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Abstract—The attribution method provides a direction for
interpreting opaque neural networks in a visual way by iden-
tifying and visualizing the input regions/pixels that dominate
the output of a network. Regarding the attribution method
for visually explaining video understanding networks, it is
challenging because of the unique spatiotemporal dependencies
existing in video inputs and the special 3D convolutional or
recurrent structures of video understanding networks. However,
most existing attribution methods focus on explaining networks
taking a single image as input and a few works specifically devised
for video attribution come short of dealing with diversified
structures of video understanding networks. In this paper, we
investigate a generic perturbation-based attribution method that
is compatible with diversified video understanding networks.
Besides, we propose a novel regularization term to enhance the
method by constraining the smoothness of its attribution results
in both spatial and temporal dimensions. In order to assess
the effectiveness of different video attribution methods without
relying on manual judgement, we introduce reliable objective
metrics which are checked by a newly proposed reliability
measurement. We verified the effectiveness of our method by
both subjective and objective evaluation and comparison with
multiple significant attribution methods.

I. INTRODUCTION

Deep neural networks have achieved remarkable perfor-
mance in various video understanding tasks such as action
recognition [1]]-[4], video captioning [5]—[7], video ques-
tion answering [8]]-[[10]], video saliency prediction and detec-
tion [11]-[14] etc. However, these networks often perform
an opaque nature in their inference process. For example,
when classifying two videos of swimming and basketball-
playing, it is difficult to identify what elements are relied
upon by an action recognition model, the scene information
in the background, or the actions of performers. Explaining
and understanding black-box deep networks shows significant
potential for analyzing failure cases, improving the model
structure design, and even revealing shortcomings in the
training data [[15]].

Since a neural network can be considered as a mapping
from the input space to the output space, the task of ex-
plaining and understanding the network can be achieved by
answering two main questions [16]: (1) which part of an input
contributes more to the output of the network [17], [18]]; (2)
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Fig. 1: The video attribution task for visually explain-
ing video understanding networks. We propose a novel
Perturbation-based (Pt) method that could be applied on di-
versified networks such as 3D-CNNs and CNN-RNN because
of its model-agnostic characteristic. In contrast, previous video
attribution methods based on Backpropagation (BP) or Activa-
tion (Actv) may only work well for a specific type of network.
Furthermore, for comprehensive evaluations, we incorporate
the objective metrics to evaluate video attribution methods in
addition to the subjective metrics relying on human judgement.
To ensure the utilized objective metrics are reliable, we also
devise a measurement for checking the reliability of metrics.
As illustrated by the flowchart in the left column, this paper
involves the full work stack for the video attribution task.

how the network achieves this mapping through its internal
mechanism [[19]—[21]]. Currently, most works concentrate more
on solving the first “which part” question via the input
attribution method [22], i.e., attributing the output of a
network to specific elements in the input. The method assigns
a value to each input element to quantify its contribution to
the output and arranges these values in the same shape as the
input to form heatmaps (also called attribution maps), which
provide a visual way to explain networks.

In this paper, we focus on utilizing the input attribution
methods to visually explain video understanding networks.
Although input attribution methods have been extensively
researched on image recognition networks [16], [18]], [22]-
[26], it is nontrivial to investigate attribution methods specif-
ically on video understanding networks because the unique
spatiotemporal dependencies in video inputs and the special
3D convolutional or recurrent structures of video understand-
ing networks make it challenging to directly apply existing
image attribution methods to the video case. There are a
few works [27], [28]] that focus on the visual explanation
for video understanding networks. However, we discover that
they still come short of three points: (1) They were designed
specifically for only a fixed type of network (e.g.3D-CNNs
or CNN-RNN) and cannot be generalized to the diversified
networks for video understanding. (2) Their effectiveness was
only evaluated by subjective methods, e.g., manual visual
inspection or comparison with manual annotations, which
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deviates from the original intention of the attribute method,
i.e., finding the input regions seen important by the network
rather than human. (3) They were only compared against a
limited number of baseline methods in which some classic and
generic attribution methods such as Integrated Gradients [22]]
and Grad-CAM [26] were excluded. An attribution method
that is adaptive to the spatiotemporal dependencies in video
inputs and generic to diversified video understanding networks
is needed but absent. Also, the effectiveness of these methods
should be more objectively and comprehensively evaluated.
In response to this demand, we propose a new generic
method that is specifically designed for video attribution via
leveraging a perturbation-based method and enhancing it by a
regularization term for spatiotemporal smoothness constraint.
This method inherits the model-agnostic characteristic from
the perturbation-based attribution method and is therefore ap-
plicable to any video understanding networks without knowing
the internal architecture. Furthermore, the new regularization
term exploits the spatiotemporal dependencies between frames
to generate explanations smoothed in both temporal and spatial
dimensions and thus achieves more competitive performance.
In order to assess the effectiveness of different video at-
tribution methods without relying on manual annotation or
subjective judgment, we adopt the objective metrics to the
video attribution task. Currently, objective evaluation metrics
of attribution methods are often established on the pertur-
bation procedure of the input, i.e., sequentially perturbing
(inserting/deleting) pixels in the input and quantifying their
importance for a network according to the output changes.
However, our experiments indicate that different perturbation
operations in metrics will yield inconsistent evaluation results.
We attribute the reason as the metrics based on the deletion
operation are prone to generating adversarial inputs for net-
works in their calculation process, which results in biased
and unreliable evaluation results. Based on this analysis, we
propose a new method to measure the reliability of metrics,
so that we can select a metric that is able to resist the
adversarial effect and produce more reliable evaluation results.
Finally, for comprehensive comparison, we bring additional
attribution methods as baselines that are competitive in the
image attribution task and adaptive for video understanding
networks. We compare the effectiveness of our proposed video
attribution method with these baseline methods on two typical
video understanding backbone networks under the video clas-
sification task through both objective and subjective metrics.
This paper extends the preliminary work [29] in five major
aspects: (1) We provide comprehensive evaluations by intro-
ducing objective metrics for video attribution methods as sup-
plementary to subjective metrics that rely on human judgment
or manual annotations. (2) We devise a new measurement
for checking the reliability of different objective evaluation
metrics and select metrics that are reliable in the video
attribution task based on the assessment. (3) We introduce
more latest baseline methods by adapting multiple typical and
generic image attribution methods for the video attribution
task. In contrast, in the preliminary work [29], only a limited
number of available video attribution methods were compared.
(4) We add experiments on a new challenging dataset and

TABLE I. The summarization and comparison of input
attribution methods. We list typical input attribution methods
and compare them from three aspects. The attribution methods
that satisfy the three conditions are considered to be applicable
as video attribution methods.
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Backpropagation-based (BP-based)

Gradient [18]]

Integrated Gradient [22]
SmoothGrad [23]
Gradient x Input [30]
DeConvNets [[15]]
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SmoothGrad-Squared [33]]
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Extremal Perturbation [43|
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expand the original two test datasets, which are respectively
enlarged 9 and 5 times than what is utilized in the preliminary
work [29]. (5) We investigate the influence of the different
parameter selections of the newly-proposed regularization term
for spatiotemporal perturbations. Our contributions are sum-
marized as follows:

o We introduce the perturbation-based method into the
video attribution task, which is applicable to diversified
and complicated video understanding networks.

o« We devise a novel regularization term for constraining
the spatiotemporal smoothness of the attribution results
derived by our perturbation-based method, so as to adapt
to the spatiotemporal dependencies in video inputs.

e We propose a new method to measure the reliability
of objective evaluation metrics for the video attribution
methods, which ensures the selected metrics can better
resist the adversarial effect and produce more reliable
evaluation results.

