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Abstract—With the rapid development of Internet and mul-
timedia services in the past decade, a huge amount of user-
generated and service provider-generated multimedia data be-
come available. These data are heterogeneous and multi-modal
in nature, imposing great challenges for processing and analyzing
them. Multi-modal data consist of a mixture of various types
of data from different modalities such as texts, images, videos,
audios etc. In this article, we present a deep and comprehensive
overview for multi-modal analysis in multimedia. We introduce
two scientific research problems, data-driven correlational repre-
sentation and knowledge-guided fusion for multimedia analysis.
To address the two scientific problems, we investigate them
from the following aspects: 1) multi-modal correlational represen-
tation: multi-modal fusion of data across different modalities,
and 2)multi-modal data and knowledge fusion: multi-modal fusion
of data with domain knowledge. More specifically, on data-
driven correlational representation, we highlight three important
categories of methods, such as multi-modal deep representation,
multi-modal transfer learning, and multi-modal hashing. On
knowledge-guided fusion, we discuss the approaches for fusing
knowledge with data and four exemplar applications that require
various kinds of domain knowledge, including multi-modal visual
question answering, multi-modal video summarization, multi-
modal visual pattern mining and multi-modal recommendation.
Finally, we bring forward our insights and future research
directions.

Index Terms—Multi-modal analysis, Data-driven correlational
representation, Knowledge-guided data fusion

I. INTRODUCTION

WE ARE now living in the era of Cyber, Physical and
Human (CPH) spaces. The Moore Law illustrates that

the CPU speed will double every 18 months, resulting in the
ubiquity of computing; the Bell Laws indicates that the chip
size tends to reduce by half every 18 months, making devices
including all types of sensors everywhere; the Gilders Law
shows that the network bandwidth can double every 6 months,
causing communications which connect human, computers and
physical identities to be ubiquitous in our daily lives. In short,
data are everywhere in the era of Cyber, Physical and Human
(CPH) spaces. For example, various kinds of user-generated
and service provider-generated data in social media together
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with the growing popularity of other information sources such
as cell phones and cameras have produced a large amount
of multi-modal multimedia data. Multi-modal data consists
of a mixture of various types of data such as texts, images,
audios, videos etc. In the past decades, most researchers
focus on analyzing data in a single modality, making uni-
modal/single-medium analysis a well studied topic to date.
However, we need to study multi-modal data in real life,
which is particular important when we enter the “Artificial
Intelligence (AI) Epoch”. Discoveries in cognitive science [1]
have confirmed the fact that human are able to perceive their
surrounding environment through fusing the feedback from
multiple sensory organs (eyes, nose, ears, etc.) together. As
such, the investigation of multi-modal analysis serves as a very
promising direction in boosting the progress of research in big
data and AI. Fortunately, the advent of multi-modal data brings
us great opportunities for multi-modal analysis in multimedia.

Nevertheless, analyzing multi-modal multimedia data im-
poses great challenges. One scientific problem is how to jointly
consider and fuse information from different modalities such
that multi-modal approaches are able to outperform uni-modal
methods which utilize information from single modality sep-
arately. Traditional approaches for multi-modal analysis can
be categorized into two groups: feature fusion and semantic
fusion. Feature fusion (also known as feature engineering)
approaches simply conduct feature concatenations on raw
features from different modalities, which is normally achieved
via manual operations and has very low efficiency, as is shown
in Figure 1(a). Semantic fusion first analyzes information from
single modality separately in the beginning and conduct multi-
modal fusion at semantic level, as is illustrated in Figure 1(b).
This type of methods can maintain the explainability in seman-
tic fusion, but fails to make full use of the rich information
hidden in multi-modal.

Thanks to the success of deep neural network in computer
science, a new type of approaches capable of fusing informa-
tion from different modalities in hidden space at intermediate
level cuts a splendid figure in multi-modal analysis, as is
demonstrated in Figure 1(c). This type of methods can fully
utilize the multi-modal data through learning a correlational
representation for different modality in a data-driven way.
Figure 2 demonstrates a common way for multi-modal corre-
lational representation, which is to map multi-modal data (left-
most) to a hidden representation (middle) and/or correlational
representation (rightmost). Quite a few methods including
deep learning can be used to learn the hidden representation
and further correlational mining techniques are necessary for
the correlational representation learning.

Though being capable of handling large-scale multi-modal
data, the results obtained from data-driven approaches (e.g.,
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Fig. 1: Schematic diagram for semantic fusion methods and intermediate fusion methods
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Fig. 2: Correlational representation

deep neural networks) can sometimes be unexplainable, which
do not utilize too much domain knowledge, leading to a
huge exploration space and low accuracy. Therefore it is very
challenging to get explainable correlational representations
from uncertain big data. Human, on the other hand, is capable
of utilizing domain knowledge to help making decisions,
resulting in high explainability and accuracy. As such, there
exists a paradox between scalability and explainability, and
it is desirable to figure out a balance which requires the best
cooperative fusion between data and knowledge between data-
driven and knowledge-driven methods.

The goal of this article is two-fold. We first give a deep
and comprehensive overview for multi-modal problems in
multimedia from two aspects: 1) data-driven correlational
representation: multi-modal fusion of data from different
modalities and 2) knowledge-guided data fusion: multi-modal
fusion of data with domain knowledge. We then present our
insights and thinkings on future directions for multi-modal
research in the new era of artificial intelligence, and point out
several promising research directions including cross-modal
reasoning, cross-modal cognition and cross-modal collective
intelligence, for further investigation.

One natural scientific problem is how to find a hidden rep-
resentation that can best correlate information from different
modalities. Several methodologies have the potential to tackle
this challenge and we highlight three important categories
of data-driven approaches that focus on multi-modal cor-
relational representation: Multi-modal Deep Representation,
Multi-modal Transfer Learning and Multi-modal Hashing.

Given an effective hidden correlation representation for
different modality data, the next scientific research problem
is how we can increase the explainability of data-driven

approaches while maintaining their scalability via the guidance
of domain knowledge and take advantage of their superiority.
However, to the best of our knowledge, there have been no
systematic or consolidated methodologies for incorporating
domain knowledge into the process of cross-modal learning.
We observe that there exist mainly three families of meth-
ods that may be suitable for knowledge-guided cross-modal
fusion, i.e., Bayesian Inference, Teacher-student Network and
Reinforcement Learning. We will elaborate our thoughts on
why these three methodologies deserve further investigations
for future research later in the paper.

On the other hand, many existing approaches for multi-
modal oriented problems have unwittingly tried resorting to
domain knowledge for the improvement of model perfor-
mances. Among these methods, some utilize domain knowl-
edge in a naive or straightforward way while some others
may do it more sufficiently or elegantly. Although the existing
literature is still in the preliminary stage, we believe these
trials deserve attentions from researchers in the community.
For a clear elaboration on the existing ideas of knowledge-
guided cross-modal data fusion, we pick up four exemplar
multi-modal oriented applications that require various domain
knowledge, and discuss their research directions in terms of
knowledge-guided multi-modal data fusion, i.e., Multi-modal
Visual Question Answering, Multi-modal Video Summariza-
tion, Multi-modal Visual Pattern Mining and Multi-modal
Recommendation.

In a nutshell, we present our insights on the key problems
for multi-modal analysis, review some representative state-of-
the-art multi-modal approaches in multimedia and summarize
their characteristics in essence. Our discussions will center
around the two mentioned scientific research problems in
multi-modal analysis for multimedia. We discuss approaches
focusing on data-driven multi-modal correlational representa-
tion in Section II and analyze several exemplar applications in
knowledge-guided multi-modal data fusion in Section III. We
then highlight our insights on promising research directions
that may lead the next breakthrough in cross-modal intelli-
gence, i.e., cross-modal reasoning, cross-modal cognition and
cross-modal collective intelligence. We share our opinions
about why and how researchers should pay more attentions
on these topics in the future in Section IV. In the end, we
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conclude the whole paper in Section V.

II. DATA-DRIVEN MULTI-MODAL CORRELATIONAL
REPRESENTATION

In this section, we briefly introduce the concept and aim
of multi-modal analysis, succinctly summarize multi-task and
multi-view learning, two classic and well-documented tech-
niques that target at learning from multiple angles, followed by
our comprehensive analysis on three important categories of
approaches for multi-modal correlational representation, i.e.,
multi-modal deep representation, multi-modal transfer learning
and multi-modal hashing.

A. Multi-task and Multi-view Learning

Multi-modal/Cross-media correlational representation seeks
a way to represent different modality data in a common space
such that data from every modality becomes comparable with
each other and as many properties in their original spaces can
be preserved in the common space as possible. As two classic
methodologies, multi-task learning and multi-view learning
serve as two popular ways to consider the learning process
from more than one angle.

