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Abstract— In this paper, we formulate a problem that is a variant of
the knapsack problem. Even though the problem is NP-hard in general,
we consider a special case of the problem where the problem is in P.
For this special case, the proposed algorithm is linear time complexity
in the number of bins. The proposed framework is a generalization of
the framework that has been used recently in the context of finding rate
adaptation algorithms for video streaming.

Index Terms— Knapsack problem, video streaming, polynomial time
algorithm.

I. INTRODUCTION

Combinatorial optimization has important applications in several
fields, including, resource management, scheduling, machine learn-
ing, and software engineering [1]–[4]. In combinatorial optimization,
the objective is to find an optimal solution from a finite set of solu-
tions [5]. In most combinatorial problems, exhaustive search which
searches for the optimal solution in a discrete set is not feasible. Some
of the famous combinatorial problems are the traveling salesman
problem (TSP), the minimum spanning tree problem (MST), and the
knapsack problem [5].

In the knapsack problem, given a set of items, each with a weight
and a value, which items should be included in a collection so as to
maximize total value given a weight constraint must be determined.
The knapsack problem has been a subject of study since 1897 [6].

In this paper, we consider a problem which is an extension of
the knapsack problem. Fig 1 compares our problem with knapsack
problem. Each item has multiple components, and each component
must be packed in the C bins, each of certain capacity. There are four
types of constraints in the packing, namely Component Dependency
Constraint, Deadline Constraint, Buffer Constraint, and Bin-Capacity
Constraint. We formulate packing the items into bins efficiently to
maximize the total value of the components packed. In the special
case, when the bin capacity for bins 2 to C is zero, and each item
has a single component, the problem reduces to a knapsack problem.
Thus, the problem is harder than the NP-hard knapsack problem.
We consider a special case of the problem with certain constraints
on the weights and values of the components. With such constraints,
we show that the problem can be optimally solved with an algorithm,
whose complexity is linear in the number of bins. Thus, the NP-hard
problem with simple limitations on weights and values can reduce to
a polynomial-time solvable problem.

We note that the video streaming formulation proposed in [7]
is a special case of this particular special case. Elgabli et al. [7]
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Fig. 1. (a) 0-1 Knapsack. (b) Deadline and Buffer constrained knapsack.

formulated the problem of adaptive video streaming with the knowl-
edge of future bandwidth. The goal of the scheduling algorithm
is to determine up to which layer we need to fetch for each
chunk such that the overall quality-of-experience (QoE) is maximized
and the number of stalls or skipped chunks is minimized. The
proposed algorithm can be implemented both with Scalable Video
Coding [7] and Advanced Video Coding [8]. Further, it was shown to
achieve minimum re-buffering (stall) time and the maximum average
playback rate in every single trace as compared to the original
dash.js rate adaptation scheme, Festive, BBA, RB, and FastMPC
algorithms [8]. The key advantage of the proposed algorithm is
a linear time complexity, which makes the algorithm easy to run
online. In contrast, the previous optimization-based algorithms are
not able to run optimally in that low time complexity. Further,
the formulation models the diminishing returns of user-perceived
quality of experience (QoE) with the playback quality [9]. In this
paper, we aim to generalize the formalism in [7] and [8] to a special
case of Knapsack problem. The general formalism in this paper can
allow for applications of such knapsack problems beyond those in
video streaming.

The rest of the paper is organized as follows. Section II provides
the formulation of the problem, with a proof of NP-hardness.
Section III describes the special case of weights and values
considered, and the proposed algorithm which is shown to be
optimal. Section IV describes the application of the problem in
adaptive bit-rate video streaming in brief. Section V concludes the
paper. Appendices A-C (see the Supplementary Material) provide
the proofs for the results. Appendix D-G (see the Supplementary
Material) explain the application of the problem to video streaming
in [7] with the evaluation results.

