
480 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 2, FEBRUARY 2021

View-Action Representation Learning for
Active First-Person Vision

Changjae Oh and Andrea Cavallaro

Abstract— In visual navigation, a moving agent equipped with
a camera is traditionally controlled by an input action and
the estimation of the features from a sensory state (i.e. the
camera view) is treated as a pre-processing step to perform
high-level vision tasks. In this paper, we present a representation
learning approach that, instead, considers both state and action as
inputs. We condition the encoded feature from the state transition
network on the action that changes the view of the camera, thus
describing the scene more effectively. Specifically, we introduce
an action representation module that generates decoded higher
dimensional representations from an input action to increase the
representational power. We then fuse the output from the action
representation module with the intermediate response of the state
transition network that predicts the future state. To enhance
the discrimination capability among predictions from different
input actions, we further introduce triplet ranking loss and
N-tuplet loss functions, which in turn can be integrated with
the regression loss. We demonstrate the proposed representation
learning approach in reinforcement and imitation learning-based
mapless navigation tasks, where the camera agent learns to
navigate only through the view of the camera and the performed
action, without external information.

Index Terms— Representation learning, triplet ranking loss,
N-tuplet loss, mapless navigation.

I. INTRODUCTION

V ISUAL navigation generates through specific actions new
input data by changing or selecting views in order to

perform, for example, object detection [1], visual categorisa-
tion [2], [3], or image enhancement [4]–[6]. Visual navigation
with a camera-equipped agent has been actively investigated
for data collection [5]–[7], manipulation [8], and autonomous
driving [9], [10].

Visual navigation can be map-based and mapless.
Map-based navigation splits the task into two sub-tasks,
namely the reconstruction of the geometry of the environment
through navigable space and obstacles, and the subsequent
path planning to enable navigation [11]–[13]. The geometry
can be recovered through structure from motion or simul-
taneous localisation and mapping (SLAM) approaches [14],
which require accurate mapping of obstacles and parameter

Manuscript received August 5, 2019; revised February 16, 2020; accepted
March 26, 2020. Date of publication April 13, 2020; date of current version
February 4, 2021. This work was supported in part by the Engineering
and Physical Sciences Research Council (EPSRC) Project NCNR under
Grant EP/R02572X/1, and in part by the CHIST-ERA Programme through
the Project CORSMAL, through EPSRC under Grant EP/S031715/1. This
article was recommended by Associate Editor W. Li. (Corresponding author:
Changjae Oh.)

The authors are with the Centre for Intelligent Sensing, Queen Mary
University of London, London E1 4NS, U.K. (e-mail: c.oh@qmul.ac.uk;
a.cavallaro@qmul.ac.uk).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2020.2987562

adjustments in different environments. With mapless naviga-
tion the camera agent learns to navigate without reconstructing
an explicit map of the environment. Instead of using explicit
external information such as pre-defined features, a topological
map, or tracking, the agent implicitly learns from the environ-
ment how to navigate to a goal. Deep neural networks can
be used to learn to navigate using various strategies, such
as feed-forward model [15], reinforcement learning (RL) [7],
[16]–[20], or imitation learning (IL) [21], [22]. In this case,
the control heavily depends on the representations of the input
data: the camera agent is trained to perform actions to reach,
from the current camera view (state), the final goal state. The
learned representations play here an important role and should
encode information that is useful for efficient navigation [23].

While learning methods to control the camera agent has
been thoroughly investigated [24], there is limited understand-
ing on how to design an efficient neural network-based archi-
tecture for the representation from state-action pairs. Generic
Convolutional Neural Network (CNN) architectures, whose
feature representations are simply generated from an input
image only, are usually employed but they do not consider
the joint effect with an input action [7], [16], [17].

To address this limitation, we investigate a deep neural
network that employs an input state-action (view-action) pair
to generate effective representations for mapless navigation,
and validate the proposed network with RL [7], [25] and
IL [26]. We introduce a forward model, that learns a represen-
tation which encodes an input image (state) and an action into
CNNs, to predict the future state from the current state-action
pair. In particular, we present an action representation module
for efficient representation learning. This module expands the
dimensions of an input action to improve the representational
power of the network during training. We use joint regression
and N-tuplet loss functions to predict the future state from
a selected input action (regression loss) while discriminating
predictions from different actions (N-tuplet loss) to encode
meaningful features effectively during training. This paper
substantially extends our previous work [20] with (i) joint
regression and N-tuplet loss functions that generalise the
joint regression and triplet ranking loss functions; (ii) variants
of fusion approaches that combine the action representation
module and the state-transition network; and (iii) qualitative
and quantitative comparisons under RL and IL-based mapless
navigation tasks.

II. RELATED WORK

A. Visual Navigation With and Without External Information

Traditional map-based visual navigation methods use
explicit information of the environment such as a global

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6522-2451

OH AND CAVALLARO: VIEW-ACTION REPRESENTATION LEARNING FOR ACTIVE FIRST-PERSON VISION 481

map or a known target position [27]. A camera agent can
navigate towards a known target position using obstacle avoid-
ance [28]. Navigation can also be performed based on the
optimal planned path to reach the goal [29], [30]. Alter-
natively, navigation can be performed by reconstructing a
map during exploration. Topological mapping estimates the
global map from image collections obtained from a camera
agent. Feature matching is generally performed between image
pairs to obtain correspondences that can be used to estimate
relative geometric information [31], [32]. Recently, map-based
approaches have exploited deep neural networks to capture the
environment using a spatial memory and then planning paths
given partial information [33].