Multi-task learning aims to learn distinct tasks simultane-
ously by finding relationships among multiple tasks, which has
been studied for roughly 20 years. One of the most important
strategies in multi-task learning is to take both differences and
connections among multiple tasks into account simultaneously.
This strategy has been widely used in multi-label classification
, face recognition, and etc. Multi-task learning can be roughly
divided into two categories:

1) Methods forcing multiple tasks to share common param-
eters;

2) Methods mining the common latent features among
multiple tasks;

Evgeniouand and Pontil [2] propose Regularized Multi-
task Learning, a representative model on common parameters
which minimizes the regularization function during the learn-
ing process. Evgeniouand and Pontil combine the concept of
multi-task learning with single-task SVM and illustrate the
connections among different single SVM tasks. They assume
all tasks share a common central separation hyper plane which
in turn determines the final decision boundary for the current
task through an offset parameter. As for methods mining the
latent features, Argyriou et al. [3] introduce a typical Convex
Multi-task Feature Learning framework, laying the foundation
of many later multi-task learning algorithms. Jebara, in his
overview paper [4], discusses four groups of multi-task learn-
ing algorithms in terms of feature selection, kernel selection,
adaptive pooling and graphical model structure. For more
details, please refer to survey articles [5], [6] .

Multi-view learning, as its name indicates, considers mul-
tiple views from the same input data through employing one
function to model each view and jointly optimizing all the
functions so that the information of multiple views can be
best exploited and the learning performance therefore can
be dramatically improved. Different from multi-task learning
which input data may come from multiple tasks, multi-view

learning takes distinct views of the same task as input. For
example, these different views can be face ID and fingerprint
in recognition task, or color and words in image representation
task. Multi-view learning can be categorized into three types:

1) Co-training: train models to achieve the maximization
of the mutual consistency between two different views
of the unlabeled data;

2) Multi-kernel learning: combine different kernels corre-
sponding to distinct views together to achieve a perfor-
mance boost;

3) Subspace learning: assume that there exists a common
latent subspace shared by all views such that different
view data can be generated from this shared latent
subspace;

Besides, there are two principles widely adopted to make
sure that information from multiple views can be sufficiently
utilized.

1) Consensus principle (used by co-training): maximize the
mutual consistency between two views by requiring the
two hypotheses to be as consistent as possible, i.e.,

P (f1 6= f2) ≥ max{Perr(f1), Perr(f
2)}, (1)

where P (f1 6= f2) is the disagreement rate between
two hypotheses from the corresponding two views and
Perr(f

1), Perr(f2) are error rates of single hypothesis
f1, f2. Thus the error rate of each single hypothesis is
indirectly minimized through minimizing P (f1 6= f2).

2) Complementary principle: every distinct view has some
unique information which is not possessed by others.
Thus we may improve the learning performance by
making full use of complementary knowledge from
different views can result in an improvement for the
learning performance.

Readers with interests may refer to overview papers [7], [8]
on multi-view learning for more detailed information.

Besides the “pure” multi-view learning, others have investi-
gated metric fusion [9] or similarity learning [10] based on the
muli-view data as well. There are also some works combining
“multi-task” and “multi-view” together whose details can be
found in [11]–[14]. We note that both multi-task and multi-
view learning are not customized for multi-modal correlational
representation. This being the case, we highlight three promis-
ing groups of multi-modal methods designed specifically for
multi-modal data and discuss them in the rest of this section.

B. Multi-modal Deep Representation

Before deep learning is widely used in computer vision
and multimedia research works, muti-modal methods can be
mainly divided into two groups:
• Feature-fusion approaches [15], [16]: aggregate features

extracted from each modality and feed the aggregated
features to the model (similar to the process of feature
engineering);

• Semantic-fusion approaches [17]–[19] : feed features
from each modality into the model separately and com-
bine the results from all the models to get the final results
(similar to the methodology of ensemble learning);
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A general comment on these two strategies is that feature-
fusion is suitable for problems whose modalities share many
correlated features while the semantic-fusion approach fits for
those who have significantly uncorrelated modalities.

The prevalent success of deep learning brings us a new
option for multi-modal fusion — intermediate-fusion. Thanks
to deep neural network that provides variable number of layers
for latent representations, it becomes flexible to choose when
and which layer(s) can be used to fuse data from different
modalities [20]–[24].

On the other side, it is also possible to categorize multi-
modal methods based on whether they are discriminative,
generative or both (hybrid). Discriminative models [19], [25]–
[29] usually learn conditional distributions of labels given
features. Generative models [30]–[39] tend to learn their
joint distributions. And hybrid models [40]–[42] learn both
conditional distributions and joint distributions by combining
discriminative and generative parts. We refer readers to a
survey paper on multi-modal deep learning [43] for further
information. Different from the survey paper [43], in this
work we focus on multi-modal scenarios in areas related to
multimedia, which includes but is not limited to deep neural
network based architectures.

Next, we discuss two works [44], [45] utilizing the idea of
domain adaption to bridge the deep representations of different
modalities, which is not covered by the referred survey paper.
We start from the classic work [46] by Yosinski et al. on the
the transferability in deep neural networks. The conclusion is
that for a given deep neural network, deeper representation lay-
ers are more dependent on the specific task to be solved. While
the shallow layers are responsible for capturing more general
features. This principle inspires us to adapt those deeper
representation layers in deep learning for multi-modal tasks.
As such, Tzeng et al. propose a representative method (called
DCC) [47] to adapt deeper layers by employing Maximum
Mean Discrepancy (MMD) [48] to reduce the disagreement
between two modalities on the seventh layer (before softmax)
of a eight-layer AlexNet. DCC has two drawbacks: 1) it only
adapts one single layer (i.e., the seventh layer) in the deep
neural network (AlexNet). It may not be enough as Yosin-
ski et al. [46] point out that more than one layer is transferable
and 2) it adopts a single-kernel MMD (SK-MMD) which may
not serve as the optimal kernel. To tackle these weakness,
Long et al. propose a Deep Adaptation Network (DAN) [44]
that adapts three deep layers simultaneously through a multi-
kernel MMD (MK-MMD) which is capable of constructing
the final kernel by combining multiple kernels together in Re-
producing Kernel Hilbert Space (RKHS). Figure 3 illustrates
the architecture of Deep Adaptation Network (DAN).

The objective of DAN then consists of two components:
1) Deep adaptation which matches distributions of repre-

sentation layers in multiple modalities,
2) Optimal matching which maximizes two-sample test

power by MK-MMD in RKHS.
DAN, on the other side, is also not perfect because it

matches the marginal distributions P (x) and Q(x) rather than
the joint distributions P (x, y) and Q(x, y). As is shown in
Figure 4, matching the joint distributions can achieve a better

Fig. 3: Deep Adaptation Network, figure from [44]

(a) Match Marginal Distributions (b) Match Joint Distributions

Fig. 4: Matching Marginal Distributions v.s. Matching Joint
Distributions, figure from [45].

performance than matching the marginal distributions. Thus
a model based on Joint Adaptation Network (JAN) [45] is
proposed by Long et al. to match the joint distributions be-
tween deep representations from different modailities. Figure 5
illustrates the structures of Joint Adaptation Network (JAN)
and its adversarial version (JAN-A). As the RKHS is nor-
mally high-dimensional or even infinite-dimensional, Gaussian
kernel mapping samples to infinite spaces is usually adopted
as the kernel function, and the final bandwidth parameter is
selected according to empirical experiences.

We note that although these two works study the transferring
representations between different (two) modalities, their learn-
ing processes are bidirectional and the proposed models can
be tested on any two modalities without a fixed requirement
of “source” or “target” domain in the experiments. Therefore,
we group these two works in the category of multi-modal
deep representation rather than multi-modal transfer learning.
Besides domain adaptation, there are also works aiming at
feature learning by means of deep neural networks, such as a
recent work [49] by Liu et al.

C. Multi-modal Transfer Learning

In the past decade, researchers have developed plenty of
good models that can achieve fairly good performances on
large amounts of labeled data including images, sentences
etc. which is for the same task and in the same domain
(e.g., predicting image class labels given images and their
corresponding labels as input for training). However, these
models still suffer in situations containing new scenarios that
the models have never taken into account in their training
phases. For instance, a model trained on detecting pedestrians
during day-time may experience a deterioration in performance
when being applied to detect bicyclists during night-time.
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(a) Joint Adaptation Network (JAN) (b) Adversarial Joint Adaptation Network (JAN-A)

Fig. 5: Joint Adaptation Network and its adversarial version, figure from [45].

Transfer learning aims to enhance the ability of a model
to generalize and transfer learned knowledge (from source
domain) to new scenarios (target domains), which has been
an active research topic for quite a long time before the
proliferation of deep neural network and we refer readers to an
excellent survey [50] published in 2010 for details about early
models. Multi-modal transfer learning particularly focuses on
transferring knowledge from one modality (source) to a differ-
ent one (target). This method enables us to handle labeled data
in a new modality through leveraging the existing labeled data
in the original modality. Different from Pan’s work [50], we
focus on multi-modal transfer learning in multimedia through
adding more recent and advanced technologies including deep
learning methods and so forth in this section.

One benefit brought by deep neural network is the famous
deep convolutional neural network (CNN) features trained on
ImageNet [51] which can be used as pre-trained features for
new task(s) in the target domain. The credits should be given
to CNN’s capability of learning the basic components such as
edges and shapes which serve as general elements in images.
Thus a straightforward way to handle a new task can be simply
applying some pre-trained CNN features on ImageNet to this
new task, with parameters either fixed or slightly tuned under
a very small learning rate [52].

However, CNN is designed specifically for image data
(pixels) and what if we have data from other domains such as
text or signal data? The idea of domain adaptation which tries
to preserve general knowledge that does not change in different
domains can serve as an appropriate candidate. Several works
on natural language processing (NLP) [53], [54] and computer
vision (CV) [55] have gained success through employing
stacked denoising autoencoders to learn the domain-invariant
deep representations.