II. PROBLEM FORMULATION

This section formally describes the problem. We consider C items
that must be packed in C bins. Each item has N components (labeled
as components 0 to N − 1 for each item i), which can be packed in
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the bins (See Fig. 1). Every component n of item i has a weight of
wn

i and a value of vn
i . We consider the following constraints:

1) Component Dependency Constraint: If component n − 1 of an
item is not packed, its component n can’t be packed.

2) Deadline Constraint: Any component of item i cannot be
packed in a bin with index greater than i .

3) Buffer Constraint: For any i , the bins with index ≤ i cannot
pack components from more than Bmax of the items with index
>i .

4) Bin-Capacity Constraint: The weight of components packed
up-to bin t cannot cross

∑t
j=1 B j , where B j is the capacity

of bin j .
We note that a bin can have partial amounts of component of an

item. Thus, the component can be spread over multiple bins. More
formally, let xi,n,t be the amount of n-th component of the i-th item
that is packed in bin t . Then, xi,n,t could be in [0, 1]. However,
since a component is either fully packed or not at all, we have∑C

t=1 xi,n,t ∈ {0, 1}.
The objective is to maximize the total value subject to the

bin-Capacity, deadline, buffer, and component dependency con-
straints. The overall optimization problem can be written as follows.

maximize:
N−1∑

n=0

C∑

i=1

C∑

t=1

vn
i xi,n,t (1)

s.t
N−1∑

n=0

C∑

i=1

t∑

j=1

xi,n, j w
n
i ≤

t∑

j=1

B j , ∀t (2)

C∑

t=1

xi,n,t ≤
C∑

t=1

xi,n−1,t , ∀i, n (3)

xi,n,t ≥ 0, ∀i, n, t (4)

C∑

j=i+1

I(
i∑

t=1

N−1∑

n=0

x j,n,t > 0) ≤ Bmax , ∀i (5)

xi,n,t = 0, ∀i, n, t > i (6)

C∑

t=1

xi,n,t ∈ {0, 1}, ∀i, n (7)

where I(.) is an indicator function, where I(x) = 1 if x is true and
0 otherwise. (2) represents the bin-capacity constraints, (3) represents
the component dependence constraint, (5) is the buffer constraint,
and (6) is the deadline constraint. Further, (7) is the integer con-
straints, representing that component n of item i is either fetched
completely, or not at all.

We note that in addition to discrete constraints, the proposed
problem also has a non-convex constraint due to the presence of
the indicator function in (5). We now prove that problem (1)-(7) is
NP-Hard. In order to prove that the problem is NP-Hard, we need
first to prove that it is NP. Given a solution xi,n,t , verifying the
constraints in (1)-(7) can be done in O(N2C) time, and thus the
problem is in NP.

We see that 0-1 Knapsack problem is a special case of our problem.
It is the case when every item consists of one component (N = 1),
Bt = 0 for t ≥ 2, and Bmax = ∞. In this case, there is no component
dependence, deadline, or buffer constraint. There is a single bin where
the items can be packed, and it has a size constraint. Further, xi,n,t =
0 for t > 1. Thus, the problem in a special case is equivalent to a
knapsack problem. Since the problem in a special case is harder than
a NP-hard problem and the problem is in NP, the proposed problem
is NP-hard.

Algorithm 1 Deadline and Buffer Aware Bin Packing Algorithm

1: Input: wn , Bmax
2: Output: X (i)∀i : The size of all packed components of item i ,

In : set contains the indices of the components that can have up
to their n-th component packed.

