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Abstract—In the field of UAV object tracking, correlation
filter based approaches have received lots of attention due to
their computational efficiency. The methods learn filters by
the ridge regression and generate response maps to distinguish
the specified target from the background. An ideal filter can
predict the object’s position in a new frame, and in turn, can
backtrack the object in the past frames. However, the neglect
of tracking reversibility in most methods limits the potential
of using inter-frame information to improve performance. In
this work, a novel bidirectional incongruity-aware correlation
filter is presented based on the nature of tracking reversibility.
The proposed method incorporates the response-based bidi-
rectional incongruity, which represents the gap between the
filters’ discriminative difference in the forward and backward
tracking perspective caused by object appearance changes. It
enables the filter not only to inherit the discriminability from
previous filters but also to enhance the generalization capability
to unpredictable appearance variations in upcoming frames.
Moreover, a temporary block-based strategy is introduced to
empower the filter accommodate more drastic object appearance
changes and make more effective use of inter-frame information.
Comprehensive experiments are conducted on three challenging
UAV tracking benchmarks, including UAV123@10fps, DTB70,
and UAVDT. Experimental results indicate that the proposed
method has superior performance compared with the other
34 state-of-the-art trackers. Our approach permits real-time
performance at ∼46.8 FPS on a single CPU and is suitable for
UAV online tracking applications.

Index Terms—Aerial video analysis, unmanned aerial vehicle,
visual object tracking, discriminative correlation filter, temporary
block-based bidirectional incongruity

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) with visual percep-
tion systems have been widely used in various scenarios,

such as autonomous landing [2], object following [3], infras-
tructure inspection [4], and human-computer interaction [5]. In
UAV object tracking, the objective is to predict the specified
target’s location and size over the entire sequence captured by
an onboard camera. The problem is particularly challenging
because only the initial state including the target’s location
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and size is known. Despite the considerable progress made in
object tracking in recent years, there still leave many chal-
lenges in UAV tracking scenarios, such as limited computing
capability, restricted power source, large viewpoint changes,
as well as fast object and UAV motion.

Recently, the discriminative correlation filter (CF) based
tracking approach has received widespread attention due to its
high computational efficiency and excellent performance. As
a tracking-by-detection method, the CF-based approach learns
a discriminative correlation filter by minimizing the squared
error between the expected and actual correlation responses.
The learned filter can be used to estimate the object’s location
in each new frame. The computational efficiency of CFs
originates from the correlation computation in the Fourier
domain at both training and detection stages. Recent works
further improve CFs’ performance by applying kernel trick
[6], [7], multiple hand-crafted features [8]–[12], boundary
effects suppression [13]–[17], joint reliability learning [18]–
[20], deep features from convolutional neural networks [11],
[21]–[26], and deep learning strategies [27]–[30]. Most CF-
based trackers are learned using only intra-frame information
and ignore the inter-frame information that can maintain
tracking reversibility. The reversibility represents that an ideal
filter can not only predict the object’s location in a new
frame but also backtrack the location in the previous frames.
In this work, we investigate the problem of incorporating
the nature of inter-frame based tracking reversibility into CF
learning for robust UAV tracking. In many UAV tracking
scenes, the object appearance frequently changes due to the
fast motion of the object and the UAV. It leads to the subop-
timal discriminative power of CFs that only use intra-frame
information for training. To exploit the limited information in
the tracking process, a straightforward method is to incorporate
all historical samples into CF learning [13]. However, this
sample-level scheme has high computational requirements and
is not fit for real-time UAV tracking applications. Another
strategy is based on the filter-level and utilizes the temporal
regularization term [25] to approximately replace multiple
historical training samples. Such an approximation, which
aims to make the filter more similar to the previous one, results
in suboptimal generalization ability of the learned model and
limits the performance when encountering drastic appearance
changes. Since the inference of the object’s location relies
on the filter’s response to the new frame, the response-level
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Fig. 1. Plots of DP-based precision versus tracking speed and AUC-based success rate versus tracking speed of the proposed TB-BiCF tracker and other 34
state-of-the-art trackers on the challenging UAVDT [31] benchmark. Results show that TB-BiCF achieves the impressive performance in the precision and
success rate, and permits a real-time tracking speed over 30 FPS, i.e., the red dash line in the figure. Note that the FPS axis is in the log10 scale.

inter-frame information is considered in this work, which
contributes to building the bidirectional restraint component
from the perspective of tracking reversibility.

In this paper, a novel temporary block-based bidirectional
incongruity-aware correlation filter (TB-BiCF) is proposed for
UAV object tracking. We systematically dissect the tracking
reversibility and present the response-level bidirectional in-
congruity that contains inter-frame information about changes
in both the object’s appearance and the filter’s discriminability.
The bidirectional incongruity represents the gap of filters’
discriminative difference between the forward detection and
backward relocation. By incorporating the bidirectional in-
congruity into CF learning, a novel incongruity-aware op-
timization problem is formulated. It enables the filter to
develop the discriminant ability inheritance from previous
filters as well as generalization ability enhancement against
significant appearance changes. Thus the learned filter can be
more robust and accurate in the challenging UAV tracking
scenarios. Moreover, the introduction of the temporary block-
based strategy allows the filter to consider the incongruity
between frames at a greater interval instead of only previous
and current frames. The inter-frame information within the
temporary block enables the filter to resist severe appearance
changes better, and further improves the robustness without
sacrificing efficiency.

Considering the nature of UAV online tracking, a compu-
tationally efficient learning strategy is of vital importance.
Therefore, we decompose the novel incongruity-aware op-
timization problem into several subproblems and apply the
alternating direction method of multipliers (ADMM) [32] to
solve them iteratively. The resultant closed-form solutions con-
taining element-wise operations allow the TB-BiCF to perform
efficiently at real-time speed. Additionally, we propose to
apply multiple hand-crafted features to achieve comprehensive
representations of the object and background appearance,
including the histogram of oriented gradients (HOG) [33],
pixel intensity, and color names (CN) [34].

To validate the performance of the proposed TB-BiCF, we
perform both quantitative and qualitative experiments on three

challenging UAV benchmark datasets: UAV123@10fps [35]
with 123 videos, DTB70 [36] with 70 videos, and UAVDT [31]
with 50 videos. The total frame number from all benchmarks
exceeds 90K. The TB-BiCF tracker demonstrates the outstand-
ing results compared with other advanced methods using the
hand-crafted features on the three benchmarks. We further
show that the TB-BiCF tracker outperforms the other trackers
based on deep features or end-to-end learning with a high
tracking speed on a single CPU. Figure 1 shows the overall
results of our approach and other trackers on the UAVDT
benchmark and demonstrates that the TB-BiCF tracker is
suitable for real-time UAV tracking tasks due to its superior
performance in precision, success rate, and efficiency.

In this work, we make the following main contributions:

• A novel response-level bidirectional incongruity-aware
CF is proposed to achieve the trade-off between inher-
iting the discriminant ability from previous filters and
enhancing the generalization ability against appearance
changes.

• A temporary block-based inter-frame information is pre-
sented to make the filter accommodate more significant
appearance changes and further improves the filter’s
generalization ability.

• A new filter learning problem with the temporary block-
based bidirectional incongruity is formulated and opti-
mized by the ADMM technique where each subproblem
has closed-form solutions with element-wise operations,
resulting in computational efficiency.

• The proposed approach outperforms favorably other state-
of-the-art trackers on three challenging UAV benchmarks
over 90K images and reaches an average speed of ∼46.8
frames per second (FPS) using a single CPU, which is
suitable for real-time UAV applications.