Besides, forcing the learned representations of source do-
main and target domain to be similar to each other may also
be an option because this procedure is able to remove domain-
specific features while keeping common features shared across
the two domains. It is possible to achieve this goal through
either applying the strategy to the initial representations before
training [56], [57] or ensuring the representations of source
and target domains to be similar during the training pro-
cess [47], [58].

The works [59], [60] by Ganin et al. propose a novel
setting which makes the deep feature extraction part of the

model produce features incapable of distinguishing between
source and target domain. As is shown by the pink part
in Figure 6, this can be done through adding a gradient
reversal layer that multiplies the gradient by a certain negative
constant during back propagation. In other words, the designed
model in Figure 6 is able to minimize the label classification
error in the source domain and fails to distinguish between
different domains simultaneously, forcing the feature extractor
to generate features beneficial for knowledge transfer.

Fig. 6: Indistinguishable domains with a gradient reversal layer
(in pink), figure from [59].

Aside from the traditional images and texts data that are
widely used in transfer learning, other recent works study
multi-modal transfer learning based on various data including
audio and video [61], head movement and co-speech [62],
Alzheimers disease (AD) and mild cognitive impairment
(MCI) [63], [64] etc.

Assumption: Source Domain and Target Domain are unbalanced

Semantic

larger gap

small gap larger datasize

small datasize

Conclusion: Source domain knowledge will be more reliable and robust!

Case1 Case2

Fig. 7: The unbalanced problem between the resource-rich
source domain and resource-poor target domain.
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Fig. 9: Asymmetric transfer of DATN model, figure from [65].

In particular, a normal characteristic of multi-modal data
in transfer learning is that the labeled data in the source task
TS is far more than that in target task TT and thus the source
domain is more resource-rich (reliable) than the target domain,
resulting a very severe unbalanced problem as demonstrated
by Figure 7. To tackle this challenge, Wang [65] in their recent
work develop a deep asymmetric transfer network (DATN) that
can adapt the classifier of source task to target task through
learning a transfer function which maps the deep represen-
tation in the target domain to that in the source domain.
The main framework of DATN is illustrated in Figure 8 and
Figure 9 where the initialization of deep representations in
each modality is conducted separately through an autoencoder
(shown in Figure 8) and the asymmetric transfer together
with adapting the source task classifier is achieved through a
transfer function (shown in Figure 9). The asymmetric transfer
process consists of three parts:

• Asymmetric mapping through transfer function G:

Lpair = ‖ZcS − ZcT ·G‖2F + λ′‖G‖2F (2)

• Source classifier adaptation:

Ltrans =− 1

nLT

nL
T∑

i=1

k∑
j=1

1{yTi
= j} log

ez
L
Ti
·G·ϑSj∑k

l=1 e
zL
Ti
·G·ϑSl

(3)

• Top-level distribution matching:

Lunsup = MMD(ZS , ZT )

= ‖ 1

nS

nS∑
i=1

zSi
− 1

nT

nT∑
i=1

zTi
‖22,

(4)

where ZS , ZT denote the top-level deep representations
for the source task, target task respectively and MMD
refers to Maximum Mean Discrepancy [48].

By putting (2), (3) and (4) together, the overall objectives
can be expressed as follows:

J cross = Lpair + αLtrans + βLunsup + Lreg, (5)

where Lreg is the regularization term.

D. Multi-modal Hashing

As the early works on multi-source hashing, multiple fea-
ture hashing [66], [67] and composite hashing [68] examine
efficient hashing with multiple features or information sources
taken into account. These works focus on the problem of
returning the same types of items as the queries, which
though have a close relation to multi-modal hashing, are not
specifically designed for retrieving different sorts of items
from a given query.

In the setting of multi-modal hashing, we aim at retrieving a
heterogeneous type of items (e.g., images) given a correspond-
ing input query (e.g., texts describing the images). Normally,
multi-modal hashing maps data from different modalities into
some common space (e.g., Hamming space) in which the
hash codes obtained from multi-modality data can be directly
compared.

Data from different modalities may share one unified hash
code or possess separate hash codes in the new space. Good
multi-modal hashing models should be capable of designing
good hash functions as well as efficiently bridging the gaps
between different domains for fast and accurate similarity
search across multiple modalities [69]–[90]. In particular, cross
view hashing [70] extends composite hashing to handle multi-
view settings through summing over Hamming distance for
each view:

dij =

K∑
k=1

d(y
(k)
i , y

(k)
j ) +

K∑
k=1

K∑
k′>k

d(y
(k)
i , y

(k
′
)

j ). (6)

Multi-modal latent binary embedding [72] utilizes probability
theory to learn hash function in the multi-modal setting
whose graphic model is shown in Figure 10. Co-regularized
hashing, taking the regularization as an entry point, learns
a multi-modal hash function with the help of a boosted co-
regularization strategy, whose objective function is as follows:

O =
1

I

I∑
i=1

lxi +
1

J

J∑
j=1

lyj
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Fig. 10: Graphic model of multi-modal latent binary embed-
ding, figure from [72].

+ γ

N∑
n=1

ωnl
∗
n +

λx
2
‖ωx‖2 +

λy
2
‖ωy‖2, (7)

where lxi and lyj are intra-modality losses and l∗n is inter-
modality loss. Motivated by the need for scalability and
training hash functions on large scale multi-modal dataset,
semantic correlation maximization hashing [80] avoids explicit
computation of pairwise similarity matrix through proposing a
sequential hashing learning method with closed-form solution
to each bit. Collective matrix factorization hashing [77] bor-
rows the idea of collective matrix factorization to learn cross-
modality hash functions by decomposing feature matrices from
two different modailities (e.g., X(1), X(2)) jointly with the
constraint V1 = V2 = V :

λ‖X(1) − U1V ‖2 + (1− λ)‖X(2) − U2V ‖2. (8)

The whole framework of collective matrix factorization hash-
ing is presented in Figure 11. Quantized correlation hash-

Fig. 11: Framework of collective matrix factorization hashing,
figure from [77].

ing [85] is the first to integrate the process of hash func-
tion learning with quantization for multi-modal hashing by
transforming multi-modal objective function into a single-
modal formulation. Semantics preserving hashing [84] maps
the given affinity matrix A into a probability distribution P and
matches it with another probability distribution Q transformed
from pairwise Hamming distances between hash codes in
the Hamming space through minimizing the KL-divergence
between P and Q. The objective function is:

Φ = minĤ∈Rn×dc

∑
i 6=j

pij log
pij
qij

+
α

C
‖|Ĥ| − I‖2, (9)

where Ĥ is the relaxed hash code matrix and

qij =

(
1 + 1

4‖Ĥi· − Ĥj·‖2
)−1∑

k 6=m
(
1 + 1

4‖Ĥk· − Ĥm·‖2
)−1 ,

which utilizes the Student t-distribution of degree one to trans-
form Hamming distances into probabilities. Besides, pij =

Aij∑
i6=j Aij

where Aij is the element of i-th row and j-th column
in affinity matrix A, representing the given affinity between i
and j. The overall structure of semantics preserving hashing
is illustrated in Figure 12.

Fig. 12: Framework of semantics preserving hashing with two
views, figure from [84].

In general, inter-media hashing [75], cross view hash-
ing [70], sequential spectral learning to hash [71] are un-
supervised hashing models extending spectral hashing [91]
to cross-modal scenario by defining the distance between
documents in Hamming space and aligning the hash codes
from all modalities with the given inter-document similarity.
On the other hand, data fusion hashing [69], semantic corre-
lation maximization hashing [80], collective matrix factoriza-
tion hashing [77], similarity-preserving hashing [79], sparse
multi-modal hashing [81], multi-modal latent binary embed-
ding [72], semantics-preserving cross-view hashing [84] and
co-regularized hashing [73] all belong to supervised hashing
approaches which take the pairwise similarity information
between two objects from different domains (modalities) as
input and require the hash codes of these paired objects
in Hamming space across different domains to be similar
through the maximizing similarity-agreement criterion [69],
minimizing similarity-difference criterion [80], collective ma-
trix factorization [77] or inverted squared function [73].

Fig. 13: The learning architecture of deep cross-modal hash-
ing, figure from [90].

Given the recent success of deep neural networks, there also
have been several works [87]–[90], [92]–[96] on combining
hashing with deep structures for cross-modal similarity search.

Deep cross-modal hashing [90],whose framework is pre-
sented in Figure 13, employs a convolutional neural network
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(CNN) that takes image data as input and a fully connected
deep neural network that takes text data as input to optimize
the binary codes and parameters from two neural networks
iteratively.

Fig. 14: The end-to-end learning framework of cross-modal
deep variational hashing, figure from [92].

A variational version of deep cross-modal hashing, cross-
modal deep variational hashing [92], adopts a two-step learn-
ing procedure:

1) Learn a fusion network and a joint binary code matrix
shared by two modalities simultaneously through an
alternative optimization procedure, which is similar to
deep cross-modal hashing.

2) Learn a modality specific neural network for each
modality such that the top-level representation is as
similar as possible to the binary codes obtained from the
fusion network and also that the approximated posterior
distribution can be as close as possible to the KL-
divergence regularized prior distribution.