3: Initialization:
4: Xn =∑n

m=0 wn cumulative size of every item up to component n

5: c( j) =∑ j
j �=1 B( j �) cumulative bin sizes up to the j -th bin

6: t (i) = 0, ∀i , first bin in which item i can be packed
7: a(i) = 0, ∀i , size of lower level components of item i packed at

its lower deadline time t (i)
8: e( j) = B j ,∀ j , remaining size at bin j after all non skipped com-

ponents are packed according to lower level component decisions
9: X (i) = 0

10: bf ( j) = 0, ∀ j , buffer size at time j
11: For each component, n = 0, · · · , N
12: [X, In ] = backward(B, X, Xn, C, Bmax, bf, t, c, a, e)
13: [t, a, e] = f orward(B, X, C, Bmax, b f, In )

III. CONSIDERED SPECIAL CASE AND

POLYNOMIAL TIME ALGORITHM

In this section, we will describe the considered special case over
the weights and values. Further, a novel algorithm is described for
the problem, and its optimality will be derived.

A. Special Case
In this subsection, we will discuss a special case of the problem

(1)-(7). The case when the following conditions are satisfied:

1) wn
i = wn∀i

2) vn
i = vn∀i

3) C
∑N−1

k=a+1 vk < va , for all a = 0, · · · , N − 2

The first condition implies that the weight of component n for
each item is the same. The second condition implies that value
of component n is same for all items. The third condition implies
that the combined value of all components > a is lower than
component a of any item. Thus, this condition implies diminishing
returns in obtaining larger components. For the special case of video
streaming, this constraint has been explained in Appendix E (see
the Supplementary Material), where we demonstrate that this models
user’s QoE being concave in the playback rate [9].

We note that even though this is a special case, it is not clear
a priori whether this case will result in an optimal polynomial-time
algorithm. This is because the components placements depend on
each other and packing of components n influence the packing of
components > n even with these conditions.

B. Proposed Algorithm
We now show when the above three conditions are satisfied,

the problem can be solved optimally in polynomial time. In fact
under these assumptions, this paper provides an algorithm that solves
problem (1)-(7) with a complexity that is O(NC).

The algorithm is summarized in Algorithm 1. The algorithm
defines priority levels, so the components 0 of each item belongs
to the highest priority level (level-0). Therefore, since there are N
components for every item, there will be N levels. The algorithm
performs backward and forward scans (as explained later in this
section) at each level given the decisions of the lower levels.

Running backward scan at n-th level (Algorithm 2) finds the
maximum number of items that can have their n-th level component
packed given the decisions of the previous levels. Then, forward



Algorithm 2 Backward Algorithm
1: Input: B, X, Xn , C, Bmax , bf, t, c, a, e
2: Output: X (i), In .
3: Initialization:
4: i = j = C
5: initialize bf ( j) to zeros ∀ j .
6: while ( j > 0 and i > 0) do
7: if j <= i then
8: if (bf (i) = Bmax) then i = i − 1
9: if j is the first time to pack item i from back then

10: if (t (i) = 0) then
11: rem1 = c( j)− c(1)+ e(1), rem2 = rem1
12: else
13: rem2 = c( j)− c(t (i)), rem1 = rem2 + e(t (i))+ a(i)
14: end if
15: if (rem1 < Xn(i)) then
16: if (X (i) > 0) then Xn(i) = X (i) else i = i − 1
17: else
18: if (rem2 < Xn(i)) and rem1 ≥ Xn(i)) then
19: e(t (i)) = e(t (i))+ rem1 − Xn
20: end if
21: X (i) = Xn(i), In ← In ∪ i
22: end if
23: end if
24: packed = min(B j , Xn(i)), B j = B j − f etched
25: Xn(i) = Xn(i)− packed
26: if (Xn(i) > 0) then b f ( j) = bf ( j)+ L
27: if (Xn(i) = 0) then i = i − 1
28: if (B j = 0) then j = j − 1
29: else
30: j = j − 1
31: end if
32: end while

Algorithm 3 Forward Algorithm
1: Input: B, X, C, deadline, Bm, bf, In
2: Output: t (i), a(i), e( j).
3: j = 1, k = 1
4: while j ≤ C and k ≤ max(I0) (last item to pack) do
5: i = I (k)
6: if i = 0 then k = k + 1
7: if j ≤ i then
8: if (bf ( j) = Bm) then j = j + 1
9: packed = min(B j , X (i))

