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Abstract—We present a novel method of integrating motion
and appearance cues for foreground object segmentation in
unconstrained videos. Unlike conventional methods encoding
motion and appearance patterns individually, our method puts
particular emphasis on their mutual assistance. Specifically,
we propose using an interactively constrained encoding (ICE)
scheme to incorporate motion and appearance patterns into a
graph that leads to a spatiotemporal energy optimization. The
reason of utilizing ICE is that both motion and appearance cues
for the same target share underlying correlative structure, thus
can be exploited in a deeply collaborative manner. We perform
ICE not only in the initialization but also in the refinement stage
of a two-layer framework for object segmentation. This scheme
allows our method to consistently capture structural patterns
about object perceptions throughout the whole framework. Our
method can be operated on superpixels instead of raw pixels
to reduce the number of graph nodes by two orders of mag-
nitude. Moreover, we propose to partially explore the multi-
object localization problem with inter-occlusion by weighted
bipartite graph matching. Comprehensive experiments on three
benchmark datasets (i.e., SegTrack, MOViCS, and GaTech)
demonstrate the effectiveness of our approach compared with
extensive state-of-the-art methods.

Index Terms—video object segmentation, foreground detection,
interactively constrained encoding.

I. INTRODUCTION

THE purpose of video object segmentation is to acquire

foreground moving objects in videos. Foreground object

segmentation is greatly significant and has been leveraged

for use in various vision tasks, including object appearance

modeling [1], object tracking [2], video matting [3], activity

recognition [4], and image retrieval [5]. Compared with early

methods that only consider the case of static camera settings

and address this problem through static background subtrac-

tion [6], [7], separating targets in an arbitrary background is

inherently more difficult due to camera jittering, motion blur,

and the fast and large displacement of targets. Recent years

have witnessed much progress [8], [9], [10], [11] of handling

unconstrained videos, but it remains an open issue that has not

yet been adequately explored.

Motion features (e.g., optical flow) and appearance fea-

tures (e.g., color segmentations) are both important cues for
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addressing the object segmentation problem with an uncon-

strained background. However, optical flow generates inac-

curate boundaries and it often diffuses under rapid motion,

while appearance is severely hindered by cluttered or low-

contrast backgrounds. Therefore, a natural idea is to integrate

motion and appearance cues for object segmentation. In many

related studies [10], [11], [12], the feature-level or decision-

level fusion with regard to these two cues has been considered,

yet motion and appearance patterns are separately extracted

and not integrated in a deeply collaborative way. In other

world, traditional manner neglects the intrinsic correlation

between motion and appearance patterns. Actually, motion and

appearance features for the same target to a certain extent are

homologous, and share underlying correlative patterns about

object perceptions, including semantic structure, shape, and

movement. Therefore, for well detecting a moving target,

it is better to exploit the motion and appearance features

synergistically rather than to utilize them separately. Along this

line, we develop an interactively constrained encoding (ICE)

approach for integrating motion and appearance cues and

incorporate it into a coarse-to-fine framework. The procedure

of feature encoding is interactive between multi-type cues; that

is, ICE imposes motion constraints during appearance feature

encoding, and vice versa. Unlike many existing methods in

which multiple-feature fusion only serves the initialization

stage, our method performs ICE throughout all of the stages

of the coarse-to-fine framework. Especially, ICE allows our

method to capture the semantic structure of object perception

while refining moving regions.

Figures 1(f) and 4(d) illustrate living examples of ICE and

Figure 2 demonstrates our framework. In Figure 1, (b) and

(c) are the segmentation cues extracted by [11] and [13],

respectively. Figure 1(e) is the combination of (b) and (c),

but the motion and appearance cues are encoded separately.

By considering the interactively constrained encoding on two

cues, our approach obviously gets more uniform values inside

the target than (c) and (e), and preserves much more accurate

boundaries than (b) and (e). Overall, ICE exhibits more

potential in high-level object perception.

Besides putting forward ICE, we employ another two strate-

gies in addressing the video object segmentation problem.

First, the superpixel representation is used to reduce the

computation complexity. Because our method performs ICE

throughout the whole framework, the superpixel-level graph

still works well and maintains the ability of perceiving targets

in the video even with a cluttered background. Second, to

handle the multi-object initialization with inter-occlusion, we
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Fig. 1: Illustration of separate encoding and Interactively Constrained Encoding (ICE) of motion and appearance patterns for

a moving target. Best view in color.

propose to activate maximum bipartite graph matching be-

tween adjacent frames at the proposal level, which re-assigns

coarse IDs to different occluded objects. It should be noted

that the inter-occlusion is often ignored by previous studies.