« Both the objective and subjective evaluation results verify
that our proposed video attribution method can achieve
competitive performances compared with multiple typical
and novel attribution methods.

II. RELATED WORK

In this section, we introduce the literature of input attribu-
tion, including existing attribution methods and evaluations.
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A. Input Attribution Methods

Given an input and a neural network with fixed parameters,
the goal of an input attribution method is to identify the
contribution of each element in the input to a specific target
output neuron in the network, e.g., the output neuron correlated
to the correct class in an image recognition network. The
contributions are commonly gathered together to have the
same shape as the input and visualized in a form of heatmaps
or saliency maps. Similarly, the saliency methods [/11[]-[|14]]
and the networks with attention mechanisms [44] can also
produce heatmap-like results but the heatmaps have different
meanings and goals. The saliency methods aim to localize
human-centred salient input regions. The attention mecha-
nism is embedded in a network to enhance its performance
by assigning self-learned weights (usually visualized as a
heatmap) to different parts of a feature map. In contrast,
attribution methods are applied on a pre-trained network with
fixed parameters and provide explanations to the network by
indicating the contributions of inputs with heatmaps.

The attribution methods have been extensively researched
in previous works and three main types have evolved. Since
almost all of them were researched on the image recognition
network, we will first summarize these methods according to
their types in the case of images by default, and then introduce
methods that are especially proposed for videos.

1) Backpropagation-based (BP-based) methods: BP-based
attribution approaches are established on a straightforward
view that gradients (of the output with respect to the in-
put) could highlight key components in the input since they
characterize how much variation would be triggered on the
output by a tiny change on the input. Baehrens er al. [|17]]
and Simonyan et al. [|18]] have shown the correlation between
the pixels’ importance and their gradients for a target label.
However, the attribution maps generated by raw gradients are
typically visually noisy. The ways to overcome this problem
could be partitioned into three branches. DeConvNets [[15]] and
Guided BP [31]] modify the gradient of the ReLU function
by discarding negative values during the back-propagation
calculation. Integrated Gradient [22] and SmoothGrad [23|]
resist noises by accumulating gradients. LRP [24]], DeepLift
[32] and Excitation BP [25]] employ modified backpropagation
rules by leveraging a local approximation or a probabilistic
Winner-Take-All process. SmoothGrad-Squared [33]] achieved
improvements of SmoothGrad by adding a square operation.
XRALI [34] and Blur Integrated Gradient [35] make improve-
ments on Integrated Gradient by incorporating the region-
based attribution and blurred input baseline respectively. BP-
based methods are often computationally efficient because they
need only one forward and backward pass to get attribution
maps for the inputs. However, compared with other types of
attribution methods, the attribution maps generated by BP-
based methods tend to be more noisy and sparse, which makes
the contributive regions cannot be evidently highlighted.

2) Activation-based methods: Activation-based attribution
approaches generate the explanation by linearly combining
the activations of the intermediate layers of a network. Dif-
ferent methods vary in the choice of combining weights.

CAM [36] selects parameters on the fully-connected layer
as weights, while Grad-CAM [26] produces the weight by
taking an average of the gradients from the output to the
activation. Grad-CAM++ [37] replaces the average pooling
layer in Grad-CAM with a weighted pooling operator where
the coefficients are calculated by the second derivative. Score-
CAM [38] takes each activation map as a mask for the input
and uses the predicted probability of one masked input as
the corresponding weight. However, activation-based methods
are bound with CNNs and can only generate attribution maps
from the intermediate layers. Also, it has been found that the
activation-based method tends to produce more meaningful
attribution maps at the last convolutional layer [45] of CNNs,
whose activation is smaller in size than the input. Therefore,
the attribution maps generated by activation-based methods are
typically lower in resolution than the input.

3) Perturbation-based methods: Perturbation-based attri-
bution methods start from an intuitive assumption that the
contributions of certain input elements can be reflected by
the changes of the outputs when these elements are removed
or preserved only in the input. However, to find the optimal
results, theoretically, it is necessary to traverse the elements
and their possible combinations in the input and observe their
impact on the output. Due to the computational cost of the
traversal process, how to obtain an approximated optimal
solution faster is the research focus of this problem. Occlusion
[15] and RISE [40] perturb an image by sliding a grey
patch or randomly combining occlusion patches, respectively,
and then use changes in the output as weights to sum
different patch patterns. LIME [39] approximates networks
into linear models and uses a superpixel based occlusion
strategy. Meaningful perturbation [16] converts the problem
to an optimization task of finding a preservation mask that
can maximize the output probability under the constraints of
preservation ratio and shape smoothness. Real-time saliency
[46] learns to predict a perturbation mask with an auxiliary
neural network. I-GOS [41] introduces integrated gradients
instead of the normal gradients to improve the convergence of
the optimization process and FG-Vis [42] incorporates certain
restrictions in the optimization process to avoid adversarial
results. Extremal Perturbation [43] factorizes the optimization
procedure into two steps to solve the problem of the imbalance
between several constraining terms. Most perturbation-based
methods characterize model-agnostic since they only access
the input and output of a network and require no knowledge
or modification of the network’s internal structure (except for
I-GOS and FG-Vis that need to change the BP rule). How-
ever, perturbation-based methods are usually time-consuming
because they generate the final results by iteratively adjusting
inputs and observing outputs.

4) Video Attribution Methods: Although remarkable
progress has been achieved on the image attribution task,
it is non-trivial to visually explain the video understanding
network by attribution methods. This is mainly because
diversified network structures (e.g., 3D-CNNs and CNN-
RNN) have been developed on video understanding networks
to process the extra temporal dimension in videos. Most
previous works only focus on one kind of these structures.
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Gan et al. [47] and Anders et al. [48] applied the pure
gradients and LRP respectively to locate the input regions
that are taken important by 3D-CNNs. Grad-CAM [26] is
inherently applicable to 3D-CNNs [49]. Stergiou et al. [28]],
[50] adapted activation-based methods to visualize 3D
convolutional networks. For the CNN-RNN structure, EB-R
(Excitation BP for RNNs) [27] extended the Excitation
BP attribution method to adapt to the structure of the
RNN. However, to our knowledge, there is still no work
comprehensively investigating the performance of input
attribution methods on both 3D-CNNs and CNN-RNN by
embracing existing attribution methods that are generalizable
for the video cases.

