1802.10252v4 [cs.CV] 16 Aug 2019

arxXiv

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

Frank-Wolfe Network: An Interpretable Deep
Structure for Non-Sparse Coding

Dong Liu, Senior Member, IEEE, Ke Sun, Zhangyang Wang, Member, IEEE,
Runsheng Liu, and Zheng-Jun Zha, Member, IEEE

Abstract—The problem of L,-norm constrained coding is to
convert signal into code that lies inside an L,-ball and most
faithfully reconstructs the signal. Previous works under the name
of sparse coding considered the cases of Lo, and L; norms.
The cases with p > 1 values, i.e. non-sparse coding studied
in this paper, remain a difficulty. We propose an interpretable
deep structure namely Frank-Wolfe Network (F-W Net), whose
architecture is inspired by unrolling and truncating the Frank-
Wolfe algorithm for solving an L,-norm constrained problem
with p > 1. We show that the Frank-Wolfe solver for the L -
norm constraint leads to a novel closed-form nonlinear unit,
which is parameterized by p and termed pool,. The pool, unit
links the conventional pooling, activation, and normalization
operations, making F-W Net distinct from existing deep networks
either heuristically designed or converted from projected gradient
descent algorithms. We further show that the hyper-parameter
p can be made learnable instead of pre-chosen in F-W Net,
which gracefully solves the non-sparse coding problem even
with unknown p. We evaluate the performance of F-W Net
on an extensive range of simulations as well as the task of
handwritten digit recognition, where F-W Net exhibits strong
learning capability. We then propose a convolutional version of F-
W Net, and apply the convolutional F-W Net into image denoising
and super-resolution tasks, where F-W Net all demonstrates
impressive effectiveness, flexibility, and robustness.

Index Terms—Convolutional network, Frank-Wolfe algorithm,
Frank-Wolfe network, non-sparse coding.

I. INTRODUCTION

A. L,-Norm Constrained Coding

Assuming a set of n-dimensional vectors {x; € R"|i =
1,2,...,N}, we aim to encode each vector x; into a m-
dimensional code z; € R™, such that the code reconstructs
the vector faithfully. When m > n is the situation of interest,
the most faithful coding is not unique. We hence consider
the code to bear some structure, or in the Bayesian language,
we want to impose some prior on the code. One possible

Date of current version August 19, 2019. This work was supported by the
National Key Research and Development Plan under Grant 2017YFB1002401,
and by the Natural Science Foundation of China under Grant 61772483.

D. Liu, K. Sun, and Z.-J. Zha are with the CAS Key Laboratory of
Technology in Geo-Spatial Information Processing and Application System,
University of Science and Technology of China, Hefei, China (e-mail:
dongeliu@ustc.edu.cn; sunk@mail.ustc.edu.cn; zhazj@ustc.edu.cn).

Z. Wang is with Department of Computer Science and Engineering, Texas
A&M University, College Station, TX, USA (e-mail: atlaswang@tamu.edu).

R. Liu was with the University of Science and Technology of China, Hefei,
China (e-mail: 1rs1892@outlook.com).

Copyright © 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

structure/prior is reflected by the L,-norm, i.e. by solving the
following problem:

({z:}, D} = argmin 2N, [Ix; — D13

subject to Vi, ||z, < ¢

)

where D € R™ "™ is a linear decoding matrix, and both p and
c are constants. In real-world applications, we have difficulty
in pre-determining the p value, and the flexibility to learn the
prior from the data becomes more important, which can be
formulated as the following problem:

* . N
{z}, D" p"} = argmin} ;7 |Ix; — Dzl

subject to p € P, Vi, ||z;|lp, <c (2

where P C R is a domain of p values of interest. For example,
P = {p|p > 1} defines a domain that ensures the constraint
to be convex with regard to z;. In this paper, (I) and (2) are
termed L,-norm constrained coding, and for distinguishing
purpose we refer to (I) and (2) as known p and unknown p,
respectively.

B. Motivation

For known p, if the decoding matrix is given a priori as
D* = Dy, then it is sufficient to encode each x; individually,
by means of solving:

zf = argmin ||x; — Doz;||3

3)

or its equivalent, unconstrained form (given a properly chosen
Lagrange multiplier \):

subject to ||z, < ¢

z] = argmin ||x; — Doz|3 + \||zi]

“4)

Eq. @) is well known as an L,-norm regularized least squares
problem, which arises in many disciplines of statistics, signal
processing, and machine learning. Several special p values,
such as 0, 1, 2, and oo, have been well studied. For example,
when p = 0, ||2;||o measures the number of non-zero entries
in z;, thus minimizing the term induces the code that is
as sparse as possible. While sparsity is indeed a goal in
several situations, the Lg-norm minimization is NP-hard [1].
Researchers then proposed to adopt L;-norm, which gives rise
to a convex and easier problem, to approach Ly-norm. It was
shown that, under some mild conditions, the resulting code of
using Lq-norm coincides with that of using Lg-norm [2]. L;-
norm regularization was previously known in lasso regression
[3]] and basis pursuit [4]. Due to its enforced sparsity, it leads

to the great success of compressive sensing [5]. The cases of
p > 1 lead to non-sparse codes that were also investigated.
Lo-norm regularization was extensively adopted under the
name of weight decay in machine learning [6]]. L.,-norm was
claimed to help spread information evenly among the entries
of the resultant code, which is known as democratic [7] or
spread representations [8|], and benefits vector quantization [9]],
hashing [|10]], and other applications.

Besides the above-mentioned special p values, other general
p values were much less studied due to mathematical difficulty.
Nonetheless, it was observed that general p indeed could help
in specific application domains, where using the special p
values might be overly simplified. For sparse coding, L,-
norms with p € [0,1] all enforce sparsity to some extent,
yet with different effects. In compressive sensing, it was
known that using L,-norm with 0 < p < 1 needs fewer
measurements to reconstruct sparse signal than using Li-
norm; regarding computational complexity, solving L,-norm
regularization is more difficult than solving Lji-norm but
still easier than solving Ly-norm [11f]. Further studies found
that the choice of p crucially affected the quality of results
and noise robustness [[12]]. Xu et al. endorsed the adoption
of L;/p-norm regularization and proposed an iterative half
thresholding algorithm [[13]]. In image deconvolution, Krishnan
and Fergus investigated L, and Ly,3 norms and claimed
their advantages over Li-norm [|14]]. For non-sparse coding,
L,-norms with p > 1 and different p’s have distinct impact
on the solution. For example, Kloft et al. argued for L,-norm
with p > 1 in the task of multiple kernel learning [15].

Now let us return to the problem where the decoding
matrix D is unknown. As discussed above, Lgp-norm induces
sparse representations, thus the special case of L,-norm con-
strained coding with p = 0 (similarly p = 1) is to pursue a
sparse coding of the given data. While sparse coding has great
interpretability and possible relation to visual cognition [16],
[17], and was widely adopted in many applications [18]-[21],
we are inspired by the studies showing that general p performs
better than special p, and ask: is general L,-norm able to
outperform Lo/Li/Ls/L-norm on a specific dataset for a
specific task? If yes, then which p will be the best (i.e. the case
of unknown p)? These questions seem not being investigated
before, to the best of our knowledge. Especially, non-sparse
coding, i.e. p > 1, is clearly different from sparse coding and
is the major theme of our study.

C. Outline of Solution

Analytically solving the L,-norm constrained problems is
very difficult as they are not convex optimization. When
designing numerical solutions, note that there are two (resp.
three) groups of variables in (resp. ([2)), and it is natural to
perform alternate optimization over them iteratively. Previous
methods for sparse coding mostly follow this approach, for
example in [16] and in the well-known K-SVD method [22].
One clear drawback of this approach is the high computational
complexity due to the iterative nature. A variant of using
early-stopped iterative algorithms to provide fast solution
approximations was discussed in [23]], built on the overly

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

strong assumption of close-to-orthogonal bases [24]. Besides
the high complexity, it is not straightforward to extend the
sparse coding methods to the cases of non-sparse coding, since
they usually leverage the premise of sparse code heuristically
but for general p > 1 it is hard to design such heuristics.