The remainder of this paper is structured as follows. Related

works are reviewed in Section 2. Section 3 presents our ap-

proach. Section 4 demonstrates the results on three benchmark

datasets, and our conclusions are drawn in Section 5.

II. RELATED WORKS

This paper aims to detect and segment moving foreground

objects in videos, a goal shared by previous works on back-

ground subtraction and video object segmentation. Related

works are briefly introduced in this section.

A. Background Subtraction

When detecting moving regions, a way off the shelf is to

model pixel-wise backgrounds and then subtract it to find pix-

els whose differences exceed a threshold. Both parametric [6],

[14], [15] and nonparametric [7] mechanisms can be adopted

for constructing backgrounds. The single Gaussian model [14]

is a simple method for fitting the distribution of pixel intensity,

but it is insufficient in complex scenes. The elaborate mixture

of Gaussian [6] provides a better distribution of background

pixels and it is usually eligible for non-cluttered scenes. Chen

et al. [16] proposed a hierarchical block-based approach that

combines Mixture of Gaussian and a contrast histogram. With

respect to nonparametric approaches, the background model in

[7] is built upon a set of background samples and is updated by

randomly selecting samples. [7] also considers neighbor pixels

during updating, which is different from Gaussian mixture

models [6]. Nevertheless, the common drawback of traditional

background modeling approaches is that they usually require

static camera settings, and thus cannot cope well with moving

backgrounds.

B. Video Object Segmentation

Video object segmentation has emerged as a feasible solu-

tion for tackling arbitrary background. Conventional methods

of video object segmentation can be categorized into the

supervised mode and the unsupervised mode.

1) Supervised Methods: Supervised approaches usually re-

quire manual annotations in several key frames to explicitly

indicate moving objects. Tsai et al. [9] proposed to track

human-labeled regions and segment the remaining frames

utilizing a multi-label Markov random field model. Chock-

alingam et al.[17] also requires a manual label that indicates

the location of a moving target. Recently, some methods [18],

[19] have focused on co-segmenting objects, given multiple

videos where the same targets appear simultaneously. Those

can be categorized as weakly supervised tasks, as the same

video object is must be present in multiple videos and the

co-occurrence hints at what the object looks like.

2) Unsupervised Methods: Unsupervised segmentation

methods mainly build on motion trajectories or optimization

in a graph with integrating multiple cues.

a) Methods based on Motion Trajectory: Trajectories

provide a natural way to describe object movement. Those

methods usually obtain trajectories by linking dense points

or objects, and then the point trajectories are clustered and

mapped into pixel labels. Brox et al. [8] exploited dense flow

points to cluster long-term motion trajectories, and the tem-

porally consistent clusters alleviated the influence of objects
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that were sometimes static in the sequence. Fragkiadaki et al.

[20] detected discontinuities for trajectory embedding to obtain

motion boundaries, and thus segment objects from world

scenes. The common underlying assumption that supports

these methods is motion homogeneity, where the points within

objects share a single similarity transformation. However,

deformable objects apparently do not meet this requirement

and may lead to poor performance. Moreover, these methods

rely heavily on the reliability of optical flow and explore

insufficient appearance clues.

b) Methods based on Coarse-to-Fine Graph Optimiza-

tion: Beyond tracking dense points, an alternative that benefits

more from both motion and appearance is the coarse-to-fine

optimization scheme in a graph. Raw objects are initially

localized with the help of optical flow [11] or generic object

proposals [10], and then multiple clues are incorporated into

an optimization procedure to refine the foreground labels. Lim

et al. [21] employed block-wise density propagation to obtain

likelihood maps, and then optimized those maps. However,

this approach involves a large number of parameters and thus

is not feasible for generalization. Wang et al. [22] designed

a framework that incorporates robust geodesic measurement

to segment video targets. [23] optimizes a weighted graph at

the pixel level using the shortest path algorithm. Giordano

et al. [12] incorporated properties of a compact geometrical

structure and optimized the graph around each moving region

based on appearance and perceptual organization.

Although motion and appearance patterns are both used

in above-mentioned methods when optimizing a graph, the

common drawback of these methods is that motion and

appearance are treated as isolated components at a low level

without considering their homologous property. Furthermore,

existing methods often ignore the inter-occlusion problem in

multiple object location. Our method tends to address all these

shortcomings.

III. THE PROPOSED APPROACH

A. Overview and Notations

Our framework comprises two stages: the label initialization

stage and the refinement stage. The proposed interactively

constrained encoding (ICE) will be used throughout both

stages. Figure 2 briefly illustrates our approach.