In we summarize the aforementioned typical input
attribution methods and compare them from three aspects:
whether they can be utilized without modifying BP rules (Un-
modified BP Rule), whether they are compatible with all neural
networks instead of some specified structures (All Networks
Compatible), and whether they can generate attribution maps
with the same resolution of the inputs (Unreduced Resolution).
Whether an attribution method satisfies these three conditions
determines whether it can be easily transferred to the video
attribution task without considering the internal architecture or
lowering the spatiotemporal resolution of the attribution result.

B. Evaluation for Attribution Methods

Devising evaluation metrics for quantifying the fidelity of an
attribution method, i.e., the ability of this attribution method
in capturing the true relevant input pixels to the target output,
is a vital issue. However, it is challenging since the ground
truth map that indicates the true contribution of each input
element to the network’s target output is hardly obtainable. To
overcome the challenge, two kinds of ways have emerged to
make the evaluation: subjective and objective ways.

The subjective way relies on human judgment and tends
to employ manual visual inspection or bounding boxes that
locate the label-related regions. For example, Pointing Game
[25] is one of the most commonly used metrics by comparing
the attribution maps with manually annotated bounding boxes.
However, regions that are contributive for the output of the
networks are not necessarily consistent with what is from the
human judgment. Thus, this may make subjective evaluations
divergent with the aim of fidelity quantification.

As for the objective evaluation, one type of metrics is based
upon the input perturbation procedure, in which pixels are
inserted or removed in the order decided by the attribution
maps. Since they assess the attribution maps by computing the
area under the curve (AUC) that plots the change of the target
output (e.g., softmax probability), we denote them in short as
AUC-based metrics below. Typical AUC-based metrics include
Area Over the Perturbation Curve (AOPC) [51] and Causal
Metrics (CM) [40]. AOPC is measured by removing pixels
from the input and has two versions which exploit different
removing orders: the Most Relevant First (MoRF) or the
Least Relevant First (LeRF). When performing MoRF, pixels
assigned with higher attribution values will be removed at first.
If the attribution method gives good results, i.e., attribution

TABLE II: The comparison of four typical objective evalu-
ation metrics. Differences in the operations and orders taken
in the perturbation procedures are considered.

Evaluation Metrics Perturbation Operation Perturbation Order

Insertion Deletion MoRF LeRF
CM (Insertion) [40] v v
CM (Deletion) [40] v v
AOPC (MoRF) [51] v v
AOPC (LeRF) [51] v v

values are consistent with the real contribution of pixels, the
sequential removal of pixels will cause the target output to
decrease fast and the final AUC to be small. In contrast, when
performing LeRF, a good attribution result will lead to a slow
decrease of the target output and thus a large AUC. Different
from AOPC, CM only adopts the MoRF procedure but also has
two versions according to different perturbation operations to
pixels: deletion and insertion. Specifically, the deletion metric
is calculated by sequentially removing pixels from the input
until the input becomes empty, while the insertion metric
performs the opposite procedure. We summarize these metrics
in It can be seen that ‘CM (Deletion)’ and ‘AOPC
(MoRF)’ are essentially the same metric since they perform
the same perturbation operation (deletion) and order (MoRF).

Additionally, pixels can be perturbed in different units.
AOPC [51]] and CM [40] delete pixels in the unit of the local
neighborhood that is selected as a patch with the shape of
9x9. Instead of a fixed shape, Rieger et al. [[52]] proposed to
use superpixels [53] as the unit of perturbation.

As a supplementary to the AUC-based metrics, Hooker et
al. [33] proposed the retrain-based metrics which perturb in-
puts according to attribution maps by multiple ratios and train
the same network from scratch using the perturbed training
data. The attribution maps that can obviously reduce/retain
the prediction accuracy on the perturbed test dataset are
considered to be good. However, retrain-based metrics require
extensive computational resources on the retraining. Hence,
in this paper, we mainly evaluate video attribution methods
objectively by AUC-based metrics and take the retrain-based
metric as the complement.

III. VIDEO ATTRIBUTION VIA PERTURBATIONS
A. Perturbation on Videos

Let X € RT*XHXWX3 represent a video of T frames with
width W and height H, RGB 3 channels, and ¢ denotes a
function that maps the frame sequence to a softmax probability
@.(X) € R for a given target class c. The goal of video
attribution methods is to derive a sequence of attribution maps
M e [0,1]""*" which assign each pixel X;,; a value
M; ; ; that quantifies its contribution to the target output of
the function @.(X). Here ¢ and j refer to the spatial location
of each pixel and ¢ refers to the temporal location.

To derive the attribution maps, the key idea of perturbation-
based attribution methods is to directly perturb the input
to locate the pixels/regions that cause the most significant
effects on the output. The preservation version of perturbation-
based attribution methods [[16], [43] converts this idea to an
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Fig. 2: Illustration of our proposed Spatio-Temporal Extremal Perturbations (STEP) for video attribution. If we only
consider the spatial smoothness in masks, the coherence of the preserved regions in each mask is hard to be ensured and the

discriminative regions in the video will also become fragmente

d (the second row). This makes it difficult to obtain an optimal

mask sequence that can retain the output probability (shown as 0.XX). Our method constrains the continuity and shape of the
preserved regions in each small spatiotemporal region (illustrated as the orange 3D ellipsoids) through a new regularization
term Ly, so that the optimized mask sequence can become smoother in both spatial and temporal dimensions and the output

probability can be maintained (the third row). X% denotes the

optimization target that finds a reserving subset of the input
which is as small as possible while retaining accuracy on
the target output. When applied to video attribution tasks, the
optimization problem can be formulated as follows.

M* = argI\I/Inin MM || —0.(M 2 X)}, (1)
where || M |1:= 3, ; . |My; ;| denotes the L; norm of M
and ® represents the perturbation operation on the input video
according to the mask sequence. Specifically, the perturbation
is performed independently across each input frame X, and
the operation ® can be mathematically written as

MX);:=M,o0X;+(1—-M)o (kxXy), (2

where ® denotes the Hadamard multiplication, * represents
the 2D convolution, and k is a kernel for Gaussian blur. The
first term in constrains the preservation ratio on
the input video to be small while the second term encourages
the model’s prediction accuracy to be as high as possible. A
controls the balance between the two regularization terms.

However, according to [43]], due to the difficulty in main-
taining the balance between the two constraint targets in
IEquation 1| it is hard to obtain an optimal solution for this
optimization issue. Hence, we adopt the idea of extremal
perturbation [43] and make further adjustments in the case
of video inputs. In specific, the two optimization targets
in is decomposed and arranged to be solved
in two steps. The first step finds a binary mask sequence
that can maximize the output probability under a constrained
preservation ratio v € [0, 1], i.e

M, = Pe(M ® X), 3)

argmax
M:|M|i=vTHW
while the second step sets the lowest bound @, for the output
probability, and searches for the smallest preservation ratio
constraint v* under which the mask sequence can achieve this
bound, i.e.,

v* =min{v | ¢.(M, @ X) > &y}. 4)

Finally, M, is taken as the final solution.

