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Abstract—Discriminative correlation filter (DCF) has achieved
advanced performance in visual object tracking with remarkable
efficiency guaranteed by its implementation in the frequency
domain. However, the effect of the structural relationship of
DCF and object features has not been adequately explored in
the context of the filter design. To remedy this deficiency, this
paper proposes a Low-rank and Sparse DCF (LSDCF) that
improves the relevance of features used by discriminative filters.
To be more specific, we extend the classical DCF paradigm
from ridge regression to lasso regression, and constrain the
estimate to be of low-rank across frames, thus identifying and
retaining the informative filters distributed on a low-dimensional
manifold. To this end, specific temporal-spatial-channel configu-
rations are adaptively learned to achieve enhanced discrimination
and interpretability. In addition, we analyse the complemen-
tary characteristics between hand-crafted features and deep
features, and propose a coarse-to-fine heuristic tracking strategy
to further improve the performance of our LSDCF. Last, the
augmented Lagrange multiplier optimisation method is used to
achieve efficient optimisation. The experimental results obtained
on a number of well-known benchmarking datasets, including
OTB2013, OTB50, OTB100, TC128, UAV123, VOT2016 and
VOT2018, demonstrate the effectiveness and robustness of the
proposed method, delivering outstanding performance compared
to the state-of-the-art trackers.

Index Terms—Visual object tracking, discriminative correla-
tion filter, lasso regression.

I. INTRODUCTION

V ISUAL object tracking is an important research topic in
computer vision and pattern recognition, with practical

uses in CCTV surveillance, robotics, medical image analysis
and human-computer interactive applications. The visual track-
ing community, following the development of mathematical
theories and modelling techniques in recent decades, has re-
ported an impressive spectrum of achievements, ranging from
template matching [1], statistical learning theory [2], particle
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filter [3], subspace learning [4], discriminative correlation
filter [5], to deep neural networks [6]. Despite the existing
success, it still remains a challenge to construct robust tracking
algorithms due to the difficulties arising from complicated ap-
pearance variations of a target as well as its backgrounds, such
as non-rigid deformation, illumination change, background
clutter and occlusion. The increasingly challenging track-
ing benchmarks with corresponding evaluation methodolo-
gies, e.g., OTB2013 [7], OTB100 [8], UAV123 [9], TC128 [10]
and VOT [11], help to ensure a sustained vitality of the
research area.

Among the existing state-of-the-art tracking approaches, the
discriminative correlation filter (DCF) paradigm [5] has been
demonstrated to achieve outstanding performance [12], [13].
The advantages of DCF derive from its spatial appearance
model, circulant matrix structure [14] and efficient optimisa-
tion in the frequency domain. By considering the tracking task
as ridge regression, DCF-based trackers are inherently com-
putationally efficient and enjoy performance gains achieved
from augmenting the set of training samples [15]. The basic
DCF approach has been enhanced by several improvements
achieved by considering more complex components, e.g., scale
detection [16], spatial regularisation [17], continuous domain
mapping [18] and multi-response fusion [19]. A common
characteristic of these approaches is that they employ the
`2-norm to construct the objective function, which is a rea-
sonable choice if one wishes to balance bias and variance
of the estimate. However, the `2-norm sacrifices the model
interpretability, especially when dealing with high-dimensional
deep features. To obviate this issue, we propose to formulate
the DCF paradigm in a lasso regression form, enforcing the
estimate to be sparse. In addition, considering the fact that
soft-thresholding operation is not stable, which may create
excessive variation in the magnitude of the prediction signal,
we constrain the estimate to be low-rank across frames.
Consequently, we can obtain highly correlated filters among
successive frames, distributed on a low-dimensional manifold.
Fig. 1 depicts the learning scheme of the proposed LSDCF
method. Given labelled training samples, the combination of
sparse and low-rank constraints adaptively identify a specific
temporal-spatial-channel configuration for the learning of dis-
criminative filters.

Besides the mathematical formulation, another consensus
amongst the advanced trackers is to use robust deep neural
network features. With the fast development in deep neu-
ral networks, many computer vision and pattern recognition
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Fig. 1. Illustration of the learning framework of our LSDCF. Besides the discriminative data fitting, we propose to learn low-rank and sparse correlation
filters. The sparsity is enforced to reduce less relevant features with enhanced discrimination and interpretation. The low-rank constraint is employed across
temporal frames to improve the stability and smoothness. The proposed ADMM optimisation scheme iterates between updating corresponding sub-problems.

tasks[20], [21], [22], [23], including visual tracking[24], [25],
have been shown to benefit from powerful deep discrimina-
tive features [26], [27], [28], [29]. The top-ranked trackers
in recent competitions, e.g., OTB100 [8], VOT2017 [30],
VOT2018 [31], are all based on deep neural network features.
It should be noted that the pooling operation in convolutional
networks enhances the discrimination while sacrifices resolu-
tion, impeding accurate tracking. To simultaneously maximise
discrimination and avoid spatial compression, existing state-
of-the-art trackers usually fuse hand-crafted features and deep
features for performance boosting. To explore the fusion of
diverse features further, we analyse the characteristics of
these two feature categories and propose a two-stage detection
strategy. As deep features are expert in recognising a specific
target in an image patch, we employ them to perform coarse
target detection in the first stage. Then, a new search window
is placed on the coarse detection result, and we perform
fine-grained localisation by adding hand-crafted features. The
proposed coarse-to-fine strategy enables robust tracking in
challenging videos, devising an effective approach, combining
the complementary characteristics of hand-crafted and deep
features.

