be
set to the value that indicates how the triplet is misranked by
the current hash model. Hence, we use the MAP (mean aver-
age precision), which is a widely used evaluation measure, to
calculate the weights. Specifically, for each mini-batch in the
training phase, we encode the images into binary codes via
deep CNNs. For an arbitrary triplet with an anchor, a positive
code and a negative code, we rank all binary codes, including
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the positive code and the negative code, in the mini-batch ac-
cording to their Hamming distances to the anchor. The weight
of this triplet is defined as the change of MAP by only swap-
ping the rank positions of the positive code and the negative
code. Besides this order-aware weighting factor, we further
use the squared triplet loss instead of the linear form, which
up-weights hard triplets and down-weights easy ones from
the perspective of the order relation of binary codes in triplets
themselves. We conduct extensive evaluations on four bench-
mark datasets for image retrieval. The empirical results show
that the proposed method achieves significant performance
over the baseline methods.

2 Related Work
Hashing methods [Wang et al., 2017] that learn similarity-
preserving hash functions to encode data into binary codes
have become popular methods for nearest neighbor search.
Many methods have been proposed, which mainly can be
divided into three categories: 1) the unsupervised hash-
ing methods [Shen et al., 2018; Liu et al., 2017], 2) the
semi-supervised hashing methods [Zhang and Peng, 2017;
Wang et al., 2010] and 3) the supervised hashing meth-
ods [Gui et al., 2018].

Learning the hash codes with deep frameworks, e.g., CNN-
based methods [Yang et al., 2018], has been emerged as one
of the leading approaches. According to the forms of the su-
pervised information, previous works mainly fall into three
categories: 1) the point-wise approaches, 2) the pair-wise ap-
proaches and 3) the triplet-based/ranking-wised approaches.
The point-wise methods take a single image as input and the
loss function is built on individual data [Lin et al., 2015].
The pair-wise hashing methods take the image pairs as input
and the loss functions are used to characterize the relationship
(i.e., similar or dissimilar) between a pair of two images. For
example, DPSH [Li, 2016] and DSH [Liu et al., 2016] learn
the hash codes by preserving the similarities among the input
pairs of images. The triplet-based methods cast learning-to-
hash as a ranking problem. [Lai et al., 2015] proposed a deep
triplet-based supervised hashing method. The triplet meth-
ods suffer from huge training complexity, thus [Zhuang et al.,
2016] further proposed a two-step approach to accelerate the
training process of triplet-based hashing network.

Recently, some works [Wu et al., 2017] show that sample
selection plays an important role in learning the triplet-based
network. The hard or semi-hard triplets are selected to train
the network [Wang and Gupta, 2015; Schroff et al., 2015].
The distance weighted sampling [Wu et al., 2017] is proposed
to select the informative and stable examples, where the sam-
ples are drawn uniformly according to their relative distance
from one another. And the focal loss [Lin et al., 2017] re-
shapes the standard cross entropy loss which down-weights
the loss assigned to well-classified examples.

Inspired by these methods, we propose an order-aware
method to reweight the triplet loss. The existing methods
use the loss to select the hard examples or treat the triplets
equally. In contrast, our proposed method introduces the or-
der information [Donmez et al., 2009] to weight the triplets,
which is much more effective and accurate.
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Figure 1: Overview of the triplet-based hashing network. The
triplet-based network consists two sequential parts: a deep network
and a triplet loss. In this paper, we only focus on the loss function.
We reshape the triplet loss to our order-aware reweighted triplet loss.

3 Overview of Triplet-based Hashing
Networks

In this section, we briefly summarize the triplet-based hash-
ing framework. It takes triplets of images as inputs, i.e.,
(Ii, Ij , Ik), in which Ii is semantically more similar to Ij than
to Ik. The triplet hashing network itself can be divided into
two sequential parts: a deep network with a stack of convo-
lution, max-pooling and fully-connected layers; and a triplet
ranking loss layer as shown in Figure 1.