For clarity, the notations used in our paper are provided in

Table I.

B. Interactively Constrained Encoding (ICE)

1) Overview of ICE: To exploit the homologous properties

of multimodal cues and capture semantic structural informa-

tion on object perception, appearance restrictions are leveraged

to induce the extraction of motion patterns, and vice versa.

The motion cues used in our approach mainly include

optical flow [24] and its further derivative features, such as

a color image and a gradient map of optical flow. In terms

of appearance, object proposals [25] are the primary cues

in our approach. Appearance saliency [13], trimap and color

descriptors are also exploited as supplementary cues.

Symbol Definition

F i ∈ XW×H The ith frame with width W and height
H

F =
{

F i
}K

i=1
A video sequence with K frames

(j, k) A pixel index

Oi The two-channel optical flow image

V i The intensity magnitude of Oi

Ei, The gradient magnitude of Oi

Ci The three-channel color optical flow im-
age

Y i
RGB

The appearance saliency map of F i

Y i
C

The appearance saliency map of Ci

Pi
RGB

=
{

P
i,r

RGB

}N1

r=1

A set of object proposals in F i

Pi
C =

{

P
i,r

C

}N2

r=1

A set of object proposals in Ci

P i,r The rth proposal in F i or Ci

Di,r The binary mask of P i,r

Bi,r The binary boundary/edge map of P i,r

G The gradient/boundary strength for a
proposal P i,r

I The intensity strength for a proposal
P i,r

Gi The accumulated gradient/boundary
strength of Pi in F i or Ci

Ii The accumulated intensity strength of
Pi in F i or Ci

T i The trimap for Ci

Mi The ICE map for F i

Hp Multiple concatenated histograms for a
superpixel/node p

D The Bhattacharyya distance

TABLE I: The notations in this paper.

The gradient magnitude map Ei in the optical flow field Oi

is calculated by:

Ei =
∥

∥∇Oi
∥

∥

2
. (1)

For P i,r, its gradient or boundary strength G in the optical

flow field is formulated as

G
(

P i,r
)

=
1

Z
i,r
G

H
∑

j=1

W
∑

k=1

Ei
j,k · 1

(

B
i,r
j,k = 1

)

, (2)

where (j, k) is a pixel index, 1 is the indicator function, and

Z
i,r
G =

∑H

j=1

∑W

k=1 B
i,r
j,k is a normalization factor. Given

P i,r, Eq.(2) evaluates the strength of a proposal boundary that

overlaps with the boundary of a moving object.

In the same way, intensity strength I in the optical flow

field for a proposal P i,r is

I
(

P i,r
)

=
1

Z
i,r
I

H
∑

j=1

W
∑

k=1

V i
j,k · 1

(

D
i,r
j,k = 1

)

, (3)

where Z
i,r
I =

∑H

j=1

∑W

k=1 D
i,r
j,k is also a normalization factor.

Given P i,r, Eq.(3) assesses its intensity strength weighted by

the intensity of the optical field. This metric also indicates the

likelihood of belonging to moving targets for P i,r.

2) Appearance-Constrained Motion: We adapt appearance

restrictions to the motion field; that is, we aim to encode pat-

terns in Oi, by following the manner of extracting appearance

features. Given Ci, we calculate its appearance saliency map

[13] Y i
C , its color name descriptors [26] and its trimap T i. The

construction of T i is individually introduced later. Color name
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Fig. 2: Flowchart of the framework.

descriptors categorize each pixel into the eleven semantic color

names and thus produce a histogram with eleven dimensions.

Then, we rank and accumulate P i
C =

{

P
i,r
C

}N2

r=1
in Ci

based on Eqs.(2) and (3). The accumulated boundary or

gradient strength of P i
C is

Gi
C =

N2
∑

r=1

B
i,r
C ·G

(

P
i,r
C

)

(4)

Given B
i,r
C , as a mask for P

i,r
C , Eq.(4) assigns a uniform

value G
(

P
i,r
C

)

for each pixel belonging to P
i,r
C . Considering

that those proposals are generated based on similarity in

Ci and are thus compact in motion, the settings in Eq.(4)

can preserve spatial layouts of targets when many interior

boundaries occur inside them.