In order to solve the problem expressed in

with gradient-based optimization approaches, e.g., stochastic

preservation ratio constraint for masks.

gradient descent (SGD), we convert it to a continuous form as
below by releasing the binary constraint on the masks,

M, = argmin{A\L%{ (M) — &.(M @ X)}, )
M
LY(M) =| vecsort(M) — 7M1 ||2, (6)

where vecsort(M) € RTHW s a vector that consists of
all the elements of M sorted in a descending order, rLMl
is a template vector which contains v| M| ones followed by
(1 —v)|M]| zeros, and | M| = THW. The first regularization
term L% (M) calculates the Euclidean distance between the
sorted vector and template vector. It aims to constrain the
preservation ratio of M to the specified target v through
regularizing the values ranked in the top v|M]| to be close
to one and the remaining values to approach zero. Then to
enforce the preservation ratio on satisfying the constraint as
exactly as possible, the weight A is supposed to be large.

B. Spatio-temporal Extremal Perturbations

It has been discovered that neural networks are vulnerable
to adversarial inputs, e.g., images which are unrecognizable to
humans might be recognized by networks as arbitrary objects
with high confidence [54]], or images that are modified in a way
imperceptible to humans may mislead networks to have totally
wrong predictions [55]]. In fact, the optimization target of
is similar to that for finding adversarial inputs as in
[S6]-[58]]. Consequently, attribution methods grounded on this
optimization target are prone to generating pathological masks,
which triggered the adversarial inputs instead of preserving the
real contributive input regions [|16].

To avoid these pathological adversarial solutions, Fong et
al. [43] proposed to optimize on smoothed masks that are
generated by performing 2D transposed convolution on low-
resolution masks with a specially designed 2D smoothing
kernel. However, for video attribution methods, the extra
temporal dimension in video inputs makes the optimization
problem more complex. Although the smoothing technique
can improve the optimization result on 2D spatial dimensions,
the optimization issue in the temporal dimension remains to
be solved for 3D video inputs. The second row of
presents a series of smoothed masks that are generated by
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solving (v = 0.15) according to [43]]. It can be

found that independently smoothing on each 2D mask cannot
ensure the temporal coherence of the preserved regions in the
mask sequence. Some frames are allocated excessive regions,
while others have very few. This uneven and incoherent al-
location makes the discriminative spatiotemporal information
in a video fragmented, which further makes it difficult to
obtain an optimal mask sequence that can retain a high output
probability.

Discriminative information in videos commonly continues
for a period of time and its corresponding regions will not
change sharply in neighbouring frames. Based on this observa-
tion, we consider that the preserved regions in a mask sequence
should be shaped like tubes that change smoothly in the
temporal dimension so as to capture the discriminative regions
in a video. However, since the tubes change flexibly according
to the information in a video, it is hard to describe their
shapes by a fixed mathematical formulation and design a shape
regularization term for masks in optimizations. To resolve this
challenge, our key insight is that the tubes can be considered to
be composed of many small elements with a fixed shape. This
means that although we cannot directly regularize the whole
shape of the preserved regions, we can constrain the continuity
and shape of each preservation in a small spatiotemporal
region. Therefore, we design a new regularization term that
enforces the high values in masks as concentrated as possible
in 3D local neighbourhoods with fixed shapes. Specifically, we
implement it by applying 3D convolutions on the attribution
maps M using a 3D kernel K with a shape of Tk, Hyx, Wi
in length, width and height respectively, and then regularize
the high values in the convolved masks M * K to be close
to 1. We mark this new regularization term that constrains the
spatiotemporal smoothness of the preserved regions as L and
mathematically express it as below,

L% (M) = L3 (M * K), (7)
THW

= (8)

(T+Tk—1)(H+Hy —1)(W+Wx —1)

where * denotes 3D convolution with stride and /3 is a scaling
factor estimated according to the change of the proportion of
1 in the masks due to the convolution operation.

In our experiment, we set the shape of the small elements
that make up the tubes as 3D ellipsoids, considering that
they can fit complex tubes more smoothly. Hence, the 3D
kernel K is designed to have an ellipsoid shape in which
vt e {0,...,Tk—1},i€{0,...., Hx—1},5 € {0, ..., Wk —1},

2 [0 e
t,1,7 .
1, otherwise,
Kiij =2 ki, (10)
where Z = 37, ki, ; is the normalization factor. Our

experiments indicate that using 3D cylinder can also have a
comparable effect. After incorporating the new regularization

term L, becomes
M, = argmin{\; LE(M) + Mo Ly (M) — &.(M @ X)}.
M
(an

Empirically, we set A2 to a value much smaller than A; in the
first few iterations of SGD, and update it to the comparable
value as \; afterward. This can not only fasten the convergence
but also ensure the constraint effect of Lx on the shape of
the preserved regions in the mask sequence. We call this
method for video attribution as Spatio-Temporal Extremal
Perturbation (STEP) considering that it can get smoothing
extremal perturbation results in both spatial and temporal
dimensions. The third row of shows the masks
generated by STEP, in which the preserved regions become
smoother in the temporal dimension and the probability is also
retained.

IV. OBJECTIVE EVALUATION METRICS
A. AUC-based Metrics

The AUC-based evaluation metric is one kind of commonly
utilized objective metrics for quantifying the fidelity of one
attribution method. Since AUC-based metrics require no re-
training of the network, they are suitable for assessing attri-
bution methods on video tasks, whose networks require more
extensive computational resources to retrain from scratch.

The calculation of the AUC-based metric is built upon the
sequential perturbation procedure of the input. It measures the
change of the target output as pixels in the input are sequen-
tially perturbed, and then calculates the area under the curve
(AUC) plotting the change. Different AUC-based metrics vary
in the perturbation order (Most Relevant First, abbr., MoRF or
Least Relevant First, abbr., LeRF) and perturbation operation
(insertion or deletion).

MOoREF vs. LeRF: For an input video X, its pixels’ indices
set I = {(¢t,4,j)|t=1...T,i=1...H,j=1...W} can
be divided into L disjoint subsets {I() |1 =1...L}. In the
order of MoRF, pixels with higher attribution values will be
perturbed at first, i.e., the aforementioned split should ensure
that for each indices pair {(¢,4,7), (¢',4',5)) where (t,i,7) €
I@ (¢ 7', 5') € I®), and a < b, the corresponding values in
the attribution maps always satisfy M ; ; < M ;s ;. On the
other hand, if we take LeRF as the perturbation order, pixels
with lower attribution values will be perturbed at first and the
situation will be reversed.

Insertion vs. Deletion: Pixels in the input are sequentially
perturbed in L steps. At the ™ step, the perturbed input b
is generated based on a baseline input X and an incremental
perturbation mask sequence H() as

XO=HYoX+(1-HY)oX. (12)

We take the baseline input to be the mean of the training
data, which satisfies the requirement of &.(X) ~ 0 for the
target class c. When performing the insertion operation, the

perturbation mask is recursively generated as

H(O) _ {O}TXHXW, (13)
HO = gt=1 4 O, (14)

where h(") satisfies

5)

232%}

R —1 [(t,i,j) S I(”} V(td,5) € I
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and 1 [-] denotes the indicator function as

1 [cond] = {1 ,if cond. is true, (16)
0 ,otherwise.
For deletion operation, the perturbation mask becomes
HO — {1}T><H><W, 17)
HO = g=1) _ O (18)

Finally the average AUC on a dataset with N input samples
is computed as

19)

Here X (W) represents the perturbed input of the n'" sample
after the I™ perturbation step.