In deep network, the convolutional layers are applied to
produce powerful feature maps, which encode the images into
high-level representations. Then the following several fully-
connected layers project the feature maps into the desired-
length feature vectors, e.g., q-dimensional vectors, where q is
the length of binary codes. The feature vectors are fed into
a sigmoid layer which is smooth and well approximated the
threshold function. The outputs of the network are restricted
in the range [0, 1]q . We denote the outputs of triplet network
as hi = F(Ii), where Ii is the input image and F is the deep
network.

Through the deep network, triplet ranking loss [Lai et al.,
2015] is used to preserve the relative similarities of images.
Given the input images in the form of (Ii, Ij , Ik), the goal
of hash network is to preserve the similarities of the learned
binary codes, i.e., the binary code hi is closer to hj than to
hk. The triplet ranking loss is defined by

`(i,j,k) = `(hi,hj ,hk)

=max(0, ε− ||hi − hk||22 + ||hi − hj ||22),
(1)

where ε is a hyper-parameter to control the margin between
the two distances.

4 Order-aware Reweighting of Triplets
In this section, we only focus on the loss function and propose
a simple yet effective order-aware reweighting algorithm for
image retrieval. We first introduce the motivation of this work
and then elaborate the proposed method.

4.1 Motivation
In retrieval task, the misranked triplets (hi,hj ,hk) in which
hj ranks behind hk when hi is query, should be further em-
phasized to boost the model. A simple and intuitive method
is to add more weights to these misranked triplets. How-
ever, existing methods treat the triplets equally or only use
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Figure 2: Motivation of our method. Given a query code hi in a
mini-batch, we return a rank list π for hi. The white bars represent
codes that are irrelevant to the query, and black bars represent the
relevant codes. The arrows denote the weights and the moving di-
rections of the items. Two example triplets, `(hi,hπ3 ,hπ1) = 1
and `(hi,hπr−1 ,hπr−2) = 4, are misranked by the current hashing
model. Left: the weights of the triplets (see the arrows on the left)
based on the loss. However, the hπ3 ,hπ1 are in the top positions
and top results are more important in retrieval task. To better quan-
tify the misranked triplet, we adopt the change of MAP by swapping
the positions of the positive and negative codes to weight these mis-
ranked triplets. Right: the better choice to reweight the two triplets
(see the arrows on the right).

the loss to select the hard ones. Image hashing is a rank-
ing problem. Thus, the order relations are desirable. Fig-
ure 2 is an example illustration. Given hi as the query,
we rank the other binary codes according to their Hamming
distance to hi and π = {π1, · · · , πr−1} is the returned
rank list. Take two misranked triplets (hi,hπ3

,hπ1
) and

(hi,hπr−1
,hπr−2

) as examples in which `(hi,hπ3
,hπ1

) = 1
and `(hi,hπr−1

,hπr−2
) = 4, if we only use the loss to weight

the triplets, the triplet (hi,hπr−1
,hπr−2

) will have larger
weight. However, since hπ1 , hπ3 are in the top positions
and the top items are more important for the retrieval task,
simply swapping the positions of hπ1 and hπ3 can achieve
better performance than simply swapping those of hπr−2 and
hπr−1

. Hence, the triplet (hi,hπ3
,hπ1

) should be assigned
more weight than (hi,hπr−1

,hπr−2
). The better choice is

shown in the right side of Figure 2.
In this paper, we propose a simple algorithm that down-

weights the uninformative triplets and up-weights the infor-
mative triplets via 1) a order-aware weighting factor and 2) a
squared triplet ranking loss.

4.2 Order-aware Weighting Factor
Observed by that, we add an order-aware weighting factor to
indicate the importance of the triplet. If the triplet is impor-
tant, the more weight should be assigned to this triplet. We
use the following steps to obtain the order-aware weights for
triplets.

(1) Triplet generation with order information. Given a
mini-batch of r images, these images go through the deep
network and are encoded as hi, i = 1, · · · , r. Then we con-
struct r rank lists π(1), π(2), . . . , π(r). The i-th rank list is

constructed for the i-th binary code, in which given the i-
th code as the query, we rank the other r − 1 codes accord-
ing to their Hamming distance to the i-th code, e.g., π(i) =

{π(i)
1 , · · · , π(i)

r−1|DH(hi,hπ(i)
1
) ≤ · · · ≤ DH(hi,hπ(i)

r−1
)},

where DH(·, ·) denotes Hamming distance function. With
these rank lists, we generate the set of triplets for the i-
th query code: T (i) = {(hi,hπ(i)

j
,h

π
(i)
k

)|sim(hi,hπ(i)
j
) >

sim(hi,hπ(i)
k

)} where sim(·, ·) is semantic similarity mea-

sure. Note that the first item is always hi in the set T (i).
Then, the union of all the r sets, T =

⋃r
i=1 T

(i), is the total
set of all triplets in the mini-batch.