In the same way, the accumulated intensity strength of P i
C

is

IiC =

N2
∑

r=1

B
i,r
C · I

(

P
i,r
C

)

, (5)

Note that, while appearance constraints were imposed dur-

ing the above feature encoding, the whole procedures are

conducted in optical flow field Oi or Ci. Thus, Y i
C , Gi

C , IiC ,

T i and the color descriptors of Ci are categorized into the

appearance-constrained motion.

a) Trimap: A trimap T i denotes the division of definite

foreground, definite background, and ambiguous regions in

F i. During model optimization, T i reveals the correlations of

regions both in a local and global view, and thus can narrow

down our focus to only ambiguous regions.

Unlike [27], where the goal is to find salient objects in

appearance, we aim for localizing moving areas. Hence, our

moving trimap T i is built upon Y i
C . Y i

C is first subdivided

into equal-sized blocks under three different spatial scales,

with the number of blocks in each scale being 2 × 2, 3 × 3,

and 4 × 4, respectively. Similar to the settings in [27], the

Otsu’s algorithm [28] with seven-level threshold is individually

applied to each block in each scale. Then, all three maps are

summed to global map Y i′. Hence, Y i′ is a map with 21

levels. T i is then constructed by globally thresholding Y i′

using Eq.(6), through a conservative scheme to ensure the

purity of the definite foreground:

T i (j, k) =







1, if Y i′ (j, k) ≥ θ1,

0, if Y i′ (j, k) ≤ θ2,

0.5, otherwise

(6)

where (j, k) is a pixel index in frame F i. In this work, θ1 and

θ2 are set as 18 and 6, respectively.

An example of trimap in Figure 3 indicates that it benefits

for localizing objects and narrowing down our attention region.

Thus, an appearance-constrained motion map Mi
C is ex-

pressed as

Mi
C = Gi

C + IiC + α · Y i
C + β · T i, (7)

where α and β are set as 0.9 and 0.5 in our experiments,

respectively. Each term in Eq.(7) is restricted by the object-

level appearance relations in Ci.

3) Motion-Constrained Appearance: In contrast to Mi
C ,

which has the aid of appearance constraints, motion restric-

tions can also be leveraged to encode appearance patterns.

Object proposals in color space uncover the potential of

maintaining the semantic structure even in cases of optical

flow failure. We first rank and accumulate P i
RGB based on

Eqs.(2) and (3).

The accumulated gradient strength of P i
RGB is

Gi
RGB =

N1
∑

r=1

B
i,r
RGB ·G

(

P
i,r
RGB

)

. (8)

Given B
i,r
RGB , Eq.(8) assigns a uniform value G

(

P
i,r
RGB

)

for

each pixel belonging to P
i,r
RGB . Here optical flow boundaries

Ei must be pre-processed before using Eq.(8) is required to

avoid many zero values. Given that the true image boundaries

in F i are slightly misaligned with Ei in Oi, we first produce

an expansion map Ei′ by dilating Ei to make it overlap with

the boundaries of F i and P i
RGB .

In the same way, the accumulated intensity strength of

P i
RGB is

IiRGB =

N1
∑

r=1

B
i,r
RGB · I

(

P
i,r
RGB

)

. (9)
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Fig. 3: Illustration of a trimap. In (d), the green middle region represents definite foreground, the red color marks ambiguous

regions, and the remaining region is the background.

Note that, while optical flow cues aid feature encoding

here, the whole procedures are still operated on P i
RGB . P i

RGB

belongs to appearance patterns, as they are generated from

RGB frames and the generation is uninfluenced by optical

flow. Thus, the feature maps in this part are categorized into

the motion-constrained appearance.

The motion-constrained appearance map Mi
RGB is then

formulated as

Mi
RGB = Gi

RGB + IiRGB + α · Y i
RGB . (10)

4) The Eventual ICE Map: Having achieved the motion-

constrained appearance and the appearance-constrained mo-

tion, we assign equal weights to the two terms. An ICE map

is then calculated by

Mi = Mi
C + Mi

RGB . (11)

We then normalize Mi to [0, 1]. Eventually, Mi indicates the

probabilities of being a moving foreground for the pixels in

F i.

Our ICE scheme considers mutual restrictions from multi-

modal cues for the same target, and it tends to improve the

robustness and accuracy of perceiving moving targets. Figure

4 provides a living example, which shows that our approach

can work effectively in variant environments, even in which

the optical flow method fails.

C. Label Initialization

Having obtained an ICE map Mi, an adaptive threshold ti

is computed to binarize Mi. ti = 0.5 ·
(

µ
(

Mi
)

+ ρ
(

Mi
))

,

where µ (·) is the average value of Mi and ρ (·) denotes the

threshold computed on Mi using Otsu’s algorithm [28]. The

initial foreground or background map X i is obtained by

X i (j, k) =

{

1, if Mi (j, k) ≥ ti

0, otherwise
(12)

where (j, k) is a pixel index in F i. Eq.(12) usually works

well in cases of single-object segmentation and multi-object

segmentation without occlusions.