In this paper, we propose learning low-rank and sparse
discriminative correlation filters (LSDCF) with a coarse-to-fine
tracking strategy for robust visual tracking. The effectiveness
of the proposed method has been extensively evaluated on
a number of benchmarks such as OTB2013 [7], OTB50 [8],
OTB100 [8], UAV123 [9], TC128 [10], VOT2016 [13], and
VOT2018 [31]. The results demonstrate that LSDCF outper-
forms the state-of-the-art trackers. The main innovations of the
proposed method include:

• A new discriminative filter learning formulation based

on lasso regression and low-rank constraint. By design,
specific elements are identified in the high-dimensional
feature representations to learn a parsimonious filter sys-
tem. The stability is achieved by enforcing the filters to
be robust to temporal appearance variations.

• A coarse-to-fine heuristic tracking strategy that enhances
the effectiveness of feature fusion. The complementary
characteristics of hand-crafted and deep features are
exploited to improve the accuracy and robustness of
localisation and detection, respectively.

• A detailed analysis of each ingredient of LSDCF, i.e.,
sparsity, low-rank, and coarse-to-fine strategy. The exper-
imental results confirm the merit and effectiveness of each
part of the entire tracker.

The paper is organised as follows: In Section II, we
introduce related studies to the proposed tracking method.
A detailed mathematical formulation and heuristic tracking
strategy of the proposed LSDCF method are presented in Sec-
tion III and furnished with an efficient optimisation approach.
The experimental results and their analysis are reported in
Section IV. Last, the conclusions are drawn in Section V.

II. RELATED WORK

Many methods have been proposed to develop basic math-
ematical formulations and additional controlling systems for
online visual tracking. In this section, we briefly review perti-
nent theories and techniques related to our work. More detailed
introductions have been provided in recent surveys [32], [8],
[13], [33].
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A. Mathematical Formulation

One basic element in constructing an object appearance
model is the mathematical formulation, through which a vision
task can be transformed to an algorithmic problem.

The Lucas-Kanade algorithm [1], [34] is the seminal genera-
tive learning method that achieves tracking by template match-
ing, with the assumption that the flow is essentially constant
in a local neighbourhood of the pixel under consideration. But
this assumption is fragile due to the complicated appearance
variations of an object. To create a better model, the mean shift
method [35] has been applied to visual object tracking by it-
eratively locating the maximal mode of a density function that
describes the target appearance. Though global appearance is
reflected in a density function, mean shift trackers suffer from
the presence of local minima. In the framework of Bayesian
statistical inference, particle filter method [3] was developed
to estimate the posterior distribution of a tracking target,
alleviating the local minima problem by sampling operations.
Such a prediction-updating paradigm satisfies the non-linear
and dynamic properties of a changing target, especially in
high-dimensional feature spaces. Consequently, particle filter
has been a popular modelling approach in the visual tracking
field for decades, even successfully integrated with the tides
of compress sensing [36] and deep learning [37].

Compress sensing [38] results in the development of sparse
and low-rank trackers. For sparse-representation-based track-
ers [39], [40], the reconstruction error between a candidate and
a dictionary provides a robust appearance similarity metric.
In contrast, low-rank trackers [41], [42] enforce a low-rank
constraint on the representation matrix corresponding to mul-
tiple candidates, highlighting the inherent low-rank structure
of candidate representations that can be learned jointly.

Besides the above generative tracking formulations, dis-
criminative learning approaches have also been explored in
parallel. Instead of minimising the difference between candi-
date and appearance density function, discriminative trackers
maximise the classification score to distinguish the target
from background. The fundamental discriminative trackers
emerged via the application of statistical learning theory [2],
that aims at learning a classifier given positive and negative
labelled samples. To enhance the discrimination in complex
scenarios, online-boosting-based trackers [43], [44], [45] have
been proposed to train a strong classifier by integrating
multiple weak classifiers. The structured output strategy [46]
has also been designed to further jointly couple the input
and output. In addition, to capitalise on the achievements of
deep learning, end-to-end learnt deep neural networks have
been developed to train a localisation system using large-scale
vision datasets [47], [48], [49].

Recent discriminative approaches focus on correlation fil-
ters [5], that formulate a tracking task as ridge regression
with guaranteed efficiency provided by circulant matrix [14]
and Fast Fourier Transform (FFT). Outstanding performance
has been achieved by the combination of discriminative cor-
relation filters and deep features on several benchmarks [13],
[31], [50]. But the basic formulation of DCF has not been
deeply questioned to see whether further improvements in

performance can be gained with deep features. To rectify this,
we propose to learn low-rank and sparse correlation filters
to achieve enhanced discrimination and robust visual object
tracking.

B. Controlling System

Despite the success in developing rigorous mathematical
formulations in visual tracking, a practical tracking task can
not be modelled by existing theories accurately. To mitigate
this issue, additional controlling strategies are necessary to
balance the characteristics of the theories reflecting simplify-
ing assumptions about the universe of target tracking and their
validity in challenging video sequences.

Considering the temporal dimension, a forgetting factor [4]
was proposed and widely used to address robust model up-
dating in tracking, with more importance granted to recently-
acquired appearance and less to earlier observations. Such a
strategy enables dynamic appearance fusion in tracking, but
a fixed updating rate suffers from the risk of potential unre-
coverable failures. Some recent studies deal with the temporal
correlations via two approaches, i.e., involving more historical
samples and exploiting target re-detection. Specifically, by
incorporating weighted historical samples into the learning
stage, the resulting adaptive decontamination of the training
set [51], [52], [53], [54] achieves robust tracking performance.
In the same spirit, Efficient Convolution Operators (ECO) [55]
significantly improve the computational efficiency by decreas-
ing the number of historical frames via a data clustering
technique. Re-detection [56], on the other hand, intuitively
alleviates tracking shifts and failures by employing a separate
classifier that performs target detection when a pre-specified
condition is satisfied.