Mapless navigation employs the representational power of
deep neural networks to learn a model that implicitly encodes
obstacles and path to achieve the goal. Learning feed-forward
CNN is one approach that trains the model with a collected
supervised dataset [15]. The model learns to classify the
optimal direction at each location to reach the target. Mapless
navigation requires learning relationships between actions and
the environment using for example RL and IL. An RL-based
approach implicitly learns a policy to generate a decision to
move towards the goal by trial-and-error. The model explores
the environment and learns a policy by receiving an extrinsic
reward signal when the agent achieves the goal. A brute-force
approach to solve this problem is to learn a policy that depends
on the current state [25] or one with the goal state [16].
However, the agent hardly receives the extrinsic reward as the
final goal is generally far away from the initial state (sparse
extrinsic rewards problem). To address this problem, intrinsic
rewards reshape the original reward function to encourage
the agent to explore the environment by seeking unseen
areas rather than previously visited ones. A visitation count
approach maximises the number of reaching less-frequently
visited states [34]–[36]. An alternative is to maximise the
information gain for the agent and to reduce the uncertainty
about the environment [37], [38]. Curiosity-driven exploration
measures the error between predicted and real future states:
a high error is interpreted as an unseen area that cannot
be predicted accurately, thus enabling to be exploited as the
intrinsic reward [7], [39]–[41].

Another issue is the investigation of the network architecture
for handling an action or language-based instruction beyond
an input image. Since the image and another input are used
to control the camera agent, designing an effective fusion
model is an important problem [20], [42], [43]. An early fusion
approach for goal directed navigation fuses the goal informa-
tion with the input state followed by a convolution process to
generate the feature for navigation [42]. Alternatively, a gated
attention architecture fuses language-based instruction with the
input state [43]. Moreover, an action representation module
can be used to increase the dimension of the input action
represented as a one-hot code to increase the representation
power of the network [20].

B. Representation Learning for Camera Control

Representations to control a camera agent can be learned
with forward or inverse dynamics models [24].

A forward model commonly learns temporal dynamics
where the future state is predicted from the current state and
action. This approach can be regarded as predicting video
sequences. The general idea of the forward model is to encode
information that is helpful to predict the future state using
the current state and action. The input image is mapped to
a high-level feature that encodes the future state, and then
an auto-encoder reconstructs the future state on the image
space [34], [44]–[46]. Examples include an action conditional
auto-encoder that predicts the next state of a game [34];
an auto-encoder that generates a learned low-dimensional
embedding of images that enables control in a locally linear
latent space [44]; a variational auto-encoder that generates the
representation from a sensor input image to manipulate an
object [45]; and an auto-encoder with a skip connection that
predicts the future state for the network to encode information
that is useful to perform a target task [46].

An inverse model learns to predict the action that should be
performed to move from the current to the future state [47].
The inverse model is generally incorporated with a forward
model: the inverse model supervises the forward model to
encode information that helps determine the action, providing
a stabilising effect on the dynamics model [7], [20], [48].
The inverse model classifies the action that lies on a lower
dimensional space and can, therefore, help overcome the
problem of predicting the future state from the forward model.
For example, forward and inverse models can be used to learn
how to move objects to target locations by poking [48] or to
visually explore simulation environments [7], [20].

III. VIEW-ACTION REPRESENTATION LEARNING

A. Problem Description

Let a moving camera agent explore the environment over
some discrete time steps. At each time step t , the agent
receives a state, st ∈ R

H×W , the image of H × W size from its
first-person view, and selects an action, at ∈ R

N , with policy,
π : st → at , from a set of possible N actions. The action,
at , is commonly represented as a one-hot N-dimensional
code.1 After executing the action, the agent receives the next
state, st+1.

We aim to produce a D–dimensional representation,
φ (st) ∈ R

D , of the state, st , for efficient first-person-vision
mapless navigation, which can be employed to the policy, π ,
rather than naïvely using a raw input, st . During representation
learning by exploring the environment, the agent may receive
a reward, rt , which supervises the camera agent to reach the
target. The reward is an optional value to the representation
learning for visual navigation, which can be employed as
direct supervision to the final target (extrinsic reward) or
as a self-supervision for the model to encode meaningful
information for achieving the final target (intrinsic reward).

B. Forward Model

Given a state-action pair, (st , at), at time t , the for-
ward model, f (·), predicts st+1 as a high-level feature

1These codes describe categorical data as numerical ones, e.g. (1,0,0),
(0,1,0), (0,0,1)

482 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 2, FEBRUARY 2021

Fig. 1. (a) Mapless visual navigation of a camera agent that generates action at with an encoded feature, φ (st), from the current state, st . The state st is
encoded to a high-level feature, φ (st), that contains meaningful information for navigation. The generated feature, φ (st), is then employed as input to the
policy network, which includes a long short-term memory (LSTM) network to determine an action of the agent, at , based on the temporal history. The agent
then moves based on the determined action, at , and acquires the next state, st+1, from the environment. (b) Concurrently, given st , st+1, and at at each step,
the forward and inverse models learn to predict the future state, φ̄

(
st+1

)
, and classify the performed action, āt , respectively.

representation, φ̄ (st+1) ∈ R
D , to constrain the state transi-

tion and to encode information that relates to the task (see
Fig. 1(b)):

φ̄ (st+1) = f (st , at ; θA, θS) , (1)

where the network parameters, θA and θS , are learned for the
action representation module and the state transition network,
respectively.

The proposed action representation module consists of three
deconvolutional layers with nonlinear activations (Exponential
Linear Unit or ELU) [49]. The input action at , represented as
a one-hot code, passes through three deconvolutional layers
and ELUs to map a single input to multiple outputs. Then the
output of the action representation module is fused with an
intermediate response of the state transition network and fused
to predict the state in the higher dimensional feature space,
φ̄(st+1), which is more expressive for training. Fig. 2 compares
the architectures of the conventional and proposed forward
models. The proposed model (see Fig. 2(b)) decodes an action
with the one-hot code to a feature map with increased dimen-
sion in height, width, and depth. The decoded feature is then
fused with the intermediate feature from the state-transition
network. The estimated feature in (1) considerably differs from
previous works (Fig. 2(a)) that represented an input action as a
one-hot code that was simply concatenated with the response
from the fully-connected (FC) layers of the state transition
network [7], [17], [26], [48], [50].