(2) Order-aware reweighting of triplets. Now the prob-
lem becomes how to define weighting factors for these
triplets. Take the set T (i) as an example, given a triplet
(hi,hπ(i)

j
,h

π
(i)
k

), we denote λ(i,j,k) as the importance weight
of this triplet. Since the MAP is a widely used evaluation
measure for ranking, we adopt MAP to calculate the weights.
More specifically, for the triplet (hi,hπ(i)

j
,h

π
(i)
k

), we first

calculate the MAP of the rank list π(i) for the query hi. Then
we only swap the rank positions of π(i)

j and π(i)
k , and the other

rank positions are fixed in rank list π(i), through which we
can obtain another MAP. The absolute value of the difference
between the two MAPs is used as the weight of the triplet.
More specifically, let π(i) = {· · · , π(i)

k , · · · , π(i)
j , · · · } and

π̂(i) = {· · · , π(i)
j , · · · , π(i)

k , · · · }. Note that other positions
in the two rank lists π(i) and π̂(i) are the same, and only the
rank positions of π(i)

j and π(i)
k are swapped. The order-aware

weight for the triplet (hi,hπ(i)
j
,h

π
(i)
k

) is defined as

λ(i,j,k) = |MAP (π(i))−MAP (π̂(i))|. (2)

4.3 Squared Triplet Ranking Loss
Instead of the linear function, we propose a squared triplet
ranking loss which aims to down-weight uninformative
triplets and focuses on training hard distinguished triplets.
The triplet loss function is changed as:

`(i,j,k) → [`(i,j,k)]
2. (3)

By using the squared triplet loss, the informative triplets
will comprise the majority of the loss and dominate the gra-
dient when back propagation is applied to update the weights
of the deep networks. Even for the case that there are over-
whelming number of uninformative triplets and a small num-
ber of informative triplets. Take 10 triplets as an example,
there are one harder triplet, e.g., `1 = 5 and nine easier
triplets, e.g., `i = 1, i = 2, · · · , 10. The overall loss is 14, in
which the loss of the easy triplets overwhelms that of the hard
triplet. By using the quadratic function, we have [`1]

2 = 25
and [`i]

2 = 1 for other nine easy triplets. Thus, the loss of
hard triplets can dominate the overall loss 1.

1Note that the conclusion also can be obtained when the losses
are less than one, e.g., `1 = 0.5 and `i = 0.1, i = 2, · · · , 10.
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Figure 3: Precision-recall curves

(a) VOC2007 (b) Stanford Dogs (c) SUN397 (d) CUB-200-2011

Figure 4: Precision curves

4.4 Full Objective
The overall objective for order-aware reweighting triplet loss
is defined as

min
∑

λ(i,j,k) × [`(i,j,k)]
2. (4)

Our loss function contains two terms: 1) the order-aware
weighting factors, which define the importance of the triplets
by considering the whole rank list. It will let the loss function
focus on the triplets that have the worst rank positions. And 2)
the squared ranking objective is to up-weight the hard triplets
by considering the order relation of binary codes in triplets.

5 Experiments
5.1 Datasets and Evaluation Measures
In this section, we conduct extensive evaluations of the pro-
posed method on four benchmark datasets:

• VOC2007 [Everingham et al., 2010]: It consists of
9,963 annotated consumer photographs collected from
the Flickr 2 photo-sharing website. There are 20 object
classes in this dataset, and each image is annotated with
1.5 labels on average.

• Stanford Dogs [Khosla et al., 2011]: It contains 20,580
images of 120 breeds of dogs from around the world,
which has been built using images and annotation from
ImageNet for the task of fine-grained image categoriza-
tion.