Besides temporal coherence, spatial configuration is an-
other controlling element that has gained emphasis in visual
tracking. Unlike other data, e.g., gene and aurals signal,
natural images are the projections of the 3D space onto a 2D
plane. Accordingly, significant improvements have been made
by identifying effective spatial configurations. Confronted
with local appearance variations, the fragments-based tracking
method [57], [58] was proposed to estimate the target by frag-
ments, effectively improving tracking performance under par-
tial occlusions. Similar strategies were applied in constructing
the structural sparse model [59] and the structural/patch-based
correlation filter model [60], [61], [62], [63]. To emphasise
the spatial configuration in a global pattern, spatial regular-
isation [17] was proposed in the DCF paradigm, with more
energy concentrated in the central region. The corresponding,
context-aware [64] and background-aware [65] DCF trackers
have been shown to achieve enhanced discrimination via
expanding the appearance information from the surroundings
of a target.

To further improve the tracking performance, we propose
a coarse-to-fine heuristic tracking strategy as an additional
controlling method. This strategy realises adaptive feature
fusion by hierarchically highlighting the advantages of deep
neural network features and hand-crafted features.



4

III. THE PROPOSED LSDCF METHOD

In this section, we introduce our LSDCF method by ex-
tending the classical DCF paradigm from ridge regression to
lasso regression, with an additional low-rank constraint across
temporal frames. A detailed optimisation process is developed
by employing the augmented Lagrange method. Additionally,
a novel coarse-to-fine heuristic tracking strategy is proposed
to unveil complementary characteristics between hand-crafted
and deep neural network features.

A. Learning Low-rank and Sparse Discriminative Correlation
Filters

1) Ridge Regression Formulation: Given the location of a
target at the current frame, the aim of visual object tracking
is to predict the location of the target in the next frame.
In the learning stage, we aim to train a discriminative filter
that obtains high-value responses around the target centre and
low-value responses for the background. Following the DCF
formulation, a search window centred around the target is ex-
tracted with feature representation x = [x1, x2, . . . , xn]> ∈ Rn.
Its corresponding circulant matrix is denoted as [14]:

X =



x1 x2 x3 . . . xn
xn x1 x2 . . . xn−1

xn−1 xn x1 . . . xn−2
...

. . .
...

x2 x3 x4 . . . x1


, (1)

in which each row is considered as an augmented sample, such
that X can be directly employed as a training data matrix [15],
[66]. Given labelled training pairs {X, y}, the learning stage
is formulated as ridge regression to find an optimal filter
w ∈ Rn to distinguish the target region from background.
(For simplicity, we focus on single-channel, one-dimensional
signals here. Multi-channel, two-dimensional representations
are formulated in Subsection III-A4):

w = arg min
w
‖Xw − y‖22 + λ ‖w‖

2
2 , (2)

where λ is the weight of the regularisation term. Referring to
the Fourier theorem, a closed-form solution in the frequency
domain can be obtained as:

ŵ =
x̂ � ŷ∗

x̂ � x̂∗ + λ1
, (3)

where � is the element-wise multiplication, 1 is an all-ones
vector with the same size as x̂, ·̂ denotes Fourier representation
and ·∗ is the complex conjugate.

2) Lasso Regression Formulation: The original ridge re-
gression formulation achieves predominant performance via
combining hand-crafted features, e.g., gray pixels, histogram
of oriented gradients (HOG) and Colour Names (CN) [5],
[16], [19]. However, to realise a bias-variance trade-off, ridge
regression enables all the elements in the model activated,
without the ability to produce a parsimonious model. To
sharpen the focus of the discriminative filters on relevant
features, we favour a simpler estimate (filters), with more
attention given to the relations between discriminative re-
sponses and data correlations. Here, a simpler estimate always

implies that the elements of the model are sparse, and most
energy is concentrated on specific dimensions. In addition, a
sparse estimate is more appropriate for deep features as the
dimensionality of deep models, e.g., AlexNet [26], VGG [27],
GoogLeNet [28] and ResNet [29], exceeds 105 even in one
convolutional layer. Therefore, we aim to learn a sparse
discriminative filter via ridge regression [67]:

w = arg min
w
‖Xw − y‖22 + λ ‖w‖1 , (4)

such that the parsimony can be achieved for the discriminative
filters even in high-dimensional feature spaces.

3) Low-rank Filter Learning: Despite the success of lasso
regression in pattern recognition, it suffers from excessive
sensitivity and unstable performance [68]. To mitigate this
problem, in our lasso regression formulation we improve the
robustness by encouraging temporal smoothness. Specifically,
a low-rank constraint is imposed on the estimates across video
frames, so that the quality of inherent features can be nurtured.
We reformulate the objective as:

w = arg min
w
‖Xw − y‖22 + λ ‖w‖1

s.t. rank (Wt ) − rank (Wt−1) < τ,
(5)

where Wt =
[

t
t−1 (1 − α)Wt−1, tαw

]
(t > 1) stores the

historical learned filters with a forgetting factor α, and τ is
a pre-defined threshold. We omit the frame index for w, as
w = wt . Here, we impose low-rank across all the frames. as
the equal rank constraint is enforced starting from the second
frame, i.e., rank (W2) = rank (W1). However, it is inefficient
to calculate rank (Wt ), especially in long-term videos with
a large number of frames. Therefore, we use its sufficient
statistics as a substitute:

‖w − µt−1‖ < τ′ (6)

where µt−1 is the mean vector of Wt−1, which is the same
as the updated filter in the DCF paradigm. The proof of
sufficiency is intuitive as we impose a linear relationship
among temporal filters.