To learn the forward model, we minimise the loss
function, L F :

L F = L FR + γp L Fp , (2)

where L FR is a regression loss, p ∈ {T, N}, and γp controls
the effect of a triplet ranking loss, L FT (or an N-tuplet
loss, L FN).

The regression loss function, L FR , is commonly used to
minimise the prediction error:

L FR

(
φ̄ (st+1) , φ (st+1)

) = ∥∥φ̄ (st+1) − φ (st+1)
∥∥2

2 , (3)

where φ (st+1) is the feature representation from the image
(state), st+1. L FR ensures that the predicted state from an

Fig. 2. Comparison between (a) the conventional forward model and (b) our
models with different fusion methods (in F): concatenation (in C) and gated
fusion. The proposed models, which consist of a state transition network
combined with an action representation module, estimates the feature of
the (future) state φ̄

(
st+1

)
from an input state-action pair (st , at). The one-hot

code of an input action passes through three deconvolution (Deconv) layers
with Exponential Linear Unit (ELU) to generate decoded responses that
are then fused to an intermediate response of the state transition network.
The fused responses estimate the feature of the future state after subsequent
convolutions (Conv) and fully connected (FC) layers.

input state-action pair is close to the future state. As the
state prediction without any actions is the current state itself,
st+1 can be encoded into a feature representation as:

φ (st+1) = f (st+1, at+1 = ∅; θA, θS) , (4)

where at+1 = ∅ denotes no action (no-op).
Although using only L FR in (3) can provide satisfactory

performance, we extend it to consider negative samples,
predictions from a current state with other actions, together
with the positive sample, φ (st+1). Based on the intuition that
the state-transition network should encode a correct feature
and keep predictions from other action different, we enhance

OH AND CAVALLARO: VIEW-ACTION REPRESENTATION LEARNING FOR ACTIVE FIRST-PERSON VISION 483

Fig. 3. Effect of the N -tuplet loss function for learning the forward model.
From (a) to (b): the N -tuplet loss aims to encode φ̄

(
st+1

)
and φ

(
st+1

)
close in the prediction feature space, while pulling the predictions from all
remaining actions, φ̄

(
s̃i
t+1

)
(gray circles), away from φ̄

(
st+1

)
. The N -tuplet

loss is a generalisation of the triplet ranking loss, where only one out of all
remaining actions is sampled as φ̄

(
s̃i
t+1

)
.

training and the localisation ability with a triplet ranking loss
and a N-tuplet loss. These loss functions penalise negative
features while maintaining the property of L FR .

The triplet ranking loss function [20], [51], L FT , pushes
φ̄ (st+1) to be far from a prediction from st with one of
different N − 1 input actions from the current action at ,
which we define as φ̄

(
s̃i

t+1

)
, with i = 1, . . . , N − 1, while

maintaining the property of (3), in the form:
L FT

(
φ̄ (st+1) , φ (st+1) , φ̄

(
s̃i

t+1

))
= max

{
0, m + ∥∥φ̄ (st+1) − φ (st+1)

∥∥2
2 − ∥∥φ̄ (st+1)

−φ̄
(

s̃i
t+1

)∥∥∥2

2

}
, (5)

where m is a margin. Here an action, different from the current
action at , is randomly selected.

The triplet ranking loss function samples one action among
the N − 1 remaining ones, as shown in Fig. 3, thus making
training difficult [20]. In fact, it is difficult to exploit the
process of pushing φ̄ (st+1) far from predictions from st with
N − 1 different actions, φ̄

(
s̃1

t+1

)
, φ̄

(
s̃2

t+1

)
, . . . , φ̄

(
s̃N−1

t+1

)
,

at the same time.
To address this limitation, we adopt an N-tuplet loss func-

tion [53] in the form:
L FN

(
φ̄ (st+1) , φ (st+1) , {φ̄

(
s̃i

t+1

)
}N−1
i=1

)

= log

(
1 +

N−1∑
i=1

exp
(
φ̄ (st+1)

T φ̄
(

s̃i
t+1

)

−φ̄ (st+1)
T φ (st+1)

))
, (6)

where φ̄
(
s̃i

t+1

)
denotes the prediction from st and one of

N − 1 remaining actions. The N-tuplet loss function enables

the network to discriminate between N − 1 predictions from
remaining actions and the prediction from the selected input
action, as shown in Fig. 3. As the training proceeds, the dis-
tance between φ̄ (st+1) and φ (st+1) becomes closer, unlike
the distance between φ̄ (st+1) and φ̄

(
s̃i

t+1

)
is small in the

observation (image) space, because they originate from the
same input image st .

L FN in (6) can be considered as a classification problem:
maximising the probability for φ̄ (st+1) to be categorised into
φ (st+1) (7), shown at the bottom of this page, where the
positive future prediction φ̄ (st+1) can be considered as a
feature vector, and φ (st+1) and φ̄

(
s̃i

t+1

)
as weight vectors.

L FN makes φ̄ (st+1) closer to φ (st+1) while other φ̄
(
s̃i

t+1

)
become negative samples.

In the training procedure, the parameters from the action
representation module in the forward model are implicitly
learned from an input action, while there is no explicit
loss function related to the module. In summary, the action
representation module derives high dimensional features from
a simple one-hot code, producing more effective feature repre-
sentations to predict the future state from the forward model.

C. Fusion

We consider two different methods, namely concatenation
and gated fusion, to combine the responses from the action
representation module with the state-transition networks.

The decoded responses of the one-hot code of an input
action can be concatenated to an intermediate response of
the state transition network as shown in Fig. 2(b). The con-
catenated responses estimate the feature of the future state
after subsequent convolutions (Conv) and fully connected (FC)
layers.

We further present a gated fusion approach [54] to com-
bine the action representation with the state-transition net-
work effectively, which thus can be easily adapted to other
pre-trained models. As shown in Fig. 2(b), the responses
from the action representation module are element-wise mul-
tiplied to the responses from the intermediate layer from the
state-transition network. This enables the interaction between
the decoded action representation and the state representation.
Unlike concatenation [20], the multiplication is performed
channel-wise, thus fusion does not increase the size of the
responses. Table I summarises the detailed architectures.

