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Subjective and Objective De-raining Quality
Assessment Towards Authentic Rain Image

Qingbo Wu, Lei Wang, King N. Ngan, Hongliang Li, Fanman Meng, and Linfeng Xu

Abstract—Images acquired by outdoor vision systems easily
suffer poor visibility and annoying interference due to the rainy
weather, which brings great challenge for accurately understand-
ing and describing the visual contents. Recent researches have
devoted great efforts on the task of rain removal for improving
the image visibility. However, there is very few exploration
about the quality assessment of de-rained image, even it is
crucial for accurately measuring the performance of various
de-raining algorithms. In this paper, we first create a de-
raining quality assessment (DQA) database that collects 206
authentic rain images and their de-rained versions produced
by 6 representative single image rain removal algorithms. Then,
a subjective study is conducted on our DQA database, which
collects the subject-rated scores of all de-rained images. To
quantitatively measure the quality of de-rained image with non-
uniform artifacts, we propose a bi-directional feature embedding
network (B-FEN) which integrates the features of global per-
ception and local difference together. Experiments confirm that
the proposed method significantly outperforms many existing
universal blind image quality assessment models. To help the
research towards perceptually preferred de-raining algorithm,
we will publicly release our DQA database and B-FEN source
code on https://github.com/wqb-uestc.

Index Terms—Single image de-raining, authentic rain image,
de-raining quality assessment.

I. INTRODUCTION

Rainy weather often causes poor visibility and visual dis-
traction for the image captured in outdoor scenes, which may
significantly degrade the performance of various computa-
tional photography and computer vision tasks [1]–[3]. In these
real-world applications, image de-raining is highly desirable to
achieve two objectives. First, the rain is removed as clean as
possible. Second, the de-rained image is perceived as natural as
possible. This is a quite challenging problem. Due to the lack
of prior information for both rain and background, the single
image based rain removal is highly ill-posed. Given any rain
image, there are multiple alternative de-rained results, whose
perceptual quality may vary significantly.

Similar to classic image restoration framework [4], [5],
existing algorithms typically model single image rain removal
as a decomposition problem, which aims to separate contam-
inated image into the rain and background layers. To make it
tractable, various techniques are proposed to describe the prior
information for rain and background. In [6]–[8], a set of guided
filter based methods are proposed to model the background
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prior from specific rain-free or pre-processing samples. Due
to the sensitivity to guidance image and parameter selection,
these methods easily cause over- or under-smooth for rain im-
age, which would damage original image structure or leave too
many rain. In [9], Chen et al. utilize low-rank approximation
to capture the rain prior. It works efficiently in estimating rain
streaks, but also easily mistakes striped background, whose
texture is similar to the rain streaks. To better distinguish
rain streaks from background, many researchers propose to
simultaneously learn the priors for rain and background layers
via dictionary learning, Gaussian mixture model, deep neural
network and so on [10]–[14]. These data-driven methods
deliver great perform for the rain images whose appearance
features are covered by the training samples. But, in dealing
with some rare types of rain images with respect to the training
set, their performance would drop significantly as well.

In the real-world application, rain image will present great
diversity due to the change of background illumination, lens
speed, depth of field, and so on. Although there are multiple
de-raining algorithms developed recently, they usually capture
partial properties of rain images, whose performance may
change significantly from one image to another one. To select
optimal de-raining result for each single image and find the
further direction towards universal rain removal, it has become
crucial to accurately evaluate the de-rained images produced
by different algorithms. However, surprisingly, there are quite
rare literatures exploring the perceptual evaluation for de-
raining algorithms. Existing methods typically evaluate de-
raining performance on a few synthesized rain images1, whose
ground-truth images (i.e., rain-free versions) are available.
Then, two classic full-reference objective metrics including
PSNR and SSIM [15] are employed for quantitative quality
assessment. In comparison with the diverse authentic rain
images, these synthetic data only cover very limited types of
raindrops, which are far from sufficient to verify the de-raining
capability in reality. Meanwhile, given a de-rained sample
produced from authentic rain image, it is also challenging
to accurately evaluate its performance due to the absence of
ground-truth image.