To emphasise the low-rank constraint, we rewrite the objec-
tive to learn the low-rank and sparse discriminative correlation
filters as:

w = arg min
w
‖Xw − y‖22 + λ1 ‖w‖1 + λ2 ‖w − µt−1‖

2
2 . (7)

It should be noted that µt−1 is the weighted mean of historical
filters from the first frame to the (t − 1)-th frame which can
be incrementally updated easily, such that it is the exact filter
used for tracking in the t-th frame. We realise this low-
rank property across temporal frames by employing the `2-
norm and storing the weighted mean only, simplifying storage
and computational cost. The proposed low-rank and sparse
properties are experimentally verified in Section IV-B2.

4) Multi-channel LSDCF: To achieve a structured combina-
tion of multi-channel features in the DCF paradigm, we extend
our formulation to multi-channel LSDCF. We denote the multi-
channel feature representations, e.g., CN [69], HOG [70] and
ResNet [29], as X ∈ RN×N×C , where N × N is the spatial
resolution and C is the number of channels. We denote W
as the discriminative correlation filters with the same size as
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Fig. 2. Illustration of the proposed coarse-to-fine tracking strategy. First, an initial window (green) is extracted based on the tracking result from the last
frame. Coarse tracking is performed on the initial window with deep features to obtain a coarse result. Second, a coarse window (blue) is extracted based on
the coarse result. Fine-grained tracking is then performed on the coarse window with both hand-crafted and deep features to obtain the final result. Last, a
fine-grained search window (red) is extracted based on the final result and is used in the learning stage.

X, and the incremental updated mean of W as U (the multi-
channel, 2-dimensional extension of µt−1).

Given X and the 2-dimensional pre-defined gaussian shaped
labels Y ∈ RN×N [15], we formulate the objective of multi-
channel LSDCF as follows:

W = arg min
W

 C∑
k=1
Xk ~Wk − Y

2

F

+ λ1

C∑
k=1

Wk


1,1

+ λ2

C∑
k=1

Wk −Uk
2
F
,

(8)

where ~ is the circular convolution operator [5], and Wk ∈

RN×N denotes the k-th channel ofW. The Frobenius norm of
a matrix M ∈ RN×N is defined as ‖M‖F =

√∑N
i=1

∑N
j=1 m2

i, j ,
where mi, j corresponds to the i-th row j-th column ele-
ment in M. The `1,1-norm of M is defined as ‖M‖1,1 =∑N

i=1
∑N

j=1
��mi, j

��.
B. Optimisation

Due to the convexity of the proposed formulation, we apply
the augmented Lagrange method [71] to optimise Obj. (8).
Concretely, we introduce slack variable W ′ = W and con-
struct the following Lagrange function:

L =

 C∑
k=1
Xk ~Wk − Y

2

F

+ λ1

C∑
k=1

W ′k


1,1

+ λ2

C∑
k=1

Wk −Uk
2
F
+
ν

2

C∑
k=1

Wk −W ′k +
Γk

ν

2

F

,

(9)

where Γ is the Lagrange multiplier sharing the same size as X
and ν is the corresponding penalty weighting parameter. Then
Alternating Direction Method of Multipliers [72] is employed
to achieve iterative optimisation with guaranteed convergence
as follows.

1) Optimising W: In order to optimise W, we employ
circulant structure [5] and Parseval’s theorem to solve the
following subproblem in the frequency domain:

min

 C∑
k=1
X̂k � Ŵk − Ŷ

2

F

+ λ2

C∑
k=1

Ŵk − Ûk
2

F

+
ν

2

C∑
k=1

Ŵk − Ŵ ′k +
Γ̂
k

ν

2

F

. (10)

A closed-form solution can be derived as [73]:

ŵi, j =

(
I −

x̂i, j x̂>i, j
λ2 + ν/2 + x̂>i, j x̂i, j

)
q, (11)

where q =
(
x̂i, j ŷi, j + νŵ′i, j − νγ̂i, j + λ2ûi, j

)
/(λ2 + ν), vectors

ŵi, j ( ŵi, j =
[
ŵ1
i, j, ŵ

2
i, j, . . . , ŵ

C
i, j

]
∈ CC), x̂i, j , and ûi, j denote

the i-th row j-th column units of Ŵ, X̂ and Û, respectively,
across all C channels.

2) OptimisingW ′: In order to optimiseW ′, we minimise
the following subproblem:

min λ1

C∑
k=1

W ′k


1,1 +
ν

2

C∑
k=1

Wk −W ′k +
Γk

ν

2

F

. (12)

The shrinkage operator can be used to realise a closed-form
solution for each element separately:

w′ki, j = sign (p)max
(
0, |p| −

λ1
ν

)
, (13)

where p = wk
i, j +

γki, j
ν , with wk

i, j and γki, j being the values
corresponding to the elements at the i-th row, j-th column
and k-th channel in W and Γ, respectively.
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3) Optimising other variables: We update the multiplier Γ
and the penalty ν in each iteration as:{

Γ = Γ + ν (W −W ′)

ν = min (ρν, νmax)
. (14)

where ρ controls the strictness of the penalty and νmax is the
upper limit of the penalty.

C. Coarse-to-Fine Tracking Strategy

After obtaining the multi-channel filter W, the weighted
mean filter U is updated with the forgetting factor α:

U = αW + (1 − α)U. (15)

Given the feature representations, X, of a search window
in a new frame, the task of the detection stage for the
discriminative correlation filters is to obtain the response map
Y, which can be efficiently calculated in the frequency domain:

Ŷ =
C∑
k=1
X̂k � Ûk . (16)

Then the maximal value in Y corresponds to the target
location.