The remaining parts of this paper are organized as follows.
Section II gives related works. Section III presents the pro-
posed temporary block-based bidirectional incongruity-aware
correlation filter (TB-BiCF). Experimental results are shown
in Section IV and conclusions are given in Section V.
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II. RELATED WORKS

In this section, we discuss tracking methods that are most
relevant to our work, i.e., tracking with CFs, tracking using
historical information including sample-level, filter-level, and
response-level information, and methods based on the tracking
reversibility.

A. Tracking with CFs

As a discriminative tracking method, CF-based methods aim
at differentiating the object from the background. Starting
with the MOSSE tracker proposed by D. S. Bolme et al.
[37], the CF-based method has achieved widespread atten-
tion with a high tracking speed and gained popularity in
the tracking community. The high computational efficiency
of CF-based methods originates from the use of the fast
Fourier transformation (FFT). It transforms operations in the
spatial domain into operations in the Fourier domain, i.e.,
from complex circular correlation to element-wise operations.
J. F. Henriques et al. investigated the circulant structure of
the dense sampled training patches [6], and further showed
that the ridge regression on all training patches can be used
equivalently to learn a CF [7], which can be incorporated
with the kernel trick for more powerful regression. Several
works [9], [38]–[40] were proposed to empower the CFs to
estimate the scale variations and significantly improved the
tracking performance in robustness. In [15], a background-
aware CF (BACF) was proposed to handle the problem of
lack of real negative samples in filter learning and alleviate the
influence induced by boundary effects. Y. Sun et al. introduced
the ROI-based pooling operation to the CF formula, which
can help construct a more robust filter against the target
deformation [41]. The use of multi-channel features [7], [8],
[15] and the combination of multiple features [9]–[11] enrich
the representations of the object appearance and enhance the
discriminative power of CFs. In [42], [43], deep features
extracted from the convolutional networks are applied for filter
learning, but at the expense of tracking speed. Some tracking
methods encourage the CF to focus on more reliable areas by
using spatial information around the object [19], [44], and
some learn the channel-wise weighting coefficients [18], [20]
to emphasize the impact of important channels and to mitigate
the effects of contaminated channels. However, the methods
mentioned above focus more on how to make full use of
the contents of the current frame, while ignoring to make an
efficient use of the historical information that can help handle
the inherent problem of limited samples.

B. Tracking using historical information

During the tracking process, the tracker knows only the
initial state of the object in the first frame and needs to estimate
the state in each new frame. In the situation with limited data,
integrating the historical information into the current filter
learning can increase the robustness and discriminability of
the learned filter. In the CF-based approaches, the inter-frame
information can be classified into the following categories, i.e.,
sample-level, filter-level, and response-level information.

1) Sample-level information: In [13], [45], the historical
training samples are incorporated into the CF learning phase
to improve the filter’s discrimination. As time goes by, the
number of training samples increases and brings a sizable
computational burden, which is not fit for UAV online tracking
applications. To mitigate the influence of samples corrupted
by background clutters, occlusion, and other factors on the
filter learning, M. Danelljan et al. [14] proposed a unified
formulation to manage the training set dynamically. The
method can simultaneously learn the filter and estimate the
quality of training samples to alleviate the degradation of
the discriminative power induced by corrupted samples. In
[24], a Gaussian mixture model was employed to generate a
compact model of the training set. Although the strategy can
reduce the redundant samples in the training set and memory
consumption, the large number of Gaussian components will
also increase the computational load.

2) Filter-level information: F. Li et al. [25] introduced
the temporal regularization to make the current filter more
similar to the one in the previous frame, thus serving as an
approximation to the effect of using multiple training samples
in the CF learning. The approximation can confine any sudden
change of the filter and thus improve tracking robustness.
However, this approximation also constrains the changes in
the filter caused by the object appearance changes and limits
the generalization ability of the learned filter, which makes the
tracker struggle in the case of significant appearance changes,
especially in the complex UAV tracking scenarios with fast
UAV/object motion.

3) Response-level information: Z. Huang et al. [46] pre-
sented the ARCF tracker using the response-level information
to repress the response aberrance. Since the decision to locate
the object is based on the correlation response containing the
information of both samples and filters, the ARCF tracker
used the detection and training correlation outputs to build the
response-based regularization, which improves the credibility
of the detection result in a new frame and reduces the risk
of tracking drift. However, ARCF only utilizes the filter’s
detection power and ignores its ability to relocate in historical
samples, which makes ARCF vulnerable to interference caused
by contaminated detection response.

Different from the methods mentioned above, the proposed
method makes better use of inter-frame information at the
response level based on the nature of tracking reversibility. By
dissecting the tracking process, we investigate the response-
based bidirectional incongruity between the forward detec-
tion and backward relocation. Compared with the forward-
backward error in [47], [48], the novel response-based bidirec-
tional incongruity is based on the characteristics of correlation
filters and is incorporated into the CF learning problem.
Furthermore, the temporary block are applied to construct
the bidirectional regularization to help the filter accommodate
more significant appearance changes. The proposed improve-
ments can well enhance the generalization power and inherit
the discriminability from previous filters without sacrificing
the tracking speed, which is suitable for UAV real-time and
robust tracking.
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Fig. 2. A flowchart of the proposed TB-BiCF tracker. In the forward phase, the existence of the forward tracking error is resulted from the difference between
the responses, Rd(W,Xk) and Rd(Wk−∆k,Xk). In the backward phase, the tracking error is also caused by the inconsistency of the responses between
Rd(Wk−∆k,Xk−∆k) and Rd(W,Xk−∆k). Both forward and backward errors constitute the bidirectional incongruity, which reflects the gap of filters’
discriminative difference. The figure is modified from our previous work [1].

III. PROPOSED METHOD

A. Correlation filter for visual tracking

1) Training stage: UAV object tracking aims to sequentially
estimate the state of the specified object given the initial
position and size. Based on the correlation filter based method
[37], [38], the learned filter can be used to differentiate the
object from the background. The filter learning problem in
frame #k is to minimize the sum of squared error E between
the desired response label y ∈ RN and the correlation output:

E(W;Xk) =

D∑
d=1

‖y −wd ? x
k
d‖22 + λ

D∑
d=1

‖wd‖22 , (1)

where ? is the circular correlation operator. wd ∈ RN and
xkd ∈ RN denote the filter and the vectorized feature map
of the training sample in the d-th channel. λ is a regular-
ization factor. Filters and feature maps across all channels
are concatenated and grouped as W = [w1,w2, . . . ,wD]
and Xk = [xk1 ,x

k
2 , . . . ,x

k
D] for clarity. Thus the optimization

problem is Wk = arg minW E(W;Xk). By transferring
Eq. (1) from the spatial domain to the Fourier domain, an
analytical solution to Wk can be obtained efficiently.
Remark 1: The feature maps Xk of the training sample are
obtained by extracting the patch’s feature in the search area.
The size and location of the search area are determined by the
size and location of the object in frame #k.

2) Detection stage: When the new frame #k+1 arrives, the
learned filter is applied to build the response map for detection:

R(Wk,Zk+1) =
D∑
d=1

Rd(Wk,Zk+1) =
D∑
d=1

wk
d ?z

k+1
d , (2)

where Zk+1 = [zk+1
1 , zk+1

2 , . . . , zk+1
D ] is the feature maps of

the detection sample, which is cropped from frame #k+1 on

the basis of the object’s location and size in frame #k. Thus
the object’s location can be derived by exploring the apogee
of the detection response map R(Wk,Zk+1).

