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Lightweight Modules for Efficient Deep Learning
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Abstract—Low level image restoration is an integral com-
ponent of modern artificial intelligence (AI) driven camera
pipelines. Most of these frameworks are based on deep neural
networks which present a massive computational overhead on
resource constrained platform like a mobile phone. In this
paper, we propose several lightweight low-level modules which
can be used to create a computationally low cost variant of a
given baseline model. Recent works for efficient neural networks
design have mainly focused on classification. However, low-level
image processing falls under the ‘image-to-image’ translation
genre which requires some additional computational modules not
present in classification. This paper seeks to bridge this gap by
designing generic efficient modules which can replace essential
components used in contemporary deep learning based image
restoration networks. We also present and analyse our results
highlighting the drawbacks of applying depthwise separable
convolutional kernel (a popular method for efficient classification
network) for sub-pixel convolution based upsampling (a popular
upsampling strategy for low-level vision applications). This shows
that concepts from domain of classification cannot always be
seamlessly integrated into ‘image-to-image’ translation tasks. We
extensively validate our findings on three popular tasks of image
inpainting, denoising and super-resolution. Our results show that
proposed networks consistently output visually similar recon-
structions compared to full capacity baselines with significant
reduction of parameters, memory footprint and execution speeds
on contemporary mobile devices. Codes are made available at
https://github.com/avisekiit/TCSVT-LightWeight-CNNs

I. INTRODUCTION

IMAGE restoration refers to recovery of clean signal from
an observed noisy input. Following the ground-breaking

work of Krizhevsky et al. [36] on ImageNet classification
with deep neural networks, CNNs have superseded traditional
methods across a variety of tasks such as object recognition
[26], [65], [66], detection [14], [15], [56] and tracking [4],
[23], action recognition [7], [22], segmentation [24], [51] to
list a few. Image restoration frameworks also improved from
the data driven hierarchical feature learning capability of deep
neural networks with state-of-the-art performances on inpaint-
ing [30], [37], [38], [40], [74], [76], denoising [69], [78], [81],
super-resolution [39], [67], de-hazing [57], de-occlusion [85],
3D surface reconstruction [32], [63] etc. Though these deep
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learning based restoration frameworks yield photo-realistic
outputs, the models are computationally expensive with mil-
lions of parameters. Inference through such complex networks
requires billions of floating point operations (FLOPs). This
might not be seen as a problem while executing over a GPU
enabled workstation; however such networks are practically
not scalable to run on resource-constrained platforms such as
a commodity CPU or a mobile device. However, with the
proliferation of multimedia enabled mobile devices, there is
an increased demand of on-device multimedia manipulations.
For example, image denoising is a crucial component of imag-
ing setup in any contemporary smartphone. Super-resolution
is also an inevitable component because online multimedia
hosting sites often prefer to transmit low resolution images
and videos with super-resolution performed on device so that
the end user enjoys high resolution multimedia experience
even on low bandwidth channel. Similarly, inpainting plays
a crucial role in many downstream applications such as image
editing, Augmented Reality [59], ‘dis-occlusion’ inpainting
[42], [45] for novel view synthesis in a multi camera video
capture setting [8] to be integrated with mobile Head Mounted
Displays (HMD).

Executing billions of FLOPs on mobile devices leads to fast
reduction of battery life with potential heating up of the device.
Also, the lag encountered while executing such large models
on constrained platform tends to disrupt the engagement of the
user. To address the above two issues, in this paper we propose
several lightweight computing units which dramatically reduce
the computational cost of a given deep neural network without
any visual degradation of reconstructed outputs.

Recently, there has been a surge of interest for design-
ing efficient neural networks mainly for object classification
and detection. However, there is a dearth of literature for
efficient processing of networks concerned with low-level
image restoration. Fundamentally, restoration requires the spa-
tial resolution of input and output signal to be same and
the general practice [30], [76], [81] is to follow encoder-
decoder based architectures to first down-sample and later
on up-sample the intermediate feature maps of the network.
On contrary, classification frameworks are mainly concerned
with progressive downsampling and thus efficient strategies
to up-sample in a network are not discussed. Also, dense
prediction tasks such as inpainting requires long range spatial
information and often deploys dilated/atrous convolutions [75]
to increase the receptive field of processing. However dilated
convolutions are rarely used in classification frameworks and
thus recent advancements such separable convolution [29] and
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Fig. 1: Visual comparison of outputs from our computationally efficient variants on three common image restoration applications.
The full-scale baselines are GLCIC [30] for inpainting, SRGAN [39] for super-resolution and CBDNet [17] for denoising.
Number on top of a figure denotes the total number of parameters (in millions) of a particular model. Best viewed zoomed in.

group convolutions [82] cannot be directly applied for dilated
convolution operations.

In this paper we have mainly focused on design principles
for components to be used in low-level restoration tasks.
Since 3×3 kernel 1 is the most commonly used kernel in
contemporary low level vision applications [30], [39], [76],
[81], we introduce ‘LIght Spatial Transition’ layer, (LIST),
which simultaneously benefits from local feature aggregation
[41] and multi-scale spatial processing [65] and uses upto 24×
fewer parameters than a similar 3 ×3 convolution layer. Next,
we introduce ‘Grouped Shuffled Atrous Transition’ layer,
GSAT, which is an efficient atrous/dilated convolution layer
by leveraging recent concepts of group convolution [36] and
channel shuffling [82] and each layer uses approximately 7×
fewer parameters compared to an usual dilated convolution
layer. While designing efficient upsampling module, we show
that separable convolution kernels are inept at sub-pixel con-
volution [60] based upsampling and we provide an analytical
justification for the same. Instead we show that deterministic
upsampling such as bilinear upsampling followed by our
LIST module provides an efficient upsampling framework.

1Ideally, it should be 3×3×Cin- where Cin is number of input channels.
For brevity of notation, henceforth, we will drop the channel dimension.

Combination of these modules enable us to run image restora-
tion models on mobiles with milli-seconds level execution
speed compared to several seconds by contemporary full-scale
models without any visual degradation of outputs. One of the
major advantages of our proposed modules is that these can
seamlessly replace commonly used computational blocks such
as 3×3 convolution, dilated convolution, differentiable upsam-
pling within a given network. Thus, in this paper we refrain
from proposing new end-to-end architectures; instead we select
recent state-of-the-art networks and reduce the computational
footprints of those networks using our lightweight layers. In
summary, our key technical contributions in this paper are:
-We present LIST layer as a computationally cheaper alterna-
tive to a regular 3×3 convolution layer. Each instance of LIST
can save 12× - 24× parameters. Repeated use of LIST in a
deep network leads to significant reduction of parameters and
FLOPs
-We present GSAT layer which implements dilated convolu-
tion on separate sparse group of channels to reduce FLOPs
followed by feature mixing for enhanced representation capa-
bility. Each instance of the proposed module utilizes approxi-
mately 7× fewer parameters than a regular dilated convolution
layer
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- We present our findings on drawbacks of applying separable
convolution for feature upsampling with sub-pixel convolution
and provide a detailed insight for possible reason of failure.
Instead, we show that deterministic upsampling followed by
LIST layer based convolution is an efficient yet accurate
alternative
- We perform extensive study of our network components on
tasks of image inpainting, denoising and super- resolution.
On all tasks we achieve significant reduction in parameters
and FLOPs and massive execution speed-ups on resource con-
strained platforms without any compromise in visual quality.
Such exhaustive experiments manifest the generalizability of
our processing components across a variety low-level restora-
tion tasks.