2http://www.flickr.com

• SUN397 [Xiao et al., 2010]: It contains 397 scene
categories. The number of images varies across cate-
gories, but there are at least 100 images per category and
108,754 images in total.

• CUB-200-2011 [Wah et al., 2011]: It is a challenging
dataset of 200 bird species. All 11,788 images and an-
notations were filtered by multiple users of Mechanical
Turk.

In VOC2007, Stanford Dogs and CUB-200-2011 three
datasets, we utilize the official train/test partitions to construct
the query sets and the retrieval databases. The testing samples
are used as the query set, and the rest images, i.e., the training
samples, are used as the retrieval database. The training sam-
ples are also used to train the hash models. Note that the val-
idation set of VOC2007 is included in the retrieval database
but not used in training.

In SUN397 dataset, we follow the setting of [Do et al.,
2016] and use the subset of images associated with the 42
categories with each containing more than 500 images 3. The
randomly sampled 4,200 images (100 images per class) are
constructed as the query set. The rest images are used as the
database for retrieval. We randomly select 400 samples per
class from the retrieval database to form the training set.

To evaluate the quality of hashing, we use the follow-
ing evaluation metrics: mean average precision (MAP),
precision-recall curves, and precision curves w.r.t. different
numbers of top returned samples.

3In the official train/test partition, they use a subset of dataset that
has 50 training images and 50 testing images per class, averaging
over the 10 partitions. It is not suitable for hashing problem.



Table 1: MAP of Hamming ranking w.r.t. different numbers of bits on VOC2007, Standford Dogs and SUN397 datasets.

Methods VOC2007(MAP) Stanford Dogs(MAP) SUN397 (MAP)
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

Ours 0.7672 0.8041 0.8147 0.8227 0.6745 0.7101 0.7252 0.7293 0.7505 0.8068 0.8152 0.8301
TripletH 0.7434 0.7745 0.7858 0.7897 0.5889 0.6478 0.6744 0.6904 0.6893 0.7660 0.7918 0.8027

DSH 0.7061 0.7234 0.7143 0.7116 0.4994 0.6134 0.6420 0.6453 0.5999 0.7031 0.7545 0.7725
MLH 0.4990 0.5044 0.4566 0.4786 0.4053 0.5031 0.6135 0.6284 0.3806 0.4632 0.4988 0.5212
BRE 0.6111 0.6323 0.6453 0.6517 0.2429 0.3158 0.3683 0.3936 0.2546 0.3185 0.3574 0.3675
ITQ 0.5793 0.5808 0.5796 0.5723 0.3275 0.4256 0.4682 0.4977 0.2789 0.3684 0.3873 0.4013
SH 0.4418 0.4175 0.4004 0.3835 0.2461 0.3076 0.3523 0.3714 0.2070 0.2436 0.2449 0.2404

LSH 0.2720 0.3098 0.3273 0.3551 0.0629 0.1293 0.1690 0.2245 0.0794 0.0981 0.1211 0.1486

Table 2: MAP of Hamming ranking w.r.t. different numbers of bits
on CUB-200-2011 dataset.

Methods CUB-200-2011(MAP)
16 bits 32 bits 48 bits 64 bits

Ours 0.5137 0.6519 0.6807 0.6949
TripletH 0.4508 0.5503 0.5963 0.6312

DSH 0.4374 0.4933 0.5553 0.6073
MLH 0.1069 0.1510 0.1768 0.2091
BRE 0.0716 0.0912 0.1127 0.1244
ITQ 0.0899 0.1266 0.1427 0.1599
SH 0.0703 0.0875 0.1017 0.1111