To the best of our knowledge, the first exploration of
de-raining quality assessment (DQA) is conducted in our
previous work [16], which proposed a no-reference image
quality assessment (NR-IQA) model specifically designed for
the de-rained image and investigated the performance of many
existing general purpose NR-IQA models [17]–[23] in the
DQA task. In this paper, we extend our previous exploration

1http://www.photoshopessentials.com/photo-effects/rain/
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Fig. 1. Illustration of non-uniform de-raining artifacts. This example is
generated by [7], where the red and blue bounding-boxes highlight the de-
raining results for different local regions, respectively. It is clear that the red
bounding-box presents poor quality due to the annoying holes and streaks. By
contrast, the blue bounding-box presents good quality where all leaves retain
natural appearance.

[16] of subjective and objective DQA tasks towards the
authentic rain images. More comprehensive statistical analysis
is conducted for the subject-rated data and an enhanced deep
feature representation is proposed to improve the performance
of DQA. The detailed contributions are summarized in the
following:

1) IVIPC-DQA database: We create a DQA database which
collects a variety of authentic rain images and their
de-rained versions produced by 6 categories of single
image rain removal algorithms. Then, a subjective study
is conducted on the DQA database, which presents two
important findings. Firstly, although existing de-raining
algorithms perform well on removing synthetic rain
streaks, they still hardly balance the rain removal and de-
tail preservation towards authentic rain image. Secondly,
existing general purpose NR-IQA models perform poorly
in evaluating the de-rained image, whose artifacts present
significantly different characteristics with respect to the
traditional uniform distortions, such as, the white noise
or gaussian blur.

2) B-FEN DQA model: We propose a bi-directional feature
embedding network to accurately assess the de-raining
quality. The de-raining artifacts usually present different
degradation degrees in different local regions as shown
in Fig. 1, which brings great difficulty in identifying the
overall quality of a de-rained image. To cope with this
issue, we employ a forward branch to suppress the quality
irrelevant information at the cost of dimension reduction
for the feature maps. Then, a backward branch is devel-
oped to embed the low-resolution quality-aware features
into the high-resolution feature maps of shallow layers.
A gated fusion module is further utilized to integrate the
forward and backward features together, which captures
both the global perception and local difference.

Fig. 2. Authentic rain images collected in the DQA database.

Extensive experiments on our IVIPC-DQA database demon-
strate that the proposed B-FEN model significantly outperform
many classic general purpose NR-IQA models and the latest
deep learning based quality evaluators in the task of de-raining
quality assessment.

The rest of this paper is organized as follows. In Section II,
we first introduce the IVIPC-DQA database and our findings
from the subjective investigation. The Section III describes the
proposed B-FEN model in details, and the experimental results
will be shown in Section IV. Finally, we conclude this paper
in Section V.

II. SUBJECTIVE STUDY OF DQA

A. Image Collection

In order to cover diverse rain scenes, we first collect
206 authentic rain images from Internet, which are captured
under different illuminations, perspectives, lens speeds, depth
of fields, and so on. Some sample images are shown in
Fig. 2. In the following, we apply six representative single
image rain removal algorithms to these authentic rain images,
which generate totally 1236 de-rained samples. To avoid the
composite distortion caused by compression, both the source
and de-rained images are saved with lossless compression
format.

The de-raining algorithms investigated in this paper cover
a wide variety of techniques, which include the guided fil-
ter, dictionary learning, low-rank approximation, maximum
posteriori, directional regularization and deep neural network.
For short, we denote them by Ding16 [7], Kang12 [10],
Luo15 [11], Li16 [12], Deng17 [24], and Fu17 [14]. In our
investigation, all codes are provided by authors and the default
parameters are used without additional fine-tuning procedure.
Given each authentic rain image, there are a set of six de-
rained results available in our database. For illustration, an
intuitive comparison between different de-raining algorithms
are given in Fig. 3. It is clear that different de-rained images
present obviously different appearances as shown in Figs. 3
(a)-(f). In the following, we implement a subjective study to
quantitatively evaluate these de-raining algorithms.
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(a) Ding16 [7] (b) Kang12 [10]

(c) Luo15 [11] (d) Li16 [12]

(e) Deng17 [24] (f) Fu17 [14]

(g) Input

Fig. 3. Illustration of de-rained images produced by different algorithms.