B. Temporary block-based bidirectional incongruity modeling

1) Bidirectional incongruity: Different from standard CFs,
we introduce the response-level information on the basis of
tracking reversibility and propose the bidirectional incongruity
regularization term:

‖∆FRd −∆BRd‖22 , (3)

where ∆FRd and ∆BRd measures the filter’s discriminate
difference from the forward and backward aspects in the
tracking process, respectively. ∆FRd denotes the forward
tracking error and is computed by:

∆FRd = Rd(W,Xk)−Rd(Wk−∆k,Xk) . (4)

It estimates the discriminate difference of the filter by using
the feature maps Xk of the current training sample, as shown
in the forward phase in Fig. 2. As for the historical backtrace
error, it can be obtained by:

∆BRd = Rd(Wk−∆k,Xk−∆k)−Rd(W,Xk−∆k) . (5)

The backward error weights the filter’s discriminability
using the feature maps Xk−∆k of the historical sample, as
shown in the backward phase in Fig. 2. In this work, if the
tracking process begins with frame #k−∆k and ends with #k,
it is considered as a forward tracking process; if the tracking
process is mirrored, that is, starting with frame #k and ending
with #k −∆k, it is regarded as a backward tracking process.
The tracking errors reflected by these two viewing aspects are
forward and backward tracking errors respectively, i.e., ∆FRd
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and ∆BRd, which show the filter’s discriminate difference
between the first and the last frames in a tracking process.
Remark 2: The proposed method centers on the problem of
inconsistent response in the CF framework, and tries to narrow
the performance gap between the forward and backward
tracking. In other words, the discriminate differences observed
from two aspects are expected to be close. Therefore, the
forward and backward tracking errors are correlated and a bidi-
rectional incongruity regularization term ‖∆FRd −∆BRd‖22
is designed to strengthen the learned filter’s robustness to the
appearance changes.

2) Temporary block: Figure 3 shows the temporary block-
based learning strategy. Each temporary block represents a
sequence in which the object changes continuously over a
period of time. By introducing the first and last frames in
the temporary block into the bidirectional incongruity-aware
learning, the influence of appearance changes on the filters’
discriminate difference can be effectively weighted. Therefore,
the suppression of the temporary block-based bidirectional
incongruity can alleviate the degradation of the filter’s dis-
criminative ability caused by severe appearance changes.
Remark 3: In this work, the k−∆k-th and k-th frames denote
the first and last frames within the temporary block at a ∆k
interval. Compared with applying all frames in the block, the
proposed temporary block-based strategy can reduce the risk
of overfitting and maintain efficient operational speed.

By analyzing the tracking process from different angles, it
can be found that there exist error in the reversibility of the
tracking process. Both ∆FRd and ∆BRd within the tempo-
rary block constitute the bidirectional incongruity term Eq. (3),
which reflects the degree of variations in the information
gap. Intuitively, measurements from different perspectives tend
to be close since they both represents the same difference
between the first and last frames within the temporary block.

Filter 𝐖𝑘1

Filter 𝐖𝑘1+1

Filter

𝐖𝑘2

Temporary block New frame arrives

Bidirectional 
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aware
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…
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Fig. 3. A flowchart of the proposed temporary block-based filter learning
strategy. Each temporary block represents a short sequence where the object
changes continuously over a period of time. The first and last frames
within the temporary block are applied to build the bidirectional incongruity
regularization.

But drastic changes in appearance usually occur in UAV
tracking scenarios, e.g., fast object/UAV motion, and thus there
exists the bidirectional incongruity between the two measure-
ments. Therefore, suppressing the bidirectional inconsistency
can reduce the influence of the significant appearance changes
on the measurement results. In other words, the filter can
achieve the trade-off between inheriting discriminant power
from the previous filter and enhancing generalization power
against the appearance changes.
Remark 4: The temporary block-based bidirectional regu-
larization is different from the temporal regularization, i.e.,
‖W − Wk−1‖22, in STRCF [25]. Although the temporal
regularization making the filter close to the previous one
reduces the risk of tracking drift, the generalization ability of
the filter is limited when the appearance variation is drastic.
In contrast, the proposed regularization allows the filter to
retain the characteristic of the previous one and have the
generalization ability against large appearance changes.

C. Objective function of TB-BiCF

In this work, the bidirectional incongruity regularization
term based on the temporary block is incorporated into the
CF learning. The overall optimization problem is expressed as
follows:

Wk = arg min
W
Es(W;Xk,Wk−∆k,Xk−∆k)

= arg min
W

{
Ec(W;Xk)

+ Et(W;Xk,Wk−∆k,Xk−∆k) + Er(W)
}
.

(6)

1) Classification error term: The first term Ec denotes the
classification error between the correlation output and the
predefined Gaussian label y:

Ec(W;Xk) =
D∑
d=1

∥∥y −wd ? x
k
d

∥∥2

2
. (7)

2) Temporary block-based bidirectional incongruity regu-
larization term: The second term Et represents the proposed
bidirectional incongruity regularization term:

Et(W;Xk,Wk−∆k,Xk−∆k) = γ
D∑
d=1

‖∆F rd−∆Brd‖22

= γ
D∑
d=1

‖(wd ? x
k
d −wk−∆k

d ? xkd)

− (wk−∆k
d ? xk−∆k

d −wd ? x
k−∆k
d )‖22

= γ
D∑
d=1

∥∥(wd −wk−∆k
d ) ? (xkd + xk−∆k

d )
∥∥2

2
,

(8)

where γ is a regularization factor.
3) Regularization term: The third term Er is used to con-

strains the complexity of the filter W:

Er(W) = λ

D∑
d=1

‖s�wd‖22 , (9)

where s is the spatial regularizer following [13] and λ denotes
the regularization parameter.
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Remark 5: Note that Es(W;Xk,Wk−∆k,Xk−∆k) can be
decomposed into D error terms Ed (d = 1, . . . , D) for
optimization, since the filter is trained independently on each
channel. In this work, the d-th channel is chosen for the
following model derivation.

D. TB-BiCF learning

By introducing an auxiliary variable hd ∈ RN and requiring
wd = hd, Ed can be equivalently written as the equality
constraint form:

Ed(wd,hd) =
∥∥y −wd ? x

k
d

∥∥2

2
+ λ ‖s� hd‖22

+ γ
∥∥(wd −wk−∆k

d ) ? (xd + xk−∆k
d )

∥∥2

2
,

s.t. wd = hd, d = 1, . . . , D .

(10)

The complicated correlation operation can be converted to
the element-wise operation by transforming Eq. (10) from
the spatial domain into the Fourier domain, thus improving
computational efficiency:

Ed(ŵd,hd) =
∥∥ŷ − ŵ∗d � x̂kd

∥∥2

2
+ λ ‖s� hd‖22

+ γ
∥∥(ŵ∗d − ŵk−∆k∗

d )�(x̂kd + x̂k−∆k
d )

∥∥2

2
,

s.t. ŵd =
√
NFhd, d = 1, . . . , D ,

(11)

where � stands for the Hadamard product. The superscript ˆ
and ∗ are the discrete Fourier transform (DFT) of a signal and
the conjugate of a complex vector, respectively. F ∈ CN×N
is the DFT matrix that transforms a signal v ∈ RN into the
frequency domain, such that v̂ =

√
NFv. Eq. (11) can be

formulated as the augmented Lagrangian form:

L(ŵd,hd,ζ̂d)=Ed(ŵd,hd)+µ

∥∥∥∥ŵd−
√
NFhd+

1

µ
ζ̂d

∥∥∥∥2

2

, (12)

where ζ̂d ∈ CN is the Lagrangian multiplier in the d-th
channel and µ denotes the penalty factor.

Then the ADMM technique [32] is applied to alternatively
solve the following subproblems.
Remark 6: The subproblems for solving ŵd and hd both have
closed-form solutions.