B. Reliability Measurement of Metrics

Different versions of the AUC-based metric can be gener-
ated by combining different settings such as the perturbation
operation and the perturbation order. However, in our experi-
ments, we found that the rankings of fidelity evaluations to a
group of attribution methods by different versions of the AUC-
based metric are inconsistent. Especially, by some metrics,
the randomly generated maps tend to have higher fidelity
evaluation than what generated by some other attribution
methods. This is counterintuitive and implies that the fidelity
evaluations obtained by some metrics may be unreliable.

For quantifying the reliability of these metrics, we propose a
new measurement. Our measurement mainly focuses on AUC-
based metrics, which yield a fidelity evaluation value for the
attribute maps on each sample generated by an attribution
method. We then designed our reliability measurement based
on the following two basic assumptions (axioms):

Axiom 1: For an individual input sample, the attribution
maps generated according to a reasonable theory have higher
fidelity than the maps randomly generated.

Axiom 2: For multiple input samples in a dataset, the
fidelity rankings for attribution maps generated by a group
of attribution methods are consistent across samples.

Assuming there are M attribution methods to be evaluated,
and the test dataset contains N samples, then N x M attribute
maps can be obtained. Given one AUC-based metric, we can
evaluate the fidelity for all N x M attribute maps and arrange
the fidelity evaluation values into a matrix A € RV*M  where
each row corresponds to values for M attribution maps on
one sample and each column contains values for IV attribution
maps given by one attribution method. Besides, by evaluating
the randomly generated results on each sample, a vector r €
RY containing N values of fidelity can also be obtained. The
reliability measurement « of a specific evaluation method can
therefore be computed from the result matrix A as follows,

N-1 N
. Zp:l Zq:p+l wpwep(Ap, , Aqg,.)
a= N—1 <N
Ep:l Zq:p+1 WpWq

where p(A, ., A, .) calculates the Spearman’s rank correlation
between the fidelity evaluation values for the attribution maps

; (20)

on two different samples. wy,, is the ratio of the attribution maps
that have better fidelity than the randomly generated maps on
the p™ sample and can be calculated mathematically as below,

M
w, = % > 1[Apm >y (21)
m=1
According to Axiom 1, w, can be used to quantify the
reliability score of the evaluation results on one sample, and
we use the product of two samples’ scores w,w, as a weight
for the correlation quantification between two samples. The
sum of all these products is taken as the normalization factor.

V. EXPERIMENTS
A. Experiment Setting

Video classification networks are characterized by com-
plicated and diversified architectures. To compare the re-
sults of attribution methods on different video classification
networks, we adopt two typical and representative kinds of
structures: CNN-RNN and 3D-CNNs. Specifically, we select
the ResNet5S0-LSTM (R50L) [59], [60] and R(2+1)D [61]]
models respectively. We validate attribution methods on
three video classification datasets: UCF101-24 [62], EPIC-
Kichens [63] and Something-Something-V2 (abbreviated as
Sth-Sth-V2) [49]. In UCF101-24 and EPIC-Kichens, the man-
ually annotated bounding boxes for the ground-truth labels
are available, which are required by the subjective evaluation
methods, e.g., pointing game. Sth-Sth-V2 dataset emphasizes
the classification of actions from the motion patterns present
in human-object interaction instead of the relevant background
scenes or static objects.

1) Datasets: UCF101-24 is a subset of the UCF101 dataset,
containing 3,207 videos of 24 classes that are intensively
labeled with spatial bounding box annotations of humans
performing actions. In our experiment, we trained models on
this dataset using the training split defined in the THUMOS’ 13
Action Recognition Challenge. When evaluating different attri-
bution methods, we generate attribution maps on the validation
set which contains 910 videos. EPIC-Kitchens is a dataset
for egocentric video recognition, where 39,596 video clips
segmented from 432 long videos are provided, along with
action and object labels. We choose the top 20 object classes
with the most number of clips to form the EPIC-Object sub-
datasets. 25 clips are randomly selected for each class to
generate the validation set and the remaining clips are utilized
to train the models. Bounding boxes for the ground-truth
objects in EPIC-Objects are provided in 2 fps (one annotation
per 30 frames). Sth-Sth-V2 is a video dataset for human-
object interaction recognition, which contains 220,847 videos
belonging to 174 labels such as ‘Putting [something] onto
[something]’. We construct a sub-dataset by selecting 25 labels
with the most number of videos, where 10000 and 1000 videos
are picked out for training and validation in our experiments.

2) Models and training: We trained an R50L model and
an R(2+1)D model on both datasets. In R50L, a deep feature
vector for each frame is extracted by ResNet50, which are
then temporally accumulated by a one-layer LSTM followed
by two fully-connected layers. To alleviate the vanishing of
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gradients on the beginning input frames, we block the gradient
propagation on hidden and cell states of LSTM and take the
average of softmax probabilities on all-time steps as the final
prediction. Also, we change the activation functions in LSTM
from Tanh to ReLU in order to adapt to the requirement of
one baseline method [27]. For the R(2+1)D model, we adopt
the R(2+1)D-18 structure [61]. In both training and testing
phases, we sample 16 frames as the input by splitting one
video clip into 16 segments and select one frame from each
split. The classification accuracy for each model on every

dataset is shown in

TABLE III: Top 1 & 5 classification accuracy of the models for
validating video attribution methods. The asterisk () indicates
the subset of a dataset.

Accuracy | UCF101-24 EPIC-Object* Sth-Sth-V2*
R(2+1)D 0.97 / 1.00 0.71 7 0.94 0.66 / 0.90
R50L 0.89 /1 0.97 0.66 / 0.88 0.42/0.73

3) Implementation details: When generating attribution re-
sults by our proposed STEP method, all masks are generated
based on smaller seed masks M € RZ*W*T and in our
experiments we set H = 7H and W = TW. The seed masks
are then up-sampled to M by the transposed convolution
operation with the 2D smooth max kernel defined in [43]].
When performing 3D convolution on the mask sequence for
Ly, we set the spatial and temporal strides to be 11 and 1
respectively, and padding as 0. We generate a series of masks
by choosing 4 area constraints, 0.05, 0.10, 0.15 and 0.20, for
both R(2+1)D and R50L. We expect the redundant information
can be removed and key regions can be located via small
preservation ratios. Empirically, a larger preservation ratio will
not arouse a significant increase in the quantitative results.
Also, same as [43]], the probability on the ground-truth will
saturate after the area constraint exceeding around 20%. Since
masks generated by STEP are nearly binary, to compare with
other attribution methods that generate maps with continuous
values, we summed these masks and converted the results
to heatmaps by applying a Gaussian filter with a standard
deviation equals to 10 pixels.