D. Inverse Model and Policy Network

It is worth noting that the relationship between forward and
inverse models is important: the inverse model can provide
supervision to learn representations that the forward model

log

(
1 +

N−1∑
i=1

exp
(
φ̄ (st+1)

T φ̄
(

s̃i
t+1

)
− φ̄ (st+1)

T φ (st+1)
))

= − log
exp

(
φ̄ (st+1)

T φ (st+1)
)

exp
(
φ̄ (st+1)

T φ (st+1)
) + ∑N−1

i=1 exp
(
φ̄ (st+1)

T φ̄
(
s̃i

t+1

)) , (7)

484 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 2, FEBRUARY 2021

TABLE I

CONFIGURATION DETAILS OF FORWARD MODELS WITH CONCATENATION (FORWARD MODEL-C) AND GATED FUSION (FORWARD MODEL-G), WHICH
CONSIST OF CONVOLUTION (CONV), DECONVOLUTION (DECONV), AND FULLY CONNECTED (FC) LAYERS WITH EXPONENTIAL LINEAR UNIT

(ELU). THE ACTION REPRESENTATION MODULE DECODES THE RESPONSES BY SETTING THE VALUE OF STRIDE TO 2 [52]. THE FILTER

SIZE IN THE BRACKETS REPRESENTS OUTPUT DEPTH, INPUT DEPTH, WIDTH, HEIGHT OF THE FILTER. ‘CONCAT’
AND ‘DOT PROD’ DENOTE CONCATENATION AND DOT PRODUCT, RESPECTIVELY

TABLE II

CONFIGURATION DETAILS OF THE INVERSE MODEL THAT CONSISTS OF
FULLY CONNECTED (FC*) LAYERS AND EXPONENTIAL

LINEAR UNIT (ELU). ‘CONCAT’ DENOTES A

CONCATENATION OF TWO RESPONSES

regularises by learning to predict st+1 [7], [48]. The inverse
model learns to recognise an actual action, at , from the input
states, st and st+1, which explains the transition of st into
st+1 [24].

Learning the inverse model can impose constraints on the
encoded representation to be able to efficiently predict actions.
We employ the inverse model that generates a predicted action,
āt , to change from φ (st) to φ (st+1) as follows [7], [20]:

āt = g (φ (st) , φ (st+1) ; θI) , (8)

where θI denotes the network parameters of the inverse model.
As shown in Table II, the inverse model g (·) concatenates two
feature vectors and passes them through the subsequent FC∗1
(D×2D×1×1),2 ELU, and FC∗2 (N × D×1×1) layers. The
loss function, L I (āt , at), is a soft-max as the problem in (8)
generates a discrete action label, which can be considered as
a classification among several possible discrete actions.

Finally, the encoded feature from the forward model, φ (st),
is fed into a policy network, π (·), that consists of a long
short-term memory (LSTM) network, which memorises infor-
mation for several timesteps. The LSTM network consists
of a memory cell with D units to process the temporal
dependencies during training [7], [25], [26]. Since the agent
can be equipped with memory of previous states, using the
LSTM network is important for mapless navigation that needs
to remember the previously visited area.

2Note that FC* for the inverse model uses different parameters from FC.

IV. REINFORCEMENT AND IMITATION LEARNING

We integrate the proposed model with two approaches for
mapless navigation, namely RL-based navigation and IL-based
navigation.

A. Reinforcement Learning for Mapless Navigation

In the RL-based navigation, rewards are given when training
the camera agent [7], [20]. The objective of the training is to
maximise the extrinsic reward that is received when the agent
reaches the target.

We additionally exploit two separate FC layers to estimate
the value function and state functions that consist of a cell state
and hidden states for memorising the past steps and generating
the action at . We consider curiosity-driven exploration where
the goal is to optimise the model with additional extrinsic and
intrinsic rewards [7]. The extrinsic reward can be obtained
when the model reaches the target. The intrinsic rewards are
obtained by measuring the prediction error, which encourages
the agent to explore the unseen area. In the end, the intrinsic
rewards relate to the achievement of the final goal.

During training, we optimise the function in the form:

min
θA,θS,θI ,θP

−Eπ

[∑k

t=0
rt

]
+ βL F + (1 − β) L I , (9)

where rt = rext
t + r int

t , and rext
t and r int

t are extrinsic
and intrinsic rewards, respectively; and k, which can vary
for each episode but is upper bounded, is the number of
time steps when the agent moved. Eπ is the expectation of
rewards generated by π . The hyper-parameter, β, controls the
weight between the forward and inverse models as the balance
between the two is important to train the model. We employ
L FR as r int

t in [7].

B. Imitation Learning for Mapless Navigation

IL trains a policy to follow an expert (human) demon-
stration, that can be seen as prior information about the
environment provided by human behaviour. Here, the controls
or paths from the expert are provided and the agent then tries to
imitate them by behavioural cloning or inverse reinforcement
learning. Behavioural cloning directly learns a policy through

OH AND CAVALLARO: VIEW-ACTION REPRESENTATION LEARNING FOR ACTIVE FIRST-PERSON VISION 485

state-action pairs provided by an expert and without the agent
interacting with the environment during training [55]–[57].
Inverse reinforcement learning learns to estimate a reward
function based on state-action pairs from an expert [58].
The reward function is also used to infer an imitation policy
combined with RL [22], [59]–[61]. Imitation learning achieves
good performance, but the expert demonstration is labour
intensive, prone to bias, and needed for each new task. To
mitigate the problem that IL is labour intensive, a recent work
proposed imitation of an agent behaviour without any expert
supervision [26], which considers the agent to achieve the final
goal regardless of its intermediate action.

In the integration with IL, we use the output of the LSTM
network directly to estimate the state functions to generate the
action at . The representation is learned from data collected
offline. The learned model is then transferred to the camera
agent to perform a goal-finding task by providing a target
image as an additional input. We consider zero-shot imitation
where the goal is to optimise the model without expert
supervision [26].