1) Subproblem ŵd: If hd and ζ̂d are fixed in Eq. (12), the
optimal ŵ(i+1)

d can be obtained by solving Eq. (13):

ŵ
(i+1)
d = arg min

ŵd

{∥∥ŷ − ŵ∗d � x̂kd
∥∥2

2

+ γ
∥∥(ŵ∗d − ŵk−∆k∗

d )� (x̂kd + x̂k−∆k
d )

∥∥2

2

+ µ

∥∥∥∥ŵd −
√
NFhd +

1

µ
ζ̂d

∥∥∥∥2

2

}
.

(13)

By taking the derivative with respect to ŵ∗d to zero, we can
get the solution for ŵ(i+1)

d :

ŵ
(i+1)
d =

x̂kd � ŷ∗ + γm̂xx
d � ŵk−∆k

d + µĥd − ζ̂d
x̂kd � x̂k∗d + γm̂xx

d + µ
, (14)

where m̂xx
d = (x̂kd + x̂k−∆k

d ) � (x̂k∗d + x̂k−∆k∗
d ), and the

fraction operator represents element-wise division.
Remark 7: Detailed derivation can be found in Appendix A.

2) Subproblem hd: If ŵd and ζ̂d are given in Eq. (12), the
optimal h(i+1)

d can be solved by Eq. (15):

h
(i+1)
d =arg min

hd

{
λ ‖s�hd‖22+µ

∥∥∥∥ŵd−
√
NFhd+

1

µ
ζ̂d

∥∥∥∥2

2

}
.

(15)

The solution of h(i+1)
d can be easily achieved by setting the

derivative about hd to zero:

h
(i+1)
d =

F−1(µŵd + ζ̂d)
λ
N (s� s∗) + µ

, (16)

where F−1 is the inverse discrete Fourier transform.
Remark 8: Detailed derivation can be found in Appendix B.

3) Updating Lagrangian multiplier ζ̂d: The Lagrangian
multiplier ζ̂d is updated by:

ζ̂d
(i+1)

= ζ̂d
(i)

+ µ
(
ŵ

(i+1)
d − ĥ

(i+1)
d

)
, (17)

where ĥ
(i+1)
d =

√
NFh

(i+1)
d . Within the i-th ADMM itera-

tion, the factor µ is commonly updated as follows [32]:
µ(i+1) = min(µmax, βµ

(i)) . (18)
Furthermore, the filter’s robustness is improved by the

following online adaptive scheme:
x̂kd,model = (1− η)x̂k−1

d,model + ηx̂kd , (19)

where x̂kd,model and x̂k−1
d,model denote the appearance model in

frame #k and #k − 1, respectively. η denotes the online
adaptation rate. The TB-BiCF learning in the d-th channel
in frame #k can be summarized in Algorithm 1.

IV. EXPERIMENTS

Quantitative and qualitative experiments are conducted to
evaluate the proposed TB-BiCF tracker on 243 challeng-
ing image sequences from three well-known UAV tracking
benchmarks, including UAV123@10fps [35], DTB70 [36], and
UAVDT [31]. We carry out a comprehensive analysis of TB-
BiCF and state-of-the-art tracking methods in this section,
consisting of 15 trackers using hand-crafted features and 19
trackers based on deep learning.

Algorithm 1: TB-BiCF learning
Input: Image: Ik .
Maximum frame interval within temporary block: ∆k.
Filters from the k−∆k-th frame: Wk−∆k .
Feature maps from the k−∆k-th frame: Xk−∆k .
Spatial regularizer weights: s.
Output: The current filter Wk in the k-th frame.

1 Extract features Xk from Ik .
2 Introduce the auxiliary variable hd and build the equality constraint

form Eq. (10).
3 Transform Eq. (10) to Eq. (11) by Parseval’s theorem.

4 Initialize variables ŵ
(0)
d , h(0)

d , and ζ̂d
(0)

.
5 for ADMM iteration i = 1 to end do
6 Solve subproblem ŵ

(i+1)
d by Eq. (14).

7 Solve subproblem h
(i+1)
d by Eq. (16).

8 Update Lagrangian multiplier ζ̂d
(i+1)

by Eq. (17).
9 Update the penalty factor µ(i+1) by Eq. (18).

10 end
11 Use Eq. (19) to update the appearance model.
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(a) UAV123@10fps benchmark
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Fig. 4. Precision and success plots of TB-BiCF and the other state-of-the-art 15 trackers using hand-crafted features on three UAV benchmarks. The scores
of DP and AUC are respectively given in square brackets in the precision and success plots. Experimental results demonstrate that the proposed TB-BiCF
tracker has the outstanding performance on all three challenging benchmarks.

A. Experimental setups

1) Evaluation metrics: The experiments employ two met-
rics, including center location error (CLE) and overlap, to
evaluate all methods on the UAV123@10fps, DTB70, and
UAVDT benchmarks based on the one-pass evaluation. The
CLE is used to measure the Euclidean distance between the
estimated object location and the center of the ground truth
bounding box. The precision plot represents the curve formed
by the percentage of bounding boxes whose CLE is less
than a given threshold. According to the standard ranking
metrics [35], the percentage of the CLE at 20 pixels is
used as the distance precision (DP) to rank trackers in term
of precision. The overlap metric is applied to measure the
intersection over union (IoU) between the estimated bounding
box and the ground truth. The curve on the success plot
consists of the ratio of the number of frames with IoU greater
than a given threshold to the total number of frames. In this
work, the area under the curve (AUC) [35] in the success
plot is employed to rank trackers in terms of success rate.
Additionally, both frames per second and milliseconds per
frame (MSPF) are applied to evaluate the tracking speed.

2) Implementation details: The TB-BiCF tracker applies
a combination of hand-crafted features to meet the real-time
requirements of tracking speed, including a fast version of
HOG [49] with 31 channels, CN [34] with 10 channels, and
gray-scale features with 1 channel, for object representation.
Thus the total number of feature channels D is set to 42.
We set the regularization parameter λ = 1 and γ = 0.1,
and the length of the temporary block ∆k = 8. Following

the setting of large values of µ and β and few iterations
of ADMM optimization in [15], the initial penalty factor
µ = 100, the maximum value µmax = 105, and scale step
β = 50 are employed in this work, and the number of ADMM
iterations is set to 3 for a better trade-off between efficiency
and accuracy. The online adaptation rate η is set to 0.039.
All hyper-parameters remain fixed for all image sequences on
all benchmarks. The proposed TB-BiCF runs on MATLAB
R2018a on a computer with an i7-8700K CPU and an RTX
2080 GPU. Our MATLAB implementation is publicly released
at https://github.com/vision4robotics/TB-BiCF-Tracker.
Remark 9: Objective evaluations of trackers used for compari-
son are performed on the same computer, by utilizing the open-
source codes and default settings provided by the authors.

B. Comparison with trackers using hand-crafted features
1) Overall performance comparison: The proposed TB-

BiCF tracker is first compared with 15 state-of-the-art track-
ers using hand-crafted features, i.e., KCF [7], DSST [38],
SAMF [9], SRDCFdecon [14], Staple [10], BACF [15], CSR-
DCF [18], ECO-HC [24], fDSST [39], SRDCF [13], Sta-
ple CA [44], KCC [50], MCCT-H [11], STRCF [25], and
BiCF [1], on three UAV benchmarks in terms of overall
performance. Figure 4 presents that the TB-BiCF tracker
obtains the outstanding performance compared with the other
15 hand-crafted feature-based trackers on all three challenging
UAV benchmarks .
UAV123@10fps. The UAV123@10fps benchmark [35] is one
of the most widely used benchmarks captured from low-
altitude UAVs and contains 123 image sequences with various
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TABLE I
THE OVERALL TRACKING PERFORMANCE AND SPEED OF TB-BICF VERSUS OTHER HAND-CRAFTED FEATURE-BASED TRACKERS ON THREE

CHALLENGING UAV BENCHMARKS. THE TRACKING PERFORMANCE OF THE TOP 3 TRACKERS IS SHOWN IN RED, GREEN, AND BLUE FONTS. ALL
RESULTS ARE GENERATED IN CPU MODE. THE PROPOSED TB-BICF ACHIEVES THE BEST DP AND AUC RESULTS OVER ALL CHALLENGING UAV

BENCHMARKS WITH A REAL-TIME SPEED.