II. RELATED WORKS

In recent years deep neural networks have achieved over-
whelming success on a variety of computer vision tasks in
which network design plays a crucial role. Executing these
large models on resource constrained platforms requires effi-
cient design strategies [25]. Recently there has been a surge of
interest in either compressing existing pre-trained big networks
or designing small networks from scratch.

A. Kernel Factorization

For training small networks from scratch, factorization of
kernels have been a preferred choice. The most common
realization is depthwise separable convolution initially pre-
sented in [62] and then popularized in Inception module [65].
Following that, it has become the backbone of many popular
architectures such as MobileNet [29] and MobileNet-V2 [28].
Xception network [10] showed how to scale up depthwise sep-
arable convolutions to outperform Inception-V3 [66]. Another
popular concept of group convolution was introduced in [36]
to distribute model parameters over multiple GPUs. Currently,
it is utilized in several recent efficient networks [48], [64],
[72], [83]. The idea is to convert dense convolutions across
all feature channels to be sparse by channel grouping and
performing convolution only on grouped set of channels.

B. Model Compression

Model compression is another genre of approach for ef-
ficient inferencing by lossy compression of a pre-trained
network while maintaining similar accuracy. Compression can
be achieved either by pruning some of the intermediate synap-
tic connections in the network or by quantizing pre-trained
kernels to be represented as integers or booleans. Denton
et al. [12] applied Singular Value Decomposition (SVD) to
approximate a pre-trained network to achieve 2× inference
speedup. Han et al. [21] pruned and fine-tuned a pre-trained
network to identity important network connections to create a
smaller network. The work was extended in Deep Compression
[20] to combine network pruning with quantization. Later,
‘Quantized CNN’ [71] was proposed which aimed at directly
quantizing network weights during training. Chen et al. pro-
posed ‘HashedNet’ [9] to compress networks with hashing.

C. Task Specific Efficient Architectures

Some recent works have focused on smarter network de-
signs for efficient low-level vision applications. Zhang and
Tao [80] proposed a light-weight multi-scale network for
single image dehazing. In [1] Ahm et al. proposed a cascaded
residual network coupled with group convolution for efficient
single image super-resolution. In [68], Tan et al. presented a
low-cost network for unmanned aerial vehicle (UAV) noise
reduction at low signal-to-noise (SNR) level. In [84], Zhang
et al. present a ‘mixed-convolution’ layer by merging normal
and dilated convolution for image super-resolution. Kim et al.
[34] presented dilated-Winograd transformation for a faster
realization of dilated convolution. In RHNet [77] the authors
present a dilated special pyramid pooling framework for dense
object counting.

In this paper we mainly focus on constructing lightweight
modules for training efficient networks from scratch for low-
level image restoration tasks. However, the building blocks
of modern efficient networks are mainly concerned with
classification tasks in which essential components such as
upsampling, sub-pixel convolution and dilated convolution
are usually not involved. Hence, those methods are not self-
sufficient for low-level computer vision applications.

In recent years deep learning based methods have produced
phenomenal performances on a variety of low-level image
restoration tasks. However majority of research has been
focused on improving the visual quality without worrying
much about the computational burden. In this paper we aim
to realize lightweight versions of these networks which can be
run on mobile devices with milli-seconds level execution time
instead of multiple seconds required by full-scale baselines.

III. PROPOSED NETWORK MODULES

A. ‘LIght Spatial Transition’ layer: (LIST)

This section elaborates on the architectural details of LIST
layer. Pictorial representation of a LIST layer is shown in Fig.
2b. We will first discuss the driving intuitions and principles
behind LIST followed by calculating computation savings
achieved by using LIST instead of regular 3×3 convolution
layer. Presence of a ‘sub-network’ capable of universal func-
tional approximation such as multi-layer perceptron (MLP) in
between two consecutive layers boosts the feature extraction
capability in a CNN [41]. In LIST, we realize this functionality
by having one parallel branch of two successive layers of 1×1
convolution with ReLu non-linearity in between to promote
sparsity of features. Such cascades of 1×1 convolution pro-
motes parametric cross-channel pooling and enables a network
to learn non-trivial transformations.

Starting from the Inception [65] module of GoogleNet
(see Fig. 2a), multi-path branched module has become the
de facto choice for multi-scale processing of features in deep
neural networks [66]. Following that, we incorporate a branch
for 3×3 convolution in parallel with the 1×1 branch. In this
case, the initial (top) 1×1 layer acts an embedding layer by
projecting incoming feature volume to a lower dimension and
thereby reducing the FLOPs requirement for performing 3×3
convolution. We further reduce the FLOPs count for 3×3
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convolution branch by factoring it with depthwise separable
kernels. However, we deviate from the design principles
of Inception by restricting the number of parallel branches
inside the LIST layer. This is motivated by the ‘network
fragmentation’ issue pointed out in [48]. Parallel branches
in a network creates overhead of kernel launching and
synchronization resulting in reduction of execution speed. So,
unlike that in Inception, we refrain from using two additional
parallel branches of 5×5 convolution and max-pool layer
inside our LIST layer. Apart from ‘network fragmentation’
issue, avoiding parallel branches also benefits from reduced
number of final feature channels which need to be processed
by next layer- this further helps in decreasing FLOPs.

1) Architecture Details: A LISTM→N layer is meant for
replacing a normal 3×3M→N convolution layer with M input
and N output feature channels. Input to a LISTM→N module
is a feature volume of shape (H , W , M ) (height, width,
channels). In the first step, the input volume is pointwise
convolved with M

k number of 1×1 kernels; k is the com-
pression ratio. In the second stage, these M

k feature maps are
passed to two parallel streams of 1×1 and 3×3 convolution.
In the 1×1 branch, we perform another set of pointwise
1×1 convolution and output N

nb
channels; nb is the branching

factor. The 3×3 branch is realized with depthwise separable
kernels and outputs N − N

nb
channels. Outputs from 1×1 and

3×3 streams are concatenated (to form total N channels) and
passed on to the next layer.

2) Computational Savings: 2

Comparison to 3×3 convolution: In this section we elaborate
on the savings of parameters and FLOPs achieved by our
LISTM→N layer over the usual 3×3M→N layer. We assume
the spatial resolution of incoming and outgoing features to be
H×W. Number of trainable parameters for a 3×3M→N is,

P3×3 = 9MN, (1)
while the total FLOPs is,

F3×3 = 9MNHW . (2)
Computations for a LISTM→N module will consist of three
components- (a) 1×1 convolution in Stage-1; (b) 1×1 convolu-
tion in Stage-2 parallel stream; (c) separable 3×3 convolution
in Stage-2 parallel stream. Assuming nb = 2 (see Sec. IV-A1)
number of parameters for a LISTM→N layer is,

PLIST =
M2

k︸︷︷︸
1X1 Stage-1

+
MN

2k︸ ︷︷ ︸
1X1 Stage-2

+ 32 × M

k
+
MN

2k︸ ︷︷ ︸
3X3 Stage-2

, (3)

while total FLOPs is,

FLIST =
HWM2

k︸ ︷︷ ︸
1X1 Stage-1

+
HWMN

2k︸ ︷︷ ︸
1X1 Stage-2

+ 32 × HWM

k
+
HWMN

2k︸ ︷︷ ︸
3X3 Stage-2

. (4)

2All throughout the paper, we consider ‘valid’ convolution by padding zeros
at the border and stride of 1 pixel; this preserves the image resolution .