Nevertheless, for a sequence F =
{

F i
}K

i=1
containing

multiple object movement, there may exist inter-occlusion

in certain frames
{

F o+1, .., F o+r
}

after initialization. To

partially alleviate this problem, we introduce a conservative

procedure to activate the inter-occlusion handling. A decrease

Fig. 4: Illustration of moving object perception by different

method. Optical flow in (b) is inaccurate due to rapid motion.

The initial moving region in (c) is calculated using inside-

outside maps according to [11], which only relies on optical

flow and fails in this case. (d) is our accumulated object

proposals induced by optical flow. Motion(optical flow) with

appearance (RGB proposals) release potentials of object per-

ception due to the homologous property.

in the number of detected targets suggests that certain targets

leave the scene or inter-occlusion happens. Hence, our decision

criterion is that the number of initial targets decreases from

n to m and then returns to n. Here, n is the number of

targets before decreasing, and m is the number of detected

occluded blobs, s.t. m < n. This criterion indicates that inter-

occlusion occurs from F o+1 and the occluded blobs re-split to

n isolated targets after F o+r. Thus, the m occluded blobs in
{

F o+1, .., F o+r
}

can be split into proposals and re-assigned

IDs.

We construct a graph G1 = (V1, E1) for every two adjacent

frames F i, F i+1, where V1 = P i
RGB ∪ P i+1

RGB and P i+1
RGB

is the set of proposals inside the occluded blobs. Given that

P i
RGB and P i+1

RGB are disjoint sets of proposals from adjacent
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frames F i and F i+1, respectively, G1 naturally consists of a

bipartite graph. Every edge e ∈ E1 indicates the cost between

two nodes/proposals from P
i,j
RGB and P

i+1,k
RGB , respectively.

The cost of e is calculated by three terms, including the

Bhattacharyya distance between concatenated of simple RGB

and LAB histograms, the normalized difference of the sizes of

boundingboxes, and the normalized centroid distance between

P
i,j
RGB and P

i+1,k
RGB . The maximum matching of bipartite graph

G1 is solved by the Hungarian algorithm.

D. Label Refinement

The purpose of label refinement is to reduce the misclassifi-

cations generated by local nature during foreground initializa-

tion, particularly near the edges of moving targets. An energy

minimization formulation is thus introduced to enforce spatial

consistency of targets. Given that superpixels [29] are usually

achieved through a conservative strategy to ensure highly local

compactness, our framework advocates them as basic units

in the spatiotemporal graph G. This setting, an operation at

a middle level, may sacrifice some accuracy compared with

pixel-by-pixel optimization, but it is still feasible and faster

than pixel-wise labeling because the number of nodes in G has

been reduced by two orders of magnitude. Here, our ICE is

still used in unary potentials to maintain the ability to capture

more structural information about object perception.

Given a video sequences F =
{

F i
}K

i=1
, we formulate F

as a spatiotemporal graph G = (S, E), with an initial node

label set L = {lp}
N

p=1, lp ∈ {0, 1}. Here, S is the collection

of superpixels/nodes and E is the set of edges.

Then the energy in the spatiotemporal graph G is defined

as

E (L) =
∑

p∈G

Up (lp) + λ1

∑

p∈G

∑

q∈Ns(p)

Vpq (lp, lq)

+ λ2

∑

p∈G

∑

r∈Nt(p)

Vpr (lp, lr)

s.t. lp, lq, lr ∈ {0, 1} ,

(13)

where Ns (p) and Nt (p) represent the spatial neighbors and

temporal neighbors of node p, respectively. All of the superpix-

els in the same frame that spatially connected to node p consist

of Ns (p), whereas all of the superpixels in the forward or

backward adjacent frames that overlap with p comprise Nt (p).
There exist three terms in Eq.(13). Unary potential Up,

also called a data term, represents the likelihood of node p

belonging to label 0 or 1. Pairwise potential V , also called

a smooth term, includes spatial pairwise potential Vpq in

the same frame and temporal pairwise potential Vpr across

adjacent frames. Below we detail the definitions of U and V .

1) Unary Potential U: The first term in unary potentials is

calculated using the ICE maps M =
{

Mi
}K

i=1
.

The ICE map for node p is transformed into unary values

by

U1 (lp) =

{

−log
(

1− Mi (p)
)

if lp = 0,
−log

(

Mi (p)
)

otherwise
(14)

where Mi (p) is the normalized summation value of node p

in Mi. The second data term, Eq.(14), aims to penalize the

initial background superpixels that own large likelihood values

in ICE, and the initial foreground nodes with small values in

ICE.