Tracker Venus
UAV123@10fps DTB70 UAVDT Average

DP AUC Speed DP AUC Speed DP AUC Speed DP AUC Speed

KCF 15’TPAMI 0.406 0.265 618.7 0.468 0.280 377.5 0.571 0.290 956.9 0.481 0.278 651.1
DSST 14’BMVC 0.448 0.286 98.5 0.463 0.276 72.7 0.681 0.355 148.3 0.531 0.305 106.5
BACF 17’CVPR 0.572 0.413 52.5 0.590 0.402 46.5 0.686 0.433 69.1 0.616 0.416 56.0
SAMF 14’ECCVW 0.466 0.326 12.5 0.519 0.340 10.0 0.579 0.312 15.8 0.521 0.326 12.8
Staple CA 17’CVPR 0.587 0.420 56.0 0.504 0.351 56.5 0.695 0.394 64.1 0.595 0.388 58.9
SRDCF 15’ICCV 0.575 0.423 13.9 0.512 0.363 10.7 0.658 0.419 17.4 0.582 0.402 14.0
SRDCFdecon 16’CVPR 0.584 0.429 7.6 0.504 0.351 6.0 0.643 0.410 8.9 0.577 0.397 7.5
MCCT H 18’CVPR 0.596 0.433 57.2 0.604 0.405 59.0 0.667 0.402 62.9 0.622 0.414 59.7
CSR-DCF 17’CVPR 0.643 0.450 11.3 0.646 0.438 11.8 0.674 0.389 13.2 0.655 0.426 12.1
STRCF 18’CVPR 0.627 0.457 26.9 0.649 0.437 26.3 0.629 0.411 32.3 0.635 0.435 28.5
ECO-HC 17’CVPR 0.634 0.462 66.6 0.643 0.453 62.2 0.681 0.411 79.2 0.653 0.442 69.3
fDSST 17’TPAMI 0.516 0.379 153.7 0.534 0.357 132.0 0.666 0.383 218.5 0.572 0.373 168.1
KCC 18’AAAI 0.531 0.374 40.8 0.440 0.291 40.7 0.649 0.389 56.9 0.540 0.351 46.1
Staple 16’CVPR 0.456 0.342 62.1 0.365 0.265 62.5 0.665 0.383 71.7 0.495 0.330 65.4
BiCF 20’ICRA 0.662 0.475 44.0 0.657 0.462 42.1 0.716 0.457 50.2 0.679 0.465 45.4
TB-BiCF Ours 0.686 0.489 45.4 0.682 0.479 43.1 0.727 0.468 51.8 0.698 0.479 46.8

challenging factors. Since the UAV123@10fps dataset is gen-
erated by temporally downsampling UAV123 [35] (captured at
30 FPS) to 10 FPS, the absence of intermediate frames means
the object has more significant displacement and appearance
changes between frames, and thus makes the tracking more
difficult. Therefore, the UAV123@10fps benchmark is chosen
for the evaluation in this work. In Fig. 4(a), the TB-BiCF
tracker has the leading DP score (0.686) exceeding the second
highest tracker BiCF (0.662) and the third highest tracker
CSR-DCF (0.643) by 2.4% and 4.3%, respectively. TB-BiCF
also leads in the AUC score (0.489), which is 1.4% higher
than BiCF (0.475) in the second place and 2.7% higher than
ECO-HC (0.462) in the third place.
DTB70. The DTB70 benchmark [36] contains 15777 pictures,
making up 70 image sequences captured by drone cameras.
As shown in Fig. 4(b), TB-BiCF provides the best DP score
(0.682), which exceeds 2.5% and 3.3% of the second best
tracker BiCF (0.657) and the third best tracker STRCF (0.649).
Moreover, the best AUC score is also obtained by TB-BiCF
(0.479), followed by BiCF and ECO-HC.
UAVDT. The UAVDT benchmark [31] focusing on complex
scenarios with ∼37K representative frames for UAV object
tracking task. In Fig. 4(c), TB-BiCF achieves the best DP score
(0.727) compared to BiCF (0.716) and Staple CA (0.695). TB-
BiCF also gets the best AUC score (0.468), followed by BiCF
(0.457) and BACF (0.433).
Remark 10: In addition to impressive tracking performance,
the speed of the proposed TB-BiCF tracker (46.8 FPS) is
sufficient for UAV real-time tracking (Table I). Although KCF
obtains the best tracking speed (651.1 FPS), followed by
fDSST (168.1 FPS) and DSST (106.5 FPS), their DP and AUC
scores are much lower than TB-BiCF. The outstanding per-
formance proves the effectiveness of the proposed temporary
block-based bidirectional incongruity learning strategy.

2) Attribute-based evaluation: The attribute-based evalua-
tion is performed to manifest the performance of the presented
tracker in different challenging UAV tracking scenarios.
UAV123@10fps. The video sequences on the UAV123@10fps

benchmark is annotated with 12 different attributes, including
camera motion (CM), fast motion (FM), illumination variation
(IV), low resolution (LR), scale variation (SV), viewpoint
change (VC), partial occlusion (POC), aspect ratio change
(ARC), out-of-view (OV), similar object (SOB), background
clutter (BC), and full occlusion (FOC).
DTB70. The 11 different attributes from the DTB70 bench-
mark are fast camera motion (FCM), deformation (DEF),
aspect ratio variation (ARV), in-plane rotation (IPR), out-of-
plane rotation (OPR), out-of-view (OV), occlusion (OCC), and
similar objects around (SOA).
UAVDT. The UAVDT benchmark includes the following 9
attributes: object blur (OB), camera motion (CM), object
motion (OM), illumination variations (IV), small object (SO),
background clutter (BC), scale variations (SV), long-term
tracking (LTT), and large occlusion (LO).

To further corroborate the validity of TB-BiCF in the face of
fast motion, some success plots of the related attributes from
three challenging benchmarks are presented in Fig. 5. More
specifically, in Fig. 5(a), the TB-BiCF tracker obtains the best
AUC score (0.340) in the attribute of fast motion, exceeding
the second best tracker ECO-HC (0.332) by 0.8% and the
third tracker STRCF (0.328) by 1.2%. In Fig. 5(b), TB-BiCF
also achieves the best AUC score (0.485) in the attribute of
fast camera motion and exceeds BiCF (0.472) and ECO-HC
(0.469) by 1.3% and 1.6%, respectively. In the camera motion
from the UAVDT benchmark, the highest AUC score belongs
to TB-BiCF (0.443) improving the second best tracker BiCF
(0.430) by 1.2% and the third tracker BACF (0.387) by 5.6%.
The impressive performance mainly contributes to the pro-
posed temporary block-based bidirectional incongruity-aware
learning. When sudden object appearance variation occurs,
the proposed tracker can efficiently repress the bidirectional
incongruity between the frames within the temporary block,
and thus the tracking robustness is generally enhanced.
Remark 11: Figure 6 provides the complete attribute-based
AUC scores from the three challenging benchmarks. The top
5 trackers with average performance are used to present the
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(a) UAV123@10fps benchmark
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Fig. 5. Success plots of the proposed TB-BiCF and the other 15 handcrafted-based trackers in the attributes related to fast motion from the three challenging
UAV benchmarks. The AUC scores are given in square brackets. Experimental results show that TB-BiCF achieves the outstanding attribute-based performance.
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Fig. 6. AUC-based scores in different attributes on the three challenging UAV benchmarks. The top 5 trackers with average performance are used in the
attributed-based evaluation. Experimental results show that the TB-BiCF tracker achieves the superior attribute-based performance in most attributes.

attribute-based results. The experimental results demonstrate
that TB-BiCF outperforms favorably than other competing
trackers in most attributes.

