
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021 3765

VVC Complexity and Software
Implementation Analysis

Frank Bossen , Senior Member, IEEE, Karsten Sühring , Adam Wieckowski ,

and Shan Liu , Senior Member, IEEE

(Invited Paper)

Abstract— A steady increase in available processing power
continues to drive advances in video compression technology. The
recently completed Versatile Video Coding (VVC) standard aims
to double the compression efficiency of HEVC and deliver a same
quality of video at half the bitrate. To achieve this goal, VVC
includes several new methods that improve coding efficiency at
the cost of increased complexity. This paper provides a complexity
analysis of VVC and its VTM reference software. Whereas VVC
is more complex than HEVC, it remains readily implementable
in software on current generation processors. Performance of
practical decoders are reported, showing that real-time decoding
of 8K content is feasible. An encoder is also presented, showing
that most of the compression gains of VVC over HEVC can be
obtained at a small fraction of the resources needed by the VTM
encoder under common test conditions.

Index Terms— Video coding, Versatile video coding (VVC).

I. INTRODUCTION

VERSATILE Video Coding (VVC) [1] is the most recent
video compression specification jointly developed by

ISO/IEC and ITU-T. One of its purposes is to provide a
substantial improvement in compression efficiency over the
previous HEVC standard: deliver a same quality of video
at half the bitrate. It features several profiles. This paper
focuses on the core “Main 10” profile, which supports sample
bit depths of up to 10 bits and the 4:2:0 chroma sampling
format. Some aspects of the “Main 10 4:4:4” profile are also
discussed. It should be noted that VVC, unlike its predeces-
sors, does not feature a separate profile for lower sample bit
depths (e.g., 8 bits). VVC’s improved compression efficiency
comes at the cost of increased complexity. Complexity may
come in various forms, including computational complex-
ity, memory requirements (local and global), and memory
bandwidth.

This paper aims to describe and quantify this complexity
increase. It follows a similar structure to that of its sibling on

Manuscript received September 11, 2020; revised February 11, 2021;
accepted March 25, 2021. Date of publication April 9, 2021; date of current
version October 4, 2021. This article was recommended by Associate Editor
J. Chen. (Corresponding author: Karsten Sühring.)

Frank Bossen is with Sharp Electronics of Canada Ltd., Mississauga, ON
L4Z 1W9, Canada (e-mail: fbossen@sharpsec.com).

Karsten Sühring and Adam Wieckowski are with the Video Coding
and Analytics Department, Fraunhofer Institute for Telecommunications–
Heinrich Hertz Institute, 10587 Berlin, Germany (e-mail: karsten.
suehring@hhi.fraunhofer.de).

Shan Liu is with Tencent America, Palo Alto, CA 94306 USA (e-mail:
shanl@tencent.com).

Digital Object Identifier 10.1109/TCSVT.2021.3072204

HEVC [2]. Section II discusses design aspects of VVC and
their impact on complexity. Section III provides an analysis of
the VTM reference software. Section IV describes optimized
VVC software decoders. Section V describes an optimized
VVC software encoder. Finally, conclusions are drawn in
Section VI.

II. DESIGN ASPECTS

The following sections review complexity aspects of the
different modules of the VVC standard. Emphases are put
on comparing VVC to HEVC, and on software implemen-
tations. In the following, complexity is often expressed in
multiply-accumulate (MAC) operations per sample. Such a
MAC operation may typically multiply two 16-bit input values
and accumulate the result in a 32-bit register. As a point of
reference, a single processor core may compute in the order
of 24 such MAC operations per cycle.1 When considering a
processor with 8 cores clocked at 3GHz and 4K-UHD video
at 60 fps, this translates to about 750 MACs per sample. Most
algorithms do not solely use MAC operations, and it should
therefore not be assumed that a fixed budget of 750 MACs
per sample is available. Where other types of operations
are dominant, operation counts per sample are provided and
each MAC is counted as two operations. Operations that
rearrange data without modifying it (e.g., block transpose)
are generally ignored here, even though they add overhead in
practice.

A. Block Partitioning

VVC supports more flexible block partitioning than
HEVC [3]. Indeed, binary, ternary, or quaternary splits may be
recursively applied to partition a coding tree unit (CTU) into
coding units (CU). The binary and ternary splits may be along
either horizontal or vertical directions. A ternary vertical split
decomposes an N × M unit into units of size N/4 × M, N/2 ×
M, and N/4 × M. It should be noted that the middle partition
has width N/2 but may not be aligned to the N/2 × N/2 grid,
which may lead to unaligned memory access requests. The
quaternary split corresponds to the quadtree split also present
in HEVC. Fig. 1 provides an example of a picture partitioned
into CUs.

1Assuming 3 execution ports, each 256 bits wide, and 2 instructions to
execute a MAC: a 16 × 16-bit multiplication and a 32-bit add (e.g., vpmaddwd
and vpadd on x86-64). 48 MACs can be computed every 2 cycles.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4410-0842
https://orcid.org/0000-0003-0490-5803
https://orcid.org/0000-0002-1442-1207
https://orcid.org/0000-0001-7987-5026

3766 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Fig. 1. Example of a picture partitioned into CUs, where VVC’s five split
patterns are highlighted (quaternary, horizontal binary, vertical binary, hori-
zontal ternary, and vertical ternary). Thick lines represent CTU boundaries.

A CU generally comprises spatially collocated luma and
chroma coding blocks (CB). However, a CU may comprise
only luma or chroma CBs when luma and chroma coding
trees diverge in intra-coded regions, as in the following cases:
(a) an intra slice uses separate trees; or (b) use of local separate
trees is triggered to satisfy minimum size constraints. To avoid
processing small blocks the following constraints apply to CBs
when using the 4:2:0 chroma sampling format: the minimum
width is 4 samples for luma CBs and intra-coded chroma
CBs, and 2 samples for inter-coded chroma CBs; the minimum
height is 4 samples for luma CBs and 2 samples for chroma
CBs; and the minimum area is 16 samples for luma CBs
and intra-coded chroma CBs, and 8 samples for inter-coded
chroma CBs.

It should be noted that VVC does not use the concept of
prediction units (PU) as in HEVC. The size of a predicted
block generally matches the size of the CB, except for intra-
predicted blocks where a CB might be split into multiple
blocks when either intra sub-partitions (ISP) are used, or the
CB size exceeds the maximum transform size.

Given the more flexible partitioning, keeping track of which
samples have already been processed to determine availability
of data is not as straightforward as in HEVC. Also, separate
accounting of availability is needed for luma and chroma
components when their respective block partitions diverge.

The set of supported CTU sizes is changed from 16 × 16,
32 × 32, and 64 × 64 in HEVC, to 32 × 32, 64 × 64,
and 128 × 128 in VVC. Whereas the maximum CTU size is
increased from 64 × 64 to 128 × 128, splits are constrained
such as to enable a decoder to operate on units of 64 ×
64 samples. Thus, a CU is either a combination of 1, 2 or
4 blocks of 64 × 64 samples, or a subset that fits within a block
of 64 × 64 samples. In both cases, 64 × 64 blocks or subsets
thereof do not cross the 64 × 64 grid. The same applies to
transforms.

Whereas VVC’s more flexible block partitioning adds com-
plexity in a decoder, the increase is not substantial given that
no sample-based operations are involved. On the other hand,
an encoder is faced with many more possibilities to choose
from, and effective strategies for pruning the search space are
needed (see Section V).

B. Intra-Picture Prediction

HEVC features 35 luma intra-picture prediction modes
including planar, DC, and 33 angular modes. VVC builds
on this framework: it extends the number of angular modes
to 65 and enables prediction from one of multiple reference
lines [4]. In VVC, one of two polyphase 4-tap filters is used
for angular prediction, thereby doubling (from 2 to 4) the
number of MACs compared to HEVC. The smoothing process
that HEVC applies to DC and horizontal/vertical angular
modes is generalized and extended to the planar and most
angular modes in VVC. Furthermore, the spatial extent of
smoothing may be larger and cover the entire predicted block.
This accounts for another 2 or 3 MACs per sample, as a
weighted average is computed between a predicted sample and
one or two reference samples.