As complementary, the weighted histograms H = {Hp}
N

p=1
from each superpixel/node p are also employed. Hp is a

feature pool that concatenates three types of histograms: the

Bag of Words (BoW) histograms respectively projected by a

dense SIFT dictionary and an RGB value dictionary, color

name descriptors as described in the appearance-constrained

motion, and the concatenation of simple histograms in four

color spaces including RGB, HSV, LAB, and YCbCr. Given

that histograms of node p may be sparse, we employ the k

nearest spatial neighbors of p to weight it through a Gaussian

kernel and achieve a weighted Hp.

U2 (lp) =

{

1−D (Hp, H (Qfg)) if lp = 0,
1−D (Hp, H (Qbg)) otherwise

(15)

where Qbg and Qfg are sets of initial background and

foreground superpixels, respectively. D represents the Bhat-

tacharyya distance of the feature vectors between node p and

Qfg or Qbg . The purpose of formulating the first data term

as Eq.(15) is to assign a higher unary value to background

superpixels that are close to foreground objects after feature

embedding, and vice versa.

Thus, the unary potential for node p is

Up (lp) = U1 (lp) + U2 (lp) . (16)

2) Pairwise Potential V: To calculate the degree of agree-

ment between two spatial or temporal adjacent nodes, we need

to define feature representation and metrics for nodes. Two

types of cues are used here to compute the pairwise potential:

histograms H and boundary connectivity C. H demonstrates

the appearance and motion similarity, and C depicts the spatial

closeness of adjacent nodes.

According to visual perception, two superpixels/nodes p and

q are likely to be intimate and compact if they connect much

with each other. In this case, a large percentage of boundary

pixels for p and q are overlapped. The boundary connectivity

value C is thus defined as

C (p, q) =

{

0, if lp = lq
Len(p)∩Len(q)

min(Len(p),Len(q)) if lp 6= lq
(17)

where Len (p) denotes the perimeter of superpixel p and

Len (p)∩Len (q) is the overlapped length of their perimeters.

Given two nodes p and q, s.t. q ∈ Ns (p), spatial pairwise

potential Vpq is written as

Vpq (lp, lq) =

{

0, if lp = lq
1−D (Hp, Hq) + C (p, q) , if lp 6= lq

(18)

According to node p and r ∈ Nt (p), temporal pairwise

potential Vpr can be expressed as

Vpr (lp, lr) =

{

0, if lp = lr
1−D (Hp, Hr) , if lp 6= lr

(19)

Eqs.(18) and (19) aim to penalize adjacent nodes that are

assigned with different initial labels.
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Based on Eqs.(13), (16), (18), and (19), the refined fore-

ground labels are achieved by minimizing the objective func-

tion:

L∗ = argminE (L)
L

. (20)

Given that the unary and pairwise potentials in our approach

are submodular, this task can be done via the graph cut

algorithm.

IV. EXPERIMENTS

A. Experimental Settings

a) Datasets: Three benchmark datasets were employed

to evaluate our method: SegTrack [9], MOViCS [30], and

GaTech [31]. SegTrack [9] is a commonly used dataset for

video object segmentation. It contains six video sequences

named birdfall, cheetah, girl, monkeydog, parachute, and

penguin. A pixel-level ground-truth is provided for the primary

foreground object in each video. We follow the same criterion

as in [10], [11], [32], where the penguin video is discarded

because only one penguin is annotated among a group of

penguins. MOViCS [30] was initially proposed for video

object co-segmentation. It is a weakly supervised pipeline for

segmenting objects in multiple relevant videos. The dataset has

four video sets: chickensAll, lionsAll, giraffesAll and tigersAll.

Each video set contains two to four videos. In each video,

the authors provide the ground truth of object class labeling

for five frames that are equidistantly sampled from the video.