10: if j is the first time item i is packed then
11: t (i) = j ,
12: a(i) = packed
13: end if
14: B j = B j − packed
15: e( j) = B j , X (i) = X (i)− packed
16: if X (i) > 0 then b f ( j) = bf ( j)+ L
17: if X (i) = 0 then k = k + 1
18: if B j = 0 then j = j + 1
19: else
20: k = k + 1
21: end if
22: end while

scan (Algorithm 3) is run to simulate packing items in sequence
as early as possible, so the start time for packing every item i (the
lower deadline t (i)) is found. Lower (t (i)) and Upper (deadline(i))

deadlines will be used to check if the next component of item i can
be packed or not.

1) Backward Algorithm for Level 0: Given the bin sizes, deadlines,
and the buffer size, the algorithm simulates packing the level-
0 components of all items starting from the last towards the first item.
The deadline of the last item is the starting time slot of the backward
algorithm scan. The goal is to have items packed closer to their
deadlines. For every item i , the backward algorithm checks the bin
sizes and the buffer; if the component can be packed and the buffer
constraint is not violated, then component 0 of item i is selected to be
packed (line 18-22). The algorithm keeps checking this feasibility to
select components to be fetched. If a component 0 of an item i � is not
selected to be packed, one of the two scenarios could have happened.
The first is the violation of buffer constraint, where selecting the item
to be packed would violate the buffer constraint. The second is the
bin-capacity constraint where the size of the remaining bins is not
enough for packing the component 0 of the item. This scenario also
means that the component could not be packed by the deadline, so it
can also be called deadline violation.

For buffer constraint violation, we first note that, there could be
an item i �� > i � in which if its component 0 is skipped will possibly
lead to packing the component 0 of item i �. However, the backward
algorithm decides to skip packing the component 0 of item i � (line 8).
We note that since there is a buffer capacity violation, one of the items
cannot be fetched and must be skipped. Note that since skipping the
component 0 of any item will lead to skip all remaining components
of the same items, we use skip item and component 0 of the item
interchangeably. The reason of choosing to skip item i � rather than a
one with higher index is that i � is the closest to its deadline. Therefore,
i � is not better candidate to have its next component packed than any
of the later ones.

In the second case of deadline/size violation, backward algorithm
decides to skip items up 1 to i � since there is not enough bins.
As before, since equal number of items need to be skipped any
way, skipping earlier ones is better because it helps in increasing
the potential of getting next components of later items.

2) Forward Algorithm for Level-0: Forward algorithm takes the
decisions from the Backward step (the items that can have their
component 0 packed), and simulates packing items in sequence
starting from the first one. Items are packed as early as possible
with the deadline, and buffer constraints being considered. The items
that were not decided to be packed by the Backward Algorithm are
skipped (any chunk i /∈ I0, line 6 ). This provides the earliest time
slot when item i can be fetched (t (i), line 10). This time is used
as a lower deadline on the time allowed to pack chunk i when
backward algorithm is run for the next component, so decisions of
backward algorithm for component 0 of all items do not get violated
when backward algorithm is run again for the next component
(component 1, Level-1). Moreover, it provides the portion that can
be packed of item i at its lower deadline t (i) (a(i), line 11), and,
remaining size of the bin in which the item is packed in after all non
skipped items are packed (e( j), line 12).

Modifications for Next Levels: The same backward and forward
steps are used for each level given the backward-forward decisions
of the previous one. The key difference when the algorithm is run for
next levels as compared to that for Level-0 is that the component n
of an item is skipped if the component n− 1 was not packed. When
running the backward algorithm for component 1 decisions, for every
item i , we consider the remaining size starting from the bin at the
lower deadline of that chunk t (i), so previous decisions (component
0 decisions) of early items do not get violated. The same procedure
is used to give all remaining component decisions when all the lower
level decisions have already been made.