For comparison with deep cross-modal hashing, we refer
readers to Figure 14 for the end-to-end learning framework
of cross-modal deep variational hashing. As is shown in
Figure 15, deep visual-semantic hashing [88] proposes an end-
to-end image-sentence (each image is attached with at least
one sentence) cross-modal hashing algorithm which utilizes
convolutional neural network (CNN) to handle image data and
long short term memory (LSTM) to handle sentence data such
that a joint embedding space for both modalities as well as a
separate structure for each modality can be learnt under the
guidance of different losses including pairwise loss, cosine
hinge loss, bit-wise margin loss, squared loss etc.

Fig. 15: The architecture of deep visual-semantic hashing,
figure from [88].

Aside from CNN, some other works [87], [89], [93] also
feed data from different modalities to autoencoder (AE) which
serves as an adequate tool for both model initialization and
unsupervised learning. Particularly, deep multi-modal hashing
with orthogonal regularization [87] whose model flowchart is

displayed in Figure 16, recognizes the phenomenon of redun-
dant information in deep multi-modal representation and pro-
poses an orthogonal structure to reduce this redundancy with
theoretical guarantee while keeping the learnt compact hash
codes accurate. As is illustrated in Figure 17, a multi-modal
deep belief network (DBN) consisting of several DBNs (one
for each modality) and a joint Restricted Boltzmann Machine
(RBM) is first developed to correlate high-level representations
of data from different modalities for the purpose of pretraining.
Then, to learn an adequate multi-modal representation that
preserves intra-modality and inter-modality simultaneously, a
multi-modal autoencoder (MAE) is developed to capture the
joint correlations for different modalities and a cross-modal
autoencoder (CAE) is explored to enable the reconstruction
of representations in any modality from data in an arbitrary
modality. The left part of Figure 18 shows the structure of
MAE whose loss function is shown as follows:

Lvt(xv,xt; θ) =
1

2
(‖x̂v − xv‖22 + ‖x̂v − xt‖22), (10)

where x̂v is the reconstruction of xv and x̂t is the recon-
struction of xt. The right part of Figure 18 demonstrates
the structure of image-only CAE whose loss function can be
expressed in the following:

Lvt̄(xv, xt; θ) =
1

2
(‖x̂Iv − xv‖22 + ‖x̂It − xt‖22), (11)

where the subscript vt̄ denotes the input of the provided image
pathway when the corresponding text pathway is absent. x̂Iv is
the reconstruction of xv in the image pathway and x̂It is the
reconstruction of xt in the text pathway. The missing modality
will be set to zero in the joining code layer for the calculation
of x̂Iv and x̂It . Thus the overall objective function with only
two modalities (image and text) can be formulated as follows
(loss function of text-only CAE Lv̄t can be formulated in a
way similar to (11)):

min
θ

LMDAE(Xv, Xt; θ)

=
1

n

n∑
i=1

(Lvt + Lv̄t + Lvt̄) + Lreg

s.t.
1

n
H̃T · H̃ = I,

(12)

where Lreg is a L2-norm regularizer term of weight matrix
preventing overfitting and the constraint 1

nH̃
T ·H̃ = I ensures

the orthogonality of the hash codes to reduce the redundant
information.
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Last but not least, the idea of adversarial training is also
adopted in cross-modal hashing, such as semi-supervised
cross-modal hashing [94], self-supervised adversarial hash-
ing [95], cycle-consistent deep generative hashing [96].

III. KNOWLEDGE-GUIDED MULTI-MODAL ANALYSIS

One intelligent aspect of human being is that we are
able to make decisions by resorting to domain knowledge
from relevant fields or domains. This motivates the advent
of knowledge-guided multi-modal approaches which adopt
a more intelligent and promising multi-modal way through
utilizing complementary external domain knowledge to boost
the model performance in multimedia. In this section, we first
present three types of methods adequate for the fusion of data
and knowledge, then discuss several exemplar applications that
require knowledge-guided fusion.

A. Approaches for Knowledge-guided Fusion

There are three mainly families of methods that are suit-
able for knowledge-guided cross-modal fusion, i.e., Bayesian
Inference, Teacher-student Network and Reinforcement Learn-
ing, which deserves further investigations for future research.
Bayesian theory [97] has been a very popular tool in statistics.
Bayesian inference [98]–[100] aims to simulate the inference
ability of human through encoding some “prior” knowledge

into the model. Thus incorporating domain knowledge via
Bayesian prior would be a good option for knowledge-guided
multi-modal fusion. Since the deep neural networks usually
have quite complex structures, teacher-student network [101]
is originally proposed to compress the deep model (student
network) via the guidance of a well-trained network (teacher
network). It has also been applied for information/knowledge
transfer between image sets [102], RGB images and depth
images [103], as well as video sets [104]. Therefore, distilling
useful domain knowledge through a teacher network and
using it as guidance in cross-modal data fusion could also
be an appropriate direction. Reinforcement learning [105],
[106] aims at taking suitable actions to maximize rewards
in certain situations. It has been a well-established machine
learning research topic with wide applications, particularly in
robotics [107] in the past decades. As such, utilizing domain
knowledge to guide the reward/feedback in reinforcement
framework seems to be another promising way to handle
knowledge-guided multi-modal fusion.

B. Exemplar Applications of Data and Knowledge Fusion

Since different problems may require different domain
knowledge, we discuss four exemplar research topics covering
visual question answering, video summarization, visual pattern
mining and recommendation from a knowledge-guided multi-
modal perspective for a better illustration.

1) Multi-modal Visual Question Answering: Visual
Question Answering (VQA) is a challenging task, which
bridges Computer Vision (CV) and Natural Language Pro-
cessing (NLP) via jointly understanding visual information
and natural language. Given an image and a related textual
question, VQA systems are supposed to correctly answer the
question based on the image, making VQA intrinsically cross-
modal since it involves an image and a relevant question.
In order to achieve a joint deep understanding of visual and
natural language, a VQA task is designed as a practical setting
to evaluate the capability of an algorithm for extracting high-
level visual information and reasoning on the extracted infor-
mation. VQA is very challenging not only for its requirement
of bridging visual and textual modalities but also for the
required versatile abilities ranging from object recognition
and localization to high-level reasoning and common-sense
knowledge learning. We will briefly describe the conventional
cross-media architecture of VQA systems as well as several
advanced techniques for connecting visual and textual modal-
ities, followed by discussions on some issues in VQA systems
and pioneering works that may lead the future research.

Conventional approaches for VQA train a neural network
using (image, question, answer) triplets as supervision in
an end-to-end way, establishing a mapping from the given
image and question input to one of the candidate answers.
Here the core idea is to learn a unified embedding of image
and question. The input image will be passed through a
convolutional neural network pretrained for image classifi-
cation (e.g., ResNet) to obtain an image representation, i.e.,
a fixed-length vector. Meanwhile, each word in the textual
questions will first be embedded into a continuous space by
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some well-established methods (e.g., one-hot encoding, or
look up in a pretrained word-embedding matrix), and then the
sequence of words will be encoded into a fixed-length vector
through bag-of-words or recurrent neural network to capture
the sequential relationships among words. Upon obtaining the
feature representations of image and question, each of them
will be embedded into a common space where the combination
of image and question representation will then be conducted.
The embedding function is typically implemented as additional
layers of neural networks, and straightforward options for
combining the embedded features include concatenation and
Hadamard (element-wise) multiplication in the common space.
This family of works can be regarded as the simplest cross-
modal fusion methods. An illustration diagram is provided in
Figure 19 which is taken from [108].

Let us now turn to some advanced techniques used for
modeling cross-modal interactions. Upon understanding the
visual world, humans have the ability to focus on specific
region(s) instead of the entire scene. Inspired by this human-
possessed ability, attention mechanism [109] has been widely
used in order to address the “where to look” problem, resulting
in one of the most effective improvement for various tasks
including object recognition, reading comprehension, image
captioning and visual question answering etc. The core idea of
attention is allowing the neural network to learn what regions
to focus on, by means of modeling interactions between the
content and side information in relevant regions. To adapt
visual attention in VQA models, region-specific local image
features are first extracted from an intermediate layer (before
the last pooling operation) of a pretrained CNN. Then a
scalar attention weight for each region is calculated using
both textual question and local visual features, which indicates
the relevance of the given region and question. Finally, the
image features can be represented as a weighted sum of
the local visual region features. As an essential component
for many VQA models, quite a few variations of attention
mechanism have been proposed in the literature for modeling
the interactions between textual and visual modalities [110]–
[113]. Yang et al. [110] present a stacked attention network
(SAN) which uses the semantic feature of the textual question
as a query to search for those relevant visual regions through
a multi-layer architecture. Lu et al. [111] propose a hierar-
chical co-attention (HieCoAtt) model that combines “visual
attention” and “question attention” via conducting a question-
guided attention on image and a image-guided attention on
question, as is shown in Eq (13):

Hv = tanh(WvV + (WqQ)C),

Hq = tanh(WqQ + (WvV )CT ),

av = softmax(wT
hvH

v),

aq = softmax(wT
hqH

q),

v̂ =

N∑
n=1

avnvn, q̂ =

T∑
t=1

aqtqt, (13)

where Hv and Hq are latent deep representations of visual
image features and textual question features respectively.
C ∈ RT×N is an affinity matrix whose entries represent

the similarities between the question features Q ∈ Rd×T
and image features V ∈ Rd×N . Actually the affinity matrix
C ∈ RT×N can also be regarded as a connection between
the question attention space to the image attention space.
The attention weights for each image region vn and word
qt are denoted as av ∈ RN and aq ∈ RT , respectively.
Instead of performing attentions on spatial feature maps (e.g.,
7×7 ResNet101 [114] res5c feature maps) as previous works,
Anderson et al. [113] introduce a bottom-up visual attention
mechanism that enables object-level attention based on image
regions obtained through Faster R-CNN [115], as is shown in
Figure 20.