A different approach for sparse coding was proposed by
Gregor and LeCun [25]], where an iterative algorithm known
as iterative shrinkage and thresholding (ISTA), that was previ-
ously used for L;-norm regularized least squares, is unrolled
and truncated to construct a multi-layer feed-forward network.
The network can be trained end-to-end to act as a regressor
from a vector to its corresponding sparse code. Note that
truncation helps lower the computational cost of the network
than the original algorithm, while training helps compensate
the error due to truncation. The trained network known as
learned ISTA (LISTA) is then a fast alternative to the original
ISTA algorithm. Following the approach of LISTA, several
recent works consider the cases of Lg-norm [26] and L..-
norm [27], as well as extend other iterative algorithms to
their network versions [28]-[30]. However, LISTA and its
following-up works are not applicable for solving the cases of
general p, because they all refer to the same category of first-
order iterative algorithms, i.e. the projected gradient descent
(PGD) algorithms. For general p, the projection step in PGD
is not analytically solvable. In addition, such works have more
difficulty in solving the unknown p problem.

Beyond the family of PGD, another first-order iterative
algorithm is the Frank-Wolfe algorithm [31]], which is free of
projection. This characteristic inspires us to adapt the Frank-
Wolfe algorithm to solve the general p problem. Similar to
LISTA, we unroll and truncate the Frank-Wolfe algorithm to
construct a network, termed Frank-Wolfe network (F-W Net),
which can be trained end-to-end. Although the convergence
speed of the original Frank-Wolfe algorithm is slow, we
will show that F-W Net can converge faster than not only
the original Frank-Wolfe and ISTA algorithms, but also the
LISTA. Moreover, F-W Net has a novel, closed-form and
nonlinear computation unit that is parameterized by p, and
as p varies, that unit displays the behaviors of several classic
pooling operators, and can be naturally viewed as a cascade of
a generalized normalization and a parametric activation. Due
to the fact that p becomes a (hyper) parameter in F-W Net,
we can either set p a priori or make p learnable when training
F-W Net. Thus, F-W Net has higher learning flexibility than
LISTA and training F-W Net gracefully solves the unknown
p problem.

D. Our Contributions

To the best of our knowledge, we are the first to extend the
sparse coding problem into L,-norm constrained coding with
general p > 1 and unknown p; we are also the first to unroll-
and-truncate the Frank-Wolfe algorithm to construct trainable
network. Technically, we make the following contributions:

¢ We propose the Frank-Wolfe network (F-W Net), whose

architecture is inspired by unrolling and truncating the
Frank-Wolfe algorithm for solving L,-norm regularized
least squares problem. F-W Net features a novel nonlinear

LIU et al.: FRANK-WOLFE NETWORK: AN INTERPRETABLE DEEP STRUCTURE FOR NON-SPARSE CODING 3

unit that is parameterized by p and termed pool,. The
pool,, unit links the conventional pooling, activation, and
normalization operations in deep networks. F-W Net is
verified to solve non-sparse coding with general known
p > 1 better than the existing iterative algorithms. More
importantly, F-W Net solves the non-sparse coding with
unknown p at low computational costs.

« We propose a convolutional version of F-W Net, which
extends the basic F-W Net by adding convolutions and
utilizing the pool, unit point by point across different
channels. The convolutional (Conv) F-W Net can be
readily applied into image-related tasks.

« We evaluate the performance of F-W Net on an extensive
range of simulations as well as a handwritten digit
recognition task, where F-W Net exhibits strong learning
capability. We further apply Conv F-W Net into image de-
noising and super-resolution, where it also demonstrates
impressive effectiveness, flexibility, and robustness.

E. Paper Organization

The remainder of this paper is organized as follows. Section
reviews literatures from four folds: L,-norm constrained
coding and its applications, deep structured networks, the orig-
inal Frank-Wolfe algorithm, and nonlinear units in networks,
from which we can see that F-W Net connects and integrates
these separate fields. Section formulates F-W Net, with
detailed discussions on its motivation, structure, interpretation,
and implementation issues. Section validates the perfor-
mance of F-W Net on synthetic data under an extensive range
of settings, as well as on a toy problem, handwritten digit
recognition with the MNIST dataset. Section discusses
the proposed convolutional version of F-W Net. Section
then provides experimental results of using Conv F-W Net
on image denoising and super-resolution, with comparison to
some other CNN models. Section concludes this paper.
For reproducible research, our code and pre-trained models
have been published onlineﬂ

II. RELATED WORK
A. Ly-Norm Constrained Coding and Its Applications

Sparse coding as a representative methodology of the linear
representation methods, has been used widely in signal pro-
cessing and computer vision, such as image denoising, deblur-
ring, image restoration, super-resolution, and image classifica-
tion [18]], [19]], [21], [32]. The sparse representation aims to
preserve the principle component and reduces the redundancy
in the original signal. From the viewpoint of different norm
minimizations used in sparsity constraints, these methods can
be roughly categorized into the following groups: 1) Ly-norm
minimization; 2) L,-norm (0 < p < 1) minimization; 3)
Lq-norm minimization; and 4) L9 ;-norm minimization. In
addition, Lo-norm minimization is extensively used, but it does
not lead to sparse solution.

Varieties of dictionary learning methods have been proposed
and implemented based on sparse representation. K-SVD

Uhttps://github.com/sunke123/FW-Net

[22] seeks an over-complete dictionary from given training
samples under the Lg-norm constraint, which achieves good
performance in image denoising. Wright et al. [32] proposed
a general classification algorithm for face recognition based
on L;-norm minimization, which shows if the sparsity can be
introduced into the recognition problem properly, the choice
of features is not crucial. Krogh et al. [|6] showed that limiting
the growth of weights through Ls-norm penalty can improve
generalization in a feed-forward neural network. The simple
weight decay has been adopted widely in machine learning.

B. Deep Structured Networks

Deep networks are typically stacked with off-the-shelf
building blocks that are jointly trained with simple loss func-
tions. Since many real-world problems involve predicting sta-
tistically dependent variables or related tasks, deep structured
networks [33]], [[34] were proposed to model complex patterns
by taking into account such dependencies. Among many
efforts, a noticeable portion has been devoted to unrolling
the traditional optimization and inference algorithms into their
deep end-to-end trainable formats.

Gregor and LeCun [235] first leveraged the idea to construct
feed-forward networks as fast trainable regressors to approx-
imate the sparse code solutions, whose idea was expanded
by many successors, e.g. [26[], [27], [35]-[39]. Those works
show the benefits of incorporating the problem structure into
the design of deep architectures, in terms of both performance
and interpretability [40]. A series of works [41]-[44] estab-
lished the theoretical background of this methodology. Note
that many previous works [25], [26], [35], [41] built their
deep architectures based on the projected gradient descent
type algorithms, e.g. the iterative shrinkage and thresholding
algorithm (ISTA). The projection step turned into the nonlinear
activation function. Wang et al. [|29] converted proximal meth-
ods to deep networks with continuous output variables. More
examples include the message-passing inference machine [28]],
shrinkage fields [45]], CRF-RNN [46], and ADMM-net [30].

C. Frank-Wolfe Algorithm

The Frank-Wolfe algorithm [31]], also known as conditional
gradient descent, is one of the simplest and earliest known
iterative solver, for the generic constrained convex problem:

min f(z) st.z€ 2)

where f is a convex and continuously differentiable objective
function, and Z is a convex and compact subset of a Hilbert
space. At each step, the Frank-Wolfe algorithm first considers
the linear approximation of f(z), and then moves towards this
linear minimizer that is taken over Z. Section presents a
concrete example of applying the Frank-Wolfe algorithm.
The Frank-Wolfe algorithm has lately re-gained popular-
ity due to its promising applicability in handling structural
constraints, such as sparsity or low-rank. The Frank-Wolfe
algorithm is projection-free: while competing methods such as
the projected gradient descent and proximal algorithms need
to take a projection step back to the feasible set per iteration,

https://github.com/sunke123/FW-Net

the Frank-Wolfe algorithm only solves a linear problem over
the same set in each iteration, and automatically stays in the
feasible set. For example, the sparsity regularized problems are
commonly relaxed as convex optimization over convex hulls
of atomic sets, especially L,-norm constrained domains [47],
which makes the Frank-Wolfe algorithm easily applicable. We
refer the readers to the comprehensive review in [48]], [49] for
more details about the algorithm.