LSH 0.0272 0.0422 0.0573 0.0625

5.2 Experimental Setting
All deep CNN-based methods, including ours and previous
baselines, are based on the same CNN architecture, i.e.,
GoogLeNet [Szegedy et al., 2014]. We make the follow-
ing modifications for hashing problem: 1) the last fully-
connected layer is removed since it is for 1,000 classifi-
cations, and 2) another fully-connected layer with q di-
mensional output is added to generate the binary codes.
The weights are initialized with the pre-trained GoogleNet
model 4 that learns from the ImageNet dataset. These ex-
periments are implemented by using the open source Caffe
framework. All networks are trained by stochastic gradient
descent with 0.9 momentum and 0.0005 weight decay. The
base learning rate is 0.001 and it is changed to one tenth of
the current value after every 50 epochs. The total epoch is
150 and the batch size is 100. We implement both our meth-
ods and comparison ones for varied hash code lengths, e.g.,
16 bits, 32 bits, 48 bits and 64 bits. For fair comparison,
the hyper-parameters for all deep-network-based methods are
the same, including training iterations, batch sizes and etc.
For other non-deep-network-based methods, the input fea-
tures are also extracted by the same pre-trained GoogleNet
model, i.e., the last layer’s output 1024 dimensional vector.

The source code of the proposed method will be made pub-
licly available at the first author’s homepage.

5.3 Experimental Results
Comparison with State-of-the-art Methods
In this set of experiments, we evaluate and compare the per-
formance of the proposed method with several state-of-the-art
algorithms.

4http://dl.caffe.berkeleyvision.org/bvlc googlenet.caffemodel

LSH [Gionis et al., 1999], SH [Weiss et al., 2008],
ITQ [Gong and Lazebnik, 2011], MLH [Norouzi and Blei,
2011], BRE [Kulis and Darrell, 2009], triplet hashing
(TripletH) [Lai et al., 2015] and DSH [Liu et al., 2016] are
selected as the baselines. TripletH is one of the representa-
tive triplet-based methods and DSH is one of the representa-
tive pairwise-based methods. The results of these comparison
methods are carefully obtained by the implementations pro-
vided by their authors, respectively. In TripletH, we replace
the original divide-and-encode structure with the fully con-
nected layer to generate hash codes.

Table 1 and Table 2 show the comparison results of MAP
on the four datasets. It can be observed that the proposed
method performs significantly better than all previous meth-
ods. Specifically, on VOC2017, our method obtains a MAP
of 0.8227 on 64 bits, compared with 0.7897 of the existing
triplet based method. On Stanford Dogs, our method shows
an increase of 2% in comparison with the TripletH. Figure 3
and Figure 4 show the precision-recall and precision curves
on 16 bits. Again, for most levels, our method yields the bet-
ter accuracy. The results show that our proposed method can
achieve better performance than the existing state-of-the-art
methods.

Effects of the Order-aware Weight and Squared Triplet
Loss
In the second set of our experiments, we do ablation study
to clarify the impact of each part of our method on the final
performance.

In the first baseline, we only explore the effect of the order-
aware weighting factors. The loss function is formulated as

min
∑

λ(i,j,k)`(i,j,k). (5)

In the second baseline, we set the order-aware weighting
factors to be one for all triplets, e.g., λi,j,k = 1, and only
explore the effects of the squared ranking loss. The objective
is defined as

min
∑

[`(i,j,k)]
2. (6)

The last baseline is the existing triplet hashing (TripletH),
which the objective is formulated as

min
∑

`(i,j,k). (7)

Note that all baselines and our method use the same net-
work and the only difference is the loss function, these
comparisons can show us whether the proposed order-aware



Table 3: Quantitative ablation study on four databases.

Methods 16 bits 32 bits 48 bits 64 bits
VOC2007

Ours 0.7672 0.8041 0.8147 0.8227
Order-aware Weight 0.7540 0.7851 0.7975 0.8052

Squared Loss 0.7552 0.7997 0.8049 0.8160
TripletH 0.7434 0.7745 0.7858 0.7897

Stanford Dogs
Ours 0.6745 0.7101 0.7252 0.7293

Order-aware Weight 0.6548 0.7058 0.7291 0.7368
Squared Loss 0.6261 0.6891 0.6899 0.7090

TripletH 0.5889 0.6478 0.6744 0.6904
SUN397

Ours 0.7505 0.8068 0.8152 0.8301
Order-aware Weight 0.7117 0.7768 0.8065 0.8170

Squared Loss 0.7293 0.7732 0.8042 0.8191
TripletH 0.6893 0.7660 0.7918 0.8027

CUB-200-2011
Ours 0.5137 0.6519 0.6807 0.6949

Order-aware Weight 0.5169 0.6158 0.6507 0.6779
Squared Loss 0.4698 0.5723 0.6371 0.6754

TripletH 0.4508 0.5503 0.5963 0.6312

weights and the squared triplet loss can contribute to the ac-
curacy or not.