Rather than adopting the naive element-wise production or
concatenation, another group of works resort to the bilinear
pooling model a well as its variations [116]–[119] to achieve a
great success by computing the outer product of two vectors to
enable interactions among elements in both vectors. Denoting
v ∈ Rdv and q ∈ Rdq as image(visual) and question feature
vectors, the classification vector y ∈ R|A| can be calculated
by Eq (14):

y = (T ×1 q)×2 v, (14)

where T ∈ Rdq×dv×|A| is the parameter tensor, the operator
×i denotes the i-mode product between a tensor and a ma-
trix, which suffers from high dimensionality (dq × dv × |A|).
Fukui et al. [116] propose a Multi-modal Compact Bilinear
pooling (MCB) algorithm which adopts a sampling-based
computation and projection method to reduce dimensionality
while preserving the performance of full bilinear pooling.
Kim et al. [117] present a Multi-modal Low-rank Bilinear
pooling (MLB) model that forces the rank of the weight tensor
to be low, as is shown in Eq (15):

y = P>
(
W>

q q ◦W>
v v
)

+ b, (15)

where W , P , b are model parameters and ◦ denotes the
Hadamard product operator. Yu et al. [119] propose the Multi-
modal Factorized Bilinear (MFB) pooling by utilizing some
tricks in matrix factorization to improve the convergence
rate and reduce the number of parameters. By combining
low-rank matrix constraint with Tucker decomposition, i.e.,
T = ((T c ×1 Wq)×2 Wv)×3Wo, Ben et al. [118] introduce
MUTAN, and the combination is expressed in Eq (16):

y =
((
T c ×1

(
q>Wq

))
×2

(
v>Wv

))
×3 Wo, (16)

where Wq ∈ Rdq×tq , Wv ∈ Rdv×tv , Wo ∈ R|A|×to , and
T c ∈ Rtq×tv×to .

Recent studies have pointed out that current VQA models
heavily rely on biases in different datasets and many existing
methods overly exploit these biases to “correctly” answer
questions without considering the real visual information. For
example, a model may answer “2” to any question starting with
“How many” without really counting the numbers because
the model learns (from biases) that answering “2” is the best
guess for this dataset. As a consequence, even “blind” model
can achieve satisfying results without well understanding the
questions and images. Many efforts, such as building more
balanced datasets [120], [121] and enforcing more transparent
model designs, have been made to alleviate this issue.
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Fig. 19: An illustration of the conventional VQA approach, figure from [108].

Fig. 20: Spatial-based versus object-based visual features,
figure from [113].

Multi-modal fusion. Instead of building models merely
based on visual and textual features via deep neural networks,
several works seek for structural representations to handle the
multi-modal nature in VQA. A series of works related to
compositional models [123]–[127] have shown exciting visual
reasoning abilities on synthetic datasets. Their fundamental
ideas are to compose instance-specific networks based on
compositional structures of questions via a collection of jointly
trained neural modules. This can be regarded as a process of
multi-modal information fusion where the question informa-
tion is encoded inside the network architecture. An example
of neural module networks is shown in Figure 22.

Another promising attempt is to exploit graph-structured
representations in VQA [128], [129], where object relations
and language structures are represented as graphs whose

structure information can be further explored via techniques
such as graph convolutional networks (GCN). As is shown in
Figure 23, Norcliffe-Brown et al. [129] propose a graph-based
approach for visual question answering. This work exploits
a graph convolution-based method [130] to learn new visual
representations from spatial graphs, where graph nodes are
bounding boxes for object detections and graph edges are
learned via an attention-based “Graph Learner” component.
The graph convolution operator is defined at kernel k for node
i as:

fk(i) =
∑

j∈N (i)

wk(u(i, j))vjαij , k = 1, 2, ...,K (17)

where u(i, j) is a pseudo-coordinate function describing the
relative spatial positions of vertex i and j, wk(u) is the kth
convolution kernel, N (i) denotes the neighbourhood of vertex
i, vj is the associated feature vector of vertices j, αij is the
edge weight produced by the “Graph Learner” component.
In the end, the convolutional feature of vertex i is obtained
through a concatenation over the K kernels.

Incorporating domain knowledge. In some situations, vi-
sual questions are not answerable by analyzing the questions
and visual information themselves alone. Correctly answering
visual questions may require extra information ranging from
common-sense to expert domain knowledge, which is far
beyond what the training dataset can provide. Thus it will be
attractive to incorporate useful domain knowledge retrieved
from other sources into VQA systems. Several pioneering
works [131], [132] explore explicit reasoning on visual con-
cepts and supporting facts in structural knowledge base, where
raw visual signals are transformed into semantic symbols. In
contrast to above symbolic-based methods, Li et al. [122]
propose a Knowledge-incorporated Dynamic Memory Net-
work (KDMN) framework which incorporates massive domain
knowledge into a semantic space to answer visual questions.
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Fig. 23: Overview of a graph-based approach for VQA, figure
from [129].

Figure 21 provides a general picture for KDMN framework
which consists of three main modules,i.e., retrieval, fusion,
inference. In retrieval module, an appropriate number of can-
didate knowledge triplets are retrieved from the external large-
scale KB through analyzing the visual content and textual
question. By treating the retrieved knowledge triplets as SVO
phrases in fusion module, the authors utilize an LSTM to
capture the semantic meanings and embed the knowledge into
memory slots, as is shown in the following Eq (19),

C
(t)
i = LSTM

(
L[wti ], C

(t−1)
i

)
, t = {1, 2, 3}, (18)

M =
[
C

(3)
i

]
, (19)

where wti is the tth word of the ith SVO phrase, L is
the word embedding matrix and Ci is the internal state of
LSTM cell when forwarding the ith SVO phrase. The memory
bank M is designed to store a large amount of knowledge
embedding. With the guidance of visual and textual features,
those embeded knowledge triples are then fed into a Dynamic
Memory Network [133] to obtain a distilled episodic memory
vector in an iterative manner as follows:

q = Query
(
f (I), f (Q), f (A)

)
, (20)

c(t) = Attention
(
M ;m(t−1),q

)
, (21)

m(t) = Update
(
m(t−1), c(t),q

)
, (22)

where Query creates a context-aware query vector q,
Attention condenses the knowledge into a context vector c(t)

in the tth iteration, and Update distills information into an
episodic memory vector m(t) iteratively. The final episodic
memory vector m(T ) can be jointly utilized with visual
features to inference the answer.

Compared with approaches based on simple explicit rea-
soning, methods incorporating external discrete knowledge not
only maintain the superiority of deep models but also acquire
the ability to exploit external knowledge for more complex
reasoning.

2) Multi-modal Video Summarization: Video summa-
rization is an important and challenging research direction in
computer vision (CV). It aims to produce a short video sum-
mary which contains a small portion of the video segments,
so as to give users a synthetic and useful visual abstract of the
video content. A great number of uni-modal approaches have
been proposed to solve the problem of video summarization,
among which unsupervised methods [134]–[137] normally
pick frames or shots from videos with some manually de-
signed visual criteria and supervised methods [138], [139]
tend to directly leverage human-edited summary examples
to learn video summarization models as well as dig the
specific visual patterns for video summaries. Besides the visual
features, it has also been observed that videos are often paired
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Fig. 24: Workflow of the music video summarization, figure
from [140].

(a) Illustration of logos in the MMSS work

(b) An example of GMMSS

Fig. 25: Illustration of multi-modal story-oriented video sum-
marization (MMSS), figure from [141].

with abundant information from other modalities, such as
audio signals, text descriptions and so on. All the modality
information is aligned or complementary with each other,
and capable of reflecting video contents in different aspects.
Simultaneously considering different modality information of
videos can provide video summarization model with a more
comprehensive view. Therefore, various multi-modal video
summarization methods are proposed based on this idea and
we remark that video summarization can also be treated as
one application of multi-modal fusion.