Input
Channels

1X1
Conv.

1X1
Conv.

3X3
MaxPool

1X1
Conv.

3X3
Conv.

5X5
Conv.

1X1
Conv.

Filters
Concat

(a) Inception module.

(b) LIST module

Fig. 2: (a) An usual Inception module [65]. (b) Proposed LISTM→N module as a
replacement of normal 3×3 kernel operating on M incoming channels and yielding N
output channels. BN: Batch-normalization [31] layer; Relu(x): max(0, x).

Ratio of parameters of 3×3M→N to that of LISTM→N is given
by,

R3×3|LIST
params =

9Nk

M +N + 9
, (5)

≈ 9Nk

M +N
. (6)

Since, k, is the compression ratio of incoming and outgoing
channels to the first 1×1 layer, k > 1. Thus, we have,

R3×3|LIST
params >

9N

M +N
. (7)

From Eq. 7 we get the lower bound of parameters saving by
using proposed LIST layer instead of a 3×3 convolution layer.
Some of the usual settings in a network are M = N , M = 2N
or N = 2M . After a brief hyper-parameters search (see Sec.
IV-A1) we set k = 4 and thus we achieve 18×, 12× and 24×
parameters saving at M = N , M = 2N and N = 2M . Thus
a single instance of our LIST layer is significantly cheaper
than a normal 3×3 convolution layer. On a similar note, we
can show that the ratio of FLOPS of 3×3M→N to that of
LISTM→N is given by,

R
3×3|LIST
Flops =

9Nk

M +N + 9
. (8)

Since the ratio is same as what we got for parameters savings,
following the approximation done in Eq. 6 and lower bound
logic of Eq. 7, we get similar scales of FLOPs savings as
we showed for the parameters. Stacking several layers of
LIST layer thereby helps in significant reduction of memory
footprint (fewer parameters) and faster execution speed (fewer
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FLOPs) compared to a network realized with 3×3 convolution
layers.

Comparison to depthwise separable 3×3 convolution: In
this section we first find the condition under which proposed
LIST layer is even cheaper than the widely used depthwise
separable convolution layer. We again assume 3×3 convolu-
tion over a feature volume of M incoming and N outgoing
channels and spatial resolution of H×W. Number of trainable
parameters for a separable 3×3 convolution layer is,

P3×3|sep = 9M +MN, (9)
while total FLOPS is,

F3×3|sep = 9HWM +HWMN (10)
Ratio of parameters for a separable 3×3 convolution layer to
that of LIST is,

Rsep−3×3|LISTparams =
k(N + 9)

M +N + 9
≈ Nk

M +N
(11)

If we want Rsep−3×3|LISTparams > 1 then we need to satisfy the
following condition:

Rsep−3×3|LISTparams > 1 =⇒ k >
M

N
+ 1. (12)

So, we have the following criteria for k at different ratios of
M
N :

k >


2 if M = N.

3 if M = 2N.

1.5 if N = 2M.

(13)

To satisfy all the conditions of Eq. 13 we need k > 3 which
gives the lower bound of parameters savings. Since we set
k = 4 for all our experiments, the conditions of Eq. 13 are
satisfied. With k = 4, from Eq. 11 we have Rsep−3×3|LISTparams

= 2, 2.6 and 1.3 at M=N , N=2M and M=2N respectively.
Similarly we can show that ratio of FLOPS of a depthwise
separable 3×3 layer to that of LIST is,

R
sep−3×3|LIST
Flops ≈ Nk

M +N
(14)

With M = N , N = 2M or M = 2N we would approximately
save 2×, 2.6× and 1.3× FLOPs respectively. Our LIST layer’s
design has appreciably fewer parameters and FLOPs compared
to even a depthwise separable realization of 3×3 convolution
and thus can be used as an off-the-self replacement for
separable convolution layer.

B. ‘Grouped Shuffled Atrous Transition’ layer, (GSAT)

In this section we elaborate on the design of our proposed
GSAT layer which is an efficient replacement for an usual
atrous/dilated convolution layer found in numerous contempo-
rary low-level vision applications [19], [30], [70]. Realizing
a 3×3 dilated convolution is not trivially possible by our
LIST module because of the 1×1 convolution in the first
stage. For this we propose GSAT layer. We mainly consider a
3×3 dilated convolution with same number of incoming and
outgoing channels. This is the most popular configuration in
contemporary architectures. Illustration of a GSAT layer is
shown in Fig. 3b.

Input to the layer is a feature volume of shape H×W×M.
Based on group convolution [36], we divide the incoming
M channels into g non-overlapping groups. Then each of

the groups is individually processed by an usual dilated 3×3
convolution. The initial group partitioning helps in reduction
of incoming channels to individual 3×3 dilated convolution
layers and thereby saves on parameters and FLOPs. However,
each of the g groups are processed independently on a sub-
group of channels without any cross-group interaction. This
property weakens the representation capability of the model.
Thus for cross channel interaction we perform a channel
shuffling operation [82] to periodically sample and stack
features from each of g groups. This results in an intermediate
volume of shape H×W×M. So features from a particular
group are stacked every alternate M

g channels apart. Thus
a group of M

g channels inside the intermediate volume has
features from each of the g groups. Next, to perform a cross
channel interaction [41] of features we include a 1×1 convo-
lution layer. However to reduce FLOPS, we perform grouped
1×1 convolution partitioned over g groups. Since the channel
shuffling operation already populated each of the sub-groups
with features from all the 3×3 dilated convolution layers, the
grouped 1×1 layer can now learn a non-linear transformation
conditioned on all the dilated convolution layers. Thus we
avoid any further channel shuffling operation. Lastly, inspired
by residual connection [26], we add the input with the 1×1
group convolution’s output. To our best knowledge, this is
the first realization of dilated convolution layer with grouped
convolution and channel shuffling.

1) Computational Savings: In this section we numerically
illustrate the computational benefits of using our GSAT layer
instead of usual dilated convolution layer. Number of trainable
parameters for a normal 3×3 dilated convolution layer is given
by,

P3×3|dil = 32 ×M2, (15)

where M is the number of incoming and outgoing channels.
For GSAT layer, number of parameters for the first stage of
grouped convolution is 32M2

g2 ×g = 32M2

g while for the second
stage of 1×1 grouped convolution is M2

g2 × g = M2

g . So, total
parameters for GSAT layer is,

PGSAT =
10×M2

g
. (16)

Ratio of parameters used in regular dilated convolution and
that used by proposed GSAT layer is,

R3×3|GSAT
params =

9g

10
. (17)

So, we can save parameters if R3×3|GSAT
params > 1, which requires

g ≥ 2. In fact, after hyper-parameters search (see Sec. IV-A1)
we used g = 8 and thus GSAT module requires almost
7× fewer parameters compared to normal dilated convolution
layer.

C. Efficient Upsampling Strategies

Upsampling of intermediate feature maps in a network is
an essential component for low-level vision tasks. However,
recent frameworks for efficient network design do not discuss
upsampling strategies because it is rarely required in classifi-
cation frameworks. We thus devote this section for discussing
possible solutions for efficient upsampling. In recent literature
transposed convolution (popular as deconvolution) [52] has
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Grouped Channels

Periodic
Channel Shuffle

(a) Channel-shuffle layer.