C. Optimality of the Proposed Algorithm

In this subsection, we will describe the optimality of the proposed
algorithm, in the sense that the proposed algorithm achieves the
optimal solution of the problem (1)-(7). We define in-order packing
algorithm as the algorithm that fetches items in order based on the
deadlines, such that all components of item i before that of item j
for any i < j . We note that for any other feasible packing algorithm,
we can convert it to an in-order packing algorithm with the same bin-
capacity utilizations for each item. Thus, it is enough to prove that the
algorithm is the best among any in-order packing algorithm. Getting
the different items in-order helps the buffer and other constraints and
would only improve the satisfiability of constraints. Thus, we can
obtain the same objective while satisfying all the constraints. The
proofs in the following thus only compare the proposed algorithm
with the other in-order packing algorithms.

We say that n-th component of item i is skipped if
∑C

t=1 xi,n,t = 0.
Thus, this component is not packed in the bins. The following
Lemma states that given the lower and upper deadlines ((t (i)) and i)
of every item i , the (n−1)-th component decision, running backward
algorithm for the n-th component maximizes the nth component
objective, i.e., maximizes the number of items that have their n-th
component packed.

Lemma 1: Given size decisions up to (n − 1)-th level (X), and
lower and upper deadlines (t (i), and i) for every item i, backward
algorithm achieves the minimum number of n-th component skips
(or obtains the maximum number of n-th components) as compared
to any feasible algorithm which packs the same components up to
component n − 1.

Proof: A detailed proof is provided in Appendix A (see the
Supplementary Material). �

The above lemma shows that backward algorithm minimizes n-th
component skips given the lower and upper deadline of every item.
However, we still need to consider the optimality of the lower
deadline. The following lemma shows that for any size decisions,
the forward algorithm finds the optimal lower deadline on the packing
time of any item.

Lemma 2: Among all algorithms with the same number of the
n-th component skips, the proposed algorithm leaves the largest
possible space for all candidate items to the next component. In other
words, the proposed algorithm maximizes the resources to the next
components among all algorithms that have same n-th component
skips.

Proof: Proof is in the Appendix B (see the Supplementary
Material). �

The above two lemmas show that the backward algorithm max-
imizes the number of items packed up to the n-th component and
maximizes the number of candidate items to the next component
given the lower and upper deadline on the packing time of every item.
However, they do not tell us if that lower deadline is optimal or not.
The following proposition shows that for given packing decisions,
the forward algorithm finds the optimal lower deadline on the packing
time of every item.

Proposition 1: If t f (i) is the earliest time to start packing item i
using forward algorithm (lower deadline), and tx (i) is the earliest
time to pack it using any other in sequence packing algorithm, then
the following holds true.

t f (i) ≤ tx (i).

The above proposition states that t f (i) is the lower deadline of
item i , so item i can’t be packed earlier without violating decisions
of lower components of earlier items. Therefore, for n-th component,

we are allowed to increase the item size of item i as far as
we can pack it within the period between its lower and upper
deadlines. If increasing its size requires us to start packing it before
its lower deadline, then we should not consider that component
because this will affect the lower component decisions and will
cause dropping lower components of some earlier items. Since,
our objective prioritizes lower components over higher compo-
nents, lower deadline must not be violated to in order to pack
the earlier items at at-least at the pre-decided size (number of
components).

Using Lemmas 1, 2 and Proposition 1, we are ready to show the
optimality of the proposed algorithm in solving problem (1)-(7), and
this is stated in the following theorem.

Theorem 1: Up to a given component M, M ≥ 0, if xi,n,t
∗ is

the decision of every component m ≤ M of item i that is found by
running backward-forward algorithm, and xi,n,t

� is a decision that
is found by any other feasible algorithm, then the following holds.