D. Nonlinear Units in Networks

There have been blooming interests in designing novel
nonlinear activation functions [50], a few of which have
parametric and learnable forms, such as the parametric ReL.U
[51]. Among existing deep structured networks, e.g. [25],
[26], [35]], their activation functions usually took fixed forms
(e.g. some variants of ReLU) that reflected the pre-chosen
structural priors. A data-driven scheme is presented in [52] to
learn optimal thresholding functions for ISTA. Their adopted
parametric representations led to spline curve-type activation
function, which reduced the estimation error compared to
using the common (fixed) piece-wise linear functions.

As another major type of nonlinearity in deep networks,
pooling was originally introduced as a dimension-reduction
tool to aggregate a collection of inputs into low-dimensional
outputs [53]]. Other than the input-output dimensions, the
difference between activation and pooling also lies in that
activation is typically applied element wise, while pooling is
on groups of hidden units, usually within a spatial neigh-
borhood. It was proposed in [54] to learn task-dependent
pooling and to adaptively reshape the pooling regions. More
learnable pooling strategies are investigated in [355]], via either
mixing two different pooling types or a tree-structured fusion.
Gulcehre et al. [56] introduced the L,, unit that computed a
normalized L, norm over the set of outputs, with the value of
p learnable.

In addition, we find our proposed nonlinear unit inherently
related to normalization techniques. Jarrett et al. [53]] demon-
strated that a combination of nonlinear activation, pooling, and
normalization improved object recognition. Batch normaliza-
tion (BN) [57]] rescaled the summed inputs of neurons over
training batches, and substantially accelerated training. Layer
normalization (LN) [58]] normalized the activations across all
activities within a layer. Ren et al. [59] re-exploited the idea
of divisive normalization (DN) [[60]], [61], a well-grounded
transformation in real neural systems. The authors viewed
both BN and LN as special cases of DN, and observed
improvements by applying DN on a variety of tasks.

III. FRANK-WOLFE NETWORK

A. Frank-Wolfe Solver for L,-Norm Constrained Least
Squares

We investigate the L,-norm constrained least squares prob-
lem as a concrete example to illustrate the construction of F-
W Net. The proposed methodology can certainly be extended
to more generic problems (3). Let x € R™ denote the input
signal, and z € R™ denote the code (a.k.a. representation,
feature vector). D € R™ ™ is the decoding matrix (a.k.a.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

dictionary, bases). The problem considers Z to be an L,-norm
ball of radius ¢, with p > 1 to ensure the convexity of Z, and
f(z) to be a least-squares function:

(6)

1
z* = arg min §HX— Dz||3 st ||z|, <c
z

We initialize z0 € Z. At iteration t = 0,1,2,..., the Frank-
Wolfe algorithm iteratively updates two variables z!,s* € R™
to solve (6):
¢ T t
= v
s’ :=argmin s f(z"H
Zt+1 :(1 _ ")/t)Zt + ’Ytst, (7)

where Vf(z!) = D" (Dz' — x). 4 is the step size, which
is typically set as v* := 25 or chosen via line search. By

t+2
Holder’s inequality, the solution of s is:

, V,f(zh) |7t
st = —c-sign(Vif(2')) — —
Qi Vif() =) (8)
i=1,2,..,m

where st, V; f(z') denote the i-th entry of s?, V f(z'), respec-
tively. It is interesting to examine a few special p values in
(8) (ignoring the negative sign for simplicity):

o p =1, s’ selects the largest entry in V f(z!), while setting

all other entries to zer

e p=2, s re-scales V f(z") by its root mean square.

e p = 00, all entries of s’ have the equal magnitude c.
The three special cases easily remind the behaviors of
max pooling, root-mean-square pooling and average pooling
[21]], [53]], although the input and output are both R™ and no
dimensionality reduction is performed. For general p € [1, 00),
it is expected to exhibit more varied behaviors that can be
interpretable from a pooling perspective. We thus denote by
the function R™ — R™: s’ = pool,(V f(z")), to illustrate the
operation (§) associated with a specific p.

B. Constructing the Network

Following the well received unrolling-then-truncating
methodology, e.g. [25], we represent the Frank-Wolfe solver
for (6) that runs finite 7" iterations (¢ 0,1,...,7T — 1),
as a multi-layer feed-forward neural network. Fig. [I] depicts
the resulting architecture, named the Frank-Wolfe Network
(F-W Net). As a custom, we set z° = 0, which is an
interior point of Z for any p > 1. The T layer-wise weights
W’s can be analytically constructed. Specifically, note that
Vf(z') = DT (Dz! — x) = D" Dz! — D"x, if we define

Wo €))

Then we have Vf(z') = W;z' + Wox, as depicted in Fig.
[1l Given the pre-chosen hyper-parameters, and without any
further tuning, F-W Net outputs a T-iteration approximation
zT of the exact solution z to @ As marked out, the inter-
mediate outputs of F-W Net in Fig. [l| are aligned with the

-D":W,=D'D,t=1,2,....,T —1.

2This reminds us of the well-known matching pursuit algorithm. We noted
that a recent work [62] has revealed a unified view between the Frank-Wolfe
algorithm and the matching pursuit algorithm.

LIU et al.: FRANK-WOLFE NETWORK: AN INTERPRETABLE DEEP STRUCTURE FOR NON-SPARSE CODING 5

Xy
Pool, 14
sO izt vf(z")

Pool,

x(1—yh

Single-Layer
Initialization Sub-Network

Xnyl

Wr_i—(+ Pool, +
VAT st

- Z

x(1—=y™1

Recurrent Refinement Sub-Network

(unrolled to T - 1 iterations)

Fig. 1. (Please view in color) T-layer Frank-Wolfe network, consisting of two parts: (1) a single-layer initialization sub-network; and (2) a recurrent refinement
sub-network, unrolled to 7" — 1 iterations. We use the Green notations to remind to which variable in @ the current intermediate output is corresponding.
The layer-wise weights are denoted in Black, and the learnable units/hyper-parameters are in Blue.

iterative variables in the original Frank-Wolfe solver (7). Note
that the two-variable update scheme in (/) naturally leads to
two groups of “skip connections,” which might be reminiscent
of the ResNet [63]].

As many existing works did [25], [26], [35]], the unrolled
and truncated network in Fig. [T] could be alternatively treated
as a trainable regressor to predict the exact z from x. We
further view F-W Net as composed from two sub-networks: (1)
a single-layer initialization sub-network, consisting of a linear
layer W, and a subsequent pool,, operator. It provides a rough
estimate of the solution: z; = 7%sy = ~°pool,,(Wyx), which
appears similar to typical sparse coding that often initializes
z with a thresholded DTx [64]. Note that z; has a direct
shortcut path to the output, with the multiplicative weights

;":11(1 — fyt); (2) a recurrent refinement sub-network, that is
unrolled to repeat the layer-wise transform for 7" — 1 times to
gradually refine the solution.

F-W Net is designed for large learning flexibility, by fitting
almost all its parameters and hyper-parameters from training
data:

o Layer-wise weights. Eq. (9) can be used to initialize
the weights, but during training, Wy and W, are untied
with D and viewed as conventional fully-connected layers
(without biases). All weights are learned with back-
propagation from end to end. In some cases (e.g. Table
M), we find that sharing the W;’s (with t = 1,2, ..., T —
1) is a choice worthy of consideration: it effectively
reduces the actual number of parameters and makes the
training to converge fast. But not sharing the weights is
always helpful to improve the performance, as observed
in our experiments. Thus, the weights are not shared
unless otherwise noted. In addition, the relation between
Wy and W, (with ¢t = 1,2,.....,T — 1), as in (9), is not
enforced during training. Wy is treated as a simple fully-
connected layer without additional constraint.

o Hyper-parameters. p and v were given or pre-chosen
in (7). In F-W Net, they can be either pre-chosen or
made learnable. For learnable hyper-parameters, we also
compute the gradients w.r.t. p and 7%, and update them
via back-propagation. We adopt the same p throughout
F-W Net as p implies the structural prior. 7 is set to be

independent per layer. Learning p and ~* also adaptively
compensates for the truncation effect [52] of iterative
algorithms. In addition, learning p gracefully solves the
unknown p problem ().
F-W Net can further be jointly tuned with a task-specific loss
function, e.g. the softmax loss for classification, or the mean-
squared-error loss and/or a semantic guidance loss [65] for
denoising, in the form of an end-to-end network.