In training with the collected data, the goal of the policy
is to sequentially generate actions conditioned on the current
state, starting from time step t1 to reach the goal observation
at time step tE . In addition to forward and inverse models for
training the agent, the consistency loss [26] is introduced as
follows:

LC

(
φ̂ (st+1) , φ (st+1)

)
=

∥∥∥φ̂ (st+1) − φ (st+1)
∥∥∥2

2
, (10)

where φ̂ (st+1) = f
(
st , ât ; θA, θS

)
is the predicted repre-

sentation from ât = π
(
st , stend ; θP

)
, that aims to generate

sequential actions to reach the goal. The consistency loss
is computed at each time step and jointly optimised with
forward and inverse losses over the whole trajectory during
time steps. Since there is no expert trajectory in this scenario,
the consistency loss helps reach the goal more easily [26].
From time step t1 to tE , the model is trained with the following
loss functions:

min
θA,θS,θI ,θP

[∑tE

t=t1
βL F

(
φ̄ (st+1) , φ (st+1) , {φ̄

(
s̃i

t+1

)
}N−1
i=1

)
+ (1 − β) L I (āt , at) + ηLC

(
φ̂ (st+1) , φ (st+1)

)]
,

(11)

where η controls the effect of LC . At each step, the current
state, st , the current action, at , and the goal state, stend , are
used as inputs for the policy to sequentially generate an
action, ât , with the objective is to move the agent towards the
goal.

V. VALIDATION

This section shows how the view-action representation
learning is crucial for different learning approaches to effi-
ciently achieve the goal of mapless navigation. We use
VizDoom and Gazebo as environments for RL-based and
IL-based mapless navigation, respectively. For a fair compar-
ison, we follow the same architecture for the state transition
network and inverse model. The state transition network
consists of 4 convolution (Conv) layers followed by fully

connected (FC) layers and the inverse model consists of two
FC layers. A nonlinear activation, exponential linear units
(ELUs), is added after each Conv and FC layer except for the
last FC output. Our model additionally takes three deconvolu-
tion (Deconv) layers with ELUs for the Action Representation
Module. Table I shows the details of the network configuration
of two forward models including concatenation (Forward
model-C) and gated fusion (Forward model-G) process. In the
experiment, the number of action is N = 4. These actions are
move forward, turn right, turn left, and no-op. The encoded
feature dimension is D = 256. All agents are trained using
images converted to greyscale and resized to 42 × 42 pix-
els [25]. We use the ADAM solver [62] with initial learning
rate 10−4.

A. Reinforcement Learning

Let Ours-C-T, Ours-C-N, Ours-G-T, and Ours-G-N be four
combinations of the proposed approach with two fusion meth-
ods (Concatenation, C, and Gated fusion, G) and two additive
loss functions (triplet ranking loss, T, and N-tuplet loss, N).
We compare our models with another self-supervised network,
ICM (Intrinsic Curiosity Module) [7], and a network that
only considers extrinsic rewards in training, A3C (a vanilla
Asynchronous Advantage Actor-Critic) [25]. Our models and
ICM are built on A3C. For a fair comparison, the same
architecture for the state transition network is employed,
except for Ours-C-T and Ours-C-N, which increase the number
of parameters in Conv3 layer to concatenate the response
from the Action Representation Module. Also, our models
additionally increase the number of parameters by adopting the
Action Representation Module. To train the networks, sixteen
workers are used to perform RL following the asynchronous
training protocol in A3C [25].

In the VizDoom MyWayHome environment [63], [64] the
goal is to reach an armour (see Fig. 4). We consider three
settings, namely dense, sparse, and extremely sparse extrinsic
rewards [7] as shown in Fig. 5. With the dense setting,
the agent can randomly spawn one of 17 locations (some of
which are close to the goal). In the sparse and extremely sparse
settings, the agent takes at least 270 and 350 steps (actions)
to reach the goal state, respectively. Episodes are terminated
when the agent reaches the armour or when 2100 time steps
are completed. The agent can perform four discrete actions:
move forward, at = (1, 0, 0, 0); turn right, at = (0, 1, 0, 0);
turn left, at = (0, 0, 1, 0); and no-op, at = (0, 0, 0, 1).
For efficient training, we set the action to be repeated four
times [25]. The total number of steps taken by all workers is
20M, and the value of the hyper-parameter for β is set among
{0.15, 0.18, 0.2} which shows the best result, and γT = 1.0,
m = 3 × 10−5 and γN = 0.001.

Note that the objective of the RL-based mapless navigation
is learning to reach the goal efficiently by receiving extrinsic
rewards. We thus show the effectiveness of the proposed model
by presenting the average success ratio within fixed global
steps in Fig. 6 and Table III. Fig. 6 shows that with the
dense setting, all models have good performance, whereas with
sparser rewards the proposed model has good performance
and the performance of the other models degrades. In settings

486 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 2, FEBRUARY 2021

Fig. 4. Navigation in the VizDoom environment. Original images are cropped, resized, and converted to grayscale images (in yellow box) for training and
testing. In testing, the agent takes the current state as an input and determines the next action to perform until it reaches the goal or has moved by a maximum,
pre-defined number of steps.

Fig. 5. A VizDoom map with spawning points (circle, square, and triangle)
and the goal location (in yellow). In dense setting, the agent can be randomly
spawned from 17 different points. In sparse and extremely sparse settings,
the agent is spawned about 270 and 350 steps away from the goal, respectively.