B. Subjective Testing Method

The subjective experiment is conducted in Intelligent Visual
Information Processing and Communication (IVIPC) labora-
tory, UESTC2. All images are displayed on a 27-inch true color
(32 bits) LCD monitor with the resolution of 1920×1080. The
viewing conditions are set by following the recommendation
of ITU-R BT.500-13 [25]. In total, there are 22 naive subjects
participated in this experiment, which include 11 males and
11 females.

Specific to the rain removal task, we require all participants
to rate the derained images by 5 levels which is represented
via a continuous scale between 1 to 100. A lower rating score
indicates a worse perceptual quality, which still retains the
rain or distorts original image structure. By contrast, a higher
rating score denotes a better perceptual quality, which not
only removes the rain but also well preserves original image
structure. The detailed description about the rating criteria is
given in Table I.

Following the recommendation of ITU-T P.910 [26], we
employ the simultaneous presentation method to evaluate

2http://ivipc.uestc.edu.cn/

Fig. 4. The dialogue window of our subjective experiment.

TABLE I
RATING CRITERIA FOR THE RAIN REMOVAL TASK

Level Rating scale Description 
5 [81, 100] Clearly remove the rain, and preserve image structure 
4 [61, 80] Clearly remove the rain, but destroy partial image structure 
3 [41, 60] Does not remove the rain, but preserve image structure 
2 [21, 40] Does not remove the rain, and slightly destroy image structure 
1 [1, 20] Does not remove the rain, and severely destroy image structure 

the de-raining performance. The reference image (i.e., rain
image) and its associated de-rained version are simultaneously
presented to the subject via a customized dialogue window.
The reference image is always placed on the left and all
subjects are aware of the relative positions of these two images.
For clarity, the dialogue window of our subjective experiment
is shown in Fig. 4. To avoid the memory effect in the human
rating, we randomly show a de-rained version for the given
reference image in each time, which is selected from six de-
raining algorithms. For each participant, the human rating is
implemented by 1236 times until all de-rained images are
assigned to a corresponding rating score. Meanwhile, to reduce
the influence of fatigue effect, the duration of each rating
session is limited to 30 minutes, which allows the participants
to take a break after rating several pairs of images.

The raw scores collected from multiple subjects may contain
a few outliers. We first clean the human rating scores via the β2
test based outlier rejection method [25]. Then, all raw scores
are tuned into Z-scores [27], [28], which is demonstrated
efficient in eliminating the individual difference. Let si,j
denote the raw score, which is obtained from the ith subject in
evaluating the jth de-rained image. Let s̄i and σi denote the
mean score and standard deviation of the ith subject across
all de-rained images, respectively. The Z-score zi,j could be
computed by

zi,j =
si,j − s̄i
σi

(1)

Similar to [27], [28], we further rescale the Z-scores to the
range of [0, 100] via a linear mapping function

ẑi,j =
100 · (zi,j + 3)

6
(2)

which assumes the Z-scores of each subject follow Gaussian
distribution and nearly 99% Z-scores fall into the range of [-3,
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Fig. 5. The distribution of MOS values for our DQA database.
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Fig. 6. The mean and standard deviation comparison of MOS values between
different de-raining algorithms.

3]. Finally, the mean opinion score (MOS) of the jth de-rained
image is computed by

mj =

∑Nj

i=1 ẑi,j
Nj

(3)

where Nj is the number of valid human ratings for the jth
de-rained image.

C. Analysis of Human Ratings

To investigate the de-raining performance of existing al-
gorithms, we first illustrate the distribution of MOS values
for all de-rained images in Fig. 5. It is observed that the
collected perceptual qualities span a wide range from the low
to high scores. Meanwhile, the distribution of our collected
perceptual qualities show reasonably uniform fashion. This
good separation of perceptual qualities facilitates a more
reliable investigation on the perceptual characteristics of de-
rained images [27], [29].