The GaTech video segmentation dataset [31] consists of 15

sequences, and the video length ranges from 1 second to 28

seconds.

b) Evaluation Metrics: With respect to quantitative anal-

ysis, the popular average per-frame pixel error [9] was used

as a basic metric. The metric is defined as

error =
XOR (FG,GT )

K
, (21)

where FG is the labeling results for all frames output by the

segmentation approaches, GT is the ground-truth labels, and

K is the total number of frames for a sequence. Given that

the average per-pixel error is an absolute quantitative metric

and can vary in a wide range influenced by video resolution,

we supplement a normalized metric named average labeling

precision

precision = 1−
XOR (FG,GT )

K ·N0
, (22)

where N0 is the total number of pixels in each frame.

c) Implementation Details: All of the experiments were

run on a computer with Intel Core i7(3.4GHz) and 8GB

RAM. In our model, SLIC superpixels [29] were used with a

regularizer 0.1 and a regionsize 20. The GOP algorithm [25]

with default parameters was used to generating proposals due

to its fast computation. The λ1 and λ2 in Eq.(13) were set to

3 and 2, respectively. Regarding the BoW dictionaries used in

our experiments, the one for dense SIFT was 200-dimensional,

while another for RGB values was 150-dimensional. The

two dictionaries were learned using natural scene images

from PASCAL VOC 2012. With respect to the concatenated

Methods birdfall cheetah girl monkeydog parachute Avg.

SE 447 1626 4217 1576 627 1450
ICE 379 1381 2432 951 396 942

TABLE II: Comparison of interactively constrained encoding

(ICE) and separate encoding (SE) on SegTrack. The metric is

average per-frame pixel error.

color histograms, 16 bins for RGB, HSV, LAB, and YCbCr

were used in each channel, and thus a 192-dimensional color

histogram was obtained for each node.

B. ICE vs. Separate Encoding

In this experiment part, we compare our ICE against the

conventional separate encoding. The quantitative experimental

results for five SegTrack videos are shown in Table II.

Here, we extracted the optical flow cues based on [11] and

appearance saliency based on [13], and then combined them

in the final stage as a likelihood map denoted as separate

encoding (SE). We compare SE with ICE using the same en-

ergy model and the same parameters. In the simplified energy

minimization model, the pre- and post-processing procedures

are discarded, and only ICE and SE maps are respectively

employed to build unary potentials. With respect to pairwise

potentials, it is impossible to measure the pairwise cost of

two adjacent nodes using just the two likelihood maps. For

simplicity, the absolute difference between two adjacent nodes

is used as their pairwise potential.

As Table II shows, ICE obviously outperforms SE under

the same condition. The improvement is mainly caused by

exploiting the homologous properties of multimodal cues for

the same target, and use them throughout the whole processing

framework.

C. Results and Analysis on SegTrack

Comprehensive comparisons of object segmentation results

on SegTrack are demonstrated in Table III, which includes

our approach and nine state-of-the-art methods. In addition to

the average per-frame pixel error for each video and the whole

video set, we enumerate what the basic unit is when optimizing

the model. Similar to [11], we process objects at the superpixel

level, whereas [10], [22] and other approaches operate at the

pixel level. [9] and [17] are conducted in a supervised manner

that requires manual annotation in the first frame, whereas

others are not. Our approach achieves a competitive result,

especially comparing with the method presented in [11], which

also uses superpixels as basic units. Although sacrificing some

accuracy compared with pixel-by-pixel optimization [10], [22],

our approach is very feasible and efficient, as the number of

units in the model is reduced by two orders of magnitude. To

investigate related algorithms under a normalized metric, we

also calculate the average precision using our newly defined

metric in Eq.(22), which measures the percentage of correctly

labeled pixels. As Table IV shows, our approach obtains an

average precision of 99.4%. Under this normalized metric, we

can see that performances of most approaches are very close

and eligible. The qualitative results for the five sequences are

also given in Figure 5.
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Video Ours Papazoglou’s[11] Wang’s[22] Varas’s[33] Ochs’s[34] Zhang’s[10] Lee’s[32] Brox’s[8] Tsai’s[9] Chockalingam’s[17]

birdfall 219 217 209 243 468 155 288 468 252 454
cheetah 834 890 796 391 1175 633 905 1968 1142 1217
girl 1512 3859 1040 1935 5683 1488 1785 7595 1304 1755
monkeydog 536 284 562 497 1434 365 521 1434 563 683
parachute 353 855 207 187 1595 220 201 1113 235 502

Avg. 587 877 503 515 1736 452 592 1926 594 791

Basic Unit sp sp p p p p p p p p

Supervised? × × × × × × × ×
√ √

TABLE III: Average per-frame pixel error on SegTrack

Video Ours Papazoglou’s[11] Wang’s[22] Varas’s[33] Ochs’s[34] Zhang’s[10] Lee’s[32] Brox’s[8] Tsai’s[9] Chockalingam’s[17]

birdfall 99.7 99.7 99.8 99.7 99.4 99.8 99.7 99.4 99.7 99.5
cheetah 98.9 98.8 99.0 99.5 98.5 99.2 98.8 97.4 98.5 98.4
girl 98.8 97.0 99.2 98.5 95.6 98.8 98.6 94.1 99.0 98.6
monkeydog 99.3 99.6 99.3 99.4 98.1 99.5 99.3 98.1 99.3 99.1
parachute 99.8 99.4 99.9 99.9 98.9 99.8 99.9 99.2 99.8 99.7