TABLE III

SUCCESS RATIOS WITH DIFFERENT FUSIONS AND LOSS FUNCTIONS.
SUCCESS REFERS TO THE AGENT ACHIEVING THE GOAL DURING

TRIALS WITHIN 20M STEPS. THE FIRST AND SECOND
BEST RESULTS ARE REPORTED IN BOLD AND

UNDERLINED, RESPECTIVELY

with sparse and extremely sparse extrinsic rewards, A3C
fails to perform navigation as it has insufficient feedback
to improve itself during training and the policy cannot be
trained efficiently. ICM has good performance with sparse
rewards, but slow convergence in the environment containing
extremely sparse rewards. As the sparsity of the extrinsic

Fig. 6. Extrinsic rewards for an agent with A3C, ICM, and Ours-* in an
environment with (a) dense, (b) sparse, and (c) extremely sparse extrinsic
rewards. Four combinations of our model are evaluated by considering various
options in fusion (concatenation, C, and gated fusion, G) and the additional
loss (triplet ranking loss, T, and N -tuplet loss, N).

rewards increases, our models generally outperform other
models, indicating effective learning of the features during
exploration.

OH AND CAVALLARO: VIEW-ACTION REPRESENTATION LEARNING FOR ACTIVE FIRST-PERSON VISION 487

Fig. 7. Sample trajectory of (a) A3C (b) ICM (c) Ours-C-N, trained with (top) 8M and (bottom) 20M steps in the VizDoom environment with extremely
sparse rewards. The agent trajectories are presented in yellow lines. The A3C agent cannot reach the goal when it is trained with extremely sparse reward
setting. Both ICM and Ours-C-N agents have good performance with 20M global training steps. However, ICM has slower convergence in training than
Ours-C-N.

Fig. 8. Confusion matrices of the predicted features generated from the same state with four different actions: no-op, move forward (forward), turn right,
and turn left. Results with (a) Ours-C-R, (b) Ours-C-T, and (c) Ours-C-N.

To investigate the contribution of the components within
the proposed network, we further conduct an ablation analysis
by training the agent with different fusion methods and loss
functions and compute the success rate during 20M total
steps. Note that we use the inverse model for all experiments.
Table III shows a good performance when L FT or L FN

are additionally used with L FR . The concatenation approach
generally shows better performance than the gated fusion
approach. L FR combined with L FN performs better than the
one with triplet ranking loss L FT . When the network is trained
only with L FT or L FN , the agent is unable to perform the
navigation task, since the L FR is directly related to the intrinsic

reward, r int
t , which should decrease as the exploration is

processed [20].
Fig. 7 shows the trajectory generated with extremely sparse

extrinsic rewards. Each agent is trained with 8M and 20M
global steps respectively in order to demonstrate the effective-
ness of learning representation with respect to the timesteps.
Due to the extremely sparse extrinsic rewards, the A3C agent
has insufficient feedback to improve itself during training.
In fact, the agent fails to perform navigation in both 8M and
20M global training steps, as shown in Fig. 7(a). The ICM
and Ours-C-N agents show good performance when the global
training steps are set to 20M. When the agent is trained with

488 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 2, FEBRUARY 2021

Fig. 9. Goal-finding task in Gazebo. Original images are resized, and converted to grayscale (see the yellow square) for training and testing. At test time,
the camera agent takes (a) the goal and (b) current state as inputs, and performs the goal-finding task by exploring the environment. (c-f) The agent first looks
around since there is no overlap between the initial and the goal state. (g-i) Once the goal is observed, the agent moves towards it.

Fig. 10. Goal-finding task in Gazebo with four different spawning points
for the agent.

8M global steps with the setting of extremely sparse rewards,
as shown in Fig. 7 (top), the agent of Ours-C-N still achieves
the goal while others cannot reach the goal, indicating that our
model effectively learns the features during exploration.

Fig. 8 shows the effect of L FT and L FN for training the
forward model and compares the predicted feature from the
same state with four different actions. We use a forward
model with randomly initialised parameters, Ours-C-R, Ours-
C-T, and Ours-C-N. We generate φ̄ (st+1) = f (st , at ; θA, θS)
in (1) by fixing st while changing at . The similarity between
two features, e.g., φ̄1 (st+1) and φ̄2 (st+1), is measured as
exp

(
− ∥∥φ̄1 (st+1) − φ̄2 (st+1)

∥∥2
2

)
. The result is averaged by

using images collected in the VizDoom environment during
navigation. Ours-C-T and Ours-C-N (Fig. 8(b) and Fig. 8(c))
have better discriminative performance between two features
generated from different actions than Ours-C-R (Fig. 8(a)).
The feature prediction of Ours-C-T is biased to the turn right
action and has distinctive low similarities with the feature
predictions from other actions.

B. Imitation Learning

We compare our model, Ours-C-R (the forward model
trained only with L FR), Ours-C-T and Ours-C-N, with other
approaches, random search, Inv (Inverse model) [47], and ZSI

TABLE IV

THE NUMBER OF SUCCESSES AND AVERAGE NUMBER OF STEPS

TO REACH THE GOAL (IN BRACKETS) FOR IL-BASED MAPLESS

NAVIGATION IN GAZEBO. THE STEPS ARE COUNTED
ONLY WITH SUCCESSFUL CASES

(Zero-shot Imitation) [26]. Note that ZSI encodes the input
state with the conventional forward model as shown in Fig. 2
and learns to minimise the loss function in (11).

We first collect state-action pairs for every step in a Gazebo
TurtleBot2 environment [65] (see Fig. 10). A turtlebot with
first person view (RGB image) collects an image and action
for each time step. We follow the data collection described
in [26]. During data collection, the agent randomly generates
one action from four available discrete actions (move forward,
turn right, turn left, and no-op). If the agent reaches an object
or the wall, then it moves backward and then turns right or
left by a uniformly sampled angle between 90-270 degrees.
The agent autonomously repeated this process and collected
70K state-action pairs data. In the training phase, we use the
collected data where the goal image is changed every 20 steps
(frames) since no specific goal is set during the training. The
agent thus can imitate the exploratory behaviour with various
goal images.

We test whether the learned agent without any goal or expert
supervision can find a way to reach the target. We provide a
single image of the goal for the agent to find a way to get

OH AND CAVALLARO: VIEW-ACTION REPRESENTATION LEARNING FOR ACTIVE FIRST-PERSON VISION 489

Fig. 11. Sample trajectory of Ours-C-N in different locations in the Gazebo environment. The trajectory is colour-coded, starting from blue and ending with
red. The camera agent first looks around until it finds the goal. The agent moves towards to reach the goal, once the goal is observed and stops when it (a-c)
achieves the goal or (d) has completed a maximum, pre-defined number of steps.