VVC also features a separate set of 60 prediction modes
(up to 32 for a given block size), where a vector containing
left and above reference samples is multiplied by a matrix
to obtain a predicted block. To limit complexity, the matrix
multiplication applies to a reduced resolution representation
of the block. For example, to predict a 16 × 16 block, the left
and above reference samples are downsampled by a factor
4:1 to form a single vector containing 8 values. This vector is
then multiplied by a matrix of size 64 × 8 to obtain 64 values
that are arranged into an array of size 8 × 8. This array is
then upsampled by a factor 1:2 along each dimension to the
target block size. In this example, the MAC count is 32 for
downsampling, 512 for the matrix multiplication, and 384 for
upsampling for a total of 928, or about 3.63 per sample.2 The
MAC per sample count peaks at 5.38 for blocks of size 4 ×
8 and 8 × 4. The computational complexity is therefore quite
similar to that of angular prediction (6 MACs per sample).
As with other intra prediction modes, care was taken to limit
the bit width of constants and intermediate values. As the
matrices have no regular structure, all elements (5120 signed
8-bit values) need to be stored in read-only memory (ROM).
This amount includes a reduction in half that arises from the
fact that one half of the matrices are the transpose of the other
half.

Intra-picture prediction of chroma samples differs from
prediction of luma samples mainly in the following ways:
(a) a 2-tap filter is used for angular prediction instead of
a 4-tap one, (b) the matrix multiplication modes are not
supported,3 and (c) a cross-component linear model (CCLM)
may be used to predict chroma samples from collocated luma
samples. The CCLM mode has higher complexity than angular
prediction modes, as luma samples are downsampled using
a 2-dimensional 6-tap filter before applying a linear model
to each sample. The linear model is derived from reference
samples located in neighboring blocks. An alternate plus-
shaped 5-tap downsampling filter may be used when the
chroma samples in a 4:2:0 video source are vertically aligned

2Downsampling involves generating 8 samples using a 4-tap filter
(32 MACs), and upsampling involves generating 192 samples using a 2-tap
filter (384 MACs) to augment the 64 samples resulting from the matrix
multiplication and form a 16 × 16 predicted block.

3This restriction is lifted when processing data in the 4:4:4 format, where
all components may use a same prediction mode.

BOSSEN et al.: VVC COMPLEXITY AND SOFTWARE IMPLEMENTATION ANALYSIS 3767

with the even luma sample rows. Filtering and downsampling
are not required when using the 4:4:4 chroma format.

It should be noted that VVC does not support constrained
intra prediction, where only samples from neighboring intra-
predicted blocks may be used for intra prediction. The omis-
sion of this feature simplifies the padding process of reference
sample arrays.

To avoid writing narrow blocks of data to memory, the min-
imum width of an intra prediction is 4 samples for all color
components. Therefore, when the ISP mode is used and a
CB is split into narrow blocks, the split does not apply for
prediction purposes, but does for transforms.

Unlike in HEVC, intra block copy (IBC) is featured in the
core profile of VVC [5]. A block vector is signaled to indicate
the relative position of a reference block within the current
picture to be copied and used as prediction. A separate data
buffer is typically maintained to store data to be referenced.
The need for a separate buffer arises from the fact that loop
filters are not applied to this reference data. The size of the
reference buffer is limited to 16384 samples in VVC to keep
implementation cost in check (for hardware in particular).

VVC supports significantly more intra prediction modes
than HEVC. Evaluating all modes is generally not practical
in an optimized encoder.

C. Inter-Picture Prediction

VVC and HEVC share a same core inter-picture predic-
tion method: an 8-tap filter is used to generate a motion-
compensated prediction, where the smallest luma block size is
8 × 8 for bi-predicted blocks, and 8 × 4 / 4 × 8 otherwise.
Predictions may be weighted according to weights that are
customizable on a per slice or picture basis, or to weights
selected for each CU from a fixed set. Such prediction process
requires 48 MACs per sample for bi-predicted N × 8 luma
blocks (2 × 15 for horizontal filtering, 2 × 8 for vertical
filtering, and 2 × 1 for the weighted average), and 62 MACs
per sample for bi-predicted N × 4 luma blocks (2 × 22 for
horizontal filtering, 2 × 8 for vertical filtering, and 2 × 1 for
the weighted average).

VVC further defines an affine mode where two or three
control motion vectors are provided for a CU. A motion
vector is then derived for each 4 × 4 block within the CU
by interpolating between the control ones. Given this smaller
block size and to reduce complexity, a shorter 6-tap filter is
applied in this mode, requiring 41 MACs per sample (2 ×
13.5 for horizontal filtering,4 2 × 6 for vertical filtering,
and 2 × 1 for the weighted average). To avoid increasing
memory bandwidth, a fallback mode applies when the dif-
ference between motion vectors of adjacent 4 × 4 blocks
within the CU is larger than a threshold. In this mode, a single
motion vector is used for the entire CU such as to limit the
size of the area in the reference picture required to predict
the CU. When the fallback mode is not triggered, prediction
refinement with optical flow (PROF) may be further applied to

4When predicting a 4 × 4 block, a horizontal 6-tap filter is applied to a
9 × 9 block to obtain a 4 × 9 block. The number of MACs for this operation
is 4 · 9 · 6 = 216, or 13.5 per sample in the target 4 × 4 block.

affine blocks. PROF computes horizontal and vertical sample
gradients and multiplies them by per-sample horizontal and
vertical motion vector adjustments, at a cost of about 48
operations per sample.5

Decoder-side Motion Vector Refinement (DMVR) can be
used for bi-predicted CUs that don’t use the affine mode,
are coded with merge/skip, and for which the two reference
pictures are equidistant from the current picture but in opposite
temporal directions. DMVR performs a local motion search to
increase the similarity between the two predictions. It operates
on blocks of either 8 × 16, 16 × 8 or 16 × 16 samples,
where larger CUs are split into smaller blocks of such size.
Initially, motion compensation is performed using a bilinear
filter to generate two (N+4) × (M+4) blocks (at a cost
of 15.6 MACs per sample) within which a ±2 sample search
is conducted. The sum of absolute differences (SAD) metric
is used to determine the best match, where every other line
in the block is skipped such as to reduce complexity. The
computational cost is 12.5 absolute differences per sample
(a 5 × 5 search window and half the samples are consid-
ered), or 37.5 operations per sample. The SADs are further
used to determine a fractional motion vector refinement. The
regular 8-tap interpolation filter is then applied using the
refined motion vector, at a cost of 48 MACs per sample in
the worst case (when DMVR operates on 16 × 8 blocks).
To avoid increasing memory bandwidth, the (N+7) × (M+7)
array fetched in consideration of the unrefined motion vector
is extended using padding before generating a prediction using
the refined motion vector. Bidirectional optical flow (BDOF)
may be further applied. BDOF computes horizontal and ver-
tical sample gradients within the CU. It further calculates a
fractional motion refinement for each 4 × 4 block in the
CU based on sums of gradients and prediction differences
within 6 × 6 windows. A significant number of operations are
added: about 41 per sample. To reduce the average number
of operations, the DMVR search and BDOF processing are
skipped if the difference between the two predictions after
bilinear interpolation is smaller than a threshold. It should
be noted that the refined motion vectors from the DMVR
search are used for motion compensation (including chroma)
and stored for reference by future pictures. However, they are
not used for motion vector prediction and motion discontinuity
determination in deblocking.

Intra- and inter-picture predictions may be combined (CIIP)
in VVC. In such case, the planar prediction mode is always
used for the intra prediction. Predictions are weighted accord-
ing to the presence of neighboring intra-coded CUs. It should
be noted that in this CIIP mode, the size of the intra prediction
may not match the size of the transform (e.g., if the maximum
transform size is set to 32 × 32, for a CU of size 64 × 8,
the intra predicted block is of size 64 × 8, and there are two
transform blocks of size 32 × 8).

5For a 4 × 4 block, the number of operations can be broken down to:
(a) 32 shift and 32 subtraction operations to compute sample gradients
(4 operations per sample); (b) 2 MACs, 2 shifts and 4 min/max operations per
sample to compute motion vector adjustments; and (c) 2 MACs and 2 min/max
operations per sample to compute the product of gradients and adjustments.
The number of operations is doubled in the bi-prediction case.