Existing tracking algorithms combine hand-crafted and deep
features by directly summing the corresponding response maps
without considering the diversity between them [18], [55]. We
analyse the differences of hand-crafted and deep features with
the conclusion that deep features are expert in robust target
recognition but perform worse in terms of accurate target
localisation. An intuitive explanation is that deep features can
select the most similar sample corresponding to a specific
object, but can not guarantee the object is in the centre of
the image. In contrast, hand-crafted features can achieve a
better target localisation if it is already near the ground truth.
Based on the above observation, we propose a coarse-to-fine
heuristic tracking strategy that achieves effective multi-feature
fusion. Fig. 2 illustrates the proposed coarse-to-fine tracking
strategy.

1) For Deep Features: We employ deep features to realise
coarse target detection. Specifically, we extract an initial search
window based on the central position of the tracking result
from the last frame, and perform correlation filtering using
only the filters corresponding to deep features. At this stage,
we expect to roughly locate the target. Then, we extract
an updated search window based on the coarse estimate. In
addition, as deep features are of high volume, and robust to
appearance variations, we execute the learning stage every K
frames for deep features, with the mean representations of
previous 2K frames as training samples.

2) For Hand-crafted Features: We perform fine-grained
target detection in the extracted coarse search window. A
basic assumption is that the ground truth is already close
to the central region in the coarse search window. Then,
a combination of hand-crafted and deep filters is employed
to obtain the final response map. Note that as hand-crafted
features suffer from appearance variations more than deep
features, we learn the hand-crafted filters in each frame.

IV. EXPERIMENTS

A. Implementation Details and Evaluation Methodology

To evaluate the performance of the proposed LSDCF
method, we implement LSDCF in MATLAB 2016a on an Intel
i5 2.50 GHz CPU and GTX 960 GPU. The MATLAB code
is publicly available at github1. We use CN [69], HOG [70]
as hand-crafted features, with λ1 = 1.2 × 10−5, λ2 = 40
and α = 0.6. ResNet-50 [29] is employed as deep features
with λ1 = 2 × 10−6, λ2 = 6, K = 4 and α = 0.2.
Deep feature representations are extracted using MatConvNet
Toolbox 2 [74]. The parameters are fixed for all datasets.

We evaluate our LSDCF on a number of well-known
benchmarking datasets, including OTB2013 [7], OTB50 [8],
OTB100 [8], UAV123 [9], TC128 [10], VOT2016 [13], and
VOT2018 [31]. We also compare our LSDCF with a number
of state-of-the-art trackers, such as VITAL [75] (CVPR18),
MetaT [76] (ECCV18), ECO [55] (CVPR17), MCPF [37]
(CVPR17), CREST [49] (ICCV17), BACF [65] (ICCV17),
CFNet [48] (CVPR17), STAPLE_CA [64] (CVPR17),
ACFN [77] (CVPR17), CSRDCF [78] (CVPR17), C-COT [18]
(ECCV16), Staple [19] (CVPR16), SiamFC [47] (ECCV16),
SRDCF [17] (ICCV15), KCF [5] (TPAMI15), SAMF [79]
(ECCVW14) and DSST [80] (TPAMI17). For VOT2016 and
VOT2018, we compare our LSDCF with the corresponding
top-ranking trackers (C-COT, TCNN, SSAT, MLDF Staple,
DDC, EBT, SRBT, STAPLE+, DNT, ECO, CFWCR, LSART,
UPDT, SiamRPN, MFT and LADCF) 3 that participated in the
VOT challenges [13], [31].

To measure the tracking performance, we use the precision
plot and the success plot [7]. Specially, the precision plot
measures the percentage of frames, with the distance of the
tracking results from the ground truth less than a certain
number of pixels. The success plot measures the proportion of
successfully tracked frames with the threshold ranging from 0
to 1 (a result is considered successful if the overlap of the two
bounding boxes exceeds a given threshold). Four additional
objective criteria, i.e., center location error (CLE), distance
precision (DP), overlap precision (OP) and area under curve
(AUC), are employed to characterise the performance. DP is
the corresponding precision plot value (illustrated in the legend
of precision plot) when the threshold is set to 20 pixels. CLE is
the average central distance between the predicted and ground
truth locations of a target. OP is the corresponding success plot
value when the threshold is set to 0.5. AUC is the expected
success rate (illustrated in the legend of success plot) in terms
of overlap evaluation. For VOT2016 and VOT2018, we use
the expected average overlap (EAO), accuracy value (A) and
robustness value (R) as the evaluation metrics [13].

B. Component Analysis

1) Impact on Quantitative Performance: We first evalu-
ate the effect of the innovative components in LSDCF, i.e.,
sparsity (S), low-rank constraint (L) and coarse-to-fine strat-
egy (CF). We consider all the combinations and construct

1https://github.com/XU-TIANYANG/LSDCF
2http://www.vlfeat.org/matconvnet/
3http://www.votchallenge.net
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Fig. 3. The performance of different components and their combinations in LSDCF, evaluated on OTB100. The precision plots (left) with DP and the success
plots (right) with AUC in the legends are presented.

TABLE I
RANK OF DIFFERENT DCF TRACKERS BY CONCATENATING THE FILTERS LEARNT FOR ALL THE FRAMES IN SEQUENCES Deer, Basketball, Boy, David3,

Girl, Suv, Skater AND Woman. THE LOWEST THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND BROWN FONTS.