3) Qualitative evaluation: Extensive evaluations are per-
formed to present the performance of the proposed TB-BiCF
tracker in comparison with the other top 4 trackers with
average performance, i.e., BiCF, STRCF, CSR-DCF, and ECO-
HC. In Fig. 7, three challenging sequences, i.e., Car16 1 from
UAV123@10fps, MountainBike5 from DTB70, and S0601
from UAVDT, are applied to provide the tracking results,
the CLE and overlap curves. The CLE curve denotes the
Euclidean distance between the estimated object location and
the ground truth bounding box center in each frame. The
overlap rate represents the IoU between the predicted bounding
boxes and the ground truth in each frame. Fast motion and
motion blur are great challenges in these tracking scenes.
Most trackers have tracking drift when the object appearance
changes rapidly, that is, the CLE gradually increases while the
overlap decreases. In contrast, the proposed TB-BiCF tracker

can well accommodate the sudden appearance variation and
is robust against the large appearance changes because of
the bidirectional incongruity learning strategy. In other words,
the TB-BiCF can achieve the trade-off between discriminate
power inheritance and generalization power enhancement.
Remark 12: More representative tracking results are visu-
alized in Fig. 8 to demonstrate the discriminative capability
against motion blur, fast UAV/object motion, low resolutions,
and small objects.

4) Failure cases: Figure 9 provides three challenging se-
quences from different benchmarks that the proposed TB-
BiCF tracker fails to track the object. In the sequence per-
son19 2 and RcCar3, the object is out of the onboard camera’s
view, and the TB-BiCF tracker fails to perceive the object
reappearing from the scene. Thus the inter-frame information
without the existence of the object is used in filter learning,
which greatly affects the discriminative power. In the sequence
S1606, the car is mostly blocked by the lamp post, and the
available effective object information is scarce. In this case,
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#001 #087 #001 #040#001 #075

Frames Frames Frames

Fig. 7. CLE and overlap curves in three challenging sequences, including car16 1 from UAV123@10fps, MountainBike5 from DTB70, and S0601 from
UAVDT. Fast motion and motion blur are great challenges in these tracking scenes. Most trackers have tracking drift when the object appearance changes
rapidly while the proposed TB-BiCF tracker can maintain the discriminative power.

#175 #214 #001 #290 #350#001

TB-BiCF BiCF STRCF CSR-DCF ECO-HC

#001 #047 #068 #001 #167 #208

#001 #175 #214 #001 #290 #350#001 #044 #136 #001 #068 #105

Fig. 8. Qualitative comparisons of the proposed TB-BiCF tracker with other advanced trackers. From left to right and top to bottom, these sequences are
truck2 from UAV123@10fps, group2 2 from UAV123@10fps, Surfing04 from DTB70, Gull1 from DTB70, S0309 from UAVDT, and S1607 from UAVDT,
respectively. The proposed TB-BiCF tracker shows the superior performance in complex environment. The UAV object tracking videos are available at
https://youtu.be/PFR-AB79iWY.

TB-BiCF Ground truth

#001 #226 #252

#001 #119 #162

#001 #154 #195

Fig. 9. Failure cases of the presented TB-BiCF tracker. The first, second, and
third row show the person19 2 from UAV123@10fps, RcCar3 from DTB70,
and S1606 from UAVDT.

the features of the appearance are contaminated by irrelevant
information, which also interferes the filter training.

C. Comparison with deep-based trackers

This work further evaluates the tracking performance and
efficiency of the TB-BiCF tracker in comparison with other
deep-based state-of-the-art trackers on the UAVDT bench-
mark. These 19 deep-based advanced trackers can be catego-
rized as follows: CF-based trackers that rely on convolutional
features, i.e., ECO [24], DeepSTRCF [25], CF2 [51], C-
COT [23], MCPF [52], CoKCF [53], IBCCF [40], MCCT [11],
and ASRCF [54]; Trackers based on deep learning architec-
ture, i.e., SINT [55], HDT [56], SiamFC [27], GOTURN [57],

TABLE II
TRACKING PERFORMANCE AND SPEED COMPARISONS WITH THE OTHER

19 DEEP-BASED TRACKERS ON UAVDT BENCHMARK. THE BEST,
SECOND, AND THIRD PERFORMANCE ARE REPRESENTED BY THE RED,
GREEN, AND BLUE FONTS. NOTE THT THE DEEPSTRCF TRACKER IS

DENOTED BY D-STRCF IN THE TABLE FOR A CONCISE REPRESENTATION.

Trackers Venue DP AUC FPS MSPF GPU

CF2 15’ICCV 0.602 0.355 20.1 49.75 X
C-COT 16’ECCV 0.656 0.406 1.1 909.09 X
ECO 17’CVPR 0.700 0.454 16.4 60.98 X
MCPF 17’CVPR 0.660 0.403 0.7 1428.57 X
CoKCF 17’PR 0.605 0.319 21.2 47.14 X
IBCCF 17’ICCVW 0.603 0.389 3.4 294.12 X
MCCT 18’CVPR 0.671 0.437 8.6 116.28 X
D-STRCF 18’CVPR 0.667 0.437 6.6 151.52 X
ASRCF 19’CVPR 0.700 0.437 14.1 70.92 X

SINT 16’CVPR 0.570 0.290 96.8 10.33 X
HDT 16’CVPR 0.596 0.303 9.0 111.11 X
SiamFC 16’ECCVW 0.708 0.465 18.2 54.95 X
GOTURN 16’ECCV 0.702 0.452 16.5 60.61 X
ADNet 17’CVPR 0.605 0.319 7.5 133.33 X
CFNet 17’CVPR 0.680 0.428 41.0 24.39 X
DSiam 17’ICCV 0.704 0.457 15.9 64.89 X
UDT 19’CVPR 0.674 0.441 76.4 13.09 X
UDT+ 19’CVPR 0.697 0.416 60.4 16.56 X
TADT 19’CVPR 0.677 0.431 32.5 30.77 X

TB-BiCF Ours 0.727 0.468 51.8 19.31 7

ADNet [58], CFNet [28], DSiam [59], UDT, UDT+ [30], and
TADT [29].
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Table II reports the DP and AUC scores of TB-BiCF and
trackers that are used for comparison. The results demonstrate
that TB-BiCF achieves the best DP (0.727) and obtains 1.9%
and 2.3% gain respectively than SiamFC (0.708) and DSiam
(0.704). In terms of success rate, TB-BiCF obtains the highest
AUC score of 0.468 outperforming SiamFC (0.465), DSiam
(0.457), and ECO (0.454) by 0.3%, 1.1%, and 1.4%, respec-
tively. In terms of operational efficiency, Table II also gives
the tracking speed of all trackers on the UAVDT benchmark.
SINT obtains the best tracking speed with 96.8 FPS, followed
by UDT (76.4 FPS) and UDT+ (60.4 FPS). The higher speed
of these trackers benefits from the employment of GPUs, while
the tracking performance of these trackers is lower than TB-
BiCF both in the DP and AUC score, which runs on a single
CPU with a real-time speed of 51.8 FPS. Besides, TB-BiCF
outperforms all of 9 CF-based trackers with satisfactory speed
and achieves better tracking performance as well.
Remark 13: The in-depth evaluation between 19 deep-based
trackers demonstrates higher tracking performance and high-
efficiency of the proposed TB-BiCF tracker, which can provide
accurate and efficient performance for future tracking applica-
tions on the real-time vision-based aerial platform.