(b) GSAT module

Fig. 3: (a) Channel-shuffle layer as presented in [82] (b) Proposed GSAT layer for lightweight realization of dilated convolution. Channel Shuffle enables periodic mixing of
features coming from each of the preceeding dilated convolution layers. Concat block concatenates feature volumes (along channel dimension) output from the 1×1 convolution
layers. Dil-Conv: Dilated convolution; BN: Batch-normalization.

(a) Upsampling with usual subpixel convolution followed by pixel-shuffle operation.

(b) Upsampling with separable sub-pixel convolution followed by pixel-shuffle.

Fig. 4: Approaches for upsampling with sub-pixel convolution and pixel-shuffle layer.
Colored activation grids indicate the corresponding kernel responsible for activating that
grid point on feature map.

become the de facto choice for upsampling. However, from an
image generation perspective, transposed convolution is known
to render ‘checkboard’ effects [2], [53] on the final synthesized
image. Thus, even though there are efforts towards making
transposed convolution computationally faster [10], [66] we
explore other avenues for efficient upsampling.

1) Failure of Separable Kernels for Sub-Pixel Convolu-
tion: Sub-pixel convolution based upsampling is a preferred
paradigm of upsampling specifically for image generation
tasks because of its demonstrated ability to get rid of ‘check-
board’ artifacts introduced by transposed convolution layer.
In this section we elaborate on our initial failed attempt of
applying (see Fig. 5 for failed inpainting results) separable
kernels for sub-pixel convolution based upsampling and pro-
vide justifications for the same.

It can be shown that, for an upscale factor of, r, a sub-pixel
convolution with kernel shape (k, k, o×r2, i) ( height, width, #

of output channels, # of input channels) is equivalent to a that
of a transposed convolution by a kernel of shape (k, k, o, i).
After sub-pixel convolution, the o × r2 channel elements are
periodically shuffled to upscale feature maps by factor of r
along height and width. See Fig. 4a for visualization. Refer to
[60], [61] for more detailed derivation.

From the theory of sub-pixel convolution we know that
with an upscale factor of 2, sub-pixel convolution can learn
to represent n feature maps in LR (low resolution space)
which are equivalent to n

4 feature maps in HR (high resolution
space). We will show that this essentially means both networks
have same run time complexity but sub-pixel convolution has
more parameters. Let us consider a general case where shape
of input volume at layer l − 1 is (height, width, depth) =
(H2 ,

W
2 , cl−1). The target is to upscale this to spatial resolution

of H×W , for next layer, l. Let, for sub-pixel convolution we
choose kernels of shape (k, k, cl, cl−1). Then for counterpart of
HR model (which first does deterministic up-scaling followed
by convolution in HR space itself), kernel sizes will be
(k, k, cl4 , cl−1). Total FLOPs for sub-pixel convolution is,

FLR = k2 × H

2
× W

2
× cl−1 × cl . (18)

The number of trainable parameters for LR model is,
|θ|LR = k2 × cl−1 × cl . (19)

For convolution in HR, total FLOPs,
FHR = k2 ×H ×W × cl−1 ×

cl
4
, (20)

and number of parameters,
|θ|HR = k2 × cl−1 ×

cl
4
. (21)

So, important observation is that FLOPs for both LR and HR
models are same but LR model has more parameters and thus
greater representation capability.

Let us now examine what will happen when we try to
realize separable sub-pixel convolution. See Fig. 4b for a
visualization. In the first stage, we need kernels of shape
(k, k, cl−1, 1) (height, width, output channels, input channels).
In this stage, total FLOPs,

FLR|sep1 = k2 × H

2
× W

2
× cl−1 , (22)

and number of parameters,
|θ|LR|sep1 = k2 × cl−1 . (23)
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In the next stage we need kernels of shape (1, 1, cl, cl−1). Total
FLOPs in this stage,

FLR|sep2 = cl−1 ×
H

2
× W

2
× cl , (24)

and number of trainable parameters,
|θ|LR|sep2 = cl−1 × cl . (25)

So, total FLOPs for separable LR model, FLR|sep =
FLR|sep1 + FLR|sep2 and total number of parameters,
|θ|LR|sep = |θ|LR|sep1 + |θ|LR|sep2 . Now consider the ratio,

|θ|LR|sep
|θ|HR

= 4

[
1

k2
+

1

cl

]
(26)

|θ|LR|sep
|θ|HR < 1 always and thus we see that converting a

sub-pixel convolution to a separable paradigm reduces
its representation prowess with respect to a convolution
in HR. Similarly, if we compare the FLOPs by
FLR|sep
FHR

= 4
[

1
k2 + 1

cl

]
, separable sub-pixel convolution

is computationally cheaper. But because of its reduced
representation capability, it is not recommended for practical
applications.

2) Deterministic Upsampling + Convolution: One way to
mitigate ‘checkboard’ effect is to disentangle upsampling and
convolution operations [53]. An usual procedure is to use some
deterministic upscaling followed by convolution in the high
resolution space. This has worked well in applications such
as super resolution [13] and inpainting [76]. But, when imple-
mented in naive version, this increases the computational cost.
For example, if we do a bilinear upscaling by 4× followed by
convolution, there is a quadratic increase of feature size but
‘same information content’ (if we count the number of floats).
This makes bilinear upsampling + convolution almost 4×
costlier than transposed convolution. We optimize this concept
by first upsampling with bilinear interpolation followed by
an efficient convolution block realized by the proposed LIST
layer. This is our preferred method for efficient upsampling.

D. Downsampling in Network

To maintain the homogeneity in network design we prefer
to realize spatial downsampling with LIST layer. However,
strided convolution is not trivially possible by LIST module
because of initial 1×1 convolution stream. So, we first down-
sample feature maps with bilinear interpolation and follow up
with LIST based efficient convolution.

IV. EXPERIMENTS AND RESULTS

We organize our results as follows. In Sec. IV-A, we ini-
tially perform extensive studies to select the hyper parameters
governing the design choices for various proposed modules
based on image inpainting. We systematically investigate the
role of individual components towards reduction of parameters
and FLOPs. This is followed by comparison with recent full
capacity inpainting baselines and compressed models realized
with MobileNet [29], ShuffleNet [82] and ShuffleNetV2 [48].

Next, with our understanding of best network configurations
we compare applicability of our proposed layers on image
denoising (Sec. IV-B) and image super-resolution (Sec. IV-C).

It is encouraging to note that the proposed layers are quite
insensitive to hyper parameters across different tasks which
allows us to reuse the same set of hyper parameters across all
the three above mentioned applications without degradation of
visual quality.