Sequences [#frames] BACF STAPLE_CA SRDCF C-COT ECO KCF Staple DSST SAMF CSRDCF LSDCF
Deer [71] 7 14 11 3 4 71 14 3 32 11 2
Basketball [725] 42 134 46 10 23 526 87 16 141 140 9
Boy [602] 27 63 39 8 19 274 61 37 61 46 4
David3 [252] 13 53 16 3 8 252 33 11 23 29 6
Girl [500] 26 57 32 8 18 267 50 36 53 73 5
Suv [945] 32 49 36 4 16 701 49 18 39 78 6
Skater [160] 17 38 14 3 19 160 23 12 18 31 5
Woman [597] 29 111 20 6 15 384 65 35 73 68 7

TABLE II
A COMPARISON OF OUR LSDCF WITH STATE-OF-THE-ART METHODS ON OTB2013, OTB50 AND OTB100 IN TERMS OF OP AND CLE. THE TOP THREE

RESULTS ARE HIGHLIGHTED IN RED, BLUE AND BROWN FONTS.

KCF SAMF DSST SRDCF SiamFC Staple C-COT CSRDCF ACFN

Mean OP/CLE
(%/pixels)

OTB2013 [7] 60.8/36.3 69.6/29.0 59.7/39.2 76.0/36.8 77.9/29.7 73.8/31.4 83.7/15.6 74.4/31.9 75.0/18.7
OTB50 [8] 47.7/54.3 59.3/40.5 45.9/59.5 66.1/42.7 68.0/36.8 66.5/32.3 80.9/12.3 66.4/30.3 63.2/32.1
OTB100 [8] 54.4/45.1 64.6/34.6 53.0/49.1 71.1/39.7 73.0/33.2 70.2/31.8 82.3/14.0 70.5/31.1 69.2/25.3

Mean FPS 82.7 11.5 15.6 2.7 12.6 23.8 2.2 4.6 13.8

STAPLE_CA CFNet BACF CREST MCPF ECO MetaT VITAL LSDCF

Mean OP/CLE
(%/pixels)

OTB2013 77.6/29.8 78.3/35.2 84.0/26.2 86.0/10.2 85.8/11.2 88.7/16.2 85.6/11.5 91.4/7.4 93.9/7.8
OTB50 68.1/36.3 68.8/36.7 70.9/30.3 68.8/32.6 69.9/30.9 81.0/13.2 73.7/17.0 81.3/12.5 83.1/10.2
OTB100 73.0/33.1 73.6/36.0 77.6/28.2 77.6/21.2 78.0/20.9 84.9/14.8 79.8/14.2 86.5/9.9 88.6/9.0

Mean FPS 18.1 8.7 16.3 10.1 0.5 8.5 0.8 1.3 6.8

7 trackers. The results on OTB100 are shown in Fig. 3.
The Baseline is the original DCF tracker equipped with the
same features as our LSDCF. Generally, the proposed spar-
sity, low-rank constraint and coarse-to-fine strategy produce
improvements for the DCF paradigm, both separately and in
combinations. Compared with the Baseline, the low-rank con-
straint (Baseline_L) significantly improves the performance in
terms of DP and AUC by 11.7% and 11.5%, respectively.
Intuitively explained, a low-rank constraint across temporal
frames enables the learned filters to become more invariant
to appearance variations. Sparsity and the coarse-to-fine strat-
egy also lead to improvements in the tracking performance.
The combination of low-rank and the coarse-to-fine strategy
achieves a performance gain from 87.6% to 92.2% in DP and

from 66.4% to 69.1% in AUC, compared with Baseline_L.
Note that we realise sparsity via the classical lasso method.
The gain from sparsity is not as high as that from the other
components. But the sparsity alone (Baseline_S) still improves
the Baseline from 75.9% to 78.4 in DP and from 54.9%
to 56.4%. In addition, the combination of all components
(Baseline_S_L_CF) is exactly the proposed LSDCF tracker,
which achieves the best performance compared with the other
combinations. The above results demonstrate the effectiveness
of the proposed low-rank and sparse DCF formulation as well
as the coarse-to-fine tracking strategy.

2) Analysis of the Low-rank and Sparsity Constraints:
Here, we qualitatively verify the low-rank and sparsity proper-
ties of the proposed formulation to gain intuitive understanding
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KCF DSST SAMF Staple STAPLE_CA CSRDCF BACF SRDCF ECO C-COT LSDCF

Fig. 4. Illustration of the sparsity of discriminative filters of several methods. We collect the learnt filters from 11 DCF-based trackers, i.e., KCF, DSST,
SAMF, Staple, STAPLE_CA, CSRDCF, BACF, SRDCF, ECO, C-COT and our LSDCF, in sequence David3 [7]. As all these trackers employ HOG features,
we only present the filters obtained using HOG feature channels. David3 contains 252 frames. We visualise the corresponding filters in frame #50 (the 1st
row), #100 (the 2nd row), #150 (the 3rd row), #200 (the 4th row) and #250 (the 5th row). To better visualise the sparsity, we present the heat-maps of the
filters by accumulating the energy across all the channels.

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

OTB100 - Precision plots

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

TC128 - Precision plots

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

TC128 - Precision plots

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

OTB100 - Success plots

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

TC128 - Success plots

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

UAV123 - Success plots

Fig. 5. Evaluations on OTB100, TC128 and UAV123. The precision plots (first row) with DP in the legend and the success plots (second row) with AUC in
the legend are presented.

of the filter behaviour.

For sparsity, we visualise the obtained discriminative filters
of several DCF-based trackers in Fig. 4. We note that the
filters of KCF, DSST, SAMF, Staple and STAPLE_CA are
densely distributed in the spatial domain. The remaining 6
trackers share the sparsity property. Specifically, CSRDCF and
BACF enforce the sparsity by pre-defined masks (only specific

filter regions are allowed for filtering) for the filters. SRDCF,
ECO and C-COT achieve sparsity by spatial regularisation,
with more filter energy concentrating at the image centre. On
the other hand, the proposed LSDCF realises sparsity without
using a pre-defined mask or weighting scheme. The filters are
adaptively shrunk to specific elements by discriminative data
fitting and combined low-rank and sparse regularisation terms.