To quantitatively compare different de-raining algorithms,
we also compute the mean and standard deviation for their
MOS values. Each algorithm is associated to 206 MOS
values, which are collected from its de-rained images. As
shown in Fig. 6, we have two interesting findings. Firstly,
in coping with the authentic rain images, the difference of
overall performance is indistinguishable between existing de-
raining algorithms, whose mean MOS values are very close
to each other. To evaluate the statistical significance of this
finding, we perform the onesided t-test [30] on the MOS

TABLE II
RESULTS OF ONESIDED t-test BETWEEN THE MOS VALUES OF DIFFERENT
DE-RAINING ALGORITHMS. A VALUE OF “1”/“0”/“-1” INDICATES THAT

THE ROW ALGORITHM IS STATISTICALLY
SUPERIOR/EQUIVALENT/INFERIOR TO THE COLUMN ALGORITHM

Ding16 Kang12 Luo15 Li16 Deng17 Fu17
Ding16 - 0 0 0 0 -1
Kang12 0 - 1 0 0 0
Luo15 0 -1 - -1 -1 -1
Li16 0 0 1 - 0 0

Deng17 0 0 1 0 - -1
Fu17 1 0 1 0 1 -
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Deng17 Ding16 Fu17 Kang12 Li16 Luo15

Fig. 7. The MOS value of de-rained image versus its rain image number.
The scatters with different shapes and colors indicate the de-rained images
produced by different algorithms, which are labeled in the legend.

values of each pair of de-raining algorithms. As shown in
Table II, the reported results confirm that most of de-raining
algorithms are statistically equivalent to the others under 95%
confidence, which are denoted by ‘0’. The best performed
method, i.e., Fu17, is only statistically superior to half of
competitors including Ding16, Luo15 and Deng17. It shows a
fact that there is no one de-raining algorithm possessing the
absolute superiority with respect to the others in removing
the realistic rain. Secondly, the de-raining performances of
existing algorithms are unreliable, whose error bars are all
quite large. It means that for any given de-raining algorithm,
the perceptual qualities of its de-rained versions may change
significantly from one image to another one. This finding could
be verified from Fig. 7, which plots the MOS value of each de-
rained image versus its corresponding rain image number. It
is seen that the scatters of each de-raining algorithm undulate
largely across different rain images, which indicates that their
performances are highly correlated with the rain types and
image content.

To illustrate this problem, in Fig. 8, we show the de-raining
results produced from two rain images. In the first row, the
deep learning based method, i.e., Fu17 [14], performs well
in removing the directional rain streaks and preserving the
contours of window and balcony, whose MOS could reach
97.97. By contrast, the dictionary learning based method, such
as, Kang12 [10], clearly over smoothes the original image
structure, whose MOS is only 37.63. When we change the
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Ding16 [6] Kang12 [9] Luo15 [10] Li16 [11] Deng17 [20] Fu17 [13]Rain image
22.42 37.63 42.98 25.43 46.21 97.97

40.2668.37 40.9599.68 59.29 61.44

Fig. 8. Illustration of the de-raining performance variation across different images. The MOS value of each de-rained image is labeled on its top-left corn.
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(a) Unidirectional feature embedding architecture

(b) Bi-directional feature embedding architecture
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Fig. 9. The comparison of different network architectures for NR-IQA.

rain image to the second row, it is seen that Fu17 [14] almost
does nothing for the dot-like raindrops, whose MOS drops
to 40.95. While, Kang12 [10] could perfectly remove these
small raindrops without obvious damage to the contour of the
player, whose MOS rises to 99.68. This observation shows
the pressing demand for an efficient NR-IQA model, which is
crucial to select optimal de-raining algorithm in coping with
different rain images.

III. OBJECTIVE MODEL OF DQA

After building the IVIPC-DQA database, we further develop
an efficient objective model to predict the human perception
towards the de-rained image. Recently, many deep learning
based NR-IQA models [31]–[33] have explored various effi-
cient network structures for evaluating the uniform distortions,
which achieve state-of-the-art quality prediction accuracy via a
common unidirectional feature embedding (UFE) architecture
as shown in Fig. 9 (a). However, unlike the typical distortions
with distinct characteristic and uniform distribution (e.g., gaus-
sian blur or white noise), the distortions of de-rained images
are quite different across various de-raining algorithms and

visual contents, which are hard to capture with specific global
descriptor. Therefore, we propose to learn the quality-aware
features and regressor by jointly considering the local and
global information using a bi-directional feature embedding
network (B-FEN) as shown in Fig. 9 (b). More specifically,
the forward feature embedding aims to extract the perceptual
quality related global information, which is similar to existing
methods [31]–[33]. By contrast, the backward feature em-
bedding attempts to incorporate the global information into
multiple local features, which could be captured from the
intermediate layers of a convolutional neural network (CNN)
[34]–[36].