C. Implementing the Network

1) Reformulating pool,, as normalization plus neuron: A
closer inspection on the structure of the pool, function

leads to a two-step decomposition (let u® = Vf(z!) for
simplicity):
ut
y' :W // Step 1: p-conjugate normalization
u _P_
p—1
st = —c-sign(y}) - \yf\ﬁ // Step 2: p-exponential neuron

(10)

Step 1 performs a normalization step under the p%l—norm. Let
q= p%l, which happens to be the Holder conjugate of p: we
thus call this step p-conjugate normalization. It coincides with
a simplified form of DN [59]], by setting all summation and
suppression weights of DN to 1.

Step 2 takes the form of an exponential-type and non-
saturated element-wise activation function [66], and is a learn-
able activation parameterized by p [50]. As the output range
of Step 1 is [—1, 1], the exponent displays suppression effect
when p € (1,2), and amplifies entries when p € (2, 00).

While the decomposition of (8) is not unique, we carefully
choose (I0) due to its effectiveness and numerical stability. As
a counterexample, if we adopt another more straightforward
decomposition of (8):

t

yt = sign(ut) - |ul|7T; st =S
&

then, large |uf| values (> 1) will be boosted by the power of
=7 when p € (1,2), and the second step may run the risk
of explosion when p — 1, in both feed-forward and back-

propagation. In contrast, (I0) first squashes each entry into

(1)

[—1,1] (Step 1) before feeding into the exponential neuron
(Step 2), resolving the numerical issue well in practice.

The observation (10), called “pool, = normalization +
neuron” for brevity, provides a new interesting insight into
the connection between neuron, pooling and normalization,
the three major types of nonlinear units in deep networks
that were once considered separately. By splitting pool,, into
two modules sharing the parameter p, the back-propagation
computation is also greatly simplified, as directly computing
the gradient of pool, w.r.t. p can be quite involved, with more
potential numerical problems.

2) Network initialization and training: The training of F-
W Net evidently benefits from high-quality initializations. Al-
though W, and D are disentangled, W; can be well initialized
from the given or estimated lﬂvia @) p is typically initialized
with a large scalar, but its learning process is found to be quite
insensitive to initialization. As observed in our experiments,
no matter what p is initialized as, it will converge stably and
smoothly to almost the same valueﬂ ~t is initialized with
the rule 75%2, and is re-parametrized using a sigmoid function
to enforce [0, 1] range during training. ¢ is the only hyper-
parameter that needs to be manually chosen and fed into F-
W Net. In experiments, we find that a good ¢ choice could
accelerate the convergence.

In the original p-NCLS, ||D||2 = 1 is assumed to avoid
the scale ambiguity, and is commonly enforced in dictionary
learning [22]]. Similarly, to restrain the magnitude growth of
W, we adopt the Lo-norm weight decay regularizer, with the
default coefficient 2 x 10~* in experiments.

D. Interpretation of Frank-Wolfe Network as LSTM

The ISTA algorithm [40]] has been interpreted as a stack of
plain Recurrent Neural Networks (RNNs). We hereby show
that F-W Net can be potentially viewed as a special case of the
Long Short-Term Memory (LSTM) architecture [67]], which
incorporates a gating mechanism [[68] and may thus capture
long-term dependencies better than plain RNNs when T is
large. Although we include no such experiment in this paper,
we are interested in applying F-W Net as LSTM to model

sequential data in future work.

Let us think x as a constant input, and z! is the previous

hidden state of the t-th step (¢t = 1,...,7 — 1). The current
candidate hidden state is computed by s’ = pool,(Wox +
W,z'), where the sophisticated pool, function replaces the
common tanh to be the activation function. v; and (1 — ;)
each take the role of the input gate and forget gate, that control
how much of the newly computed and previous state will go
through, respectively. s’ + (1 —~!)z! constitutes the internal
memory of the current unit. Eventually, with a simple output
gate equal to 1, the new hidden state is updated to z'*1.

3For example, when D is not given, we can estimate D using K-SVD [22]
to initialize W.

4We are aware of the option to re-parameterize p to ensure p > 1 [56].
We have not implemented it in our experiments, since we never encountered
p < 1 during learning. The re-parameterization trick can be done if necessary.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

IV. EVALUATION OF FRANK-WOLFE NETWORK
A. Simulations

We generate synthetic data in the following steps. First we
generate a random vector y € R” and then we project it to
the L,-ball of radius c. The projection is achieved by solving
the problem: z = argmin }[ly — 2|3 s.t. [z], < ¢, using
the original F-W algorithm until convergence. This p will be
termed real p in the following. We then create a random matrix
D € R*»*™_ and achieve x := Dz + e, where e € R" is
additive white Gaussian noise with variance o2 = 0.01. We
use the default values m = 100, n = 50, ¢ = 5, and generate
15,000 samples for training. A testing set of 1,000 samples
are generated separately in the identical manner. Our goal is to
train a F-W Net to predict/regress z from the given observation
x. The performance is measured by mean-squared-error (MSE)
between predicted and ground-truth z. All network models
are implemented with Caffe [69] and trained by using MSE
between ground-truth and network-output vectors as loss.

We first choose real p = 1.3, vary T' = 2,4,6,8, and
compare the following methods:

e CVX: solving the problem using the ground-truth D and
real p. The CVX package [70] is employed to solve this
convex problem. No training process is involved here.

e Original F-W: running the original Frank-Wolfe algo-
rithm for T iterations, using the ground-truth D and real
p and fixing 7 = HQ_Q. No training process is involved
here.

e MLP: replacing the pool, in F-W Net with ReLU, having
a feed-forward network of T fully-connected layers,
which has the same number of parameters with F-W Net
(except p).

e F-W Net: the proposed network that jointly learns W3, p,
and 7%, t=0,1,...,T — 1.

o F-W fixed {p, v}: fixing p = 1.3 and v = 25, learning
W; in F-W Net.

o F-W fixed : fixing ¢ = t% learning W, and p in F-W
Net.

o F-W fixed {wrong p, v}: fixing p = 1 (i.e. an incorrect
structural prior) and v¢ = t%, learning W, in F-W Net.
Fig. 2| (a) depicts the training curve of F-W net at T = 8. We

also run the Original F-W (for 8 iterations) for comparison.

After a few epochs, F-W Net is capable in achieving signif-

icantly smaller error than the Original F-W, and converges

stably. It shows the advantage of training a network to com-
pensate for the truncation error caused by limited iterations.

It is noteworthy that F-W Net has the ability to adjust the

dictionary D, prior p and step size ' at the same time, all

of which are learned from training data. Comparing the test

error of F-W Net and Original F-W at different 7’s (Fig. [2]

(b)), F-W Net shows the superiority of flexibility, especially

when 7' is small or even the p is wrong. F-W Net learns to find

a group parameters (D, p and %) during the training process,

so that these parameters coordinate each other to lead to better

performance.