B. Baseline Attribution Methods

To investigate existing attribution methods and validate the
effectiveness of our proposed STEP, we select the following
baseline attribution methods and further adapt them for the
video inputs.

o Gradient/Saliency (G) [15] generates the attribution
maps based on the gradient of the target output with
respect to the input:

99.(X)
0xX

o Gradient x Input (G*I) [30] extends the gradient method
by multiplying the gradients with their corresponding
input pixel values:

G(X) = (22)

09.(X)

* =
GH(X) = X © "

(23)

o Integrated Gradient (IG) [22]] is defined as the path

integral of the gradients along the straight-line path
from the baseline X to the input X. We compute an
approximated version by summing the gradients at a set
of m points occurring at small intervals along the straight-
line path:

(X X))

IG(X) = ) ® Z

m
(24)

As suggested by [22], we set m = 50 and use black

images as the baseline.

SmoothGrad (SG) [23] calculates attribution maps by

averaging the gradients with respect to n noised inputs

X=X +N(0,02):

DD (X))
Z 6X/(n) : (25)

Here N(0,02) represents a 3D tensor having the same
shape as X with each entry an i.i.d. Gaussian noise with
0 mean and standard deviation 0. We set n = 50 in our
experiments.

SmoothGrad-Squared (SG2) [33]] is a variant of the
aforementioned SmoothGrad which squares gradients be-
fore averaging them:

"L 0D (X M)\ 2
SG2(X) = :Lzlj (%) .26

Parameter configurations are same as SG.

Blur Integrated Gradient (BIG) [35] is a variant of IG
which uses the blurred images to replace the black or
white images as the baseline. Mathematically,

g(X ok)) 09(X, 0%) Omax
BIG(X 27
I; 8g X ,Ok) oo, m’ @7

where g(X, o) represents the blurred version of input
X by a 2D Gaussian kernel with a standard deviation
or = (k= 1)0max/M, Omax = 50. m is set to 50 in
accordance with IG.

XRAI [34] is a region-based attribution method that
builds upon IG. Its key insight is that the region aggre-
gating higher pixel attribution values is more important
to the classifier. In our experiments, to adapt to the
spatiotemporal continuity of video frames, we employ
the SLIC algorithm [53]] implemented in skimage python
package and segment video frames into 3D supervoxels.
Same as the original method, we make the segmentation
in multiple levels with different parameters (50, 100, 150,
250, 500, 1200) controlling the segment number.
Grad-CAM (GC) [26] generates attribution maps from
the intermediate layers of a network rather than the input.
Specifically, it takes the weighted average of a certain
layer’s activation A on the different channels as

GC(X) = ReLU( ) "o Ay). (28)
k
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Here k denotes the channel index, and the weight oy is
computed by averaging the gradient with respect to the
activation on its spatial dimension.

o Excitation Backprop (EB) [25], is an attribution
method based on a modified back-propagation algorithm
that propagates Marginal Winning Probabilities (MWP)
in the network. In [27]], the back-propagation algorithm
is extended to be applicable for RNN. However, since
MWP can be only calculated on non-negative neurons,
the method can thus only be applied to networks using
ReLU as activation functions and generate attribution
maps from the intermediate layer.

For GC and EB, we generate attribution results from the
last 3D convolutional layer on R(2+1)D and conv4_3 layer
on R50L because they have the same spatial size of 7x7. On
R(2+1)D, the temporal size of attribution maps generated by
GC and EB are eight times smaller than the original frames.
For visualization and evaluation, we up-sample their results in
both spatial and temporal dimensions.

C. Metric Reliability Check

In this paper, we introduce the AUC-based metrics to objec-
tively evaluate the performance of different video attribution
methods. AUC-based metrics have evolved out many versions
based on the combination of three different variables in the
perturbation procedure: operations (insertion/deletion), orders
(MoRF/LeRF), and units (Patch/Superpixel). However, based
on our observations in experiments, they tend to generate
inconsistent evaluations for the same group of attribution
methods. Hence, we first check the reliability of different
versions based on the measurement we proposed in
For each metric, its reliability measurement is
calculated based on the matrix of AUC scores, where each
row corresponds to the AUC scores for a set of attribution
methods on one input video. In our experiment, we select
the random generation and five baseline attribution methods
(G, IG, SG, SG2, GC) to form the attribution method set.
Because Insertion+MoRF and Deletion+LeRF perform the
opposite procedures and produce the equal AUCs (the situation
is also the same for Deletion+MoRF and Insertion+LeRF), so

0.7 m Insertion Metric (Patch)
Insertion Metric (Superpixel)
0.6 = u Deletion Metric (Patch)
8. m Deletion Metric (Superpixel)
0.5 d
0.4 2
<
o
0.3 N
N
@
o
0.2
0
UCF101-24 UCF101-24 EPIC- Object EPICObJed
R(2+1)D R50L R(2+1)D R50L

Fig. 3: Reliability check results of different versions of
AUC-based metrics. The reliability is measured by « as

proposed in [subsection [V-B

grad_cam: Skijet_g04_c02
grad_cam: Average
—— random: Skijet_g04_c02
---- random: Average

T
grad_cam: Skijet_g04_c02
grad_cam: Average

—— random: Skijet_g04_c02

0s{ ---- random: Average

Probability (%)

Probability (%)

2 o o ) z o s s
Pixels Perturbed (%) Pixels Perturbed (%)

(a) Insertion Metric

(b) Deletion Metric

Fig. 4: Visualization comparison between Insertion and
Deletion metrics. The curves plot the output changes caused
by deleting/inserting pixels in the input according to the Grad-
CAM attribution maps () and randomly generated maps (—
). Both the average output changes (- -) and a selected sample’s
output changes (—) are plotted. Also, for each metric, a
visualization example for the selected sample is illustrated,
in which pixels of a specific ratio (|) are inserted/deleted
according to maps.

we only focus on the two versions under MoRF and denote
them as Insertion Metric and Deletion Metric. We set the
patch size to be 7x7 when using patch-wise perturbations and
split each frame into around 256 segments when perturbing
in superpixel. Since the size of input frame is 112x112,
this can ensure that the two unit versions are perturbed with
approximately the same step size. The reliability check results
are shown in

Comparing different perturbation operations, it is obvious
that Deletion Metrics show much lower reliability than Inser-
tion Metrics. We consider the reason as the deletion operation
is easy to generate inputs that are adversarial for networks,
that is, the network output tends to drop dramatically if non-
continuous and scattered regions are removed from an input,
although they are small and locate in the unimportant parts.
This can be proved by the example illustrated in [Figure 4}
in which the Deletion Metric evaluates the random generation
(denoted as Random) to be better than Grad-CAM (shown as
the smaller AUC of the averaged output probability). However,
when comparing the two visualizations in which the top 20%
pixels are deleted from the input sample according to maps
given by the two methods (shown in right-bottom of [Figure 4)),
we can find that the input perturbed by Random’s maps is more
recognizable than that perturbed by Grad-CAM’s maps, but
their output probabilities show an opposite result. We consider
this as an evidence that randomly deleting a small proportion
of pixels from the input will cause adversarial inputs.