For clarity, Fig. 10 shows the detailed network structure
of the proposed B-FEN. Our “forward path” subnetwork is
composed of four cascaded Dense Blocks (DB) [37], which
shares the same structure with DenseNet-161 except for the
channel sizes. When a de-rained image goes deeper though our
“forward path”, the resolutions of the feature maps gradually
decrease after a succession of pooling operations, which
discard the semantic irrelevant information and squeeze more
quality-aware global features into the top layer [34]. Specific
to the DQA task, the global and uniform artifacts could be well
captured from the top layer features, such as, the blurriness
caused by the low-pass filter. However, the local information
of image would be lost in this process, which plays a vital
role in describing the non-uniform quality degradation across
different regions.

Recently, many region- and pixel-level image representa-
tion methods [35], [36], [38] have verified the efficiency of
extracting local features from the intermediate-layer feature
maps of a CNN. Inspired by these works, we further develop
the “backward path” to unfold the way of incorporating the
low-resolution global features into the high-resolution local
features. In addition, since the importance of local and global
features may vary across different image contents, we adopt
a gated fusion module to adaptively determine the weights
assigned to the multi-resolution feature maps, and merge
them into a comprehensive feature vector to feed the quality
regressor.

Let X = {xi}1≤i≤4 denote the “forward path” features
outputted from four DB, where a larger i denotes the deeper
layer. Then, we reuse these feature maps in our “backward
path”. Let X̂ = {x̂i}1≤i≤4 denote the features generated from
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the “backward path”. Each element of X̂ could be computed
by integrating the feature maps from the current layer to the
top layer, i.e.,

x̂i =

{
f1×1(xi) +

∑4
j=i+1 x̂j,↑2j−i 1 ≤ i ≤ 3

f1×1(xi) Otherwise
(4)

where f1×1(·) denotes a 1× 1 convolution and ReLU opera-
tion, and ↑ 2j−i denotes the upsampling operation with factor
2j−i, which is conducted by the transposed convolution. In this
way, we sequentially embed the semantic-related information
of top layer into the detail-related information of previous
layers across different scales.

It is worth noting that the initial elements of X̂ present
different resolutions in simulating the perceptions of various
receptive field sizes [39]. Straightforwardly concatenating or
merging these features would raise the bias towards high-
resolution feature maps. To cope with this issue, as shown in
Fig. 10, we first rescale all elements of X̂ to the equal-length
feature vectors via the spatial pyramid pooling (SPP) [40],
which applies a regular 4×4 and 2×2 max-pooling window
to each feature map and reshapes them to the feature vectors
{yi}1≤i≤4. For clarity, we denote this operation by

yi = SPP(x̂i) (5)

where the dimension of yi is 5120, i.e., (4×4+2×2)×256.
Then, the weight of each yi could be computed as the

nonlinear mapping of its response on the learnable 1 × 1
convolution, i.e.,

wi = s[f1×1(yi)] (6)

where s(·) is the sigmoid function and wi share the same
dimension with yi. For brevity, we stack the feature and
weight vectors to the matrix form, i.e., Y = [y1; y2; y3; y4]
and W = [w1;w2;w3;w4], which share the same dimension
of 4×5120. In the following, we assign the weights W to Y

via an element-wise product operation, and generate the fused
feature vector z with a 1× 1 convolution, i.e.,

z = f1×1(W � Y ) (7)

where � denotes the element-wise product operation.
Finally, the comprehensive feature vector z, which collects

both the local and global quality-aware information, is fed
to three cascaded fully connected (FC) layers and a sigmoid
function to generate the predicted quality score Qp. Let Qgt

denote the ground-truth quality score. The learning objective
of our B-FEN model is to minimize the l2 loss between Qp

and Qgt, i.e.,

L =

N∑
j=1

1

N
‖Qp(j)−Qgt(j)‖22 (8)

where N is the number of all training samples, Qp(j) and
Qgt(j) denote the predicted and ground-truth quality scores
of the jth de-rained image, respectively.