Conventional multi-modal video summarization. Conven-
tional multi-modal video summarization methods mainly focus
on summarizing movies or music videos. These methods often
detect and synthesize low-level visual/audio/textual cues from
video itself to assess the saliency, representativeness or quality
of different video parts, and then extract those informative
parts to create the final video summary. Xu et al. [140] propose
a music video summarization method based on audio-visual-
text analysis and alignment. As is shown in Figure 24, they
first separate the music video into a music track and a video
track. For the music track, the chorus is detected based on
music structure analysis. For the video track, the (video)
shots are segmented and classified into close-up face shots
and non-face shots, followed by extraction of the lyrics and
detection of the most repeated lyrics from these shots. The
music video summary is generated based on the alignment
of boundaries of the detected chorus, shot class and the most
repeated lyrics from the music video. Pan et al. [141] introduce
a multi-modal story-oriented video summarization (MMSS)
model through encoding both textual and scene information,
as well as logos which link shots of a story as a graph. As is
shown in Figure 25(a), broadcast news production commonly
shows a small icon beside an anchorperson to represent the
story. The same icon is usually reused later in the shots about
the follow-up development of the story, as an aid for the
viewers to link current coverage to past coverage. These icons
are called “newslogos”. The property of logos makes them
a robust feature for linking separated footages of a story.
Based on the above observations, Pan et al. [141] build a
GMMSS graph as shown in Figure 25(b), which is a three-
layer graph with three types of nodes and two types of edges.
The three types of nodes are logo-node, frame-node and term-
node, corresponding to the logos, keyframes (each representing
a shot), and terms, respectively. The two types of edges are
the term-occurrence edge and the “same-logo” edge. In logo
story summarization, frames and terms forming the summary
are selected based on their “relevance” to the query object, the
logo (node) of the story. The strategy of random walk with
restarts (RWR) is used to obtain a story-specific relevance
ranking among the terms and shot key frames in the graph
GMMSS , then the frames (i.e., nodes) and terms (nodes)
with the highest RWR scores will be selected as the story
summary. Evangelopoulos et al. [142] formulate the detection
of perceptually important video events on the basis of saliency
models for the audio, visual and textual information conveyed
in a video stream. Audio saliency Sa is assessed by cues
that quantify multi-frequency waveform modulations. Visual
saliency Sv is measured through a spatio-temporal attention
model driven by intensity, color and motion. Text saliency St is
extracted by part-of-speech tagging on the subtitle information
from videos. The various modality curves are integrated into
a single attention curve by a weighted linear combination of
the audio, visual and text saliency,

Savt = waSa + wvSv + wtSt, (23)

where the presence of an event may be identified in one or
multiple domains. This multi-modal saliency curve is the basis
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Fig. 26: Schematic illustration of the event driven web video
summarization approach, figure from [143].

of bottom-up video summarization algorithms which refine
results from uni-modal or audiovisual-based skimming.

Multi-modal video summarization for online videos with
various side information. With the massive growth of video
websites and social networks, the problem of summarizing
online web videos has attracted more and more attentions
from researchers. Different from traditional offline videos,
online web videos are surrounded with various kinds of side
information such as tags, titles, descriptions and so on, which
carries rich domain knowledge. This domain knowledge often
highlights crucial video contents that people focus on and
therefore is quite vital for improving the performances of
video summarization algorithms. Several multi-modal video
summarization methods link web videos with their domain
knowledge to analyze video contents and then generate the
video summaries.

Wang et al. [143] present an approach for event-driven
video summarization by tag localization and key-shot mining.
As is illustrated in Figure 26, they first localize the tags
associated with each video into its shots, where the conditional
probability that a shot contains a tag tk is defined as:

vkij = Pt(yij |fij) =
1

1 + exp(−(wkfij + bk))
, (24)

where fij is the feature vector of the jth shot of the ith video.
wk and bk are the parameters to be learned by the multiple
instance learning. After obtaining the relevance scores of the
shots with respect to all tags, the relevance score of each shot
with respect to an event query can then be estimated. Denote
vk as the relevance score of a shot with respect to the kth tag,
then the relevance score of this shot with respect to an event
query can be defined as follows:

y =
1

K

∑
k

sim(q, tk)vk, (25)

where q is the query and sim(q, tk) is the similarity between
query q and tag tk. Finally, a set of key-shots having high
relevance scores can be identified by exploring the repeated
occurrence characteristics of key sub-events.

Song et al. [144] observe that a video title is often carefully
chosen to be maximally descriptive of its main topic, and thus
images related to the title can serve as a proxy for important
visual concepts of the main topic. Therefore, as is depicted in
Figure 27, they leverage video titles to retrieve web images

Fig. 27: An illustration of title-based video summarization,
figure from [144].

through image search engines and develop a co-archetypal
analysis technique which learns canonical visual concepts
shared between videos and web images. Specifically, suppose
X = [x1, · · · , xn] ∈ Rd×n is a matrix of n video frames with
each column xi ∈ Rd representing a frame with a certain
set of image feature descriptors. Y = [y1, · · · , ym] ∈ Rd×m
is a matrix of m retrieved images defined in a similar way.
The learning of canonical visual concepts Z = [z1, · · · , zp] ∈
Rd×p between X and Y should satisfy the following two
geometrical constraints:

1) Each video frame xi and image yi should be well ap-
proximated by a convex combination of latent variables
Z.

2) Each latent variable zj should be well approximated
jointly by a convex combination of video frames X and
by a convex combination of images Y .

The co-archetypal analysis is thus formulated as an op-
timization problem that finds a solution set Ω ={
AX , BX , AY , BY

}
by the following objective:

min
Ω
||X − ZAX ||2F + ||Y − ZAY ||2F + γ||XBX − Y BY ||2F ,

(26)

where AX = [αX1 , · · · , αXn ] ∈ Rp×n, BX = [βX1 , · · · , βXp ] ∈
Rn×p, and similarly AY ∈ Rp×m, BY ∈ Rm×p. The first
geometrical constraint is reflected by the first two terms in
Eq (26), and the second constraint is reflected by the last term,
assuming Z = XBX = Y BY . Upon learning the canonical
visual concepts Z as well as the corresponding coefficient
matrix A and B, video matrix X can be factorized into XBA,
and the importance score of the ith video frame can then be
derived as follows:

score(xi) =

n∑
j=1

Biαj , (27)
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which is the total contribution of the corresponding elements
of BA in reconstructing the original signal X . With this frame
importance measurement, video frames of higher important
scores are concatenated in chronological order to form the
video summaries.

Sharghi et al. [139] propose a query-focused extractive
video summarization problem, which aims to generate video
summaries based on user provided textual queries. To solve
the proposed problem, they develop a probabilistic model, i.e.,
Sequential and Hierarchical Determinantal Point Process (SH-
DPP), where the decision to include one shot in the summary
jointly depends on the shot’s relevance to the user query and
its importance in the context of video. The overall workflow
for SH-DPP is shown in Figure 28. Specifically, SH-DPP
is established on a Sequential Determinantal Point Process
(SeqDPP) method [145], which firstly partitions a video into
T consecutive disjoint sets, ∪Tt=1Yt = Y , where Yt represents
a set consisting of only a few shots and stands as the ground
set of time step t. The SeqDPP model is defined as follows
(Figure 29(a) depicts its graphical model),

PSEQ(Y |Y) = P (Y1|Y1)

T∏
t=2

P (Yt|Yt−1,Yt), Y = ∪Tt=1Yt,

(28)

where P (Yt|Yt−1,Yt) is a conditional DPP to ensure the
diversities between items selected at time step t (by Yt) and
those selected in the previous time step (denoted as Yt−1). In
order to incorporate user queries into the video summarization
procedure, the SH-DPP model (as is shown by the graphical
model in Figure 29(b)) leverages the query information to
guide the determinantal point process for video shot selection:

PSH({Y1, Z1}, · · · , {YT , ZT }|q,Y)

=P (Z1|q,Y1)P (Y1|Z1,Y1)
T∏
t=2

P (Zt|q, Zt−1,Yt)P (Yt|Zt, Yt−1,Yt).
(29)

The SH-DPP first utilizes the subset selection variables Zt
to select the query-relevant video shots. Depending on the
results from Zt and Yt−1, the variable Yt in the last layer
selects video shots to further summarize the remaining content
in the video segment Yt. Since annotating ground-truth for
selection variables Zt needs annotators to determine which
query appears in which video shot, query-focused video sum-
marization heavily relies on the user supervision for SH-DPP.
Besides SH-DPP, Sharghi et al. [146] further propose a query-
focused video summarizer which employs memory network to
parameterize the sequential determinantal point process. As is
shown in Figure 30, unlike the hierarchical model in [139], the
query-focused video summarizer does not require the costly
user supervision on “which queried concept appears in which
video shot” or any pre-trained concept detectors.

Yuan et al. [147] present a Deep Side Semantic Embedding
(DSSE) model to generate video summaries by leveraging do-
main knowledge obtained from side information (e.g, captions,
descriptions, queries) of online web videos. The basic idea
of DSSE is to construct a latent subspace with the ability

Fig. 28: The workflow of query-focused extractive video
summarization, figure from [139].

(a) SeqDPP

(b) SH-DPP

Fig. 29: The graphical models of SeqDPP [145] (top) and
SH-DPP (down), figure from [139].

of directly comparing domain knowledge and video frames.
In this latent subspace, the authors hope that the common
information between videos and domain knowledge can be
learned more completely and the semantic relevance between
them can be effectively measured. As is shown in Figure 31, a
latent subspace is constructed by correlating the hidden layers
of two uni-modal auto-encoders which embed the video frames
and domain knowledge respectively. Meanwhile, there are two
components in the objective function of DSSE, i.e, Lrel which
learns the semantic relevance and Lrec which learns the feature
reconstruction:

Lrel(If , Ig; Θ) = ||f(If ; Θf )− g(Ig; Θg)||22, (30)

Lrec(If , Ig; Θ) = ||Ĩf − If ||22 + ||Ĩg − Ig||22, (31)

where If represents the visual features of the video frames and
Ig represents the textual features of domain knowledge. Ac-
cordingly, f(If ; Θf ) is the hidden representation of If in the
visual auto-encoder and f(Ig; Θg) is the hidden representation
of Ig in the textual encoder. Ĩf and Ĩg denote the reconstructed
features. Lrel requires that the matched video frames and
domain knowledge be close to each other in the latent subspace
and Lrec preserves the useful original characteristics from
different modalities/media in the common latent space. By
jointly minimizing Lrel and Lrec as follows:

min
Θ

αLrel(If , Ig; Θ) + Lrec(If , Ig; Θ), (32)
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Fig. 30: The overview for query-focused video summarizer with memory network, figure from [146].