9

TABLE III
TRACKING RESULTS ON VOT2016. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND BROWN FONTS.

DNT STAPLE+ SRBT EBT DDC Staple MLDF SSAT TCNN C-COT LSDCF

EAO 0.269 0.286 0.290 0.291 0.293 0.295 0.311 0.329 0.327 0.331 0.407
Accuracy 0.515 0.559 0.497 0.465 0.542 0.547 0.492 0.579 0.555 0.541 0.587
Robustness 0.33 0.37 0.35 0.25 0.34 0.38 0.23 0.29 0.27 0.24 0.18

TABLE IV
TRACKING RESULTS ON VOT2018. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND BROWN FONTS.

ECO STAPLE_CA CFWCR LSART UPDT SiamRPN MFT LADCF LSDCF

EAO 0.280 0.286 0.303 0.323 0.378 0.383 0.385 0.389 0.387
Accuracy 0.483 0.509 0.484 0.493 0.536 0.586 0.505 0.503 0.523
Robustness 0.276 0.281 0.267 0.218 0.184 0.276 0.140 0.159 0.145

TABLE V
THE DP AND AUC RESULTS ON OTB100, PARAMETERISED BY 11 ATTRIBUTES. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND

BROWN FONTS.

STAPLE_CA CFNet BACF CREST C-COT MCPF ECO MetaT VITAL LSDCF

Mean
DP/AUC
(%/%)

BC 78.2/58.6 73.4/56.5 83.0/62.5 82.9/61.8 88.2/65.2 82.3/60.1 94.2/70.0 92.6/67.4 94.6/69.3 93.2/70.3
DEF 76.0/56.6 69.6/50.8 77.8/58.2 77.6/56.9 85.9/61.4 81.6/57.0 85.9/63.3 83.8/62.0 90.1/65.1 90.9/66.6
FM 75.3/58.7 71.6/55.8 80.7/60.5 79.2/62.7 88.3/67.6 84.5/59.7 87.8/68.3 79.3/62.6 89.2/67.2 90.5/69.4
IPR 80.6/57.4 76.8/57.2 79.5/58.4 85.3/61.7 87.7/62.7 88.8/62.0 89.2/65.5 87.7/63.5 91.8/66.5 92.4/67.3
IV 81.6/61.3 70.5/54.9 83.0/64.2 87.6/64.4 88.4/68.2 88.1/62.8 91.4/71.3 86.4/63.4 93.4/70.3 92.7/71.3
LR 81.9/44.8 81.0/58.6 79.5/51.4 86.6/47.3 97.5/62.9 96.3/58.7 88.2/59.1 90.1/47.2 94.2/64.2 99.8/69.0
MB 74.7/57.7 63.3/51.4 76.5/58.5 81.3/65.5 89.9/70.6 84.0/59.9 89.7/70.9 81.8/65.2 88.0/68.6 89.7/70.3
OCC 74.0/56.1 70.3/54.0 74.5/57.6 78.6/59.2 90.4/67.4 86.2/62.0 90.8/68.0 79.9/61.1 87.3/65.5 89.2/67.8
OPR 75.8/55.2 74.1/54.7 78.7/58.4 84.2/61.5 89.9/65.2 86.7/61.9 90.7/67.3 85.2/62.7 91.3/67.0 93.1/69.1
OV 69.7/50.9 53.6/42.3 76.5/55.2 73.4/56.6 89.5/64.8 76.4/55.3 91.3/66.0 72.3/56.0 87.8/66.0 91.4/66.9
SV 75.3/54.1 72.6/55.0 77.4/57.6 78.6/57.2 88.1/65.4 86.2/60.3 87.9/66.6 80.3/58.2 90.4/66.4 91.5/68.7
All 80.9/60.0 76.9/58.8 82.4/62.1 83.8/62.3 90.3/67.3 87.3/62.8 91.0/69.1 85.6/68.2 91.8/68.2 92.9/70.1

TABLE VI
TRACKING RESULTS WITH DIFFERENT FEATURES ON OTB100.

Feature OP DP FPS

Hand-crafted 78.1% 83.2% 25.2
Deep 71.5% 76.5% 8.0
Direct Fusion 85.8% 87.2% 7.1
Coarse-to-Fine Fusion 88.6% 92.9% 6.8

Therefore, our LSDCF can shrink the elements even within the
central region.

For the low-rank constraint, we collect the filters for each
frame, concatenate them together in a matrix, and calculate the
rank. To guarantee the quality of the selected filters, we only
consider some simple sequences where all the trackers suc-
cessfully track all the frames, i.e., the filters are able effectively
to distinguish the target from its surroundings. The results
are presented in Table I, which shows that our simplified
term, i.e., λ2 ‖w − µt−1‖

2
2 in Equ. (7) can achieve the low-rank

property by only considering the weighted mean filter. Note,
C-COT and ECO also exhibit a low-rank property, but this is
achieved by modelling historical appearance variations more
comprehensively at the expense of increased computational
complexity and storage.

3) Fusion Strategy: To achieve a fair comparison of math-
ematical formulations, we also compare our method with
different features and fusion strategies on OTB100. As shown
in Table VI, our coarse-to-fine fusion strategy improves the
OP/DP from 85.8%/87.2% to 88.6%/92.9%, compared to a
direct fusion strategy that just simply sums all the response
maps obtained by hand-crated and deep features.

C. Comparison with the State-of-the-art Algorithms

1) Overall Performance: We report the evaluation results
of our LSDCF and a number of state-of-the-art trackers on
OTB100, TC128 and UAV123 in Fig. 5, using the precision
and success plots. Overall, the proposed LSDCF outperforms
all the state-of-the-art trackers in DP and AUC on these three
datasets. Compared with the second best, LSDCF achieves
improvements of 1.9%/1.0%, 2.3%/1.3% and 2.5%/2.7% in
terms of DP/AUC on OTB100, TC128 and UAV123, respec-
tively.