IV. EXPERIMENTS

To evaluate the performance of the proposed B-FEN model,
we conduct the experiments on our IVIPC-DQA database. Due
to the absence of specific quality metric for de-rained image,
we compare the proposed B-FEN model with our previous
B-GFN [16] and some representative general-purpose image
quality assessment models, which include 10 opinion-aware
(OA) metrics (i.e., BIQI [18], BLIINDS II [41], BRISQUE
[22], DIIVINE [21], M3 [42], NFERM [43], TCLT [19],
MEON [31], DB-CNN [32] and WaDIQaM [33]), and 4
opinion-unaware (OU) metrics (i.e., NIQE [44], ILNIQE [45],
QAC [46], and LPSI [47]). Meanwhile, two popular unidirec-
tional feature embedding networks, i.e., DenseNet-161 [37]
and ResNet-152 [48] are also involved in our comparison,
which are categorized as OA metric in the following section.
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TABLE III
THE EVALUATION RESULTS OF ALL QUALITY ASSESSMENT MODELS

BIQA model SROCC PLCC KROCC AUC 

3

4

5

OA 

M3 0.3457 0.2894 0.2334 3.2427 
TCLT 0.2309 0.1858 0.1545 1.6904 

NFERM 0.3011 0.2238 0.1985 2.1902 
DIIVINE 0.2839 0.2332 0.1934 2.3908 
BRISQUE 0.3562 0.3022 0.2332 2.6013 

BLIINDS-II 0.2816 0.2477 0.1898 2.5438 
BIQI 0.3515 0.2517 0.2315 2.6877 

DB-CNN 0.5798 0.5611 0.4123 5.7023 
WaDIQaM 0.4178 0.3724 0.2878 3.2306 

MEON 0.4223 0.3827 0.2846 3.9243 
ResNet-152 0.4435 0.2430 0.3084 4.4158 

DenseNet-161 0.5666 0.5452 0.3982 5.6943 

B-GFN 0.6677 0.6366 0.4831 5.5375 

B-FEN 0.6806 0.6524 0.4863 6.6387 

OU 

QAC 0.0045 0.0221 0.0029 -0.1326
NIQE -0.0191 -0.0235 -0.0148 1.2119 
LPSI -0.0645 -0.0570 -0.0458 0.5481 

ILNIQE -0.0480 -0.0410 -0.0312 0.1538 

A. Implementation Details

All OA metrics need training process to determine the
parameters of quality assessment model. Following the setup
of [31]–[33], we randomly separate the IVIPC-DQA database
into the non-overlapped training and testing sets, which in-
clude 80% and 20% images respectively.

For efficiently training our B-FEN model, the generic label
preserving transformations including the random cropping and
horizontal flipping [49] are used for augmenting the training
data, where the cropped patch size is 320×320. The four dense
blocks are pre-trained on the ImageNet database [50], and
the weights/biases of all the other convolutional layers are
initialized by the recommendation of [51]. We employ the
SGD optimizer [52] for model learning and the mini-batch
size is 16. The base learning rate is set to 0.01. In addition,
the momentum and weight/bias decay parameters are set to
0.9 and 0, respectively.

The DenseNet-161 [37] and ResNet-152 [48] models are
pre-trained on the ImageNet database [50] and then fine
tuned on our IVIPC-DQA database. All the other OA metrics
are directly re-trained on our IVIPC-DQA database, whose
training settings follow the descriptions in their literatures [18],
[19], [21], [22], [31]–[33], [41]–[43]. Since the OU metrics do
not require quality labels to learn the parameters, we directly
use the models released by the authors [44]–[47] to predict
the image quality in the following experiments.

Similar to [31]–[33], the random split is repeated 10 times
and the median results of four popular indicators across all
trials are reported for evaluating the DQA performance, which
include the pearson’s linear correlation coefficient (PLCC),
spearman’s rank correlation coefficient (SRCC), kendall’s rank
correlation coefficient (KRCC) and the perceptually weighted
rank correlation (PWRC) [53]. It is noted that the PWRC
indicator provides an overall performance measure, i.e., AUC,
and a confidence-varying performance measure, i.e., SA-ST
curve.
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Fig. 11. The SA-ST curves of different quality assessment models.

B. Consistency Evaluation

In this section, we first compare the consistency between
the subjective ratings and the predictions of different quality
assessment algorithms towards the de-rained images. In Table
III, we report the overall prediction accuracies of all metrics,
where the deep learning based methods are denoted by italics
and the best results are highlighted by the boldface.