3768 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

TABLE I

ESTIMATED WORST-CASE NUMBER OF OPERATIONS PER LUMA SAMPLE
FOR BI-PREDICTED INTER CUs

VVC also supports resolution changes within a sequence,
where a picture may be predicted from another picture with a
difference size using reference picture resampling (RPR). The
resampling process is integrated into the motion compensation
process, which becomes a bit more involved since the phase
of the interpolation filter may be different for each sample.
However, the number of MACs is not increased in this case.
There are restrictions on the downsampling ratio (2:1) to limit
the size of the reference sample array and on the upsampling
ratio (1:8).

Two inter-picture predictions may also be blended using one
of 64 geometric patterns such as to more faithfully track object
boundaries. This blending mode cannot be used in combination
with affine, DMVR, BDOF, and weighted prediction, and does
not have a significant impact on decoder complexity.

In VVC, as in HEVC, whenever the motion compensation
process references a sample outside of picture boundaries,
the closest sample inside the picture is used instead. It is not
uncommon to extend an entire reference picture with padding
to implement this process. In VVC, such an approach is not
practical, and it is preferable to do padding on the fly, i.e., at
the time a block is predicted. Indeed, with features such as
wraparound motion compensation and subpictures, it is not
possible to have a single padded reference picture that is
suitable for all CTUs.

In VVC, motion vectors are represented in units of 1/16th

of a luma sample and require 18 bits of storage per component
(32-bit representations are typically used in software). For
temporal storage, an 8 × 8 granularity is used in VVC
instead of 16 × 16 in HEVC. To limit the memory amount
and bandwidth, motion vector components are compressed
to 10-bit floating point values for reference by subsequent
pictures.

Inter-picture prediction of chroma components is simpler
than luma for several reasons: (a) a 4-tap filter is used for
interpolation; (b) DMVR reuses the refinement derived for
luma; and (c) PROF and BDOF do not apply. It should be
noted that when the affine mode is used, a single averaged
motion vector is used for 4 × 4 chroma blocks (such averaging
is not required for the 4:4:4 format).

Table I summarizes the estimated number of operations
required to perform various inter prediction methods in the
worst case. The combination of DMVR and BDOF almost
doubles the number of operations for the luma component
compared to the core case (HEVC-style prediction). It should
be noted that for the core case, the worst-case complexity
of VVC is higher than HEVC, in terms of computational
complexity and of memory bandwidth. In VVC, every CU in
a picture can be of size 16 × 4 and have unique bi-predictive

TABLE II

NUMBER OF MACs PER SAMPLE FOR VARIOUS TRANSFORM SIZES

motion parameters, whereas in HEVC, a PU of size 16 × 4 is
always paired with another PU of size 16 × 12 inside a CU.

Motion vector prediction is also more complex in VVC
than in HEVC. The number of merge candidates is increased
to 6 and a history of recent motion vectors is maintained.
The number of ways to code motion data is also increased:
VVC introduces adaptive motion vector resolution (AMVR),
symmetric motion vector difference (SMVD), and merge with
motion vector difference (MMVD). Whereas these additional
methods do not significantly impact a decoder, an encoder may
have to test many more options for optimal performance.

D. Transforms and Quantization

VVC’s transform and quantization design is based on that of
HEVC. The DCT and DST approximations defined in HEVC
are also featured in VVC. However, many more transforms
are supported in VVC, including rectangular transforms, one-
dimensional transforms, DSTs of size 8, 16, and 32, and
DCTs of size 2 and 64. A secondary low-frequency non-
separable transform (LFNST) may be applied on top of the
DCT [6]. This secondary transform adds up to 8 MACs per
sample and requires a fair amount of ROM (8K bytes). When
the LFNST is used, only a few coefficients representing low
spatial frequencies may be nonzero (8 or 16 depending on the
transform size).

To support larger DSTs and DCTs without substantially
increasing the number of MACs, coefficients representing high
frequencies may only take value 0 for the larger transform
sizes. For example, for a 32 × 32 DST, only the upper-left
16 × 16 region of the transformed block can take nonzero
values. Table II summarizes the number of MACs per sample
needed to compute inverse transforms of various sizes. The
largest amount (32 MACs) is found for the 16 × 16 DST.
It is not far off from the 32 × 32 DCT (29 MACs), which is
the largest amount that applies to HEVC. In practice the 16 ×
16 DST may run faster than the 32 × 32 DCT given its more
regular structure (straight matrix multiply). It can also be noted
that the DCT+LFNST case requires fewer operations than the
DCT case for large transform sizes. This situation arises from
the limitation on the number of nonzero coefficients when
the LFNST is used: many inverse column transforms may be
skipped. Whereas the MAC counts provided here consider the
worst case, decoders are generally able to further reduce the
amount of computation given that most transform coefficients
tend to be equal to 0.

The quantization process is mostly the same as in HEVC,
with one notable difference: the addition of trellis-coded quan-
tization (TCQ), also referred to as dependent quantization in
the VVC specification. For each transform coefficient, one of
two quantizers is selected based on a state machine driven by

BOSSEN et al.: VVC COMPLEXITY AND SOFTWARE IMPLEMENTATION ANALYSIS 3769

the parity of previous coefficients in a scan order. This addition
doesn’t have much impact on the decoder, but it requires
more resources in an encoder as rate-distortion optimized
quantization is implemented using a trellis algorithm, where a
trellis needs to be constructed for adequately selecting one of
the two quantizers for every coefficient.

E. Entropy Coding

VVC uses a different arithmetic coding engine than AVC
and HEVC. VVC’s engine has better compression performance
(resulting in about 1% bitrate reduction), but at the cost of
higher complexity. Two probability estimates are maintained
for each context, and the average of the two estimates is then
used to determine subinterval ranges. During the development
of VVC, the throughput of the engines of HEVC and VVC
were evaluated in optimized software implementations. The
throughput of the VVC engine was reported to be about 7%
lower [6].

The number of contexts that VVC defines is significantly
larger than HEVC (365 vs 154). The memory cost for context
state storage was not deemed critical, and there was no
sustained effort during the development of VVC to keep
the number of contexts very low. More than half of VVC’s
contexts relate to coding of transform coefficients. The context
derivation process is more complex in VVC than in HEVC,
in particular for coding transform coefficients [8]. For exam-
ple, to determine the context for a significance flag, the sum of
five neighboring levels is computed and a threshold is applied.
A second transform coefficient coding method is also provided
for blocks where no transform is applied.

The use of TCQ tends to increase the number of coded bins,
and VVC bitstreams tend to have more bins to process given a
same number of bits [9]. To limit the number of context-coded
bins for coding transform coefficients, a counter is maintained
within a TU, and coding switches to bypass mode when a
threshold equal to 1.75 times the TU area is reached. The
number of coefficients for which the bypass mode applies is
generally small but can reach 50 percent at high bitrates.

F. Loop Filters

VVC includes the deblocking and SAO loop filters that
are present in HEVC, as well as two additional filters: Luma
Mapping (LM) and Adaptive Loop Filter (ALF) [10]. SAO
in VVC is identical to that in HEVC. It is thus not further
discussed here.

LM defines a piecewise linear mapping function to adap-
tively modulate quantization according to luminance. This
function is applied to each individual luma sample prior to
adding a transform residual, and its inverse is applied after
adding such residual. It should be noted that this function is
also applied when the residual is zero. The complexity of this
filter does therefore not vary much with bitrate. Whereas a
single MAC operation per sample is required for both forward
and inverse mapping, the determination of the segment index
can be more complex. The number of segments is set to
16, which limits the size of lookup tables. When applying
the forward mapping, the segment index can trivially be

determined by extracting the four most significant bits of the
luma sample value. For the inverse mapping, restrictions are
placed on the parameters of the function such that determining
the segment index involves comparing the luma sample value
with one of 32 thresholds, where the threshold is selected
based on the five most significant bits of the luma sample
value.