A. Image Inpainting

We select the globally and locally consistent image inpaint-
ing model, GLCIC [30] as our baseline for image inpainting.
Currently, GLCIC serves as a strong Generative Adversarial
Network (GAN) [16] based contemporary baseline for inpaint-
ing and we aim at realizing a lightweight version of GLCIC
using our proposed layers. A GAN framework consists of two
deep neural nets, generator, GθG , and discriminator, DθD . The
task of the generator is to generate an image, x ∈ RH×W×3
with a latent noise prior vector, z ∈ Rd, as input. z is
sampled from a known distribution, pz(z). A common choice
[16] is, z ∼ U [−1, 1]d. The discriminator has to distinguish
real samples (sampled from pdata) from generated samples.
Discriminator and generator play the following two-player
min-max game on V (DθD , GθG):

min
GθG

max
DθD

V (DθD , GθG) = Ex∼pdata(x)[logDθD (x)]

+ Ez∼pz(z)[1−DθD (GθG(z))]. (27)

At the core, GLCIC comprises of repeated applications of 3×3
convolution, 3×3 dilated convolution and transposed convolu-
tion layers. Please refer to [30] for details of the architecture.
We replaced the corresponding layers with proposed LIST,
GSAT and LIST based upsampling layers.
Automated Visual Quality Metric: Manually analyzing the
perceptual quality of reconstruction by different models is not
feasible. Recent works [39], [76] have shown that PSNR and
MS-SSIM metrics are not suitable for evaluating quality of
adversarial loss guided reconstructions. Analyzing the quality
and diversity of GAN samples is still an open research topic.
Recently Fréchet Inception Distance (FID) [27] was proposed
for quantifying quality and diversity of GAN samples. Lower
FID value indicates overall better quality and diversity of
generated samples. For automated screening of models, we
use FID as the base metric.
Datasets: We experimented on CelebA (128×128) [43],
CelebA-HQ (256×256) [33], Places2 (256×256) [87] and
DTD (256×256) [11]. For CelebA, hole sizes greater than
48×48 occludes almost entire face and thus maximum training
hole size is 48×48 at random location. For comparing FID
during evaluation, a randomly positioned hole (but same for
all models for a given image) of 48×48 is considered. At
256×256 image resolution, the maximum hole size of 96×96
is considered during training and FID is reported at hole size
of 96×96. From CelebA, CelebA-HQ, Places2, and DTD we
kept 20000, 10000, 20000, and 1000 (converted to 4000 with
horizontal and vertical flip) samples for testing.
Training Details: In practice, we follow the stagewise train-
ing procedure as presented in [30]. In Stage-1, we pre-
train the inpainting (generator) network alone with MSE
(Mean Squared Error) loss for T1 iterations. In Stage-2, we
freeze the parameters of inpainting network and pre-train the
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TABLE I: FID scores on CelebA validation set by networks controlled by different
settings of bottleneck ratio, k and branching factor, nb of proposed LIST module.

1
k = 0.25

1
nb

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FID 6.93 6.95 6.98 7.10 7.11 8.92 10.23 14.25
1
nb

= 0.5
1
k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FID 8.11 7.31 6.92 6.85 6.83 6.80 6.78 6.76

TABLE II: FID scores on CelebA validation set with different variants of our models
controlled by number of groups (g) in the proposed GSAT module.

g = 1 g = 2 g = 4 g = 8 g = 16 g = 32
6.72 6.75 6.80 7.09 10.23 20.31

Fig. 5: Failure of separable sub-pixel convolution based upsampling (proposed model,
M2). For each triad, Left: Masked Image, Middle: Output with model M2 guided
decoder. Right: Output with decoder having regular sub-pixel convolution (proposed
model M1) based upsampling. Best viewed zoomed in.

critic (discriminator) network to distinguish between real and
inpainted samples for T2 iterations using cross-entropy loss.
In Stage-3, both completion and critic networks are iteratively
updated under the min-max GAN game formulation [16] for
T3 iterations.
Implementation Details We first discuss how we select design
hyper parameters of our network modules such as LIST and
GSAT. For a given parameter setting, we train on CelebA
dataset and evaluate the FID on CelebA validation set (10000
samples). Due to lack of massive computational resources, we
run parameter search sweep only on CelebA and adopted our
understanding on other datasets. It is encouraging to see that
lessons learned from CelebA generalize well to other datasets
also. We set T1, T2 and T3 to 106, 105 and 106 iterations.
Mini batch gradient descent based optimization is performed
with ADAM [35] optimizer with batch size = 64. Following
[39], we perform paired two-sided Wilcoxon signed-rank tests
and significance level set to 10−4.

1) Hyper-parameters Search:
Design parameters for LIST module: A LIST module is

characterized by the two hyper parameters, k and nb. Firstly,
we study the effect of reducing 3×3 kernels in the network by
varying 1

nb
∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. To keep things

constant, dilation layer for each case was realized with normal
dilated convolution and 1

k fixed at 0.25. In Table I we report
FID metrics on CelebA validation set at a hole size of 48×48.
Decreasing 1

nb
(pushing more computations to 3×3 stream)

less than 0.5 does not improve FID appreciably but increases
the model parameters while FID deteriorates briskly with
increase of 1

nb
(pushing more computations to 1×1 stream).

We thus keep nb = 2 in our further experiments. Such a
balance of channels along two parallel processing streams is
also recommended in [44], [54]. Next, we sweep over different
settings of 1

k at a fixed 1
nb

= 0.5. Increasing 1
k improves the

TABLE III: Different variants of proposed light-weight inpainting models. Variations
of models are achieved by different strategies to realize 3×3 convolution layers,
dilated/atrous convolution layers and upsampling in decoder sections. LIST: 3×3 convo-
lution realized with proposed LIST layer; GSAT: Proposed Grouped-Shuffled convolution
based dilated convolution instead of normal dilated convolution; DS: Depthwise separable
3×3 convolution; BiL: Bilinear upsampling.

Model 3X3 Upsampling Dilation Params (106) FLOPs (109)

M1 DS Pixel Shuffle
(Normal Conv.) Normal 3.42 33.1

M2 DS Pixel Shuffle
(Separable Conv.) Normal 2.93 27.1

M3 DS BiL + DS Normal 2.81 26.9
M4 LIST BiL + DS Normal 2.63 24.8
M5 LIST BiL + LIST Normal 2.61 24.0
M6 LIST BiL + LIST GSAT 0.54 7.4

representation efficacy of the Stage-1 1×1 layer and thus aids
in FID improvement but at a cost of higher parameters. With
1
k ≥ 0.35, FID improvement almost saturates.

Finally, to find a suitable threshold of FID aligned with
human perception, we showed 100 inpainted images of five
models with FID ∈ [6.5, 7.5] (model with FID ≥ 8 are
perceptually not acceptable) to five independent raters who
were asked to rate a given image in [1, 5]; 5: excellent and 1:
bad quality. The difference of mean scores of models with
FID ≤ 7.0 were statistically insignificant. With 1

nb
= 0.5,

from Table I we see that 1
k = 0.30 yields model in the regime

of FID ≈ 7.0. Since channel counts in deep nets are usually
of the form of 2r, r ∈ N, we proceed in the remaining paper
with k = 4 ( 1k = 0.25) and nb = 2 ( 1

nb
= 0.5).

Number of Groups in GSAT layer: Our proposed
GSAT module is characterized by number of groups, g, for
the group convolution layers. For simplicity of parameter
sweep, we keep the group numbers same for dilated 3×3
and 1×1 stages. In Table II we report FID scores on CelebA
validation set for different values of g. For other layers,
all models used LIST with k = 4 and nb = 2 as discussed
in previous section. A smaller value of g indicates more
computational load on the initial 3×3 layers and subsequent
better FIDs. However, at g = 8, we get FID ≈ 7.0, which is
perceptually acceptable. On the contrary, increasing g creates
many independent feature volumes and the combined channel
shuffle and 1×1 group convolution is not able to properly
amalgamate the groups leading to higher FID. So, for future
experiments we set g = 8 for GSAT layers.