It is seen that all of existing general-purpose NR-IQA
models perform poorly in the DQA task. For the hand-crafted
feature based models, their SRCC are all smaller than 0.4.
Meanwhile, limited by the image prior learned from rainless
scenes and inflexible parameter settings, the OU metrics
produce much worse performance, whose SRCC are all even
close to or smaller than 0. It shows that the DQA task is more
challenging than the traditional uniform distortion evaluation,
where the OU metrics could achieve comparable or even better
performance than the OA metrics [44]–[47].

Due to the great capability of joint learning discriminative
features and regressors, all deep learning based OA metrics
report much better results, whose SRCC are larger than 0.4.
More specifically, the MEON, WaDIQaM and ResNet-152 di-
rectly pass the feature maps from the shallow layer to the deep
layer, whose performance improvements are still moderate.
The DenseNet-161 and DB-CNN further enhance the quality-
aware global representation by feature reuse and fusion. Due to
this superiority, the SRCC values of ResNet-152 and DB-CNN
raise up to 0.57, which outperform the MEON and WaDIQaM.
It is worth noting that these representative deep learning based
NR-IQA models (such as, MEON, DB-CNN and WaDIQaM)
and the popular CNNs (such as, DenseNet-161 and ResNet-
152) all employ an unidirectional feature embedding archi-
tecture, whose feature map size gradually decreases from the
shallow layer to the deep layer and the local information are
erased after successive pooling operations. By contrast, we
incorporate the local details into the global features via our
unique bi-directional feature embedding network, which is
quite beneficial for describing the non-uniform distortions in
the de-rained image. Finally, our B-GFN and B-FEN models
produce much better quality prediction results in terms of
all indicators, whose SRCCs exceed 0.6 and approach 0.7.
In addition, since the B-FEN enhances the feature reuse in
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the ‘backward path’, we report better performance than our
previous B-FGN model.

Fig. 11 further plots the SA-ST curves of different quality as-
sessment models, where the deep and handcrafted IQA models
are labeled by the solid and dotted lines respectively. It is seen
that our B-FEN significantly outperforms existing general-
purpose NR-IQA models and our previous B-GFN across a
wide range of confidence interval. That is, we perform better in
correctly ranking the high quality image pairs no matter their
perceptual difference is small or large [53]. This is important
in recommending perceptually preferred de-raining results in
various real-world applications. For clarity, an illustration of
ranking results from different deep image quality assessment
models is given in Fig. 12, where our B-FEN model produces
the same quality rank with respect to the human ratings and
all the other models show several rank errors.

C. Rain-remover Independency

Besides the consistency investigation for the proposed ob-
jective model, we also conduct the leave-one-out cross val-
idation [54] to verify that the accuracy of our B-FEN is
not dependent on any specific de-raining algorithm. More
specifically, for each de-raining algorithm, we take its 206
de-rained images as the test set and the rest images produced
by all the other de-raining algorithms are used for training
our B-FEN model. We repeat this trial 6 times until all de-
raining algorithms are separately tested in our experiment.
Let Ci denote the overall performance of the ith quality
assessment model, and Ai,j denote the accuracy of the ith

TABLE IV
THE EVALUATION RESULTS OF ALL QUALITY ASSESSMENT MODELS

BIQA model SROCC PLCC KROCC AUC 

3 4 5

OA 

M3 0.1676 0.1266 0.1116 0.8623 
TCLT 0.2179 0.2009 0.1448 1.6291 

NFERM 0.1632 0.1530 0.1086 0.8250 
DIIVINE 0.2520 0.1447 0.1729 1.4319 

BRISQUE 0.3384 0.3130 0.2303 2.2512 
BLIINDS-II 0.2132 0.1805 0.1419 1.1952 

BIQI 0.3527 0.2968 0.2335 3.2504 
DB-CNN 0.5687 0.5652 0.4041 6.0839 

WaDIQaM 0.4403 0.4339 0.3069 4.3237 
MEON 0.4651 0.4617 0.3256 4.6186 

ResNet-152 0.4803 0.3792 0.3431 3.8901 

DenseNet-161 0.5610 0.5096 0.4010 6.1174 

B-GFN 0.6787 0.6570 0.5011 7.5624 

B-FEN 0.6880 0.6748 0.5125 7.7521 

OU 

QAC -0.0083 -0.0070 -0.0073 0.0571 
NIQE -0.1077 -0.1139 -0.0696 0.7275 
LPSI -0.0515 -0.0594 -0.0329 0.7868 

ILNIQE -0.0828 -0.0885 -0.0539 1.0962 

quality assessment model towards the jth de-raining algorithm.
Following the criteria of [54], we represent the Ci by

Ci =
1

6

6∑
j=1

Ai,j (9)

where this overall performance is computed across all indica-
tors, i.e., SRCC/PLCC/KRCC/PWRC.