Fig. 2| (b) compares the testing performance of different
methods at different 7"s. F-W Net with learnable parameters
achieves the best performance. The Original F-W performs

LIU et al.: FRANK-WOLFE NETWORK: AN INTERPRETABLE DEEP STRUCTURE FOR NON-SPARSE CODING 7

—— Original F-W
—— F-W Net

Training Error
o o =
[=)} o] (=]

N
'S

0.2

0.0

0 100 200 300 400
Epoch

(a) Training Error - Epoch

4.0
CVX

Original F-W

F-W Net

F-W fixed{p, gamma}
F-W fixed gamma

35

g
=)

-
F-W fixed {wrong p, gamma}
MLP

g
[

Testing Error
g
[=}

————————————
~_——
-
—
-

n

0.5

0.0

(b) Testing Error - T'

Fig. 2. (a) The plot of average training error per sample w.r.t. the epochs at
T = 8. Result of the Original F-W is also plotted; (b) Average test error per
sample comparison on the testing set, at different 7”s.

poorly at T' = 2, and its error barely decreases as T increases
to 4 and 8, since the original F-W algorithm is known to
converge slowly in practice. CVX does not perform well as
this problem is quite difficult (p = 1.3). Though having the
same number of parameters, MLP performs not well, which
indicates that this synthetic task is not trivial. Especially, the
original Frank-Wolfe algorithm also significantly outperforms
MLP after 4 iterations.

Furthermore, we reveal the effect of each component (D,
p and ~%). Firstly, we fix p and ~%, i.e. we learn the W,’s
compared to the original F-W algorithm. By observing the
two curves of testing performance, F-W Net improves the
performance with learnable W,;’s which coordinate the fixed
p and ~!, and achieves better approximation of the target z

1.80
1.00 —— Before training
1.74 —— After training
0.75
o
S
S 1.68
2
El >0.50
21.62
E
0.25
1.56
1.50 0.00
0 100 200 300 400 2 4 6 8
Epoch T
(a) p - Epoch ()7t -t
2.10 2.0
1.9
1.95 1.8
& 17
3 Zi6
§ 1.80 £
o K] 1.5
E 1.4
1.65 13
1.2
15073 3 6 g M T2 1314151617 1.8 19 20
T Real p
©p-T (d) Learned p - Real p
Fig. 3. (a) The plot of p during training w.r.t. the epochs at 7" = 8 (real

p = 1.3); (b) The plot of ¢ values before and after training at 7' = 8 (real
p = 1.3); (c) The plot of learned p at different 7”s (real p = 1.3); (d) The
plot of learned p at T' = 8, when the real p value is from 1.1 to 2.0.

in a few steps. Then, we let p be learnable and only fix ~¢,
which is slightly superior to F-W fixed {p, v}. F-W Net also
maintains a smaller, but consistent margin over F-W fixed ~.
Those three comparisons confirm that except for W;, learning
p and v are both useful. Finally, we give the wrong p to
measure the influence on F-W Net. It is noteworthy that F-
W fixed {wrong p, ~} suffers from much larger error than
other F-W networks. That demonstrates the huge damage that
an incorrect or inaccurate structural prior can cause to the
learning process. But, as mentioned before, F-W Net has the
high flexibility to adjust the other parameters. Even though
under the wrong p condition, F-W Net still outperforms the
original F-W algorithm in a few steps.

Fig. [3| inspects the learning of p and ~!. As seen from Fig.
E| (a), the p value fluctuates in the middle of training, but ends
up converging stably (initial p = 2 i.e. Ly-norm). In Fig. 3]
(c), as T goes up, the learned p by F-W net approaches the
real p = 1.3 gradually. This phenomenon can be interpreted
by that the original F-W algorithm cannot solve the problem
well in only a few steps, and thus F-W Net adaptively controls
each component through learning them from training data to
approximate the distribution of z as much as possible. To
understand why the learned p is usually larger than the real
p, we may intuitively think that pool, will “compress” the
input more heavily as p gets down closer to 1. To predict
z, while the original Frank-Wolfe algorithm may run many
iterations, F-W Net has to achieve within a much smaller, fixed
number of iterations. Thus, each pool, has to let more energy
“pass through,” and the learning result has larger p. Fig. 3] (b)
observes the change of + before and after training, at T = 8.

While *yo remains almost unchanged, ~t (¢t > 1) all decreases.
As a possible reason, F-W Net might try to compensate the
truncation error by raising the weight of the initialization z'
in the final output z”.

We then look into p = 1 case, and re-generate synthetic
data. We compare three methods as defined before: CVX, F-
W Net, and F-W fixed p. In addition, we add LISTA [25]
into comparison, because LISTA is designed for p = 1. The
depth, layer-wise dimensions, and weight-sharing of LISTA
are configured identically to F-W Net. Note that LISTA is
dedicated to the L; case and cannot be easily extended for
general L,, cases. We re-tune all the parameters to get the best
performance with LISTA to ensure a fair comparison. Table
[compares their results at 7' = 2,4,6. The CVX is able to
solve L; problems to a much better accuracy than the case of
p = 1.3, and F-W Net still outperforms F-W fixed p. More
interesting is the comparison between F-W Net and LISTA:
F-W Net is outperformed by LISTA at T' = 2, then reaches a
draw at T' = 4, and eventually outperforms LISTA by a large
margin at ' = 6. Increasing 7' demonstrates a more substantial
boost on the performance of F-W Net than that of LISTA,
which can be interpreted as we have discussed in Section [[II-D|
that F-W Net is a special LSTM, but LISTA is a vanilla RNN
[40]. Note that the real p is 1 (corresponding to sparse), but
the learned p in F-W Net is larger than 1 (corresponding to
non-sparse). The success of F-W Net does not imply that the
problem itself is a non-sparse coding one. This is also true for
all the following experiments.

We also simulate with other real p values. Fig. [3| (d) shows
the learned p values with respect to different real p’s. When the
real p approaches 1 or 2, F-W Net is able to estimate the value
of p more accurately, probably because the convex problems
with Li-norm and Ls-norm minimization can be solved more
easily.

B. Handwritten Digit Recognition

Similar to what has been done in [25]], we adopt F-W Net as
a feature extractor and then use logistic regression to classify
the features for the task of handwritten digit recognition. We
use the MNIST dataset [71]] to experiment. We design the
following procedure to pre-train the F-W Net as a feature
extractor. The original images are dimensionality reduced to
128-dim by PCA for input to F-W Net. Then we further
perform PCA on each digit separately to reduce the dimension
to 15. We construct a 150-dim sparse code for each image,
whose 150 dimensions are divided into 10 groups to corre-
spond to 10 digits, only 15 dimensions of which are filled by
the corresponding PCA result, whereas the other dimensions
are all zero. This sparse code is regarded as the “ground-
truth” for F-W Net in training. Accordingly, the transformation
matrices in the second-step PCA are concatenated to serve as
D € R128x150 wwhich is used to initialize the fully-connected
layers in F-W Net according to (9). In this experiment, we use
stochastic gradient descent (SGD), a momentum of 0.9 and a
mini-batch size of 100. The F-W Net is pre-trained for 200
epochs, and the initial learning rate is 0.1, decayed to 0.01
at 100 epochs. Then the pre-trained F-W Net is augmented

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

with a fully-connected layer with softmax that is randomly
initialized, resulting a network that can be trained end-to-end
for classification. We observe that the performance benefits
from joint training marginally but consistently.

If we formulate this feature extraction problem as L,-norm
constrained, then the p is unknown, and most of previous
methods adopt Li-norm or Lo-norm. Different from them, F-
W Net tries to attain a p from training data, which suits the
real data better. The results are shown in Table [l comparing
F-W Net with simple feed-forward fully-connected networks
(MLP) [71] and LCoD [25]. F-W Net achieves lower error rate
than the others. Especially, it takes 50 iterations for LCoD
to achieve an error rate of 1.39, but only 3 layers for F-W
Net to achieve 1.34, where the numbers of parameters are
similar. Moreover, with the increasing number of layers, F-
W Net makes a continuous improvement, which is consistent
with the observation in the simulation.

Table [III) provides the results of different initializations of
the hyper-parameter p, showing that F-W Net is insensitive to
the initialization of p and can converge to the learned p ~ 1.6.
However, fixing the p value is not good for F-W Net even
fixing to the finally learned p = 1.6. This is interesting as it
seems the learnable p provides advantages not only for the
final trained model but also for training itself. An adjustable
p value may suit for the evolving parameters during training
F-W Net, which we plan to study further.