For different perturbation units, under the insertion opera-
tion, the reliability of using Patch and Superpixel are almost
the same, while under the deletion operation, Superpixel
performs slightly more reliable than Patch. This may because
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the semantic information in superpixels is more continuous
and complete than that in the patchs. Hence, when the dis-
criminative regions in the input are deleted in a form of
superpixels, the decline in the output tends to be sharper than
that caused by patch-wise deletion and random removal. Based
on the aforementioned analysis, in the following part, we will
ignore the Deletion Metric and report the evaluation results
for attribute methods under the two versions of the Insertion
Metric taking patch and superpixel as the perturbation units.

D. Effect of the New Regularization Term

To investigate the effectiveness of our proposed regular-
ization term Lg and its influence on the final attribution
result of STEP, we first set a group of STEP methods with
different kernel lengths Tx € {0,5,8,11,14}, and then
adopt the Insertion Metric to evaluate the performance of
these STEP methods. The evaluation results are shown in
Comparing the performance of the STEP methods with
(T > 0) and without (Tx = 0) employing the regularization
term, we can find that the regularization term can effectively
enhance the performance of STEP in most cases. Especially,
the regularization term has the best effect when the kernel
length on the temporal dimension is 8. Comparing the results
between the two models, it can be found that the enhancement
effect of L on the RSOL model is not significant as that on
the R(2+1)D model. We consider that the reason is consistent
with our previous analysis, that is, CNN-RNN does not show
the same sensitivity as 3D-CNNs to the changes in the input.
In the following experiments, we will use the STEP method
with Tx = 8 by default.

TABLE IV: The influence of T in the regularization term

L. We evaluate STEP methods with different kernel lengths

Tk in the regularization term Ly by two versions of Insertion

Metric with different perturbation units (Patch/Superpixel).
= 0 means the STEP method without employing L.

Ty UCF101-24 EPIC-Object Sth-Sth-V2
R2+1)D R50L R2+1)D R50L R(2+1)D R50L
0 0.761/0.680  0.566/0.524  0.448/0.409  0.456/0.467  0.355/0.266  0.237/0.215
5 0.802/0.735  0.575/0.540  0.505/0.458  0.453/0.473  0.376/0.286  0.241/0.225
8 0.805/0.744  0.575/0.553  0.520/0.484  0.455/0.487  0.389/0.311  0.245/0.232
11 0.800/0.736  0.573/0.551  0.509/0.474  0.446/0.481  0.384/0.307  0.242/0.232
14 0.784/0.706  0.570/0.537  0.495/0.448  0.426/0.452  0.393/0.290  0.232/0.216

E. Influence of the Preservation Ratio Constraint

visualizes the attribution results of STEP with
different preservation ratio constraints v. The probabilities of
predicting the ground-truth label can be high even though only
5% regions are preserved, which can be considered as the most
discriminative regions for the networks. As the preservation
ratio constraint increases, more supplementary regions are ex-
cavated and the probabilities are promoted further. It is worth
noting that on the UCF101-24 dataset, the most discriminative
regions may not be considered as the action performer but
representative objects in the background (e.g., the backboard
for the basketball action). This is reasonable and consistent
with some previous observations that networks may make
correct predictions by leveraging the bias in a dataset (e.g.,

Ground Truth: Basketball  Model: R(2+1)D

L'i L'E L'i l'i L'i L'i L'i L'i
5% .
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15% ) on 3 “n .y "g‘

Ground Truth: Cupboard ~ Model: R50L
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Fig. 5: The attribution masks generated by STEP with
different preservation ratio constraints. They highlight the
most discriminative regions for the networks and the predicted
probabilities (shown as 0.XX) on the ground-truth labels grow
as the preservation ratio increases (shown as X%).

scene context or object information) instead of focusing on
actual human actions in the videos [64]], [65].

F. Qualitative Comparison against Baselines

illustrates two groups of visualization results in-
cluding the original frames and attribution maps generated by

different video attribution methods. The left group corresponds
to a UCF101-24 video with the label of Walking-with-Dog and
the right group presents results of a video with the object label
of Drawer from the EPIC-Object sub-dataset. 5 frames are
sampled out of 16 input frames for visualization. We show the
results for the same frame on both R(2+1)D and RSOL models.
For our STEP methods, we visualize the results generated
under the preservation ratio constraint of 0.15.

It can be seen that our proposed STEP methods can
generate maps that are smooth in spatial and sensitive to
changes in different video frames. For the baseline methods in
which gradients are involved, i.e., GradientxInput, Gradient,
Integrated Gradient, SmoothGrad, SmoothGrad-Squared and
Blur Integrated Gradient, it is obvious that their attribution
results are sparse and noisy in whole, but Integrated Gradi-
ent, SmoothGrad, SmoothGrad-Squared can produce relatively
concentrated results by exploiting special ways to remove
noises. In contrast, the region-based attribution method XRAI
produces more continuous and smoother results, although the
temporal sensitivity is restricted by the supervoxels. For Grad-
CAM and Excitation Backprop that take results from the
intermediate layer of networks, the lower original resolution
and up-sampling operation make the importance maps looks
concentrated and smooth. However, on the R(2+1)D model,
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Fig. 6: The visualization of video attribution results and comparison with baseline methods. We qualitatively compare
our proposed STEP methods to baseline video attribution methods: GradientxInput (G*I) [30], Gradient (G) [15]], Integrated
Gradient (IG) [22]), SmoothGrad (SG) [23]], SmoothGrad-Squared (SG2) [33]], Blur Integrated Gradient (BIG) [35]], XRALI [34],

Grad-CAM (GC) [26], Excitation Backprop (EB) [25], [27].

TABLE V: Objective evaluation results for different video
attribution methods. Two versions of the Insertion Metric
with different perturbation units (patch/superpixel) are selected
for thorough comparisons. The higher value means better
performance in attribution.

M UCF101-24 EPIC-Object Sth-Sth-V2
ethods
R(2+1)D R50L R(2+1)D R50L R(2+1)D R50L
0.21/0.20  0.28/0.27  0.17/0.16  0.20/0.24  0.11/0.10  0.12/0.12
0.53/0.54  0.50/0.49  0.36/0.38 0.41/0.43  0.24/0.24  0.20/0.21
0.61/0.60  0.51/0.50  0.40/0.41  0.42/0.45 0.25/0.24  0.22/0.22
0.70/0.68  0.54/0.54  0.41/0.42  0.42/0.46  0.31/0.27  0.24/0.24
0.73/0.70  0.55/0.54  0.44/0.43  0.43/0.46  0.29/0.25  0.24/0.24
0.75/0.73  0.58/0.55  0.45/0.44  0.45/0.47 0.30/0.25  0.25/0.25
0.62/0.60  0.47/0.49  0.39/0.40  0.40/0.44  0.28/0.24  0.21/0.22
0.74/0.68  0.57/0.57  0.50/0.46  0.44/0.45 0.50/0.35 0.23/0.23
EB [27] 0.66/0.59  0.57/0.54  0.45/0.42  0.46/0.44  0.45/0.31 0.24/0.24
GC |26 0.74/0.68  0.52/0.49  0.56/0.51  0.43/0.45 0.54/0.40  0.24/0.24
STEP 0.80/0.74  0.57/0.55  0.52/0.48  0.45/0.49 0.39/0.31  0.25/0.23

the lower temporal resolution would make it inconvenient if we
want to have attribution results with high temporal sensitivity.
In contrast, our proposed STEP can generate smooth and con-
centrated attribution results directly from the input, which not
only enables the utilization even without the internal structural
knowledge of the model but also ensures the sensitivity to
changes in different frames.