Table 3 shows the comparison results. We can observe
that using both the order-aware weights and squared ranking
loss performs best. And the proposed order-aware weight and
squared loss perform better than the TripletH. It is desirable
to reweight the triplets for triplet-based hashing networks.

Comparison with Hard Triplet Selection Methods
Our method is an order-aware method for reweighting the
triplets. To show the advantages of the proposed method, we
compare it to the hard triplet selection methods.

The first baseline is hard negative mining (HNM) [Wang
and Gupta, 2015] for triplet sampling. It includes two
steps: 1) random selection. They firstly randomly sample the
triplets. After 10 epochs of training using data selected ran-
domly, they do 2) hard negative mining, where it selects the
top 4 negative triplets with highest losses for each anchor-
positive pair. Similar to that, we first use the TripletH to train
a hash model (random selection), then we fine-tune the net-
work by using hard negative mining. In each mini-batch, we
select the top 4 negative triplets as the suggestion by HNM.
The second baseline is semi-hard triplet selection [Schroff et
al., 2015]. It uses all anchor-positive pairs in a mini-batch
and selects the negative examplars that are further away from
the anchor than the positive examplar.

Table 4 shows the comparison results w.r.t. the MAP on
the four datasets. We can see that the proposed method per-
forms better than the loss-based hard triplet mining methods.
The results show that order relations can further improve the
performance.

Effects of Different Functions for Triplet Loss
In this paper, we use the squared triplet loss function to re-
place the linear form. In this set of experiments, we explore
the effects of different functions. In general, the triplet loss

Table 4: Comparison results of our method against hard triplet se-
lection methods on four datasets.

Methods 16 bits 32 bits 48 bits 64 bits
VOC2007

Ours 0.7672 0.8041 0.8147 0.8227
HNM 0.7545 0.7768 0.8010 0.8030

Semi-hard 0.7347 0.7442 0.7548 0.7655
TripletH 0.7434 0.7745 0.7858 0.7897

Stanford Dogs
Ours 0.6745 0.7101 0.7252 0.7293
HNM 0.5905 0.6763 0.7057 0.7187

Semi-hard 0.5933 0.6662 0.6967 0.7054
TripletH 0.5889 0.6478 0.6744 0.6904

SUN397
Ours 0.7505 0.8068 0.8152 0.8301
HNM 0.7124 0.7801 0.7992 0.8142

Semi-hard 0.7167 0.7809 0.8002 0.8097
TripletH 0.6893 0.7660 0.7918 0.8027

CUB-200-2011
Ours 0.5137 0.6519 0.6807 0.6949
HNM 0.4834 0.5793 0.6217 0.6641

Semi-hard 0.4859 0.6017 0.6346 0.6539
TripletH 0.4508 0.5503 0.5963 0.6312
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Figure 5: MAP of Hamming ranking w.r.t. different γ

can be written into more general form:

min
∑

[`(i,j,k]
γ . (8)

When γ = 1, it equals to the traditional triplet ranking loss,
when γ = 2, it is the squared triplet loss, etc.

Figure 5 shows the comparison results, which is imple-
mented on 32 bits, on different functions: γ = 1, · · · , 5. We
can observe that the best results are obtained when γ = 2 or
γ = 3. Hence, we use the squared triplet ranking loss in the
paper.

6 Conclusion
In this paper, we proposed an order-aware reweighted method
for training the triplet-based deep binary embedding net-
works. In the proposed deep architecture, images go through
the deep network with stacked layers and are encoded into the
binary codes. Then, we proposed to up-weight the informa-
tive triplets and down-weight the easy triplets by considering
the order relations. One is the order-aware weighting factor,
which is used to calculate the importance of the triplets. An-
other is the squared triplet ranking loss, which is used to put
more weight on the triplets in which the codes are misranked.



Empirical evaluations on four datasets show that the proposed
method achieves better performance than the state-of-the-art
baselines.
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