V. CONVOLUTIONAL FRANK-WOLFE NETWORK

Previous similar works [25]], [26], [35] mostly result in
fully-connected networks, as they are unrolled and trun-
cated from linear sparse coding models. Nonetheless, fully-
connected networks are less effective than convolutional neural
networks (CNNs) when tackling structured multi-dimensional
signal such as images. A natural idea to extend this type of
works to convolutional cases seems to be convolutional sparse
coding [72], which also admits iterative solvers. However,
the re-formulation will be inefficient both memory-wise and
computation-wise, as discussed in [73].

We therefore seek a simpler procedure to build the convolu-
tional F-W Net: in Fig. [T} we replace the fully-connected layers
with convolutional layers, and operate pool, across all the
output feature maps for each location individually. The latter is
inspired by the well-known conversion between convolutional
and fully-connected layers by reshaping inputﬂ and turns
pool, into a form of cross-channel parametric pooling [74]-
[76].

The convolutional F-W Net then bears the similar flexibility
to jointly learn weights and hyper-parameters (p and ~*). Yet
different from the original version of F-W Net, the pool,
in convolutional F-W Net reflects a diversified treatment of
different convolutional filters at the same location, and should
be differentiated from pooling over multiple points:

e p = 1, only the channel containing the strongest response
will be preserved at each location, which is reduced to
max-out [74].

Shttp://cs23 1n.github.io/convolutional-networks//#convert

http://cs231n.github.io/convolutional-networks//#convert

LIU et al.: FRANK-WOLFE NETWORK: AN INTERPRETABLE DEEP STRUCTURE FOR NON-SPARSE CODING 9

TABLE I
AVERAGE ERROR PER TESTING SAMPLE AT DIFFERENT 71’S. THE REAL pIS 1.
p— F-W Net F-W Net with fixed p LISTA
T=2 1T=4 T=6]| T=2 T=4 T=6 T=2 T=4 T=6
MSE | 0.0036 | 0.5641 03480 0.1961 1.2076 0.8604 0.7358 0.4157 0.3481 0.3053
P I (fixed) | 1.360 1.254 1222 | 1 (fixed) 1 (fixed) 1 (ixed) | I (fixed) 1 (fixed) I (fixed)
TABLE II VI. EXPERIMENTS OF CONVOLUTIONAL FRANK-WOLFE

RESULTS ON THE MNIST TEST SET.

Params | Error rate (%)
3-layer: 300+100 [71] 266,200 3.05
3-layer: 500+150 468,500 2.95
3-layer: 500+300 545,000 1.53
1-iter LCoD [25] 65,536 1.60
5-iter LCoD 65,536 1.47
50-iter LCoD 65,536 1.39
2-layer F-W Net 43,350 2.20
3-layer F-W Net 65,850 1.34
4-layer F-W Net 88,200 1.25
TABLE III

RESULTS ON THE MNIST TEST SET OF F-W NETS WITH FIXED p AND
LEARNABLE p. THE Wi PARAMETERS ARE SHARED ACROSS
t=1,...,7 — 1IN F-W NET.

Tnitial p Learnable p Fixed p

Accuracy (%) P Accuracy (%) p
1.1 98.51 1.601 97.35 1.1
1.3 98.45 1.600 97.70 1.3
1.5 98.43 1.595 98.30 1.5
1.6 98.66 1.614 98.26 1.6
1.8 98.38 1.601 97.90 1.8
2.0 98.50 1.585 97.78 2.0

e p = 2, pool, re-scales the feature maps across the

channels by its root-mean-square.
e p = oo denotes the equal importance of all channels and
leads to the cross-channel average.

By involving p into optimization, pool, essentially learns to
re-scale local responses, as advocated by the neural lateral
inhibition mechanism. The learned p will indicate the relative
importance of different channels, and can potentially be useful
for network compression [77]].

The convolutional kernels in the convolutional F-W Net
are not directly tied with any dictionary, thus we have not
seen an initialization strategy straightforwardly available. In
this paper, we use random initialization for the convolutional
filters, but we initialize p and ~* in the same way as mentioned
before. As a result, convolutional F-W Nets often converge
slower than fully-connected ones. We notice some recent
works that construct convolutional filters [78]], [79] from data
in an explicit unsupervised manner, and plan to exploit them
as future options to initialize convolutional F-W Nets.

To demonstrate its capability, we apply convolutional F-
W Net to low-level image processing tasks, including image
denoising and image super-resolution in this paper. Our focus
lies on building light-weight compact models and verifying
the benefit of introducing the learnable p.

NETWORK
A. Image Denoising

We investigate two versions of F-W Net for image denois-
ing. The first version is the fully-connected (FC) F-W Net
as used in the previous simulation. Here, the basic FC F-
W Net (Fig. [T) is augmented with one extra fully-connected
layer, whose parameters are denoted by W € R"*™ to
reconstruct X = Wgrz. Wg is naturally initialized by D. The
network output is compared against the original/clean image
to calculate MSE loss. To train this FC F-W Net, note that
one strategy to image denoising is to split a noisy image into
small (like 8 x 8) overlapping patches, process the patches
individually, and compose the patches back to a complete
image. Then, we re-shape 8 x 8 blocks into 64-dim samples
(i.e. n = 64). We adopt m = 512, T' = 8, and ¢ = 1. The
network is trained with a number of 8 x 8 noisy blocks as
well as their noise-free counterparts. The second version of
F-W Net is the proposed convolutional (Conv) F-W Net as
discussed in Section |V| The adopted configurations are: 3 X 3
filters, 64 feature maps per layer, 7' =4, and ¢ = 1.

We use the BSD-500 dataset [80] for experiment. The BSD-
68 dataset is used as testing data, and the remaining 432
images are converted to grayscale and added with white Gaus-
sian noise (0, o) for training. Several competitive baselines
are chosen: a FC LISTA [25] network that is configured
identically to our FC F-W Net; a Conv LISTA network that is
configured identically to our Conv F-W Net; KSVD + OMP
that represents the Lo-norm optimization; BM3D [81] using
the dictionary size of 512; and DnCNN [82]] which is a recently
developed method based on CNN, here our re-trained DnCNN
includes 4 convolutional layers followed by BN and ReLU. We
consider three noise levels: o = 15, o = 25, and o = 50.

Table provides the results of different image denoising
methods on the BSD-68 dataset. FC F-W Net is better than
LISTA in all cases. We also study the effect of p, as shown in
Table |V| F-W Net with learnable p outperforms F-W Net with
fixed p = 2 by a large margin, and is slightly better than F-W
Net with fixed p = 1.4. Here, learnable p seems benefiting not
only the final model but also the training itself, as has been
observed in BMB3D is a strong baseline, which the deep
networks cannot beat easily. As seen from Table BM3D
outperforms DnCNN (4 layers), but Conv F-W Net (4 layers)
is better than BM3D.

It is worth noting that the original DnCNN in [82]] has 20
layers and much more parameters and outperforms BM3D.
We conduct an experiment to compare DnCNN with Conv F-
W Net at different number of layers. The results are shown
in Fig. 4] (a). We observe that for shallow networks, Conv
F-W Net outperforms DnCNN significantly. As the network

—4— DnCNN
294 —*— FW-Net
@
i
e
Z
7]
o
28 A
0 2 4 6 8 10 12 14 16 18
Depth
1.50
1.48 —— FW-Net
1.46
1.44
o 1.42
=
51
£ 140
3
b5t
= 1.38
1.36
1.34
1.32
1.30 T T T T T T

T T
8 10 12 14 16 18
Depth

Fig. 4. Top: image denoising results on the (gray) BSD-68 dataset when
o = 25, with DnCNN and (Conv) F-W Net at different depths. Bottom:
learned p value of the Conv F-W Net at different depths.