G. Quantitative Comparison using AUC-based Metrics

To objectively compare different video attribution methods
without relying on manual annotations or biasing to human

judgment, we first adopted the AUC-based metric. According
to the result of the reliability check we
select the Insertion Metric and evaluate different attribution
methods by its two versions which adopt the perturbation
unit of patch and superpixel respectively. shows the
evaluation results and compares our proposed STEP against
baseline methods.

We see that our proposed STEP achieves the best evaluation
results on multiple columns and competitive performance on
the remaining. Our method also maintains good performance
on both kinds of networks. Among baseline methods, SG2,
XRAI EB and GC present noticeable performance. It can
be found that the attribution methods producing continuous
and smooth results can achieve higher scores, especially on
R(2+1)D. We attribution this to that these results can generate
more continuous inserted regions during the computation
procedure of insertion metric, so as to stimulate the network’s
positive response faster. However, comparing with some meth-
ods achieving this continuity and smoothness at the expense of
low resolutions (GC and EB) or temporal sensitivity (XRAI),
our method keeps a good balance between the two aspects.

Notably, on the challenging Sth-Sth-V2 dataset that em-
phasizes the identification of the dynamic motion patterns,
GC and XRALI obtain obviously higher evaluation values than
other methods although they show low temporal resolution or
sensitivity (as shown in [Figure 7). This indicates that on this
dataset, differing from our intuition, 3D-CNNs may highly
depend on the spatiotemporally continuous regions instead of
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Fig. 7: The comparison of visualization results on R(2+1)D
and Something-Something-V2 dataset. Methods like GC
and XRAI achieve high quantitative evaluation results on this
setting but show very low temporal sensitivity.

STEP

discrete regions in certain frames to capture the discriminative
dynamic information.

H. Quantitative Comparison using Pointing Games

TABLE VI: Subjective evaluation results for different video
attribution methods by the pointing game metric. Results
on the metric are measured by percentage. The higher value
means better performance in attribution.

Methods UCF101-24 EPIC-Object
R(2+1)D R50L R(2+1)D R50L
15.7 13.9 33 47
31.8 26.8 6.4 5.9
40.9 332 7.1 6.1
423 39.6 5.7 7.1
44.4 38.8 5.7 73
39.3 30.4 6.7 6.3
46.7 46.9 8.1 8.1
EB [25 | 43.0 39.3 6.5 7.6
GC [26) 483 273 7.8 59
STEP 56.1 53.1 9.4 8.4

We also quantitatively compare the attribution results gen-
erated by different methods, using the pointing game metric,
which adopts manual annotations of bounding boxes that
ground the regions related to the ground-truth label according
to the human judgement. Specifically, the metric measures the
percentage of importance maps whose maximum points fall
into the annotation bounding boxes. Following [27], we set a
tolerance radius of 7 pixels when calculating for the pointing
game metric, i.e., one hit is recorded if a 7-pixel radial circle
around the maximum point in an importance map intersects
the ground-truth bounding box.

The evaluation results on the two networks and two datasets
are shown in It can be seen that STEP gets the best
performance in all cases. The measurements on EPIC-Object
are obviously lower than that on UCF101-24. This is mainly
because the ground-truth objects are small and global motions
are fast in the EPIC-Kitchen dataset. As a result, the bounding
box annotations for objects are not very accurate and it also

becomes difficult for attribution maps to accurately localize
these objects in video.

L. Quantitative Comparison using Retrain-based Metric

We also adopt the retrain-based metric to evaluate
our method. Similar to the AUC-based metric, there are two
different versions of retrain-based metrics (ROAR/KAR) due
to the difference in perturbation operations (deletion/insertion).
To be consistent with the AUC-based metric, we choose the
KAR version based on the insertion operation to compare
the performance of STEP against baseline methods. Since
retrain-based metric needs to set multiple perturbation ratio
values, and use the perturbed samples under each perturbation
ratio value to train and test the model, it requires a lot of
computational resources. We generated multiple training and
test datasets on UCF101-24 by perturbing samples at the
ratios of {0.05, 0.1, 0.3, 0.5, 0.7, 0.9} respectively, and apply
them on the R(2+1)D models. For KAR, at each perturbation
ratio, the attribution method that corresponds to a higher test
accuracy is considered better, since this implies the attribution
maps generated by the method can accurately locate the input
regions that are discriminative to the model. The evaluation
results are shown in

Under the small keeping ratio (5% or 10%), the test ac-
curacy of our STEP method is significantly higher than that
of baseline methods. Under large keeping ratios (no less than
30%), the test accuracy values of STEP are still better than
that of other baseline methods although the gaps with Grad-
CAM are decreased. This indicates that the attribute maps
generated by our STEP method can well locate the regions
that occupy only a small proportion of the input but account
truly significant for model discrimination.

VI. CONCLUSION

In this paper, we shed light on the task of visually explaining
video understanding networks by proposing a perturbation-
based video attribution method: Spatio-Temporal Extremal

KAR

.. Random

»

- GH
G
IG

Testaccuracy (%)

* SG
* SG2
« EB

bbb b

* GC

el ST EP

10 30 50 70 90
% of input pixels kept

Fig. 8: Objective evaluation results by the retrain-based
metric KAR. We use the perturbed UCF101-24 samples to
retrain and test the R(2+1)D models. In these samples, only
a part of the pixels that are considered contributive by the
attribution maps is kept.
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Perturbation (STEP). The method adapts the extremal per-
turbation method for the video input and enhanced it with a
new regularization term to smooth the perturbation results in
both spatial and temporal dimensions. Instead of only utilizing
the subjective metrics that rely on manual inspections or
annotations, we incorporated the objective metrics to evaluate
and compare different methods for video attribution. Our
experiments indicated that different versions of an objective
metric cannot come to a consensus in ranking a set of video at-
tribution methods, which indicates the potential unreliability of
some versions. Hence, we designed a new measurement for the
AUC-based metrics to reveal and quantify their reliability. We
experiment on two typical backbone networks (3D-CNNs &
CNN-RNN) for the video classification task and three datasets
of Something-Something-V2 & EPIC-Kitchens & UCF101-24.
For a comprehensive comparison, we also incorporated mul-
tiple significant attribution methods into the baseline, which
were originally proposed as image attribution methods but
adaptive for the video task. Both the objective and subjective
evaluation results demonstrate that our proposed method can
achieve competitive performance as well as maintain decent
resolutions and temporal sensitivity on attribution results.
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