M∑

n=0

C∑

i=1

C∑

t=1

vn xi,n,t
� ≤

M∑

n=0

C∑

i=1

C∑

t=1

vn xi,n,t
∗ (8)

when:

1) wn
i = wn∀i

2) vn
i = vn∀i

3) C
∑N

k=a+1 vk < va , for a = 0, · · · , N − 2

In other words, the proposed algorithm finds the optimal solution
to the optimization problem (1)-(7), when the above 3 conditions are
satisfied.

Proof: A detailed proof is provided in Appendix C (see the
Supplementary Material). �

IV. SPECIALIZATION OF THE PROPOSED

FORMULATION VIDEO STREAMING

In modern video systems, the video content is divided into chunks
(segments), and each is encoded at different quality levels. In con-
ventional video encoding (e.g H.264/MPEG4-AVC, Advanced Video
Coding), each video chunk is stored into L independent encoding
versions. When fetching a chunk, the player’s adaptation mechanism,
Adaptive Bit Rate (ABR) streaming, must select one out of the L
versions based on its estimation of the network bandwidth and the
buffer capacity [10]. Another encoding technique is Scalable Video
Coding (SVC [11]) in which each chunk is encoded into ordered
layers: one base layer (BL) with the lowest playable quality, and
multiple enhancement layers (E1, · · · , EN ) that further improve the
chunk quality. For decoding a chunk up to enhancement layer i ,
a player must download all layers from 0 to i .

There are two forms of streaming - realtime streaming and non-
realtime streaming. In realtime streaming, there is a playback deadline
for each of the chunks, and chunks not received by their respective
deadlines are skipped. In no-skip based streaming (non-realtime
streaming), if a chunk cannot be downloaded by its deadline, it will
not be skipped; instead, a stall (re-buffering) will incur, i.e., the video
will pause until the chunk is fully downloaded. In both variants,
the goal of the scheduling algorithm is to determine up to which
layer we need to fetch for each chunk (except for those skipped in
realtime streaming), such that the overall quality-of-experience (QoE)
is maximized and the number of stalls or skipped chunks is
minimized.

In Appendix D (see the Supplementary Material), we show that the
constraints match the problem of real-time SVC video streaming well,
and the special case matches the intuitions for an efficient quality
metric for the end users. Thus, the proposed algorithm can be used



to provide efficient algorithms for video streaming, as was done in [7].
The proposed algorithm can also be adapted to give results for no-skip
based streaming.

Even though we consider SVC encoding, the same algorithm has
also been used for ABR streaming in [8]. The key idea is that the
difference between different quality levels in ABR streaming can
be used as the quality of different layers. The results in [7] and [8]
demonstrate significant performance improvement as compared to the
considered state-of-art algorithms.

The application of the proposed formulation to video streaming
is further described in Appendix D (see the Supplementary Mate-
rial). The complete formulation is provided in Appendix F (see
the Supplementary Material). Appendix G (see the Supplementary
Material) further provides the evaluations of the proposed algorithm
for SVC video streaming. For more details on the application to video
streaming, the reader is referred to [7] and [8].

V. CONCLUSIONS

A deadline and buffer constrained knapsack problem is proposed.
The problem is shown to be NP hard in general. However, a poly-
nomial complexity algorithm (linear time in the number of bins and
components of each item) is proposed and shown to be optimal in
a special case where the values and weights follow certain condi-
tions. This problem is a generalization of the problem formulation
considered for video streaming, where the algorithm was shown to
provide a low-complexity streaming algorithm that outperforms all
considered baselines for both SVC and AVC video streaming. The
optimization problem has been further extended to multi-path and
cooperative video streaming [15-16]. The proposed generalization of
the video streaming problem has the potential to have applications
in other areas (e.g., Appendix H (see the Supplementary Material)),
and finding such applications is an important future direction. Gen-
eralizing the special case to still have polynomial-time solutions is
another important research direction.
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