Fig. 12. Confusion matrices of the predicted features generated from the same state with four different actions: no-op, move forward (forward), turn right,
and turn left. Results with (a) Ours-C-R, (b) Ours-C-T, and (c) Ours-C-N.

to the target, as shown in Fig. 9(a). We place the turtlebot
where there is no overlap between the initial and target state,
20 to 40 steps away from the target. The agent explores the
environment to find the goal and is successful if it stops,
within 150 steps, close to the goal. The stopping criterion
for the agent is based on a normalised l2 distance between
the feature representations of input and goal images. We use
the feature generated by φ (·) in (4). The hyper-parameter
β and η in (11) are empirically both set to 0.1, and γN is
set to 0.001.

As the objective is learning to navigate without expert
supervision, we evaluate the number of successes with a fixed
number of trials, i.e. five times, as shown in Table IV. The
agent with random navigation and learned by Inverse [47] fails
to achieve the goal. Since the model learned by [47] does not
learn the forward model, information about the surrounding
environment is not encoded in the representation effectively.
ZSI shows good results in terms of the number of steps
as it moves towards the detected goal after looking around.
However, it fails to reach the goal when it is not detected in

490 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 2, FEBRUARY 2021

the early stages of navigation. The results show that Ours-C-N
outperforms other methods, which suggests that the learned
representation encodes effective information for understanding
the environment.

Fig. 11 shows the trajectory for the goal-finding task
performed by Ours-C-N. In the early stage, the agent looks
around to find the goal. Once the goal is detected, as shown
in Fig. 11(a)-(c), the agent moves forward to reach the object.
However, the agent may fail to reach the goal when the
movement is blocked by an obstacle as shown in Fig. 11(d).

Finally, Fig. 12 shows the confusion matrices based on the
predicted features. The result is averaged by using images
collected in Gazebo during navigation by following the same
process as described previously for generating the results
in Fig. 8. In Fig. 12, because training uses a large amount
of data collected offline, it is possible to notice a good perfor-
mance in discriminating other feature predictions. In Fig. 12(b)
and (c), the similarity between no-op and forward is higher
than others, whereas the similarity between turn left and turn
right is the lowest.

VI. CONCLUSION

We proposed a view-action representation learning method
that expands the dimensions of one-hot codes of input actions
and fuses them with a state-transition network. In the context
of mapless visual navigation, we also presented two loss
functions, triplet ranking loss and N-tuplet loss, each of which
can be additionally combined with the regression loss for
effective representation learning. We integrated the proposed
networks trained with the joint loss functions in RL and
IL-based mapless navigation tasks. The validation shows that
the proposed networks have faster training convergence than
previous networks in RL-based mapless navigation tasks. As
future work we will increase the granularity of the camera
control with a larger set of actions and validate the proposed
view-action representation learning method with other robot
types, such as arms and drones.

ACKNOWLEDGMENT

The authors would like to thank A. Ataka and S. Butcher
for their support to set up the simulation environment.

REFERENCES

[1] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning
for visual object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 2894–2902.

[2] Z. Wu et al., “3D shapenets: A deep representation for volumetric
shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1912–1920.

[3] D. Jayaraman and K. Grauman, “End-to-End policy learning for active
visual categorization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 7, pp. 1601–1614, Jul. 2019.

[4] Q. Cao, L. Lin, Y. Shi, X. Liang, and G. Li, “Attention-aware face
hallucination via deep reinforcement learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 690–698.

[5] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently
exploring unseen environments for unknown tasks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1238–1247.

[6] S. K. Ramakrishnan and K. Grauman, “Sidekick policy learning for
active visual exploration,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 413–430.

[7] D. Pathak, A. E. Pulkit Agrawal, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2017, pp. 16–17.

[8] A. Hornung, M. Phillips, E. Gil Jones, M. Bennewitz, M. Likhachev,
and S. Chitta, “Navigation in three-dimensional cluttered environments
for mobile manipulation,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2012, pp. 423–429.

[9] M. E. Angelopoulou and C.-S. Bouganis, “Vision-based egomotion
estimation on FPGA for unmanned aerial vehicle navigation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 24, no. 6, pp. 1070–1083,
Jun. 2014.

[10] P. Mirowski et al., “Learning to navigate in cities without a map,” in
Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2018, pp. 2419–2430.

[11] S. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, Res.
Rep. 9811, 1998.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

[13] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardos, and J. M. M.
Montiel, “Towards semantic SLAM using a monocular camera,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2011, pp. 1277–1284.

[14] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha,
“Visual simultaneous localization and mapping: A survey,” Artif. Intell.
Rev., vol. 43, no. 1, pp. 55–81, Jan. 2015.

[15] S. Brahmbhatt and J. Hays, “DeepNav: Learning to navigate large cities,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5193–5202.

[16] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2017, pp. 3357–3364.

[17] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,” in
Proc. Workshop Mach. Learn. Planning Control Robot Motion (ICRA),
2018, pp. 1–4.

[18] Y. Zhu et al., “Visual semantic planning using deep successor repre-
sentations,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 483–492.

[19] S. Siriwardhana, R. Weerasekera, and S. Nanayakkara, “Target
driven visual navigation with hybrid asynchronous universal suc-
cessor representations,” 2018, arXiv:1811.11312. [Online]. Available:
http://arxiv.org/abs/1811.11312

[20] C. Oh and A. Cavallaro, “Learning action representations for self-
supervised visual exploration,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2019, pp. 5873–5879.

[21] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2017, pp. 204–211.

[22] M. Pfeiffer et al., “Reinforced imitation: Sample efficient deep rein-
forcement learning for mapless navigation by leveraging prior demon-
strations,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4423–4430,
Oct. 2018.