VVC’s deblocking filter is similar to HEVC’s but differs in
a couple of key aspects: (a) it is applied along edges lying on a
4 × 4 grid instead of an 8 × 8 grid, and (b) longer filters may
be applied when large transforms are present. It maintains a
feature present in HEVC: for each filtering direction, all edges
can be filtered in parallel. The long filter may modify up to
7 samples on either side of an edge, where a weighted average
of 14 samples is first computed. Each of the 14 samples
is then weighted with this average. The computational cost
of this filter is thus relatively low: 6 MACs per sample.
However, given the smaller grid, the number boundary strength
computations may be doubled, as well as the number of on/off
filtering decisions based on local gradients.

ALF includes three components: a symmetric luma filter
with a 7 × 7 diamond shape (25 taps, 12 coefficients), a sym-
metric chroma filter with a 5 × 5 diamond shape (13 taps,
6 coefficients), and a cross-component filter (CC-ALF) with
a 3 × 4 diamond shape (8 taps, 7 coefficients). Given the
symmetries and a unity constraint on the filter gain, ALF
requires 12 MACs per sample for the luma filter, 6 MACs
per sample for the chroma filter, and 8 MACs per sample
for the cross-component filter. However, these MAC counts
do not reflect the full complexity of the filter. The input
to a MAC is given by the sum of two clipped differences
(except for CC-ALF). Therefore, for each MAC operation
there are 7 additional operations (2 subtractions, 4 min/max
operations, and 1 addition). The complexity of luma ALF is
thus closer to 108 operations per sample (12 coefficients with
9 operations per coefficient, MAC included). Furthermore, a
different filter may be selected for each 4 × 4 luma block. The
selection is based on local gradients of various orientations.
This adaptivity requires about 25 operations per sample. Thus,
the luma portion of the filter contributes to most of the
complexity of ALF.

The number of required line buffers typically increases with
each added filter and its spatial extent. To reduce the amount of
line buffers, VVC defines a line buffer boundary for each CTU
row. The number of lines that require buffering is limited to
4 lines above the CTU boundary for the luma component and
2 lines for the chroma component (regardless of the chroma
format). Whenever a loop filter would refer to a sample on the
other side of a line buffer boundary, a padding or mirroring
process applies to avoid referencing such sample.

From the discussion above, it is evident that loop filters are
major contributors to VVC complexity in a decoder. From an
encoder perspective, one challenge is that multiple passes over
a picture may be needed to derive suitable parameters for ALF.

G. High-Level Parallelism
HEVC introduced high-level parallelism tools such as

tiles and wavefront parallel processing (WPP) to facilitate

3770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

distributed processing. Such features are also supported by
VVC. Additionally, the concept of subpictures is introduced,
where a picture can be split into multiple regions that are
independently coded over the duration of a sequence. Note that
tiles are not fully independent since inter-picture prediction is
not restricted to using data from collocated tiles in previous
pictures. As in most HEVC profiles, high-level parallelism
features are not mandated to be used by an encoder, and a
decoder may thus not rely on their presence.

H. Miscellaneous

The nominal decoded picture buffer (DPB) size is increased
from 6 in HEVC to 8 in VVC, leading to an approximately
33% larger memory requirement. This change was driven by
the desire to support larger picture hierarchies for improved
coding efficiency.

VVC supports scalability and extended chroma formats
in dedicated profiles such as “Multilayer Main 10” and
“Main 10 4:4:4”. Scalability support requires little adaptation
at the signal processing level since RPR is already supported in
the “Main 10” profile. For extended chroma formats, an adap-
tive color transform (ACT) for RGB content coding and a
palette mode are added, but the signal processing is generally
unchanged, and observations related to chroma remain valid
unless otherwise noted.

I. Summary

Most aspects of the VVC design are more complex than
their HEVC counterparts. The increase in complexity comes
in two flavors: an increase in the number of modes that need
to be implemented, and an increase in the computational com-
plexity of the modes. On the inter-prediction front, there is no
significant increase in memory bandwidth, but the worst-case
computational complexity is substantially increased with the
combination of DMVR and BDOF. This increased complexity
may not be obvious on average, as these modes are enabled
only when multiple conditions are met. The addition of ALF
further contributes to the overall complexity. There is also an
increase in ROM requirements as trained matrices are used for
transforms and intra prediction.

A VVC encoder is faced with many more modes to choose
from, and effective heuristics to reduce the search space are
critical.

III. VTM REFERENCE SOFTWARE

The reference software for VVC is named VVC test model
(VTM) [11]. It was originally derived from the HEVC test
model (HM) [12]. Whereas much of the block level function-
ality was rewritten to support VVC’s partitioning structure and
new coding tools, VTM still shares some code with HM, e.g.,
in HLS, CABAC parsing, and motion search. The software
uses the more modern C++ 11 version and utilizes the C++
standard library more frequently.

The purpose of the reference implementation is to provide
a framework for coding experiments and tool evaluation, and
an example to guide implementors. Thus, data structures and
code are generally not optimized for speed.

During the standardization process, most coding exper-
iments were performed using common test conditions
(CTC) [20], which were also used to obtain the results
presented in this section. Compared to the HEVC common
test conditions, an emphasis on higher image resolutions is
added. Sequence class A contains six 4K-UHD sequences
(3840 × 2160), class B five HD sequences (1920 × 1080),
class C four SD sequences (832 × 480), and class D four
quarter-SD sequences (416 × 240). Class E features video
conferencing content and class F screen content, for which
additional screen content coding tools are enabled. Most
sequences are 5 or 10 seconds long (with different frame rates).
Test configurations include “all intra” (AI) with intra pictures
only, “random access” (RA) using a 16-frame hierarchical B
picture GOP6 and a random-access point every second, and
“low delay” (LD) which uses the same picture order for coding
as for display using B pictures (LDB) and optionally only P
pictures (LDP). For all sequences, 10 bits per sample are input
to the encoder. For some sequences, this involves a conversion
from 8- to 10-bit before encoding.

Run times are significantly increased compared to HM,
in particular for the AI configuration, where encoding a single
4K-UHD frame can take an hour. Thus, for AI only every 8th
picture is coded. This reduces the total run time while showing
similar coding results.

A different approach was taken for RA: each random-access
segment (about 1s long) can be encoded independently in a
parallel fashion. This reduces the run time to that of the slowest
segment. The resulting bitstreams can then be combined into
a single one [13]. In the worst case under CTC, encoding a
65-frame segment can take 2.5 days. Such parallelization is not
possible for LD, because there are no random-access points
except for the initial frame. The maximum resolution is thus
limited to HD in this case.

Whereas previous test models did not include platform
specific optimizations, VTM utilizes optimized ×86 SIMD
code for distortion measurement, interpolation filters, affine
motion estimation, ALF, and IBC hash maps to reduce the
run times. The same functions are also provided in generic
C++ code form. For a fairer run time comparison, some of
the SIMD code was ported back into HM.

Table IV shows relative run times for class A sequences
when disabling the SIMD code. The impact on AI encoding
times is rather low (10% or less), but decoding times are
up to 42% higher. In the RA case, the encoder run time
almost doubles for Tango2 and FoodMarket4. The decoder
run times may also increase by up to 95%. Thus, SIMD
code provides a significant run time benefit when processing
4K-UHD sequences.

Table III lists available fast encoding configuration options
and the CTC configurations that they are enabled in. In contrast
to HM, most fast options are enabled to reduce the required
encoding time for experiments. Fast tool options usually
reduce the number of modes or partitions that are evaluated.
They are tested with the specific CTC configurations and show
low coding performance impact therein. For configurations

6In VTM version 11.0, it was increased to a 32-frame hierarchy.

BOSSEN et al.: VVC COMPLEXITY AND SOFTWARE IMPLEMENTATION ANALYSIS 3771

TABLE III

VTM ENCODER FAST ENCODING MODE CONFIGURATION PARAMETERS

TABLE IV

RUN TIMES WHEN DISABLING SIMD OPTIMIZATIONS

TABLE V

RELATIVE RUN TIME OF VTM COMPARED TO HM

that are significantly different from CTC, disabling some fast
modes may achieve better coding performance.

Early versions of the VTM encoder, based on NextSoft-
ware [12], supported two multithreaded modes of operation:
wavefront-based and split-based [15]. However, given the lack
of use these modes in CTC, they were not maintained and were
partially removed over time. Thus, VTM multithreading is not
further considered here.