Table II presents OP, CLE and FPS of our LSDCF
and 17 state-of-the-art trackers on OTB2013, OTB50 and
OTB100. On OTB100, LSDCF achieves 88.6% in OP and
9.0 pixels in CLE. Compared with the recent VITAL and
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Fig. 6. A qualitative comparison of our LSDCF with state-of-the-art trackers on challenging sequences of OTB100 [8] (left column: Biker, Bolt2, Dragonbaby,
Ironman, MotorRolling, and Singer2; right column: Bird1, Bolt1, Girl2, Matrix, Shaking, and Skiing).
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Fig. 7. The experimental results obtained by LSDCF on OTB100, parameterised by different values of λ1 and λ2.

MetaT trackers based on deep neural networks, our per-
formance gains are 0.1%/0.9 pixel and 8.8%/5.2 pixels
in terms of OP and CLE, respectively. On OTB2013, LS-
DCF performs better than VITAL (by 2.5%) in terms

of OP but with a lower CLE (by 0.4 pixel). In ad-
dition, on OTB50, our tracker outperforms recent track-
ers, i.e., CSRDCF (by16.7%/20.1 pixels), STAPLE_CA
(by15.0%/26.1 pixels), C-COT (by2.2%/2.1 pixels), BACF
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(by10.0%/18.0 pixels), ECO (by 2.1%/3.0 pixels) and VI-
TAL (by 1.8%/2.3 pixels) in terms of OP/CLE, respectively.

Table III and Table IV show the evaluation results on
VOT2016 and VOT2018. According to the tables, our LSDCF
method achieves the best tracking results in all metrics on
VOT2016. Compared with C-COT, LSDCF realises improve-
ments from 0.331/0.541/0.24 to 0.407/0.587/0.18 in terms
of EAO, accuracy and robustness. The tracking results of
LSDCF on VOT2018 are also among the top three, compared
with more recent published tracking algorithms. Therefore, the
proposed LSDCF tracking method achieves outstanding per-
formance against the state-of-the-art trackers with a favourable
speed.

2) Performance in Different Attributes: We compiled the
tracking results annotated by 11 attributes i.e., background
clutter (BC), deformation (DEF), fast motion (FM), in-
plane rotation (IPR), low resolution (LR),illumination vari-
ation (IV), out-of-plane rotation (OPR), motion blur (MB),
occlusion (OCC), out-of-view (OV), and scale variation (SV),
on OTB100 [8] in Table V. Our LSDCF outperforms all
the other trackers in 7 attributes, i.e., DEF, FM, IPR, LR,
OPR, OV, and SV in terms of both DP and AUC. Our low-
rank and sparse DCF formulation enables adaptive temporal-
spatial-channel layout recognition, focusing on the relevant
discriminative features. The results of LSDCF in the other
4 attributes are still among the top 3, demonstrating the
effectiveness and robustness of our method. In particular,
the performance of LSDCF exhibits significant performance
boosting (2.3%/4.8%, 1.8%/1.8% and 1.1%/2.1% in terms
of DP/AUC as compared with the second best one in the
attributes of LR, OPR and SV, respectively.

3) Comparison in Qualitative Performance: Fig. 6 presents
the qualitative results of the state-of-the-art methods, i.e.,
BACF, STAPLE_CA, CFNet, C-COT, ECO, CREST, MCPF,
VITAL, MetaT as well as our LSDCF, on some challenging
video sequences. The difficulties are posed by rapid variations
in the appearance of targets and surroundings. Our LSDCF
performs well on these challenges, benefiting from learning in
the framework of the low-rank and sparse DCF formulation
and of the coarse-to-fine tracking strategy. Sequences with
deformations (Bolt, Dragonbaby, and Skiing) and out of view
(Biker and Bird1) can successfully be tracked by our methods
without any failures. Videos with occlusions (Dragonbaby,
Girl2, and Bird1) also benefit from our tracking strategy of
unveiling the complementary characteristics of hand-crafted
and deep features. Specifically, LSDCF is expert in solving in-
plane and out-of-plane rotations (MotorRolling, Dragonbaby,
and Skiing), because the proposed adaptive low-rank and
sparse regularisation approach provide enhanced discrimina-
tion by highlighting specific appearance information from the
central region and surroundings.

D. Sensitivity Analysis

In this part, we provide a sensitivity analysis of our proposed
LSDCF method to regularisation parameters, λ1 and λ2, in
order to assess the stability of the sparsity and low-rank
components.

As shown in Fig. 7, the maximum performance gap between
the filters designed with different λ1 or λ2 for both hand-
crafted and deep features is less than 1.5% . The tracking
results on OTB100 vary smoothly with respect to λ1 or λ2,
demonstrating that our method achieves stable performance
with the proposed low-rank and sparse DCF formulation,
encouraging the learnt filter to be instantiated in a low-
dimensional manifold space to to cope with diversity and to
achieve considerable generalisation.

V. CONCLUSION

We proposed an effective appearance model based on
discriminative correlation filters for visual object tracking
in video sequences. By reformulating the appearance model
learning so as to incorporate low-rank and sparse regularisa-
tion, we derived adaptive temporal-spatial-channel filters on
a low dimensional manifold with enhanced interpretability.
Hand-crafted and deep features are combined, in a com-
plementary way, using an innovative coarse-to-fine tracking
framework. The extensive experimental results on tracking
benchmark datasets demonstrate the effectiveness and robust-
ness of our method, compared to the state-of-the-art trackers.
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