2) Different Speedup Variants: In Table III we define the
proposed architecture variants and compare the associated
parameters and FLOPs. Such analysis gives a foundation to
appreciate the effect of a given speedup technique. In Table
V we compare the FID scores of different proposed models
with full-scale baseline models. Some of the key lessons from
Tables III and V:
– Comparing M3 and M4: Proposed LIST layer is a
much more efficient alternative to depthwise separable 3×3
convolution layer, but both models have similar reconstruction
performances.
– Comparing M5 and M6: Proposed GSAT layer used
in M6 as an alternative for normal dilated convolution
layer significantly helps in reduction of parameters without
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TABLE IV: Comparing FLOPs, number of trainable parameters and model sizes
of inpainting models. Full capacity baseline models of GLCIC [30], GIP [76] and Shift
[74] are compared against variants of our proposed efficient models, M1, M2, M3, and
M6 derived from GLCIC.

GLCIC GIP Shift M1 M2 M3 M6

FLOPs (109) 65.0 41.2 70.1 33.1 27.1 26.9 7.4
Params (106) 6.02 2.98 6.24 3.42 2.93 2.81 0.54

TABLE V: FID (lower is better) of full-scale baselines of GIP [76], Shift[74] and
GLCIC [30] and proposed efficient variants, M1-M6 derived from GLCIC.

Dataset Full-Scale Baselines
GIP Shift GLCIC

CelebA 6.98 6.95 7.00
CelebA-HQ 8.12 8.00 8.05
Places2 13.10 13.00 13.25
DTD 6.00 6.01 6.04

Proposed Efficient Variants
M1 M2 M3 M4 M5 M6

CelebA 7.12 23.41 7.11 7.09 7.11 7.03
CelebA-HQ 8.09 27.21 8.16 8.14 8.10 8.09
Places2 13.27 30.41 13.27 13.29 13.30 13.39
DTD 6.04 18.21 6.84 6.06 6.06 6.04

hampering visual quality. Since, M6 combines both LIST
and GSAT layers, it is our preferred proposed model unless
otherwise stated.
– As per our theoretical justification, a network with separable
sub-pixel convolution (model M2) performs worse than a
network with normal convolution based sub-pixel convolution
(model M1) as reflected by higher FID scores of M2. Also,
see Fig. 5 for visualizing such failures.
– Comparing M1 and M3: Model, M3, with bilinear
upsampling + separable convolution has fewer FLOPs than
M1 (upsampled with sub-pixel convolution) while having
similar FID. Thus it is prudent to have efficient bilinear
upsampling which we improve further with proposed LIST
based upsampling in M5.

3) Comparing with full-scale baselines: Since we design
all our smaller models based on the architecture of GLCIC
[30], it is fair to compare performances only with GLCIC
as baseline. However, for initial benchmarking of our model
designs we also compared against recent state-of-the-art deep
learning based models of GIP [76] and Shift [74].
Reduction in Computation In Table IV we report the param-
eters count, FLOPs and mobile memory size. Our preferred
model, M6 achieves almost 91% ( = 6.2−0.54

6.2 ×100%) relative
parameters savings compared to the parent framework of
GLCIC with 88.6% and 93.5% relative savings in FLOPs.
Comparison of Reconstruction In Table V we report FID
metrics of the comparing methods @256×256 on CelebA-HQ,
Places2, and DTD datasets. We did not find any significant
difference of FID between any of our models (except M2)
and the full-scale baselines. In Fig. 6 we provide some
inpainting examples by GLCIC, GIP, Shift and our preferred
proposed model, M6. Clearly, the reconstruction qualities of
our proposed smaller model are indistinguishable from full-
scale baselines.

Mean Opinion Score Testing (MOS): To further bolster our
findings, we conducted MOS testing to visually quantify the
quality of inpainting by different models. Raters were asked
to rate an inpainted image in the scale of 1 (bad quality) to

TABLE VI: Mean Opinion Score (MOS) by different full-scale baselines of GIP
[76], Shift [74], GLCIC [30] and our cheaper variants,M3 andM6 derived from GLCIC.
Last column shows MOS on original images.

Dataset GIP Shift GLCIC M3 M6 Original
CelebA 4.24 4.30 4.25 4.18 4.22 4.42
CelebA-HQ 4.17 4.20 4.14 4.13 4.18 4.72
Places2 4.00 3.97 3.95 3.93 3.98 4.60
DTD 4.36 4.38 4.41 4.32 4.40 4.55

TABLE VII: Comparing average run time (in seconds) on different mobile devices
(first three rows) and a commodity CPU (last row). Full-scale baseline models of GLCIC
[30], GIP [76] and Shift [74] are compared against our proposed efficient variants M1,
M2, M3, and M6 derived from GLCIC.

Device GLCIC GIP Shift M1 M2 M3 M6

Mi A1 8.2 5.5 9.2 1.9 1.6 1.4 0.8
Motorola 8.0 5.4 9.1 1.7 1.5 1.2 0.7
Asus 5.8 3.1 6.2 1.0 0.8 0.6 0.35
CPU 2.1 0.8 1.4 0.49 0.42 0.38 0.30

5 (excellent quality). Total of 20 raters were selected for the
study. From each dataset, each rater was shown 50 inpainted
images by GIP, Shift, GLCIC and proposed models M3, M6

models. Original images were also rated. So, each rater rated
1200 samples (4 datasets × 6 models × 50 images). We used
two random positioned holes (but same across all model for
an image) of 64×64. In Table VI we report the MOS for each
dataset. Encouragingly MOS also follows the trend of FID
scores. Similar to our FID findings, the difference of MOS
scores between our models and any of the full-scale baselines
are not significant.

4) Execution Time on Mobile and CPU: For comparison on
mobile we select two low-end mobile device namely, Mi A1
and Motorola G5 S-Plus and one high-end Asus Zenfone 5Z
all running on Android operating system. Mi and Motorola has
1.9GHz Qualcomm Snapdragon 625 processor while Asus has
2.8 GHz snapdragon 845 processor. TensorFlow Lite [46] was
used for mobile execution and the framework was executed
on a single thread. In Table VII we report the execution
times on 256×256 resolution images. Our preferred model,
M6 consistently runs at milli-seconds interval compared to
multiple seconds by the full-scale baselines. It is also evident
that newer generation processor present in Asus mobile helps
in faster execution compared to the lower-end models of
Mi and Motorola. We also profiled the execution times of
the models on CPU of a regular commodity laptop with
Intel i5 processor and 8GB RAM @ 2.2GHz without any
GPU acceleration. It is encouraging to see that even without
GPU, model M6 is able to inpaint approximately 3.3 second
compared to 0.9, 1.25, and 0.7 second by [30], [74], [76]
respectively. Another encouraging observation is that sub-
pixel convolution based upsampling (models M1 and M2) is
slower on resource constrained mobile platform than proposed
bilinear upsampling followed by efficient convolution. This is
attributed to the computationally heavy pixel-shuffle operation
in M1 and M2. However, on a more resourceful platform such
as CPU, this difference is nullified. This observation further
strengthens the pragmatism of using bilinear upsampling based
efficient upsampling instead of pixel-shuffle based upsampling.

5) Comparison with MobileNet and ShuffleNet: We also
designed cheaper variants of GLCIC baseline using efficient
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TABLE VIII: Comparing computational requirements of various efficient models
derived from the full-scale baseline of GLCIC [30] for inpainting. Cheaper variants
using MobileNet, ShuffleNet and ShuffleNetV2 modules are indexed by ‘MobNet′,
‘ShNet′ and ‘ShNetV 2′ superscripts.