Avg. 99.4 99.1 99.5 99.5 98.3 99.6 99.4 98.1 99.4 99.2

TABLE IV: Average precision (%) on SegTrack

Fig. 5: Illustration of object segmentation results by our method on SegTrack. Results from top to bottom rows are respectively

from videos: birdfall, cheetah, girl, monkeydog, and parachute. Segmented objects are delimitated by green curves. Best view

in color.
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Fig. 6: Comparison of different methods on MOViCS. Four rows from top to bottom show original frames, our results,

segmentations from [11], and results from [30], respectively. Best view in color.

Methods Chicken Giraffe Lion Tiger Avg. Supervised?

Ours 1437 2153 2605 14960 5289 ×
Papazoglou’s[11] 1762 2225 2670 17480 6034 ×
Chiu’s[30] 1271 1352 3250 6158 3008

√

TABLE V: Average per-frame pixel error on MOViCS.

D. Results and Analysis on MOViCS

There are four sets in MOViCS, each of which contains 2 to

4 relevant videos. As MOViCS [30] is originally collected for

object co-segmentation, the identical object occurs repeatedly

in relevant videos. However, in some videos, target objects are

always nearly static, which is beyond the scope of this paper,

which aims to segment moving objects. Thus, we only use

one video sequence containing moving targets for each set,

and four sequences in total are eventually used as test data.

We compare our method against [11] and [30], running the

codes provided by the authors on MOViCS. The parameter

values are also the same as those set by the codes. Table V

demonstrates the average per-frame pixel errors of different

methods on MOViCS, and Table VI shows the average pre-

cision of the three methods. Additionally, visual comparisons

of segmentation are also depicted in Figure 6.

Note that [30] is weakly supervised and requires relevant

videos containing the identical targets as input. Hence, during

the experiments, we still fed all of the relevant videos in

MOViCS to the model in [30], but only selected the four

videos that were both used by us and by [11] to report the

performance. Additionally, the approach developed by [30]

outputs a set of segments containing both background and

foreground for each frame, and those segments do not specify

which one belongs to the foreground moving target. Hence,

we compare each segment to the ground-truth foreground one

by one and adopt the segment with the highest accuracy as the

Methods Chicken Giraffe Lion Tiger Avg.

Ours 98.9 98.3 96.6 93.5 96.3
Papazoglou’s[11] 98.6 98.3 96.5 92.4 95.7
Chiu’s[30] 99.0 99.0 95.8 97.3 97.9

TABLE VI: Average precision (%) on MOViCS.

foreground. That means that unlike the settings in [11] and in

our study, the performance of [30] in Table V is actually aided

by both the ground truth and extra relevant videos.

E. Results and Analysis on GaTech

Given that pixel-level ground truth is not offered in GaTech

[9], we qualitatively compare our method with [9] on this

dataset. The visual comparisons are shown in Figure 7, where

our segmentations are delimitated by green curves.

Different from our method that is unsupervised, [9] is a

supervised approach that usually works well under uniform

backgrounds (e.g., Yuna Kim), but can introduce a host of

object fragments due to scene clutter (e.g., waterski). This

is mainly because [9] does not integrate object-level cues,

whereas our approach provides more insights into object-

oriented information, such as the saliency and accumulated

proposal maps in our ICE.

V. CONCLUSION

In this paper, we present an unsupervised approach for

moving object segmentation in unconstrained videos. The

interactively constrained encoding (ICE) is proposed to exploit

the homologous properties of multimodal cues for the same

object. Due to preserving interactive restrictions throughout

both the initialization and refinement stages, our approach can

well perceive and refine moving targets in variant environ-

ments, even under a failure of appearance saliency or optical
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(a) Yuna Kim

(b) waterski

Fig. 7: Comparisons between our method and [9] on GaTech. In each subfigure, three rows from top to bottom, show original

frames, segmentations from [9], and our results, respectively. Best view in color.

flow. We also partially tackle the inter-occlusion problem

through a conservative proposal-wise maximum bipartite graph

matching. Furthermore, the lightweight superpixel-level graph

optimization is developed to reduce the computation com-

plexity. Future work involves incorporating more geometric

patterns and perceptual information into the approach, and

using multiple adjacent frames to generate temporal ICE.
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