Table V shows relative run times of VTM 10.0 compared
to HM 16.23 for class A and B sequences. The numbers are
averaged over all CTC rate points, with quantization parameter
(QP) values 22, 27, 32 and 37. The encoder run time increase
is usually much larger for higher bitrates and can reach a
factor 40 in AI for QP 22. For RA and LD, the largest
increase is about 15 times. Whereas the encoder run time

Fig. 2. VTM decoding rates in frames per second as a function of bitrate
for 4K-UHD content in AI and RA configurations.

increase is significant, the decoder run time increases much
less with a maximum factor around 2, and averages between
1.5 and 1.8.

A. VTM Decoder

Fig. 2 shows VTM decoding speed in frames per second
(fps) as a function of bitrate for class A sequences. Run times
were measured on an Intel Xeon W-2140B processor. Whereas
its base frequency is 3.2 GHz, the frequency observed during
the experiment was about 3.9-4.0 GHz. The diagram shows
that decoding speed depends mainly on bitrate, and to a lesser
extent on sequence content and encoder configuration.

With decoding frame rates between 1 and 2 fps, decod-
ing of 60 fps 4K-UHD content may take around 50 times
longer than real time for low QP values in AI. In the RA
configuration, decoding is faster but may still take around
30 times longer than real-time decoding. VTM can achieve
real-time decoding for class D (quarter SD) and almost does
for class C (SD).

These numbers illustrate well that significant optimization
is required to achieve real-time decoding speeds for 4K-UHD
resolution in software. Table VI and Table VII show exemplary
profiling runs for selected class A sequences at QP values
22 and 37. The two sequences were chosen because they
exhibit different characteristics that have an impact on the
run time distribution: ParkRunning has finer detail and more
localized motion than FoodMarket.

The tables show selected function blocks that consume
significant amounts of time. Names indented to the right
indicate that these blocks are part of the preceding func-
tion, e.g., Deblocking, ALF, and SAO are sub-functions of
Loop Filters. Loop filtering requires a significant amount of
time (31-46%) in both RA and AI configurations. Although
deblocking always shows higher numbers than ALF, it should
be noted that ALF uses optimized SIMD code and deblocking
doesn’t.

CABAC parsing has a much higher impact in AI, with up to
almost 35% run time in ParkRunning. This can be explained
by a higher bitrate resulting from the small spatial structures
that lead the selection of smaller block partitions. The higher
amount of residual coding in AI can also be observed in

3772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

TABLE VI

TIME SPENT IN VTM DECODER FUNCTIONS FOR RA
CLASS A SEQUENCES

TABLE VII

TIME SPENT IN VTM DECODER FUNCTIONS FOR AI
CLASS A SEQUENCES

the amounts of time (up to 17%) spent in inverse transform
functions.

For RA a significant amount of time is spent on DMVR
(up to 27%), but the percentage varies according to sequence
characteristics and QP value. As shown in Fig. 7, the fraction
of luma samples where DMVR is used varies with bitrates,
and hence QP values.

B. VTM Encoder
The VTM encoder was instrumented with time measure-

ment functions for the different modules. Such measured times
are reported in Fig. 3. The diagram shows the average number
of seconds consumed by each module for encoding one frame.
The average is computed across all class A sequences using
the RA configuration.

It can be seen that run times vary significantly over the
range of tested QP values, generally showing the highest
processing time for QP value 22. In particular, evaluations
of intra and merge modes display the biggest increase for
low QP values. This can be explained by the way that most
search heuristics operate: modes are checked in a predefined
order until the search algorithm terminates, typically when
the residual coding cost is deemed low enough. With low QP
values, the number of bits spend for residual coding increases,
which leads to searching more partitions and more modes.
As more intra, merge, and other modes are evaluated, more
time is also spent in the quantization module, because it is

Fig. 3. Average per-frame VTM encoder run times across 4K-UHD CTC
sequences for different modules and QP values.

used to compute costs associated with each mode. For higher
QP values, most time is spent in affine search, followed by
merge and intra.

Compared to the decoder, loop filters have a rather low
impact on run time. The deblocking filter does not require a
parameter search and follows the same rules as at the decoder,
so its time impact is hardly measurable. The amount of time
spent on ALF parameter estimation shows little variation over
the range of QP values.

IV. OPTIMIZED SOFTWARE DECODERS

Multiple reports of optimized software decoders were made
during the development of VVC [16]–[19]. They indicate that
real-time decoders are achievable on the current generation
of CPUs. There are three keys to achieve real-time decoding
performance, in particular for higher resolution sequences:
multithreading, adequate data structures and program flow,
and efficient use of vector instructions (SIMD). Whereas the
VTM software features SIMD code for several functions,
including for example ALF, such code may not be optimal.
Also, only a small fraction of the code uses 256-bit wide vector
instructions such as AVX2. Multithreading can be added to
the VTM software, but it isn’t sufficient by itself to achieve
real-time performance. The reasons for this insufficiency are
inefficient data structures and program flow. Most, if not all,
real-time implementations are written from scratch with lean
data structures and improved program flow.

In the following, performance of real-time decoders is
reported for several test cases: 4K-UHD AI and RA, 8K-UHD
RA, and HD 4:4:4 RA, where bitstreams are generated accord-
ing to [20] and [21] (with the sample bit depth is set to
10) using VTM version 10.0, unless noted otherwise. The
decoder presented in [18] was used for the 4K-UHD and
8K-UHD cases, and the decoder described in [19] for the HD
4:4:4 cases.

A. 4K-UHD AI and RA
Two configurations are considered for 4K-UHD content: AI

and RA. The AI configuration is interesting for two reasons:
(a) VVC can be used for encoding single pictures (still images)
and it reflects that use case, and (b) it gives insight into
the complexity of entropy coding which tends to dominate

BOSSEN et al.: VVC COMPLEXITY AND SOFTWARE IMPLEMENTATION ANALYSIS 3773

Fig. 4. Decoding rates in frames per second for an optimized decoder as a
function of bitrate for 4K-UHD content in AI and RA configurations.

in this configuration as the bitrate is typically much higher.
The RA configuration is generally used for broadcast and
streaming applications. It aims to achieve the highest possible
compression performance, in particular by allowing reordering
of pictures and creating a prediction hierarchy.

Fig. 4 shows the decoding rates in frames per second
achieved with an optimized decoder. The processor used in
this experiment is an Intel Xeon W-2140B with 8 cores, and
simultaneous multithreading is disabled (as in Fig. 2 for the
VTM). The decoder aims to use all available CPU resources.
The observed processor frequency during decoding is about
3.6-3.7 GHz. The decoding rate depends mainly on the bitrate,
and rates of 60 frames per second or more are attained for
bitrates up to about 60 Mbps. When comparing these results
to those in Fig. 2, the average speedup over VTM is about
26× for RA and 32× for AI. These factors are substantially
higher than what could result from applying multithreading to
the VTM (i.e., 8× with 8 cores). It can be noted that one RA
curve stands out in Fig. 4 and matches more closely the AI
curves; it represents the Campfire sequence. The reason for
its different behavior can be attributed to the high percentage
of samples using intra prediction (e.g., 25% at QP 37) and
low percentage of samples using bi-prediction (e.g., 43% at
QP 37).

In practice, decoders often operate at a fixed frame rate,
outputting frames at regular intervals, instead of decoding
all frames as quickly as possible. Reflecting this common
behavior, Fig. 5 shows the number of cores that are utilized
when operating at 60 frames per second. About 7 cores are
utilized on average at 40 Mbps, which is the maximum bitrate
specified by Level 5.1 [1].

Table VIII and Table IX provide profiling results obtained
for the AI and RA configurations with the QP value set to
27. The 6 sequences are Tango2 (TA), FoodMarket4 (FM),
Campfire (CF), CatRobot (CR), DaylightRoad2 (DR), and
ParkRunning3 (PR) [20].