Method FLOPs Params Mobile CPU Memory
(109) (106) (s) (s) (MB)

GLCIC 65.0 6.02 5.8 2.1 40.1
GLCICMobNet 9.8 0.68 0.52 1.1 4.3
GLCICShNet 11.4 0.79 0.86 1.3 5.7
GLCICShNetV 2 10.6 0.70 0.68 1.2 4.9
GLCICM6 (Proposed) 7.4 0.54 0.35 0.3 2.6

convolution units from MobileNet [29] and ShuffleNet [82]
and ShuffleNetV2 [83]. However, as discussed earlier, these
frameworks were targeted for classification tasks and lack
any efficient designs for dilated convolution and upsampling
operations. For example, both ShuffleNet and ShuffleNetV2
units are invalid on layers in which the number of input and
output channels are not same. This is a common design for
any upsampling layer. We could have used usual full-scale
dilated and transposed convolution for these three frameworks,
but for fair comparison with our compressed networks, we
add two modifications to these competing frameworks. Firstly,
for dilated convolution, we initially perform a dilated 3×3
depthwise convolution followed by 1×1 pointwise convolu-
tion. This, itself can be seen as a novel cheaper way of
designing dilated convolution layer. Next, for upsampling, we
perform bilinear upsampling followed by separable convolu-
tion. With these modified settings, we did not find any marked
difference of visual quality between the cheaper models and
baselines (samples provided in supplementary material for
space constraints). From Table VIII we see that our recom-
mended model, M6 is much more computationally efficient
than MobileNet and ShuffleNet variants and, more importantly,
M6 has all the necessary components to be seamlessly used
in ‘image-to-image’ translation tasks.

B. Image Denoising

In this section we show the applicability of our modules
to reduce the computational costs of recent state-of-the-art
image denoising networks. Henceforth in all experiments
we will be using the design strategy and components
from our variant, M6, to realize a cheaper version of a
given baseline. We initially experimented with ‘DnCNN’
framework of Zhang et al. [81] for synthetic All White
Gaussian Noise (AWGN) removal. We term our proposed
smaller variant as DnCNNM6 . We also experimented to
compress the more recent model of CBDNet [18] which
showed appreciable performance on real-world unknown
noise removal and has immediate applications in today’s
AI-enable cameras. We term the smaller model as CBDNetM6 .

1) Datasets and Training Details:
Synthetic Dataset: We initially compared the performance
of our cheaper realization of DnCNN on synthetic AWGN
on the widely used BSD68 [58] dataset consisting of 68 test
images. We experimented on four different noise levels of
σ = 10, 15, 25, 50 and zero mean. We followed DnCNN to
use 400 images with size 180× 180 for training the network.

Random patches of 40× 40 were sampled for training.
Real World Dataset: We also experimented with datasets
perturbed with noise from real life unknown noise distributions
usually encountered while capturing pictures with contempo-
rary cameras. For this, we followed the procedures in CBDNet
for training our models. A combination of synthetic noise
images and real noisy images (120 from RENOIR[3], 400
images from BSD500[50], 1600 images from Waterloo[47],
and 1600 images from MIT-Adobe FIve[6]) were used for
training.

2) Denoising Performance:
Since all the models are trained to minimize reconstruction

loss (instead of adversarial loss), it is pragmatic to compare
the models directly in terms of PSNR and SSIM (Structural
Similarity Index ∈ 0, 1) instead of FID. Also, FID calculation
requires at least a few thousand samples. However, our test
set has a few hundred samples and thus FID metric would
not have been a faithful representation of performance.
Denoising on Synthetic Dataset: In Table IX we report the
denoising performances of baseline DnCNN and our proposed
DnCNNM6 in terms of PSNR and SSIM for AWGN noise
removal. SSIM ∈ 0, 1 is the acronym for Structural Similarity
Index. It is used a metric for comparing similarity between
two images. SSIM = 1 means perfect match between two
images. Across all noise levels, our model has comparable
performance to that of DnCNN baseline.
Denoising on Real Dataset For quantitative evaluation we
used the publicly available PolyU dataset [73] containing pairs
of real-world noisy and ground truth images. The average
PSNR and SSIM for full-scale CBDNet net is 37.95dB and
0.951 while for proposed CBDNetM6 is 37.29dB and 0.948
Again, the differences are not significant. It is encouraging
to see that even on real-world noise removal, our compressed
variant performs at par with the full-scale CBDNet. Some
visual comparisons are provided in Fig. 7. Additionally, for
qualitative evaluations, we used the high-resolution DND [55]
dataset in which the ground truths are not publicly available.
Due to size limitations we include DND results in this Google
Drive link.
Human Rating: In Table XI we report the MOS on different
datasets. For each dataset, each subject was shown 20 random
pairs of noisy and denoised (either from baseline or from
our our compressed variant). Total 10 humans participated
in the study. The grading strategy (between 0-5) was kept
same as that we used during inpainting. We did not find any
statistically significant difference (significance set to 10−4)
between the MOS of baselines and our variant on any of the
datasets.

3) Reduction in Computation: We report the total number
of parameters for the full-scale baseline models of DnCNN
and CBDNet and our proposed compressed versions in Table
X. On DnCNN we achieve 87.27% and on CBDNet we
achieve 90.2% relative savings of parameters. Since the
models are fully convolutional, any arbitrary resolution of
image can be processed. Thus reporting a specific count of
FLOPs is not possible. However, for reference, in Table X
we report the FLOPs for processing input image of resolution

https://drive.google.com/open?id=1eO1rKimdpZ17WJcDE_hba1-yP__gtDYx
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Fig. 6: Visual comparison on inpainting on CelebA-HQ (Row 1), Places2 (Row 2) and DTD (Row 3). GLCIC [30], GIP [76] and Shift [74] are full-scale baselines. Our proposed
model is significantly cheaper in terms on parameters yet generates similar quality reconstructions. Best viewed when zoomed in.

TABLE IX: Comparison of PSNR and SSIM for AWGN denoising on BSD68 dataset by full capacity baseline of DnCNN and our proposed cheaper variant DnCNNM6 .

Noise Level (σ) → 10 15 25 50
PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Methods DnCNN 33.78 0.92 31.75 0.89 29.23 0.83 26.29 0.72
DnCNNM6 (Proposed) 33.66 0.92 31.50 0.88 29.11 0.82 26.10 0.71

TABLE X: Computational requirements of different denoising networks. DnCNN
[81] and CBDNet [17] are two different full-scale denoising baselines. Cheaper variants
using MobileNet, ShuffleNet and ShuffleNetV2 modules are indexed by ‘MobNet‘,
‘ShNet‘ and ‘ShNetV 2‘ superscripts. Interesting to note that CBDNet mainly oper-
ates on down-sampled feature space unlike DnCNN which operates on full-resolution.
So CBDNet baseline has lower FLOPs compared to DnCNN even though the former has
more parameters.