Table IV shows the independency investigation results for
all quality assessment models. It is seen that the deep learn-
ing based methods still perform better than the handcrafted
models, and the OA metrics significantly outperform the OU
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Fig. 13. The SA-ST curves for rain-remover independency investigation.

metrics. This demonstrates that a powerful learning capability
is necessary for bridging the gap from the uniform distortion
measure to the nonuniform distortion measure.

In addition, we can find that the straight through UFE
networks, i.e., MEON, WaDIQaM and ResNet-152, are still
inferior to the feature fusion based UFE networks, such as,
DenseNet-161 and DB-CNN. Meanwhile, the proposed B-
FEN also performs best in the independency investigation. It
confirms that a more comprehensive local and global quality-
aware feature representation is the key for DQA no matter
which deraining algorithm is applied to the rainy image.

Similar to Section IV-B, we also show the SA-ST curves
of different quality assessment models in this rain-remover
independency investigation. As shown in Fig. 13, our B-FEN
still outperforms all the other NR-IQA models across different
confidence intervals. It demonstrates that the proposed DQA
model offers better de-rained recommendations to the users
no matter which de-raining algorithm is used in current
application.

D. Complexity Analysis

Besides the evaluation accuracy, we further compare the
complexities of different deep quality assessment methods
by the number of parameters (#Params.), floating-point op-
erations per second (FLOPs) [55], and actual running speed
(Images/sec.). We implement the proposed B-FEN method
with the PyTorch library, and perform the experiments in
a workstation with Intel Xeon E5-2660 CPU and NVIDIA
TITAN X GPU.

Table V shows the statistical results of all deep IQA models.
It is seen that the MEON and WaDIQaM show the lowest
complexities, which are developed with shallow network ar-
chitectures and report the smallest #Params. and FLOPs. In
addition, the complexity of the proposed B-FEN is moderate,
whose #Params. is smaller than ResNet-152 and the FLOPs
is lower than both ResNet-152 and DB-CNN. This benefits
from the application of multiple 1×1 convolutions and limited
channels in our backward path, which only slightly increase
the parameter size and computation cost in comparison with
the DenseNet-161. Meanwhile, the proposed B-FEN adds
more feature reuse in the ‘backward path’, which leads to

a litter higher complexity than our previous B-GFN. The
DB-CNN uses fewer convolution layers and presents smaller
#Params. than the proposed model. However, since multiple
high dimensional features are employed in the fully connected
layers, the FLOPs of DB-CNN is significantly higher than our
B-FEN. Finally, the running speed of our B-FEN model could
reach 14.14 Images/sec., which is close to DenseNet-161 and
much faster than DB-CNN.

Fig. 14 further investigates the relationship between the
performance and complexity for the deep IQA models, where
the SROCC is used as the performance indicator and #Params.,
FLOPs, Images/sec. are used for complexity measurement. We
can find that the proposed B-FEN performs well in balancing
the evaluation accuracy and complexity. More specifically,
we achieve the highest SROCC with moderate memory and
computation costs.

V. CONCLUSION

Single image rain removal has received extensive attentions
recently. However, there is very few work dedicated to the
quality assessment of de-rained images. In this paper, we
first build a new database to collect the human rated scores
for the de-rained versions of various authentic rain images.
Then, a bi-directional feature embedding network (B-FEN) is
proposed to predict the human perception toward different de-
rained images. Experimental results show that the de-raining
quality assessment task is quite challenging and all of existing
general purpose BIQA models fail to accurately predict the
perceptual de-raining quality. By means of the enriched global
and local feature representation, our proposed B-FEN produces
very promising DQA result, which significantly outperforms
many representative BIQA models and the state-of-the-art
deep neural networks. Our new database and B-FEN metric
are helpful for evaluating and developing the perceptually
preferred de-raining algorithms in the authentic rain scenes.
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