As expected, entropy decoding (parsing) takes a significant
chunk of decoding time in the AI case: about a third on
average. Deblocking and ALF are also major contributors
(about 20% each). Finally, intra prediction itself accounts for
about a tenth of decoding time. There are significant variations

TABLE VIII

4K-UHD ALL INTRA PROFILING DATA

TABLE IX

4K-UHD RANDOM ACCESS PROFILING DATA

Fig. 5. Average number of busy processor cores as a function of bitrate for
4K-UHD content in RA configurations.

across sequences which can be attributed to differences in
bitrates.

In the RA case, inter-picture prediction is the largest con-
tributor to decoding time (more than a third). Deblocking and
ALF are also major contributors (about 15-20% each). As in
the AI case, variations are mainly caused by differences in

3774 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Fig. 6. Average decoding time distribution for 4K-UHD content under AI
and RA conditions for optimized decoder and VTM, and 8K-UHD content
under RA conditions for optimized decoder.

Fig. 7. Fraction of luma samples for which ALF, DMVR, and Affine are
used as a function of bitrate. Each curve represents one 4K-UHD sequences.

bitrate. Fig. 6 shows the time distribution in graphical form
along with the same statistics for VTM. It can be noted that
the optimized decoder spends a smaller fraction of time than
VTM on intra prediction, transforms and quantization, and
deblocking, which indicates a more significant speedup from
optimization for these modules.

Fig. 7 shows how frequently high-complexity modes are
utilized as function of bitrate. ALF usage tends to grow with
bitrate and reaches 95% or more for most sequences. DMVR
usage generally hovers around 50% at low bitrates and tends
to decrease with increasing bitrates. Affine usage tends to be
lower (5-15%), and it remains fairly constant across bitrates,
with a trend towards higher usage at higher bitrates.

B. 8K-UHD RA
Whereas 8K-UHD content (e.g., 7680 × 4320) is not

included in the VVC common test conditions, interest in
such high-resolution content is growing, including for immer-
sive applications requiring a very wide field of view (e.g.,
360 degrees). To test the ability to decode such high-
resolution data in real time, several 8K-UHD sequences
(60 fps) were encoded with VTM version 10.0 at a target
bitrate of about 60 Mbps (an adequate QP value was selected
for each sequence). The characteristics of the bitstreams are

TABLE X

8K-UHD RANDOM ACCESS BITSTREAM CHARACTERISTICS

TABLE XI

8K-UHD RANDOM ACCESS PROFILING DATA

summarized in Table X. Substantial variations in the use of
intra modes, DMVR, and ALF can be observed.

To probe the limits of decoding performance, an AMD
EPYC 7R32 processor is used. It features 48 cores and a
maximum clock rate of 3.3 GHz (simultaneous multithreading
is disabled). Given these vast resources, real-time decoding
targets are substantially exceeded: using an evolution of the
decoder presented in [18], between 110 and 145 frames are
processed per second even though computing resources are not
fully utilized. Profiling data is provided in Table XI. As in the
4K-UHD case, the main contributors to run time are inter-
picture prediction, deblocking, ALF, and parsing. Together
they account for about 85% of runtime. Between 16 and
22 processor cores are utilized to process 8K-UHD bitstreams
when operating at 60 frames per second, and 19 on average.

C. HD 4:4:4 RA
Unlike HEVC and AVC, VVC supports high color fidelity

formats such as 4:4:4 and 4:2:2 in its first version to address
growing market needs. The decoding time overhead resulting
from processing YUV 4:4:4 content relative to 4:2:0 content
is analyzed using an optimized software decoder.

Table XII summarizes decoding speeds measured for YUV
4:4:4 content relative to the same content in 4:2:0 format,
as well as profiling results obtained with the QP value
set to 27. Six test sequences are considered: Traffic (TF),

BOSSEN et al.: VVC COMPLEXITY AND SOFTWARE IMPLEMENTATION ANALYSIS 3775

TABLE XII

YUV 4:4:4 RANDOM ACCESS PROFILING DATA

Kimono1 (KM), EBULupoCandlelight (LC), EBURainFruits
(RF), VenueVu (VV), and BirdsInCage (BC) [21]. The proces-
sor used in the experiment is an Intel Core i7-9700 with
8 cores clocked at 3.0 GHz (frequency scaling is disabled and
simultaneous multithreading unsupported).

The observed decoding speed for YUV 4:4:4 is lower
than for 4:2:0 by 29% on average. In other words, it takes
only about 40% more time to decode a 4:4:4 picture than
a 4:2:0 one, even though the number of processed samples
is doubled. As in the 4:2:0 case, inter-picture prediction
consumes the largest portion of the total decoding time (about
50%) in the 4:4:4 case. In-loop filters also contribute signif-
icantly (about 30%). The run time overhead for processing
4:4:4 content varies across sequences. Such variations can be
attributed to differences in bitrates between 4:4:4 and 4:2:0 bit-
streams, which range from 1.1× to 3.5× (BirdsInCage),
but also to other factors, such as possibly different mode
selections. In general, it is observed that when the bitrate
increase is less than 60%, the decoding speed difference
between 4:2:0 and 4:4:4 is close to the reported average (71%).
Fig. 8 provides an example of a decoding time distribution
comparison between 4:2:0 and 4:4:4 for one sequence. In this
example, the bitrate difference between 4:4:4 and 4:2:0 is
small (less than 10% for a same QP value). Decoding time
differences are not uniform across modules. For example,
differences between 4:2:0 and 4:4:4 are less pronounced for
parsing than for inter prediction. When the QP value is lowered
and the bitrate increases, the time consumed by entropy
decoding and in-loop filters increases more noticeably for
4:4:4 than for 4:2:0.

D. Discussion
Whereas no direct comparison to HEVC is available,

it can be reasonably said that a VVC decoder requires about
1.5-2.0× the computing resources of an HEVC decoder.
In [2] it was reported that a single-threaded HEVC decoder
processed about 100 frames per second of HD content encoded
with QP set to 27. The performance reported here is also about

Fig. 8. Decoding time distribution for EBURainFruits sequence under
Random Access condition.

100 frames per second, but the resolution is 4 times higher and
the load is distributed across 8 cores. There is thus roughly a
ratio of 2 overall. It should be noted that in the HEVC case,
the bit depth was lower (8 bits) and the processor different,
and this ratio is therefore approximative. The relative time
spent in each module is not substantially different from HEVC,
although there is an increase for loop filters, mainly because
of the addition of ALF. Whereas the results presented in this
paper were obtained for 10-bit video, a software decoder may
achieve higher frame rates when processing 8-bit video for two
reasons: (a) code specialized for 8-bit processing can achieve
a higher degree of SIMD parallelism; and (b) storage can be
reduced from two bytes per sample to one, thereby reducing
memory bandwidth and cache pressure. A frame rate increase
of about 15% was reported for a real-time VVC decoder
that incorporates code and storage optimized for multiple bit
depths [19].

V. OPTIMIZED SOFTWARE ENCODERS

As discussed previously, whereas the algorithms defining
the VVC standard are more complex than those included in
the HEVC specification, it is not the main factor contributing
to the VVC encoding complexity. Many tools introduced in
the new standard can be enabled or disabled independently for
each CU, creating a very large search space. For this reason,
contrary to the decoder, implementation efficiency is not the
main focus of encoder optimization. Smart search algorithms
and early termination strategies must be utilized to reduce
encoding complexity, while minimizing any resulting bitrate
increase. Both approaches need to be combined to achieve
good quality encoding in a manageable amount of time.

In the following section, aspects of efficient search space
traversal will be discussed, starting with partitioning and
continuing with encoding tools. Afterwards, instrumentation
of the more efficient VVenC encoder [23], [24] is compared
to the VTM, and possible trade-offs are discussed.

A. Partitioning Complexity
The quadtree with binary- and ternary-tree partitioning

is one of the main innovations in VVC, and significantly
contributes to compression improvements over HEVC. The
algorithmic complexity of the normative CU splitting process

3776 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

is relatively low. The added complexity is put almost entirely
on the encoder side, which needs to find an effective split
configuration for each CTU.