Method FLOPs Params Mobile CPU Memory
(109) (106) (s) (s) (MB)

DnCNN 36.73 0.55 3.43 0.58 7.8
CBDNet 36.09 4.34 3.30 0.49 29.4
DnCNNMobNet 5.73 0.08 0.34 0.20 0.46
DnCNNShNet 7.44 0.18 0.41 0.24 0.6
DnCNNShNetV 2 7.30 0.14 0.37 0.22 0.5
CBDNetMobNet 6.23 0.6 0.40 0.27 3.1
CBDNetShNet 8.09 0.72 0.52 0.30 4.3
CBDNetShNetV 2 7.60 0.69 0.48 0.28 4.1
DnCNNM6

(Proposed)
2.97 0.04 0.16 0.11 0.21

CBDNetM6

(Proposed)
4.12 0.41 0.25 0.14 1.93

256×256. Proposed CBDNetM6 achieves 89.4% relative
savings in FLOPS compared to CBDNet. We also compare
against corresponding compressed variants of DnCNN and
CBDNet with MobileNet, ShuffleNet and ShuffleNetV2
modules. Our proposed variant is more efficient in terms of
memory requirement and FLOPs compared to both MobileNet

TABLE XI: MOS of full-scale baseline of DnCNN [81] and proposed cheaper
variant, DnCNNM6 , for AWGN denoising on Set68. For real-world denoising on PolyU
dataset we compare baseline of CBDNet [17] and our cheaper variant, CBDNetM6 . Last
column shows MOS on original images.

Dataset DnCNN CBDNet Proposed Original
Set68 (σ =10) 4.58 - 4.60 4.72
Set68 (σ =15) 4.34 - 4.32 4.72
Set68 (σ =25) 4.10 - 4.11 4.72
Real (PolyU) - 4.50 4.49 4.83

and ShuffleNet variants.

4) Performance on Mobile and CPU:: In Table X we com-
pare the execution times (@ 256×256) on mobile (Asus) and
CPU and also the model sizes for mobile deployment. Both
of our proposed variants are computationally more economic
compared to full-scale baselines as well as MobileNet and
ShuffleNet variants.

Image denoising is an essential component in majority of
contemporary AI-enabled smartphones and the above pre-
sented results make our compressed variant a natural substitute
for the full-scale models on mobile platforms.
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Fig. 7: Image denoising on real-world PolyU dataset by full-scale baseline of CBDNet and proposed cheaper variant, CBDNetM6 . More examples provided in supplementary
material.

C. Application in Image Super-Resolution

In this section we showcase the efficacy of our modules
for single image super-resolution. For this, we consider
the benchmark SRGAN model [39] as the baseline for 4×
up-scaling. The baseline network consists of series of residual
blocks (realized with 3×3 convolution) and upsampling
is achieved with sub-pixel convolution with pixel-shuffle
operation. We again follow the design principles of our
model, M6 to realize cheaper variant of SRGAN.

1) Datasets and Training Details: We used the training
partition of Places2 dataset [86] to train baseline and proposed
models. Similar to SRGAN we tested the models on the
Set5 [5], Set14 [79], and BSD 100 (testing set of BSD300
[49]) dataset. Following [39], we randomly cropped 96×96
patch from a given image as HR (high resolution) target and
down-sample with bicubic interpolation by 4× to create the
corresponding LR (low resolution) input.

We follow the exact same protocol of stagewise training
as done in [39]. Initially, we train the network with only
`2 reconstruction loss. The authors term this network as
SRResNet. For our smaller model, we term this network as
SRResNetM6 . Next, we fine-tune the network with VGG-54
content loss and an adversarial loss. Network at this stage is
termed at SRGAN for baseline network and SRAGNM6 for
our proposed smaller network.

2) Super-resolution Performance:
Quantitative Comparison: In Table XII we first compare the
PSNR (in dB) of SRResNet and SRResNetM6 . Since, both of
these models are trained on MSE loss, we compare the PSNR

TABLE XII: PSNR (in dB) for 4× super-resolution by baseline SRResNet [39]
and our proposed cheaper variant SRResNetM6 on Set5, Set14, and BSD100 datasets.

Dataset SRResNet SRResNetM6 (Proposed)
Set5 31.85 31.72
Set14 27.90 27.74
BSD100 27.01 26.90

metric. Based on the average PSNR, we could not find any
significant difference (significance level set to 10−4) between
the two models.
Qualitative Comparison Next, we conducted a MOS test for
the 2 models with 10 independent raters. Each rater was shown
the original HR image and the super resolved versions by
SRGAN and SRGANM6 networks. In Table XIV we report
the MOS on the three datasets. Again, we could not find
any significant difference between the scores received by the
models. In Fig. 8 we visualize some super-resolved images
by the two models. It is visually challenging to distinguish
samples from the full-scale SRGAN baseline and our cheaper
variant. More examples provided in supplementary material.

3) Reduction in Computation: In Table XIII we report the
total number of parameters and FLOPs of different models.
FLOPs were calculated on BSD100 dataset in which the orig-
inal images are usually of dimension 480×320. or 320×480.
So, for 4× super-resolution, input resolution is either 80×120
or 120×80. Compared to the baseline of SRGAN, our pro-
posed cheaper variant, SRGANM6 achieves relative parameters
and FLOPs savings of 88.4% and 99%. Proposed model is
also appreciably cheaper compared MobileNet and ShuffleNet
variants.
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Input LR Original HR SRGAN(Params=1.5M) Proposed(Params=0.1M)

Fig. 8: 4× super-resolution by full-scale baseline of SRGAN and our proposed cheaper variant, SRAGNM6 .

TABLE XIII: Computational details of different super-resolution networks. SRGAN
is the full-scale baseline. Cheaper variants using MobileNet, ShuffleNet and ShuffleNetV2
modules are indexed by ‘MobNet‘, ‘ShNet‘ and ‘ShNetV 2‘ superscripts.

Method FLOPs Params Mobile CPU Memory
(109) (106) (s) (s) (MB)

SRGAN 38.4 1.55 3.48 0.65 12.8
SRGANMobNet 0.42 0.19 0.05 0.03 1.1
SRGANShNet 1.08 0.42 0.11 0.07 2.2
SRGANShNetV 2 1.05 0.40 0.09 0.05 1.7
SRGANM6

(Proposed) 0.27 0.10 0.02 0.01 0.5

TABLE XIV: Mean Opinion Score for 4× super-resolution on outputs of baseline
SRGAN-54 [39], our proposed cheaper variant SRGAN-54M6 and original high-
resolution images.

Dataset SRGAN SRGANM6 (Proposed) Original
Set5 3.62 3.64 4.45
Set14 3.69 3.72 4.41
BSD100 3.50 3.49 4.23

4) Performance on Mobiles: In Table XIII we report the
mobile model sizes and execution times on the Asus mobile
and the commodity CPU. Proposed variant saves 92.1%,
47.1%, 76.1% and 75.0% on mobile memory compared
to SRGAN-54 baseline, MobileNet, ShuffleNet and Shuf-
fleNetV2 variants respectively. Execution speeds are reported
on BSD100 dataset. Our proposed variant achieves significant
speedup and reduction of FLOPs compared to full-scale base-
line and even MobileNet and ShuffleNet versions.

V. CONCLUSION

In this paper we introduced several convolutional building
blocks for low-level restoration tasks. Our proposed modules,
LIST and GSAT were shown to be task agnostic and gen-
eralized to variety of restoration tasks. We showed that with
specific design consideration, LIST layer can be made low cost
computationally than contemporary de facto choices of depth-
wise separable and group convolution based 3×3 layer. We
analytically and empirically analyzed the shortcoming of using
depthwise separable kernels to realize sub-pixel convolution
based upsampling in an encoder-decoder network configura-
tion. Instead of we showed that homogeneity of network struc-
ture can be maintained by deterministic upsampling (instead
of transposed convolution or pixel-shuffle based upsampling)
followed by efficient convolution with LIST layer. Extensive
evaluations on resource constrained platforms revealed the
effectiveness of our modules in designing computationally
efficient yet visually accurate models.
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