Fig. 31: The architecture of multi-modal auto-encoders, figure
from [147].

the semantic relevance between video frames and domain
knowledge can be measured in the hidden layers of the multi-
modal auto-encoders and semantically meaningful parts are se-
lected from videos to generate video summaries by minimizing
their distances to domain knowledge in the constructed latent
subspace. The whole picture of DSSE model is demonstrated
in Figure 32.

3) Multi-modal Visual Pattern Mining: Knowledge base
is a collection of entities, attributes and the relations between
them. knowledge base schema is the structure of knowledge
base and used to guide how the knowledge base is built. It is
often constructed manually using experts with specific domain
knowledge for the field of interest. Many tasks such as au-
tomatic content extraction highly depend on knowledge base.
However, the current approaches ignore visual information that
could be used to build or populate these structured ontologies.
Preliminary work on visual knowledge base construction only
explores limited basic objects and scene relations. A few novel
multi-modal pattern mining approaches are proposed in [148]–
[152], towards constructing a high-level “event” schema semi-
automatically, which has the capability to extend text-only
methods for schema construction. A large unconstrained cor-
pus of weakly-supervised image-caption pairs related to high-
level events is utilized to both discover visual aspects of
an event, and name these visual components automatically.
Li et al. [148] leverage the activation signal of the convolution
filters to encode the visual content, and utilize the skip-
gram language model to encode the textual information. The
association rule mining algorithm is introduced to jointly
model the visual and textual information from multi-modal
data. The encoded visual and textual contents are considered
as transactions in association rule mining algorithm. The visual
transactions generation pipeline can be found in Figure 33.

To discover the event related multi-modal patterns for
knowledge base construction, two criteria, representative and
discriminative, are defined to find the high quality multi-modal
visual patterns. Discriminative means the patterns discovered
from a category should not be found in other categories.
Representative means the discovered patterns should be com-
monly available in the category. In association rule mining
algorithm, representative property is defined by support rate
of a transaction, as is shown in (33), and the discriminative
property is defined by confidence rate, as is shown in (34):

s(t∗) =
|{Ta|t∗ ⊆ Ta, Ta ∈ S}|

m
, (33)

c(t∗ → y) =
s(t∗ ∪ y)

s(t∗)
, (34)

where Ta is a transaction, t∗ is a set of items and y is the target
category. The discovered association rules can be converted
to multi-modal visual patterns by the algorithm in [148].
Mathematically, the two pattern mining requirements can be
defined as:

c(t∗ → y) ≥ cmin,
s(t∗) ≥ smin,
t∗ ∩ I, 6= ∅,
t∗ ∩C, 6= ∅, (35)

where y is the event category, cmin is the threshold of
minimum confidence rate, smin is the threshold of minimum
support rate, I is the visual transactions, and C are the text
transactions. Each multi-modal pattern t∗ has a set of visual
items and a set of text patterns. The end-to-end multi-modal
pattern discovery and naming framework can be found in
Figure 34.

Multi-modal pattern mining approach can be used as a
bridge to fill the gap between text analysis and visual analysis.
Zhang et al. [150], [152] use the multi-modal visual pattern
mining framework proposed in [148], [153] to improve the
knowledge and event extraction problem in Natural Language
Processing community. Compare to the traditional text only
event extraction approach, multi-modal approach introduces
the discovered domain knowledge from visual domain and
achieve significantly better performance.
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Fig. 33: The visual transaction generation pipeline utilizing
the last convolutional layer of a convolutional neural network.
This pipeline is used to obtain representations of each image
that can localize the presence of a pattern within the image.
figure from [148].
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Fig. 34: Multimodal pattern discovery and naming pipeline,
figure from [148].

4) Multi-modal Recommendation: With the explosive
growth of various online social networks and multimedia sites,
people are now getting used to engaging on different medias
simultaneously to satisfy their diverse information need [154].
It is reported that each user on average has 5.54 social media
accounts and is actively using 2.82 social platforms/media.
The cross-modal information jointly reflects each individual’s
interest and preference. Therefore, organically transferring or
associating cross-modal information is of significant impor-
tance in serving people intelligently [155].

Existing multi-modal recommendation works can be
grouped from two angles, e.g., categorization according to
association knowledge and categorization according to the
entire model structure.

Grouping by what knowledge to associate. When we look
through existing multi-modal models in terms of the associ-
ation knowledge, one group of methods follow a user-centric
way, which focuses on cross-modal information of overlapped
users. A straight forward solution is to treat cross-modal
association as a linear transfer problem, and pursue an explicit
transfer matrix based on regression [156]–[158]. The objective
function for this type of models can be expressed as follows:

min
W

∥∥WU1 −U2
∥∥2

F
+ λ‖W‖2, (36)

where Ui = [ui1,u
i
2, · · · ,ui|U |]. The corresponding columns

are the same user’s representations on two platforms/media.
λ is the weighting parameter and the above ridge regression
problem has an analytical solution. Instead of pursuing hard
transfer, Yan et al. [156] propose a topic association frame-
work based on latent attribute sparse coding. They also show
that bridging information across different media in common

GWI social report: http://www.globalwebindex.net/blog/internet-users-
have-average-of-5-social-media-accounts

http://www.globalwebindex.net/blog/internet-users-have-average-of-5-social-media-accounts
http://www.globalwebindex.net/blog/internet-users-have-average-of-5-social-media-accounts
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Fig. 35: Illustrative diagram of the EMCDR framework in
which linear transfer and MLP are adopted as mapping func-
tions (MLP mapping is proved to perform better according to
the experiment results), figure from [160].

latent space outperforms explicit matrix-oriented transfer. The
objective function of the above association framework is
shown in (37):

min
D1,D2,S

∥∥U1 −D1S
∥∥2

F
+
∥∥U2 −D2S

∥∥2

F
+ λ‖S‖1

s.t.
∥∥dYi ∥∥2

2
≤ 1,

∥∥dTj ∥∥2

2
≤ 1,∀i, j,

(37)

where Di includes user factors, and S includes user attribute
representations. The constraint ‖d‖22 ≤ 1 aims to prevent
D from being arbitrarily large. L1-norm penalty is adopted
to encourage a compact and sparse attribute distribution
space for users. This problem can be efficiently solved by
the sparse coding algorithm proposed in [159] after a few
transformations. As is shown in Figure 35, Man et al. [160]
propose an embedding and mapping framework EMCDR in
which user representations on different platforms are first
obtained through matrix factorization and then mapped via
linear mapping or multi-layer perceptron (MLP).

The optimization problem can be formalized as:

min
θ

∑
u∈U

∥∥fmlp(u1; θ)− u2
∥∥2

2
, (38)

where fmlp(·; θ) is the MLP mapping function, and θ is its pa-
rameter set. Abel et al. [161] aggregate user profiles on Flickr,
Twitter, Delicious, and propose a solution for the cold-start
problem in recommendation. By utilizing the overlapped users
and items as bridges across different media , TLRec [162] in-
troduces a smoothness constraint and regularization for latent
vectors. Later, Jiang et al. introduce an aligned cross-modal
user behavior similarity constraint via proposing the XPTrans
model [155] which exploits a small number of overlapped

crowds to bridge different media optimally. The objective
function of XPTrans model is as follows:

J =
∥∥W1 � (R1 −U1V1)

∥∥2

F

+ λ
∥∥W2 � (R2 −U2V2)

∥∥2

F

+ µ(
∥∥∥W1,212W1,2T �U1U1T �U1U1T

∥∥∥
+
∥∥∥W1,2T11W1,2 �U2U2T �U2U2T

∥∥∥
− 2
∥∥∥U1U1TW1,2U2U2TW1,2T

∥∥∥)

s.t.U1 > 0,V1 > 0,U2 > 0,V2 > 0,

(39)

where the first two lines are traditional loss of matrix factor-
ization on two platforms, and the following three lines are the
derived similarity constraint.

The other group of methods are devoted to taking advantage
of different media characteristics towards collaborative appli-
cations. CODEBOOK [163] investigates behavior prediction
across Netflix and MovieLens without considering the over-
lapped users under the assumption that they share the same
user-item rating patterns. Roy et al. [164] exploit real-time and
socialized characteristics of tweets from Twitter to facilitate
video recommendations on YouTube. TPCF [165] integrates
three types of data, i.e., aligned users, aligned items and user-
item ratings , in transfer learning for collaborative filtering.
Qian et al. [166] propose a generic cross-domain collaborative
learning (CDCL) framework based on nonparametric Bayesian
dictionary learning for cross-modal data analysis as is shown
in Figure 36. Min et al. [167] develop a multi-modal topic
model capable of differentiating topics across modalities.