In HEVC, a CTU can be recursively split only in a
quadtree fashion, with a maximum CTU size of 64 × 64.
When increasing the maximum CTU size to 128 × 128,
the search space is increased by the power of 4 (divided
by 4 to account for the reduction of the number of CTUs).
As defined in VVC’s split semantics, multitype trees (MTT)
comprising binary and ternary splits are rooted at the leaves
of the quadtree (QT) structure. Because of various size- and
position-dependent split restrictions, it is not trivial to quantify
their exact impact on the search space beyond the quadtree
splits. In the following, the runtime to bitrate reduction trade-
offs achievable by varying the allowed partitioning depth are
discussed.

In [25], it was estimated that 97% of the VTM encoding
runtime could be saved in the AI configuration, if the selected
partitioning could be directly inferred rather than determined
through search. The VTM encoder already contains search
strategies based on dynamic programming and heuristics to
improve run times [26]. These enable VTM, in its default
configuration, to run over 7× faster than if a full partitioning
search was performed.

With those fast algorithms in place, the partitioning com-
plexity can be efficiently controlled by varying the maximally
allowed depth of the multitype trees. A thorough analysis of
possible trade-off points was performed in [23]. It showed
that the flexible partitioning structure provides considerable
gains, even without allowing recursion in the MTT. In VTM,
without such recursion, over 70% runtime reduction is possible
for a BD-rate loss of around 4.5%. No state-of-the-art fast
partitioning algorithm can achieve such a trade-off when
applied on top of already available fast methods [26].

The methods described in [26] were designed with consider-
ation for the default configuration of VTM, i.e., with multiple
recursion levels in both the QT and MTT structures. When
applied to a lower complexity configuration, such as those
discussed below, the 7× speedup may be reduced to less than
3×. As discussed in [23], some methods can be adapted to
a lower-complexity operating point, also because the incline
of the Pareto set at such point allows for more aggressive
strategies.

B. Tool Complexity
During the VVC standardization process, the perfor-

mance of individual tools was continuously monitored and
reported [27]. Whereas this tracking was helpful to identify
potential regressions, it was conducted around the slow work-
ing point of VTM CTC, where some of the performance effects
are masked by extensive searches conducted for other tools.

In [23], a “tool on” analysis based on a partitioning-only
configuration was performed for several VVC tools using
VTM and an early version of an optimized VVC encoder.
Interestingly, some of the tools that add significant complexity
in a decoder (e.g., BDOF and DMVR) are the most efficient for
the encoder. Whereas these tools add complexity, as measured
in runtime, their implicit nature (i.e., no explicit signaling per

Fig. 9. Average per-frame encoding time distribution for 4K content under
random access conditions in VTM and the optimized VVenC encoder in ATC
and FTC configurations.

CU) ensures that they do not increase the encoding search
space. A similar effect can be observed for the selection
between multiple transform types, where the implicit mode
provides a very attractive trade-off.

In [27], ALF appears to provide substantial gains with
only a small encoding time overhead. However, a “tool-on”
test shows a much larger runtime increase. Since ALF is an
in-loop filter, the encoding time overhead is additive and not
multiplicative to the CU-level tools. When applied to a much
faster configuration, the relative overhead increases. To miti-
gate this effect, only one clipping value (instead of four) may
be considered for each ALF coefficient to reduce the search
space, and hence the encoding time. Overall, the analysis
in [23] shows that keeping the search space manageable is
at least as important for an optimized encoder as efficient
implementation.

In the VTM reference encoder, the implementation of tools
and their associated search algorithms were designed to show-
case maximal compression gains. Many of the achieved trade-
offs are not practical for a more efficient encoder. Adapting
the algorithms of the high-gain high-overhead tools is possible
with slight losses to achieve alternative trade-offs, as discussed
in [23].

C. Profiling Results

Compared to VTM, the optimized encoder implementa-
tion in [23] features additional SIMD code, mostly ported
from [17], as well as structural improvements. In Fig 9,
profiling data from the optimized encoder is compared to
the VTM for two configurations: a first one with search
algorithms identical to VTM for the maximal common set
of tools between the two encoders (ATC), and a second
one with search algorithm adaptions aimed at trade-offs with
lower runtime overhead (FTC). As shown in Table XIII, both
configurations provide very similar results in terms of bitrate
savings, with FTC running around four times faster than ATC.
Compared to Fig. 3, a runtime increase for the deblocking filter
is apparent. It is caused by the consideration for deblocking
during the CU-level mode search. All other categories show
lower runtime.

BOSSEN et al.: VVC COMPLEXITY AND SOFTWARE IMPLEMENTATION ANALYSIS 3777

TABLE XIII

BD-RATE RESULTS AND ENCODING TIMES OF VTM, VVenC, AND HM
ENCODERS, RELATIVE TO VTM CTC ANCHOR

In Fig 9, the differences between VTM and VVenC for the
ATC configuration illustrate the improvements provided by the
optimized implementation, as the two encoders yield equiva-
lent results. The differences between the two VVenC configu-
rations indicate where the runtime can be efficiently reduced
within one implementation. The increase in the “Picture” cate-
gory is caused by the inclusion of a pre-processing filter [28].
It efficiently compensates for some of the coding loss caused
by algorithmic adaptations. The optimized implementation
provides most time savings in the filtering, intra search, and
affine search stages. The FTC configuration mostly reduces
the search space in the inter-mode search and ALF stages. The
fallback intra mode seems to be required to a similar extent in
both configurations. Because of the reduced number of tested
modes, time spent for quantization (TCQ in particular) and
transforms is also reduced.

D. Coding Efficiency

Changes to encoder configurations and search algorithms
result in coding efficiency differences. Table XIII shows the
impact of various configurations on BD-rate and encoding
time. The VVenC encoder runs around 40% faster than VTM
in the ATC configuration (the largest common set of tools
between the two encoders using the same search algorithm),
which can be attributed to optimized implementation.

With a reduced complexity configuration and adapted
search algorithms, VVenC can achieve very similar coding
efficiency running almost four times faster in the FTC
configuration, which is over 26× faster than the VTM ref-
erence encoder, or around 85× faster when multithreading is
enabled.

Results for two additional configurations are also provided.
In the Slow configuration, the encoder achieves compression
performance very close to VTM, while running almost 9×
faster. This is as fast as HM version 16.22, but with about
a 38% BD-rate gain over it. In the Faster configuration,
the encoder runs 60× faster than VTM, but large BD-rate
losses, in excess of 40%, are observed. Nonetheless, the
configuration is around 7× faster than the HM, while still
achieving around 15% BD-rate gain over it.

E. Multithreading

The use of multithreading can further reduce encod-
ing times. Table XIII shows the speedup achieved for the
medium-complexity configuration when using 2, 4, and 6
threads. The basic multithreading included in VVenC is
CTU-line based. Because of the number of CTU rows is
generally not a multiple of the number of threads, the workload
assigned to each thread may be different. The workload also
varies as a function of picture resolution. Therefore, the com-
bined results in Table XIII do not show the actual speedup
numbers for a given resolution. For 4K-UHD, 6 threads
provide a speedup of about 4×, and for HD, 4 threads provide
a speedup of about 2.5×. Speedups saturate quickly when
increasing the number of threads above these values.

A few algorithmic issues still need to be resolved to
fully unlock the potential of multithreading. Most notably,
the application of ALF seems problematic. ALF coefficients
are typically derived by considering the whole picture after
SAO processing. Therefore, ALF parameter selection cannot
be included into the main CTU encoding loop. Whereas it
is possible to include some of the ALF workload into the
CTU-line parallel tasks, a major part of it is delayed until
after encoding the whole picture. This introduces additional
encoding latency and precludes encoding two dependent pic-
tures in parallel. In the future, approximate models for ALF
filter estimation or alternative techniques may be developed to
mitigate this problem in VVenC.

F. Summary
As discussed in this section, encoding complexity is not

something inherent to the standard, but rather to the encoder.
The presented encoder can achieve most of VTM’s com-
pression gains over the HEVC reference software with 85×
lower encoding time, showcasing an attractive trade-off. VVC
provides many opportunities for an encoder to find an optimal
encoding. It lies in the hands of the implementers to find search
algorithms that do this efficiently within the restrictions of the
given application.