D. Validity analysis of key parameters

To shed light the effect of key parameters on the per-
formance, an ablation study on the regularization factor λ
and the parameters of the temporary block-based bidirectional
incongruity-aware model, i.e., γ and ∆k, are conducted on the
UAV123@10fps benchmark. Then the sensitivity analysis of
the bidirectional incongruity penalty factor γ and maximum
frame interval ∆k within the temporary block are carried out.

1) Ablation study: By only applying the classification error
term Eq. (7) to learn the filter, the TB-BiCF-NBR is obtained
without the proposed bidirectional incongruity and the regular-
ization term, that is, γ = 0 and λ = 0. Then the TB-BiCF-NB
whose λ = 1 is learned by adding the regularization term to
the TB-BiCF-NBR. On the basis of the TB-BiCF-NB, the TB-
BiCF-1 whose γ = 0.1 and ∆k = 1 is obtained by adding the
proposed bidirectional incongruity term. The TB-BiCF is the
final version with γ = 0.1 and ∆k = 8. Table III presents the
results of each model for the DP and AUC scores. Specifically,
the results indicate that the tracking performance is gradually
improved with the improvement of the model and the final
version TB-BiCF obtains the best performance compared with
other models.

2) Regularization factor γ: γ values are set from 0.05 to
0.13 empirically for the trial, with a step size of 0.01. Figure 10
reports the results of the DP and AUC scores. The performance
gradually increases before reaching the highest point (0.686)

TABLE III
ABLATION STUDY OF THE KEY PARAMETERS. THE FINAL VERSION

TB-BICF ACHIEVES THE BEST DP AND AUC SCORES.

TB-BiCF-NBR TB-BiCF-NB TB-BiCF-1 TB-BiCF

(λ,γ,∆k) (0,0,-) (1,0,-) (1,0.1,1) (1,0.1,8)
DP 0.534 0.667 0.668 0.686

AUC 0.380 0.477 0.483 0.489
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P

(a) Precision (at DP score) under different values of γ.
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(b) Success rate (at AUC score) under different values of γ.
Fig. 10. Different values of bidirectional incongruity factor γ are tested on
UAV123@10fps dataset. At γ = 0.1, both the DP and AUC scores reach the
highest scores.
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(b) Success rate (at AUC score) under different values of ∆k.
Fig. 11. Different values of frame interval ∆k are tested on UAV123@10fps
dataset. At ∆k = 8, both the DP and AUC scores reach the highest scores.

at γ = 0.1 in Fig. 10(a). After that, the DP score decreases
slightly. For the AUC score in Fig. 10(b), the performance sees
the trend similar to the DP plots and achieves the best score
(0.489) at γ = 0.1. Compared to the performance at γ = 0.05,
the precision and success rate obtain a gain of 1.8% and 0.8%
respectively when γ = 0.1. The results show that when γ is
set in a certain range, the proposed bidirectional incongruity-
aware learning strategy can effectively improve the overall
performance. Therefore, γ is set to 0.1 in this work.

3) Frame interval ∆k: ∆k values are set from 4 to 11
empirically for the trial, with a step size of 1. The results of DP
and AUC scores are reported in Fig. 11. The performance also
gradually increases before reaching the highest point (0.686)
at ∆k = 8 in Fig. 11(a). Then the DP score decreases slightly
until ∆k = 11. In Fig. 11(b), the AUC score has the trend
similar to the DP and obtains the best score (0.489) at ∆k = 8.
The DP and AUC score at ∆k = 8 obtains a gain of 1.7% and
1.0% respectively compared with the performance at ∆k = 4.
The results indicate that the temporary block-based strategy
can effectively improve the overall performance when ∆k is
set in a certain range. Therefore, ∆k is set to 8 in this work.

E. Temporary block setting

The proposed temporary block-based strategy can be further
extended to the introduction of multiple samples, and thus
the extension form of the temporary block-based bidirectional
incongruity regularization term Eq. (8) is expressed as follows:

Et,ext(W) = γ
D∑
d=1

∆k∑
p=1

∥∥∥(wd−wk−p
d ) ? (xkd+xpd)

∥∥∥2

2
. (20)

The extension form uses the pairwise combination of the
previous frames (from #k−∆k to #k−1) and the current frame

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 01,2021 at 23:36:04 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3023440, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, APRIL 2020 12

0.666

0.686

TB-BiCF-AF TB-BiCF
0.6

0.62

0.64

0.66

0.68

0.7

D
P

0.480

0.489

TB-BiCF-AF TB-BiCF
0.45

0.46

0.47

0.48

0.49

0.5

A
U

C

33.9

45.4

TB-BiCF-AF TB-BiCF
25

30

35

40

45

50

F
P

S

Fig. 12. Tracking performance and speed comparisons with TB-BiCF-AF
and TB-BiCF. The proposed TB-BiCF obtains the outstanding performance
in DP, AUC, and FPS.

#k to construct the bidirectional incongruity, that is, it applies
all frames in the temporary block to build the bidirectional in-
congruity. By substituting Et(W) in Eq. (6) with the extension
form Et,ext(W), a new overall optimization problem can be
obtained. The solving process of the optimization problem is
the same as the original one. Thus the solution to subproblem
hd is the same as Eq. (16), and the solution to ŵd is:

ŵ
(i+1)
d =

x̂kd � ŷ∗+γ
∑∆k
p=1 m̂

k−p,xx
d � ŵk−p

d +µĥd−ζ̂d
x̂kd � x̂k∗d +γ

∑∆k
p=1 m̂

k−p,xx
d +µ

,

(21)

where m̂k−p,xx
d = (x̂kd + x̂k−pd )� (x̂k∗d + x̂k−p∗d ).

Figure 12 presents the tracking performance of TB-BiCF
and the extension model using all frames in the temporary
block, i.e., TB-BiCF-AF. The results show that the TB-BiCF
has the best DP and AUC scores compared to TB-BiCF-AF.
The suboptimal performance of TB-BiCF-AF can be attributed
to the fact that the extension model introduces all frames in the
temporary block, which can lead to over-fitting of the model
and introduce the risk of model degradation. Moreover, the
speed of TB-BiCF is 1.3× faster than TB-BiCF-AF, since
TB-BiCF-AF needs to process all frames in the temporary
block in each filter learning stage. Therefore, the temporary
block-based strategy considering the first and last frames in
the block can better improve the discrimination ability and
generalization ability of the filter and can be efficiently applied
to the UAV tracking applications.

V. CONCLUSIONS

In this work, a temporary block-based bidirectional
incongruity-aware correlation filter, i.e., TB-BiCF, is proposed
to perform real-time UAV object tracking. By considering
the temporary block-frame bidirectional incongruity in the
correlation filter learning, the novel tracker can make full use
of the inter-frame information to obtain the balance between
discriminate power inheritance and generalization power en-
hancement. Considerable experiments are performed to verify
the proposed approach on three challenging UAV tracking
benchmarks. Comprehensive experimental results manifest
that the presented TB-BiCF tracker has the outstanding per-
formance against 34 state-of-the-art tracking methods in ac-
curacy, robustness, and efficiency. Additionally, the proposed
method with less computation is suitable for real-time UAV
tracking tasks. The results of TB-BiCF will further expand
the development of the temporary block-based bidirectional
incongruity repression strategy in UAV object tracking appli-
cations. We strongly believe that the development of future

work can further improve the proposed method and promote
the development of UAV aerial video analysis.