TABLE IV
IMAGE DENOISING RESULTS (AVERAGE PSNR/DB) ON THE (GRAY)
BSD-68 DATASET. ALL THE NETWORKS HAVE 4 FULLY-CONNECTED OR
CONVOLUTIONAL LAYERS FOR FAIR COMPARISON.

oc=15 o0=25 o0=>50
FC LISTA 29.20 27.63 24.33
FC F-W Net, learned p = 1.41 29.35 27.71 24.52
KSVD + OMP 30.82 2797 23.97
BM3D 31.07 28.57 25.62
DnCNN (4 layers) 30.89 28.42 25.42
DnCNN (4 layers, w/o BN) 30.85 28.43 25.36
Conv LISTA (4 layers) 30.90 28.50 25.55
Conv F-W Net (4 layers) 31.27 28.71 25.66

depth increases, both Conv F-W Net and DnCNN perform
similarly. This may be attributed to the learnable parameter p
in the Conv F-W Net, which helps much when the network
parameters are less. Thus, pool, may be favorable if we want
to build a compact network. The learned p values are shown
in Fig. @] (b). We observe that the learned p value is stable
across networks with different depths. It is also similar to the
learned p value in the FC F-W Net (p = 1.41). Thus, we
consider that the p value is determined by the data, and F-W
Net can effectively identify the p value regardless of FC or
Conv structures.

TABLE V
RESULTS OF FC F-W NETS WITH FIXED p AND LEARNABLE p FOR IMAGE
DENOISING ON THE BSD-68 DATASET.

c=15 o0=25 o0=50
F-W Net, fixed p = 2 28.35 26.41 23.68
F-W Net, fixed p = 1.4 29.25 27.62 24.45
F-W Net, learned p = 1.41 29.35 27.71 24.52

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

TABLE VI
3X IMAGE SUPER-RESOLUTION RESULTS (AVERAGE PSNR/DB) ON THE
(GRAY) SET-5 AND SET-14 DATASETS.

Method Set-5 Set-14

3-layer SRCNN 3234 28.64

4-layer VDSR 32.51 28.71

4-layer VDSR (+BN) 3255 28.69

4-layer Conv F-W Net | 32.85 28.76
TABLE VII

ABLATION STUDY RESULTS OF CONV F-W NET FOR IMAGE
SUPER-RESOLUTION ON THE SET-5 AND SET-14 DATASETS.

Method Set-5 Set-14
F-W Net (No Skip) 31.52 -

F-W Net (Fixed v = 1) 32.21 -

F-W Net (ReLU) 32,57 28.66
F-W Net 32.85 28.76
F-W Net (Fixed p = 1.3) 3249 28.42
F-W Net (Fixed p = 1.5) 32.81 28.63
F-W Net (Fixed p = 1.8) 32.73 28.69
F-W Net (Fixed p = 2.3) 32,59 28.58
F-W Net (Fixed p = 2.5) 32.65 28.67
F-W Net (Learned p = 1.489) | 32.85 28.76

B. Image Super-Resolution

For the experiments about single image super-resolution
(SR), we compare Conv F-W Net with baselines SRCNN [_83]]
and VDSR [84]], and all methods are trained on the 91-image
standard set and evaluated on Set-5/Set-14 with a scaling factor
of 3. We train a 4-layer Conv F-W Net and a 4-layer VDSR
(4 convolutional layers equipped with ReLU), both of which
have the same number of convolutional kernels. We adopt the
same training configurations as presented in [84]. For SRCNN
we directly use the model released by the authors.

Table |VI| compares the results of these methods. Our Conv
F-W Net achieves the best performance among the three. To
further understand the influence of each component in F-W
Net, we experimentally compare the following setttings:

o F-W Net (No Skip): removing the top skip connections

in Fig.

o F-W Net (Fixed v = 1): setting v = 1,t =1,2,...7T—1,
which is equivalent to removing the bottom skip connec-
tions in Fig. [T}

e F-W Net (ReLU): replacing all the pool, units with
ReLU.

Both F-W Net (No Skip) and F-W Net (Fixed v = 1) break
the original structure introduced by the Frank-Wolfe algorithm,
and incur severe performance drop. F-W Net (ReLU) performs
similarly to 4-layer VDSR and is worse than F-W Net. These
results further demonstrate that each component in Conv F-W
Net contributes to the final performance.

We also measure the effect of the hyper-parameter p. The
results are shown in Table Different p values indeed
influence on the final performance significantly, and F-W Net
with learnable p achieves the best performance, which again
verifies the advantage of attaining the prior from the data.

VII. CONCLUSION

We have studied the general non-sparse coding problem,
i.e. the L,-norm constrained coding problem with general

LIU et al.: FRANK-WOLFE NETWORK: AN INTERPRETABLE DEEP STRUCTURE FOR NON-SPARSE CODING 11

p > 1. We have proposed the Frank-Wolfe network, whose
architecture is carefully designed by referring to the Frank-
Wolfe algorithm. Many aspects of F-W Net are inherently
connected to the existing success of deep learning. F-W Net
has gained impressive effectiveness, flexibility, and robustness
in our conducted simulation and experiments. Results show
that learning the hyper-parameter p is beneficial especially
in real-data experiments, which highlights the necessity of
introducing general L,-norm and the advantage of F-W Net
in learning the p during the end-to-end training.

Since the original Frank-Wolfe algorithm deals with convex
optimization only, the proposed F-W Net can handle p > 1
cases, but not p < 1 cases. Thus, F-W Net is good at solving
non-sparse coding problems. p = 1 is quite special, as it
usually leads to sparse solution [_2], thus, F-W Net with fixed
p = 1 can solve sparse coding, too, but then its efficiency
seems inferior to LISTA as observed in our experiments. For
a real-world problem, is sparse coding or non-sparse coding
better? This is an open problem and calls for future research.
In addition, a number of promising directions have emerged
as our future work, including handling more constraints other
than the L,-norm, and the customization of F-W Net for more
real-world applications.

REFERENCES

[1] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227-234, 1995.

[2] D. L. Donoho, “For most large underdetermined systems of linear
equations the minimal ¢1-norm solution is also the sparsest solution,”
Communications on Pure and Applied Mathematics, vol. 59, no. 6, pp.
797-829, 2006.

[3] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267-288, 1996.

[4] S.S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129-159, 2001.

[5] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

[6] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in NIPS, 1992, pp. 950-957.

[7]1 C. Studer, T. Goldstein, W. Yin, and R. G. Baraniuk, “Democratic
representations,” arXiv preprint arXiv:1401.3420, 2014.

[8] J.-J. Fuchs, “Spread representations,” in ASILOMAR, 2011, pp. 814-817.

[9] Y. Lyubarskii and R. Vershynin, “Uncertainty principles and vector

quantization,” IEEE Transactions on Information Theory, vol. 56, no. 7,

pp. 3491-3501, 2010.

Z. Wang, J. Liu, S. Huang, X. Wang, and S. Chang, “Transformed anti-

sparse learning for unsupervised hashing,” in BMVC, 2017, pp. 1-12.

R. Chartrand, “Exact reconstruction of sparse signals via nonconvex

minimization,” IEEE Signal Processing Letters, vol. 14, no. 10, pp. 707-

710, 2007.

R. Chartrand and V. Staneva, “Restricted isometry properties and

nonconvex compressive sensing,” Inverse Problems, vol. 24, no. 3, p.

035020, 2008.

Z. Xu, X. Chang, F. Xu, and H. Zhang, “L; /> regularization: A

thresholding representation theory and a fast solver,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1013—

1027, 2012.

D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-

Laplacian priors,” in NIPS, 2009, pp. 1033-1041.

M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “l,-norm multiple

kernel learning,” Journal of Machine Learning Research, vol. 12, pp.

953-997, 2011.

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete

basis set: A strategy employed by V1?7 Vision Research, vol. 37, no. 23,

pp. 3311-3325, 1997.

H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model

for visual area V2,” in NIPS, 2008, pp. 873-880.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]
[26]
(271

[28]

[29]
[30]
(31]

[32]

(33]
[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

M. Elad and M. Aharon, “Image denoising via learned dictionaries and
sparse representation,” in CVPR, vol. 1, 2006, pp. 895-900.

J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Transactions on Image Processing, vol. 17, no. 1, pp.
53-69, 2008.

M. Ranzato, F.-J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object
recognition,” in CVPR, 2007, pp. 1-8.

J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in CVPR, 2009,
pp. 1794-1801.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on Signal Processing, vol. 54, no. 11, pp. 4311-4322, 2006.
H. Xu, Z. Wang, H. Yang, D. Liu, and J. Liu, “Learning
simple thresholded features with sparse support recovery,” IEEE
Transactions on Circuits and Systems for Video Technology, DOI:
10.1109/TCSVT.2019.2901713, 2019.