VI. CONCLUSION

VVC was shown to be more complex than HEVC. Nev-
ertheless, it can be implemented in software on current gen-
eration CPUs. An optimized decoder was shown to process
8K bitstreams in real time. The performance of an optimized
encoder was also discussed, demonstrating that substantially
better run time vs compression trade-offs can be achieved than
with VTM under common test conditions. VVC is young, and
it is expected that encoders will further improve in years to
come.

REFERENCES

[1] B. Bross, J. Chen, S. Liu, and Y.-K. Wang, Versatile Video Coding (Draft
10), document JVET-S2001, 19th JVET Meeting, Online Meeting,
Jun. 2020.

[2] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “High Efficiency Video
Coding complexity and implementation analysis,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1685–1696, Dec. 2012.

[3] I.-K. Kim, J. Min, T. Lee, W.-J. Han, and J. Park, “Block partitioning
structure in the VVC standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1697–1706, Dec. 2012.

3778 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

[4] J. Pfaff et al., “Intra prediction and mode coding in VVC,” IEEE Trans.
Circuits Syst. Video Technol., to be published.

[5] T. Nguyen et al., “Overview of the screen content support in VVC:
Applications, coding tools, and performance,” IEEE Trans. Circuits Syst.
Video Technol., to be published.

[6] X. Zhao et al., “Transform coding in the VVC standard,” IEEE Trans.
Circuits Syst. Video Technol., to be published.

[7] F. Bossen, CE5 on Arithmetic Coding: Experiments 5.1.1, 5.1.2, 5.1.3,
5.1.4, 5.1.5, 5.1.6, 5.1.7, 5.1.8, 5.1.10, 5.1.11, 5.1.12, 5.1.13, 5.2,
and More, document JVET-M0453, 13th JVET Meeting, Marrakech,
Morocco, Jan. 2019.

[8] H. Schwarz et al., “Quantization and entropy coding in the versatile
video coding (VVC) standard,” IEEE Trans. Circuits Syst. Video
Technol., to be published. [Online]. Available: https://ieeexplore.ieee.org/
document/9399502

[9] M. Zhou, AHG16: A Study of Bin to Bit Ratio for VTM7.0, document
JVET-Q0102, 17th JVET meeting, Brussels, Belgium, Jan. 2020.

[10] M. Karczewicz et al., “VVC in-loop filters,” IEEE Trans. Cir-
cuits Syst. Video Technol., to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/9399506

[11] VTM VVC Reference Software. Accessed: Mar. 31, 2021. [Online].
Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

[12] HM HEVC Reference Software. Accessed: Mar. 24, 2021. [Online].
Available: https://vcgit.hhi.fraunhofer.de/jvet/HM

[13] X. Ma, H. Chen, and H. Yang, Simplification of the Common Test Con-
dition for Fast Simulation, document JVET-B0036, 2nd JVET Meeting,
San Diego, CA, USA, Feb. 2016.

[14] A. Wieckowski et al., NextSoftware: An Alternative Implementation
the Joint Exploration Model (JEM), document JVET-H0084, 8th JVET
Meeting, Macao, São Lourenço, Oct. 2017.

[15] A. Wieckowski et al., Thread Parallel Encoding, document JVET-J0036,
10th JVET Meeting, San Diego, CA, USA, Apr. 2018.

[16] J. Raj Arumugam et al., AHG16: Early Implementation of VVC Software
Player and Demonstration on Mobile device, document JVET-P0307,
16th JVET Meeting, Geneva, Switzerland, Oct. 2019.

[17] A. Wieckowski et al., “Towards a live software decoder implementation
for the upcoming versatile video coding (VVC) codec,” in Proc. IEEE
Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 3124–3128.

[18] F. Bossen, AHG16: Performance of a Reasonably Fast VVC Software
Decoder, document JVET-S0224, 19th JVET Meeting, Online Meeting,
Jun. 2020.

[19] B. Zhu et al., “A software decoder implementation for H.266/VVC
video coding standard,” 2020, arXiv:2012.02832. [Online]. Available:
http://arxiv.org/abs/2012.02832

[20] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, JVET Common
Test Conditions and Software Reference Configurations for SDR Video,
document JVET-N1010, 14th JVET Meeting, Mar. 2019.

[21] Y.-H. Chao, Y.-C. Sun, J. Xu, and X. Xu, JVET Common Test Conditions
and Software Reference Configurations for Non-4:2:0 Colour Formats,
document JVET-R2013, 18th JVET Meeting, Apr. 2020.

[22] F. Bossen, X. Li, and K. Suehring, JVET AHG Report: Test Model
Software Development (AHG3), document JVET-S0003, Joint Video
Experts Team (JVET), Jun. 2020.

[23] J. Brandenburg et al., “Towards fast and efficient VVC encoding,” in
Proc. IEEE 22nd Int. Workshop Multimedia Signal Process. (MMSP),
Sep. 2020, pp. 1–6.

[24] Fraunhofer Versatile Video Encoder VVenC Software. Accessed:
Mar. 22, 2021. [Online]. Available: doi: https://github.com/
fraunhoferhhi/vvenc

[25] A. Tissier, A. Mercat, T. Amestoy, W. Hamidouche, J. Vanne, and
D. Menard, “Complexity reduction opportunities in the future VVC intra
encoder,” in Proc. IEEE 21st Int. Workshop Multimedia Signal Process.
(MMSP), Sep. 2019, pp. 1–6.

[26] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand, “Fast
partitioning decision strategies for the upcoming versatile video coding
(VVC) standard,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2019, pp. 4130–4134.

[27] W.-J. Chen et al., JVET AHG Report: Tool Reporting Procedure
(AHG13), document JVET-Q0013, Joint Video Experts Team (JVET),
Jan. 2020.

[28] J. Enhorn, R. Sjöberg, and P. Wennersten, “A temporal pre-filter for
video coding based on bilateral filtering,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2020, pp. 1161–1165.

Frank Bossen (Senior Member, IEEE) received
the Ingénieur EPF degree in computer science
and the Ph.D. degree in communication sys-
tems from the École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, in 1996 and 1999,
respectively.

He has been active in video coding standardiza-
tion since 1995, and contributed to the MPEG-4,
H.264/AVC, H.265/HEVC, AV1, and H.266/VVC
specifications. He has held a number of positions
with IBM, Sony, GE, and NTT DOCOMO in Japan,

Switzerland, and USA. He is currently a Principal Research Engineer with
Sharp Electronics of Canada Ltd. in the Greater Toronto Area.

Dr. Bossen has been appointed as an Editor of the VVC reference software
and VVC conformance specifications.

Karsten Sühring received the Dipl.-Inf. degree in
applied computer science from the University of
Applied Sciences, Berlin, Germany, in 2001.

He is currently with the Image and Video Coding
Group, Fraunhofer Institute for Telecommunication–
Heinrich Hertz Institute, Berlin, where he has been
engaged in video coding standardization activities.
His current research interests include coding and
transmission of video and audio content, and soft-
ware design and optimization.

Mr. Sühring has been a Co-Chair of the JVET
ad hoc group on software development since May 2018. He is one of the
coordinators for the VTM Reference Software for VVC. He has been an
Editor of the reference software of H.264/AVC and H.265/HEVC.

Adam Wieckowski received the M.Sc. degree in
computer engineering from the Technical University
of Berlin, Berlin, Germany, in 2014.

In 2016, he joined the Fraunhofer Institute
for Telecommunications–Heinrich Hertz Institute,
Berlin, as a Research Assistant. He worked on the
development of the software, which later became the
test model for VVC Development. He contributed
several technical contributions during the standard-
ization of VVC. Since 2019, he has been a Project
Manager coordinating the technical development of

decoder and encoder solutions for the VVC standard.

Shan Liu (Senior Member, IEEE) received the
B.Eng. degree in electronic engineering from
Tsinghua University, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Southern California.

She was formerly with MediaTek, MERL, Sony
Electronics, and Sony Computer Entertainment
America (now Sony Interactive Entertainment). She
is currently a Distinguished Scientist with Tencent.
She has made numerous technical contributions
to international standards, such as H.265/HEVC,

H.266/VVC, OMAF, DASH, and PCC. Her research interests include
audio-visual, high volume, immersive and emerging media compression,
intelligence, transport, and systems. She served as a Co-Editor for HEVC
SCC and VVC.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