[23] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and
A. A. Efros, “Large-scale study of curiosity-driven learning,” 2018,
arXiv:1808.04355. [Online]. Available: http://arxiv.org/abs/1808.04355

[24] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat, “State rep-
resentation learning for control: An overview,” Neural Netw., vol. 108,
pp. 379–392, Dec. 2018.

[25] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2016, pp. 1928–1937.

[26] D. Pathak et al., “Zero-shot visual imitation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2018,
pp. 2050–2053.

[27] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[28] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast
mobile robots,” IEEE Trans. Syst., Man, Cybern., vol. 19, no. 5,
pp. 1179–1187, Sep./Oct. 1989.

[29] D. Kim and R. Nevatia, “Symbolic navigation with a generic map,”
Auton. Robots, vol. 6, no. 1, pp. 69–88, 1999.

[30] G. Oriolo, M. Vendittelli, and G. Ulivi, “On-line map building and
navigation for autonomous mobile robots,” in Proc. IEEE Int. Conf.
Robot. Autom., May 1995, pp. 2900–2906.

[31] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation using an
appearance based topological map,” in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 2007, pp. 3927–3932.

OH AND CAVALLARO: VIEW-ACTION REPRESENTATION LEARNING FOR ACTIVE FIRST-PERSON VISION 491

[32] F. Fraundorfer, C. Engels, and D. Nister, “Topological mapping, local-
ization and navigation using image collections,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2007, pp. 3872–3877.

[33] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cogni-
tive mapping and planning for visual navigation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2616–2625.

[34] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional
video prediction using deep networks in atari games,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2015, pp. 2863–2871.

[35] H. Tang et al., “# exploration: A study of count-based exploration for
deep reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2017, pp. 2753–2762.

[36] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016, pp. 1471–1479.

[37] S. Mohamed and D. J. Rezende, “Variational information maximisation
for intrinsically motivated reinforcement learning,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2015, pp. 2125–2133.

[38] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel, “VIME: Variational information maximizing exploration,” in
Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016, pp. 1109–1117.

[39] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Trans. Evol. Comput.,
vol. 11, no. 2, pp. 265–286, Apr. 2007.

[40] J. Schmidhuber, “A possibility for implementing curiosity and boredom
in model-building neural controllers,” in Proc. Int. Conf. Simulation
Adapt. Behav., Animals Animats, 1991, pp. 222–227.

[41] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing explo-
ration in reinforcement learning with deep predictive models,” 2015,
arXiv:1507.00814. [Online]. Available: http://arxiv.org/abs/1507.00814

[42] A. Walsman et al., “Early fusion for goal directed robotic vision,” 2018,
arXiv:1811.08824. [Online]. Available: http://arxiv.org/abs/1811.08824

[43] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal, and
R. Salakhutdinov, “Gated-attention architectures for task-oriented lan-
guage grounding,” in Proc. AAAI Conf. Artif. Intell. (AAAI), 2018,
pp. 1–10.

[44] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 2746–2754.

[45] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable
reinforcement learning with autoencoders for tactile and visual data,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 3928–3934.

[46] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual
planning with temporal skip connections,” 2017, arXiv:1710.05268.
[Online]. Available: http://arxiv.org/abs/1710.05268

[47] A. Nair et al., “Combining self-supervised learning and imitation for
vision-based rope manipulation,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2017, pp. 2146–2153.

[48] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2016, pp. 5074–5082.

[49] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (ELUs),” 2015,
arXiv:1511.07289. [Online]. Available: http://arxiv.org/abs/1511.07289

[50] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 31–36.

[51] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[52] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[53] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016,
pp. 1857–1865.

[54] B. Dhingra, H. Liu, Z. Yang, W. W. Cohen, and R. Salakhut-
dinov, “Gated-attention readers for text comprehension,” 2016,
arXiv:1606.01549. [Online]. Available: http://arxiv.org/abs/1606.01549

[55] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auto. Syst., vol. 57, no. 5,
pp. 469–483, May 2009.

[56] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Comput., vol. 3, no. 1, pp. 88–97,
Feb. 1991.

[57] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. 14th Int.
Conf. Artif. Intell. Statist., 2011, pp. 627–635.

[58] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. 21st Int. Conf. Mach. Learn. (ICML), 2004,
p. 1.

[59] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2016, pp. 49–58.

[60] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2016, pp. 4565–4573.

[61] J. Ho, J. Gupta, and S. Ermon, “Model-free imitation learning with
policy optimization,” in Proc. Int. Conf. Mach. Learn. (ICML), 2016,
pp. 2760–2769.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[63] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

[64] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski, “ViZ-
Doom: A doom-based AI research platform for visual reinforcement
learning,” in Proc. IEEE Conf. Comput. Intell. Games (CIG), Sep. 2016,
pp. 1–8.

[65] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2004, pp. 2149–2154.

Changjae Oh received the B.S., M.S., and Ph.D.
degrees in electrical and electronic engineering from
Yonsei University, Seoul, South Korea, in 2011,
2013, and 2018, respectively. From 2018 to 2019,
he was a Post-Doctoral Research Assistant with
the School of Electrical Engineering and Com-
puter Science, Queen Mary University of London,
U.K., where he has been a Lecturer, since 2019.
His research interests include image processing for
machine perception and vision-based perception for
robot control.

Andrea Cavallaro received the Ph.D. degree in
electrical engineering from the Swiss Federal Insti-
tute of Technology, Lausanne, Switzerland, in 2002.
He is currently a Professor of multimedia signal
processing and the founding Director of the Centre
for Intelligent Sensing, Queen Mary University of
London (QMUL), U.K., a Turing Fellow with the
Alan Turing Institute, the U.K., National Institute
for Data Science and Artificial Intelligence, and a
Fellow of the International Association for Pattern
Recognition. He is the Chair of the IEEE Image,

Video, and Multidimensional Signal Processing Technical Committee; an
IEEE Signal Processing Society Distinguished Lecturer; the Editor-in-Chief
of Signal Processing: Image Communication; and a Senior Area Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