N. Bansal, X. Chen, and Z. Wang, “Can we gain more from orthog-
onality regularizations in training deep networks?” in NIPS, 2018, pp.
4261-4271.

K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in ICML, 2010, pp. 399-406.

Z. Wang, Q. Ling, and T. S. Huang, “Learning deep ¢g encoders,” in
AAAI 2016, pp. 2194-2200.

Z. Wang, Y. Yang, S. Chang, Q. Ling, and T. S. Huang, “Learning a
deep /oo encoder for hashing,” in IJCAI, 2016, pp. 2174-2180.

S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell, “Learning message-
passing inference machines for structured prediction,” in CVPR, 2011,
pp. 2737-2744.

S. Wang, S. Fidler, and R. Urtasun, “Proximal deep structured models,”
in NIPS, 2016, pp. 865-873.

J. Sun, H. Li, and Z. Xu, “Deep ADMM-net for compressive sensing
MRIL,” in NIPS, 2016, pp. 10-18.

M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval Research Logistics, vol. 3, no. 1-2, pp. 95-110, 1956.

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” [EEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227, 2009.

L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep
structured models,” in ICML, 2015, pp. 1785-1794.

A. G. Schwing and R. Urtasun, “Fully connected deep structured
networks,” arXiv preprint arXiv:1503.02351, 2015.

P. Sprechmann, A. M. Bronstein, and G. Sapiro, “Learning efficient
sparse and low rank models,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 9, pp. 1821-1833, 2015.

Z. Wang, S. Chang, J. Zhou, M. Wang, and T. S. Huang, “Learning a
task-specific deep architecture for clustering,” in SDM. SIAM, 2016,
pp. 369-377.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S. Huang, “D3:
Deep dual-domain based fast restoration of JPEG-compressed images,”
in CVPR, 2016, pp. 2764-2772.

Z. Wang, S. Huang, J. Zhou, and T. S. Huang, “Doubly sparsifying
network,” in IJCAI. AAAI Press, 2017, pp. 3020-3026.

J. Zhang and B. Ghanem, “ISTA-Net: Interpretable optimization-inspired
deep network for image compressive sensing,” in CVPR, 2018, pp. 1828-
1837.

S. Wisdom, T. Powers, J. Pitton, and L. Atlas, “Interpretable recur-
rent neural networks using sequential sparse recovery,” arXiv preprint
arXiv:1611.07252, 2016.

B. Xin, Y. Wang, W. Gao, D. Wipf, and B. Wang, “Maximal sparsity
with deep networks?” in NIPS, 2016, pp. 4340-4348.

T. Moreau and J. Bruna, “Understanding trainable sparse coding via
matrix factorization,” arXiv preprint arXiv:1609.00285, 2016.

X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical linear convergence
of unfolded ISTA and its practical weights and thresholds,” in NIPS,
2018, pp. 9061-9071.

J. Liu, X. Chen, Z. Wang, and W. Yin, “ALISTA: Analytic weights are
as good as learned weights in LISTA,” ICLR 2019, https://openreview.
net/forum?1d=B 11nzn0OctQ, 2019.

U. Schmidt and S. Roth, “Shrinkage fields for effective image restora-
tion,” in CVPR, 2014, pp. 2774-2781.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural
networks,” in ICCV, 2015, pp. 1529-1537.

https://openreview.net/forum?id=B1lnzn0ctQ
https://openreview.net/forum?id=B1lnzn0ctQ

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]
[74]

[75]

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The con-
vex geometry of linear inverse problems,” Foundations of Computational
Mathematics, vol. 12, no. 6, pp. 805-849, 2012.

M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex opti-
mization.” in ICML, 2013, pp. 427-435.

L. Zhang, G. Wang, D. Romero, and G. B. Giannakis, “Randomized
block Frank-Wolfe for convergent large-scale learning,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 24, pp. 6448-6461, 2017.

F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning
activation functions to improve deep neural networks,” arXiv preprint
arXiv:1412.6830, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
ICCV, 2015, pp. 1026-1034.

U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iter-
ative thresholding algorithms,” IEEE Signal Processing Letters, vol. 23,
no. 5, pp. 747-751, 2016.

K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “What is the best multi-
stage architecture for object recognition?” in /CCV. IEEE, 2009, pp.
2146-2153.

M. Malinowski and M. Fritz, “Learnable pooling regions for image
classification,” arXiv preprint arXiv:1301.3516, 2013.

C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree,” in Artificial
Intelligence and Statistics, 2016, pp. 464—-472.

C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio, “Learned-norm pooling
for deep feedforward and recurrent neural networks,” in ECML-PKDD.
Springer, 2014, pp. 530-546.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in JCML, 2015,
pp. 448-456.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

M. Ren, R. Liao, R. Urtasun, F. H. Sinz, and R. S. Zemel, “Normal-
izing the normalizers: Comparing and extending network normalization
schemes,” arXiv preprint arXiv:1611.04520, 2016.

S. Lyu, “Divisive normalization: Justification and effectiveness as effi-
cient coding transform,” in NIPS, 2010, pp. 1522-1530.

J. Ballé, V. Laparra, and E. P. Simoncelli, “Density modeling of
images using a generalized normalization transformation,” arXiv preprint
arXiv:1511.06281, 2015.

F. Locatello, R. Khanna, M. Tschannen, and M. Jaggi, “A unified
optimization view on generalized matching pursuit and Frank-Wolfe,”
arXiv preprint arXiv:1702.06457, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770-778.

Z. Wang, J. Yang, H. Zhang, Z. Wang, Y. Yang, D. Liu, and T. S. Huang,
Sparse coding and its applications in computer vision. World Scientific,
2016.

D. Liu, B. Wen, X. Liu, Z. Wang, and T. S. Huang, “When image
denoising meets high-level vision tasks: A deep learning approach,” in
IJCAI. AAAI Press, 2018, pp. 842-848.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (ELUs),” arXiv preprint
arXiv:1511.07289, 2015.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACM Multimedia. ACM, 2014, pp. 675-
678.

M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming,” http://cvxr.com/cvx, Mar. 2014.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse
coding,” in CVPR. IEEE, 2013, pp. 391-398.

H. Sreter and R. Giryes, “Learned convolutional sparse coding,” in
ICASSP, 2018, pp. 2191-2195.

1. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

[76]

(771

(78]

(791

[80]

[81]

[82]

[83]

[84]

T. Pfister, J. Charles, and A. Zisserman, “Flowing convnets for human
pose estimation in videos,” in ICCV, 2015, pp. 1913-1921.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A sim-
ple deep learning baseline for image classification?” IEEE Transactions
on Image Processing, vol. 24, no. 12, pp. 5017-5032, 2015.

J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 8, pp. 1872-1886, 2013.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898-916, 2011.
H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?” in CVPR. IEEE, 2012,
pp. 2392-2399.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155,
2017.

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295-307, 2016.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in CVPR, 2016, pp. 1646-1654.

http://cvxr.com/cvx

	I Introduction
	I-A Lp-Norm Constrained Coding
	I-B Motivation
	I-C Outline of Solution
	I-D Our Contributions
	I-E Paper Organization

	II Related Work
	II-A Lp-Norm Constrained Coding and Its Applications
	II-B Deep Structured Networks
	II-C Frank-Wolfe Algorithm
	II-D Nonlinear Units in Networks

	III Frank-Wolfe Network
	III-A Frank-Wolfe Solver for Lp-Norm Constrained Least Squares
	III-B Constructing the Network
	III-C Implementing the Network
	III-C1 Reformulating poolp as normalization plus neuron
	III-C2 Network initialization and training

	III-D Interpretation of Frank-Wolfe Network as LSTM

	IV Evaluation of Frank-Wolfe Network
	IV-A Simulations
	IV-B Handwritten Digit Recognition

	V Convolutional Frank-Wolfe Network
	VI Experiments of Convolutional Frank-Wolfe Network
	VI-A Image Denoising
	VI-B Image Super-Resolution

	VII Conclusion
	References