Grouping by entire structure. When looking through exist-
ing literature with respect to the entire structure, one group
of methods are designed to build a unified framework [155],
[162], [165]–[167] in which the first two works utilize matrix
factorization based techniques and the latter three employ
probabilistic model based strategies. Another group of works
adopt a two-step procedure [156], [158], [168] by first repre-
senting users from different media in their own latent spaces
and then jointly associating those representations.

The above mentioned methods hold the same core idea
that all cross-modal information is consistent and should be
aligned. However, a few works [168], [169] discover extra
domain knowledge confirming the existence of data incon-
sistency phenomenon in the procedure of associating repre-
sentations across different media, and attempt to solve this
problem through data selection. Lu et al. [169] find that se-
lecting media-consistent auxiliary data is important for cross-
modal collaborative filtering. They propose a novel criterion
based on empirical prediction error and variance to assess
the consistency, and incorporate the criterion into a boosting
framework to selectively transfer knowledge. As is shown in
Figure 37, Yan et al. [168] divide users into three groups
and propose a predefined micro-level user-specific metric to
adaptively weight data while integrating heterogeneous data
across different media.

In particular, Yu et al. [170] analyze the inconsistent be-
havior patterns of users in Twitter and YouTube by utilizing
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Fig. 36: The graphical representation of the cross-domain
collaborative learning (CDCL) algorithm. The red circles
represent the shared priors to associate with the relevant
information and collaboratively learn the shared feature space
in different domains, figure from [166].

Fig. 37: The proposed cross-network collaboration solution
framework for unified YouTube video recommendation, figure
from [168].

the domain knowledge of data inconsistency, and discover that
the inconsistency is mainly caused by media-specific disparity
— each individual’s inherent personal preference consists of
a media-shared part and a media-specific part due to users’
different focuses in different media. To tackle the problem
of media-specific disparity and granularity difference, they
propose a disparity-preserved deep cross-platform associa-
tion model whose core idea is shown in Figure 38. Their
proposed model contains a partially-connected multi-modal
autoencoder which explicitly captures and preserves media-
specific disparities in latent representations. They divide the
hidden layer into h = [hT ,hC ,hY ], where hT , hY are
Twitter, YouTube media-specific parts respectively, and hC is
the media-shared part. Moreover, they also introduce nonlin-
ear mapping functions to associate cross-modal information,
which is advantageous in handling the granularity difference.
The detailed structure of multi-modal autoencoder can be

Fig. 38: Disparity-preserved Deep Cross-platform Association
model. uT and uY are representations of an overlapped
user on Twitter and YouTube. In latent representations, hT

and hY are media-specific parts preserving disparities, while
hC is the media-shared part associating representations in
different media. The estimated representations ûT and ûY

are derived from both media-shared and media-specific parts,
figure from [170].

written as follows:

h = g

[(∑
i

Wi
1x

i

)
+ b1

]
x̂i = g

(
Wi

2h + bi2
)
,

(40)

where i ∈ {T, Y } denotes Twitter or YouTube, and the weights
on the unnecessary links are all set to zero. Weight matrices W
and bias units b are denoted by θ as parameters of multi-modal
autoencoder. g(·) is the Sigmoid activation function. The total
loss consists of reconstruction error, parameter regularizer
(regularization penalty) and sparsity constraint, as is shown
in (41):

L(xi; θ) =
∑
i

∥∥x̂i − xi
∥∥2

2

+ λ
∑
W∈θ

‖W‖2F + µ‖h‖1.
(41)

The whole framework of disparity-aware cross-modal video
recommendation is presented in Figure 39.

IV. FUTURE RESEARCH DIRECTIONS

We have presented approaches on multi-modal analysis
for multimedia and discussed literature on data-driven cross-
modal correlational representation and knowledge-guided
multi-modal fusion. With current approaches, the fusion of
continuous data and discrete knowledge has been successfully
handled. However, there are still great challenges in obtaining
the ability of reasoning for multimedia intelligence. In this
section, we share our insights on future directions for multi-
modal research.
Cross-modal reasoning. If we take another look at the above
two aspects from the perspective that how close the corre-
sponding approaches/models are to the real intelligence like
human beings, the results would probably be “both still have a
long long way to go” — the later one may be closer to the real
intelligent agent because human can always utilize knowledge
from relevant domains to help make decisions. Moreover, if
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Fig. 39: Framwork for disparity-awared deep cross-modal video recommendation, figure from [170].

we think deeper about what makes current algorithms take a
further step towards human intelligence, the answer will be
”reasoning”. The ability of reasoning distinguishes human be-
ing from animals. One representative embodiment of reasoning
lies in the process of communications among humans — the
ability of reasoning meanings of spoken languages during a
conversation or major ideas of written articles when reading
becomes a vital necessity in understanding each other. This
being the case, cross-modal intelligence reasoning over the
evolution of knowledge serves as a key solution in bridging the
gap between current machine learning algorithms and human
intelligence. It will result in a more human-like cognition in
cross-modal intelligence. Therefore, being capable of perform-
ing human-like reasoning over various kinds of knowledge in
cross-modal analysis may be an great opportunity for the next
breakthrough in artificial intelligence.
Cross-modal cognition. Let us consider another question:
how do human learn and how can infants learn so well? The
ability of cognition through “real” understanding the world
could be one main answer to the question. We continuously
learn different skills (tasks) since we are babies and obtaining
new skills (learning new tasks) seldom deteriorates our posses-
sions of old skills (learned old tasks). Most existing machine
learning algorithms are capable of tackling only one single
type of task. For instance, an image classification algorithm
can hardly solve (or achieve a very poor performance on) the
trajectory prediction problem, although both image classifi-
cation and trajectory prediction can be handled by human
easily. This indicates that the ability of learning to solve
new tasks while maintaining the capacity to tackle previous
tasks (a reflection of cognitive process) plays a crucial role in
generating human-like algorithms for cross-modal analysis.

We remark that as another reflection of cognition, common-
sense learning will be an effective path to the goal of touching
real human intelligence. Just imagine what kind of scene will

appear in your mind when seeing the following sentence “Tom
picks up his bag and goes out”: Tom is probably a man who
is at work, he stretches out his arm and holds the grip of his
bag, stands up and walks to the door, opens it and goes out
— Tom does not fly or crawl to the door, nor does he go
out by walking through the wall. It is obvious that none of the
existing models are able to obtain the above knowledge which
is easily understood by human given the quoted sentence as
input. We call the process of learning such commonsense
knowledge commonsense learning, which may lead to another
breakthrough in research on cross-modal intelligence.
Cross-modal collective intelligence. The concept of collective
intelligence (also refers as wisdom of crowd) was originally
derived from the observations of entomologist William Morton
Wheeler. On the surface, independent individuals can work
very closely so that they look like a single organism. In
1911, Wheeler observed such a collaborative process indeed
works on ants. An ant behaves like an animal’s cell and
processed the ability of collective thinking. He called these
collective ants a larger creature, namely the cluster of ant
colonies seems to form a “superorganism”. In human society,
given that decisions made by a single individual tend to
be inaccurate compared to decisions made by the majority,
collective intelligence becomes a shared intelligence as well
as the process of assembling opinions and turning them into
decision-making procedure. Wikipedia, as a type of media
that fully demonstrates collective intelligence, serves as an
encyclopedia that can be changed by anyone at almost any
time, which connects people on the web to create a huge
intelligent brain. All these phenomena or instances confirm
one thing, i.e., collective intelligence can produce a more
power “superorganism” or brain that possesses more intelli-
gence. With abundant cross-modal information, we believe that
collective intelligence can be employed for human planning
which is another unique and complex characteristic shared by
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human being.
In addition, it is also desirable that the advances in cross-

media intelligence can indeed make some contributions to
human society. Current approaches have done a good job on
modality adaption, but they seldom can achieve good perfor-
mances on cross-modal generation. Let’s take visual impaired
people as an example, people with visual handicap usually
wear a special-tailored helmet with a distance sensor on it.
This helmet will produce some noises when there exist some
obstacles within a certain distance from the people wearing
it. We believe it will be a significant help towards visual
impaired people if the helmet can act as an “artificial eye” by
describing how far and what obstacle(s) are in which direction
from him. This could be accomplished by generating logical
verbal languages from understanding sensory data. In general,
there is still a large potential space of improvement for cross-
media intelligence in both methodologies and applications.

V. CONCLUSION

In this article, we give a comprehensive and deep inves-
tigation on multi-modal analysis. We present two scientific
problems on multi-modal analysis for multimedia. In order to
address these two scientific problems, we discuss multi-modal
fusion methods in two aspects: 1) data-driven multi-modal
correlational representation and 2) knowledge-guided multi-
modal fusion. We first give a brief summary on multi-task and
multi-view learning, and target works on deep representation,
transfer learning as well as hashing for data-driven correla-
tional representation. We then present our ideas on potential
methods suitable for handling the fusion of multi-modal data
and domain knowledge, and discuss approaches for four
promising applications, i.e., visual question answering, video
summarization, visual pattern mining and recommendation,
which need diverse domain knowledge for multi-modal fusion
of data with knowledge. Last but not least, we highlight some
insights on future research directions in the new era of artificial
intelligence, and point out a few promising future directions,
including: cross-modal reasoning , cross-modal cognition and
cross-modal collective intelligence, for further investigation.
We believe these directions have a great potential to lead the
next breakthrough in cross-media intelligence.
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