APPENDIX A
DERIVATION OF THE OPTIMIZATION PROBLEM EQ. (13)
The original objective function in Eq. (13) can be equiva-

lently expressed as follows:∥∥∥ŷ−X̂k
dŵ
∗
d

∥∥∥2

2
+γ
∥∥∥(X̂k

d+X̂k−∆k
d

) (
ŵ∗d−ŵk−∆k∗

d

)∥∥∥2

2

+ µ

∥∥∥∥ŵd −
√
NFhd +

1

µ
ζ̂d

∥∥∥∥2

2

,

(22)

where X̂k
d = diag

(
x̂kd
)

and X̂k−∆k
d = diag

(
x̂k−∆k
d

)
denote

the diagonal matrices.
By differentiating the objective function Eq. (22) with

respect to the filter ŵ∗d in the d-th channel and setting the
outcome to zero, we can obtain:

X̂k>
d

(
X̂k∗
d ŵd − ŷ∗

)
+ µŵd − µ

√
NFhd + ζ̂d+

γ
(
X̂k
d+X̂k−∆k

d

)>((
X̂k
d+X̂k−∆k

d

)∗ (
ŵd−ŵk−∆k

d

))
=0,

(23)

where the superscript ∗ and > denotes the conjugate and
the transpose of a vector or matrix, respectively. By the
transposition of terms, the following equation can be achieved:(

X̂k>
d X̂k∗

d + γM̂xx
d + µIN

)
ŵd

= X̂k>
d ŷ∗ + µ

√
NFhd − ζ̂d + γM̂xx

d ŵk−∆k
d ,

(24)

where M̂xx
d =

(
X̂k
d + X̂k−∆k

d

)> (
X̂k
d + X̂k−∆k

d

)∗
and IN is

an identity matrix of size N ×N . Note that the matrix on the
left side of the equation, i.e.,

(
X̂k>
d X̂k∗

d + γM̂xx
d + µIN

)
, is

diagonal, so the inverse of the matrix can be easily obtained by
replacing each element in the diagonal with its reciprocal. The
solution to ŵd can be achieved by the element-wise operation:

ŵd =

(
X̂k>
d X̂k∗

d + γM̂xx
d + µIN

)−1(
X̂k>
d ŷ∗

+ µ
√
NFhd − ζ̂d + γM̂xx

d ŵk−∆k
d

)
=

x̂kd � ŷ∗ + µĥd − ζ̂d + γm̂xx
d � ŵk−∆k

d

x̂kd � x̂k∗d + γm̂xx
d + µ

,

(25)

where the vector m̂xx
d is composed of the diagonal elements

of the matrix M̂xx
d . This solution is equivalent to Eq. (14). �

APPENDIX B
DERIVATION OF THE OPTIMIZATION PROBLEM EQ. (15)
By differentiating the objective function Eq. (15) with

respect to the auxiliary variable ĥ∗d in the d-th channel and
setting the outcome to zero, we can achieve:

λSHShd − µ
√
NFHŵd + µNhd −

√
NFHζ̂d = 0 , (26)

where the superscript H denotes the conjugate transpose of
a matrix and S = diag(s) is the diagonal matrix. By the
transposition of terms, we can easily obtain the solution to
the subproblem ĥd:

hd =
(
λSHS + µIN

)−1
(
µ
√
NFHŵd +

√
NFHζ̂d

)
. (27)
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Note that the matrix
(
λSHS + µIN

)
is the diagonal matrix,

so the inverse of the matrix can be achieved by replacing
each element in the diagonal with its reciprocal. Therefore, the
solution to ĥd can be expressed by the element-wise operation
as follows:

hd =
µ
√
NFHŵd+

√
NFHζ̂d

λ(s� s∗) + µ
=

1√
N
FH
(
µŵd+ζ̂d

)
λ
N (s� s∗) + µ

=
F−1(µŵd + ζ̂d)
λ
N (s� s∗) + µ

.

(28)

The resolution is equivalent to Eq. (16). �

ACKNOWLEDGMENT

The work was supported by the National Natural Science
Foundation of China under Grant 61806148 and the State
Key Laboratory of Mechanical Transmissions (Chongqing
University) under Grant SKLMT-KFKT-201802.

REFERENCES

[1] F. Lin, C. Fu, Y. He, F. Guo, and Q. Tang, “BiCF: Learning Bidirec-
tional Incongruity-Aware Correlation Filter for Efficient UAV Object
Tracking,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), 2020, pp. 1–7.

[2] S. Lin, M. A. Garratt, and A. J. Lambert, “Monocular Vision-based
Real-time Target Recognition and Tracking for Autonomously Landing
an UAV in a Cluttered Shipboard Environment,” Autonomous Robots,
vol. 41, no. 4, pp. 881–901, 2017.

[3] M. Mueller, G. Sharma, N. Smith, and B. Ghanem, “Persistent Aerial
Tracking System for UAVs,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2016, pp.
1562–1569.

[4] C. Martinez, C. Sampedro, A. Chauhan, and P. Campoy, “Towards
Autonomous Detection and Tracking of Electric Towers for Aerial Power
Line Inspection,” in Proceedings of the International Conference on
Unmanned Aircraft Systems (ICUAS), 2014, pp. 284–295.

[5] M. Monajjemi, J. Bruce, S. A. Sadat, J. Wawerla, and R. Vaughan,
“UAV, Do You See Me? Establishing Mutual Attention Between an
Uninstrumented Human and an Outdoor UAV in Flight,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 3614–3620.

[6] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting
the Circulant Structure of Tracking-by-Detection with Kernels,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2012, pp. 702–715.

[7] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-Speed
Tracking with Kernelized Correlation Filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

[8] M. Danelljan, F. S. Khan, M. Felsberg, and J. v. d. Weijer, “Adaptive
Color Attributes for Real-Time Visual Tracking,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014, pp. 1090–1097.

[9] Y. Li and J. Zhu, “A Scale Adaptive Kernel Correlation Filter Tracker
with Feature Integration,” in Proceedings of the European Conference
on Computer Vision (ECCV) Workshops, 2015, pp. 254–265.

[10] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S.
Torr, “Staple: Complementary Learners for Real-Time Tracking,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 1401–1409.

[11] N. Wang, W. Zhou, Q. Tian, R. Hong, M. Wang, and H. Li, “Multi-cue
Correlation Filters for Robust Visual Tracking,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 4844–4853.

[12] C. Fu, F. Lin, Y. Li, and G. Chen, “Correlation Filter-Based Visual
Tracking for UAV with Online Multi-Feature Learning,” Remote Sens-
ing, vol. 11, no. 5, pp. 1–23, 2019.
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Robotics, École polytechnique fédérale de Lausanne
(EPFL), Switzerland. His research interests include
robotics, visual object tracking, and place recogni-
tion.

Fuyu Guo is currently a Ph.D student in the School
of Mechanical Engineering, Chongqing University.
He holds a B.Eng. in Mechanical Engineering from
Northeastern University, China. In 2018 he was
a visiting student for 6 months at Assoc. Prof.
Pham Quang Cuong’s CRI group in the School of
Mechanical and Aerospace Engineering, Nanyang
Technological University, Singapore. His research
interests include robotic manipulation, intelligent
perception.

Qian Tang received her Bachelor’s, Master’s and
Ph.D. degrees in Chongqing University, China, re-
spectively in 1991, 1994, and 1997. From 2003 to
2004, she was a visiting scholar at the Department
of Mechanical and Industrial Engineering, the Uni-
versity of Toronto, Canada. She is a senior fellow
of the Chinese Mechanical Engineering Society.
Currently, she is a professor at College of Mechan-
ical Engineering, Chongqing University, China. Her
research interests include intelligent manufacturing
and additive manufacturing.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 01,2021 at 23:36:04 UTC from IEEE Xplore.  Restrictions apply. 


