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Engaging Part-whole Hierarchies and Contrast Cues
for Salient Object Detection

Qiang Zhang, Mingxing Duanmu, Yongjiang Luo, Yi Liu* and Jungong Han*

Abstract—Real-world scenes always exhibit objects with clutter
backgrounds, posing great challenges for deep salient object de-
tection models. In this paper, we propose salient object detection
by engaging two saliency cues, i.e., the part-whole hierarchies
and contrast cues, resulting in a PWHCNet. Specifically, two
branches, which consists of a Dynamic Grouping Capsules (DGC)
branch and a DenseHRNet branch, are put in place to learn the
part-whole hierarchies and contrast cues, respectively. Moreover,
to help highlight the whole salient object in complex scenes,
a Background Suppression (BS) module is proposed to guide
the shallow features of DenseHRNet with the aid of the part-
whole relational cues captured by DGC. Subsequently, these two
saliency cues are integrated via a Self-Channel and Mutual-
Spatial (SCMS) attention mechanism. Experimental results on
five benchmarks demonstrate that the proposed PWHCNet
achieves state-of-the-art performance while obtaining the whole
salient objects with fine details.

Index Terms—Salient object detection, part-whole hierarchies,
contrast, attention.

I. INTRODUCTION

SALIENT Object Detection (SOD) highlights and segments
out the most visually appealing objects or regions in

natural images [1]–[3]. Acting as a preprocessing step, SOD
has been applied in many computer vision fields in recent
years, e.g., weakly-supervised image semantic segmentation
[4], visual tracking [5], object recognition [6], image retrieval
[7] and video compression [8].

Hand-crafted features (e.g., color, texture, etc.) dominate the
development of earlier salient object detectors [9]–[11]. How-
ever, given the limited representation abilities of these features,
these traditional methods encounter a performance bottleneck.
In light of its powerful representation abilities, Convolutional
Neural Networks (CNNs) have been successfully applied for
salient object detection and achieved substantial performance
improvements [12]–[14].

Despite impressive preliminary results have been achieved
by CNNs, these methods still face some challenges. Existing
CNNs based salient object detection approaches [14]–[16]
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Fig. 1. Illustrations for sample results of our method compared with others.
TSPOANet [17]: saliency detector based on part-whole relationships; MINet
[14] and F3Net [16]: saliency detectors based on contrast information.

predict the saliency map of an entire image mainly depending
on the learned contrast information of each image region.
Due to the ignorance of correlations between different object
parts, these methods struggle to extract the whole objects from
clutter scenes, which is demonstrated in the columns 3 and 4
of Fig. 1.

To alleviate the above problem, Liu et al. [17] investigated
the role of part-whole relationships in salient object detection
with the aid of the Capsule Network (CapsNet) [18]. Here,
the salient object in a scene can be segmented out from the
complicated background by discovering familiar object parts
via exploring the part-whole relationships in the scene. As
shown in the front two rows of Fig. 1, TSPOANet [17] can
detect the whole salient objects from the backgrounds.

However, only part-whole relational cues may not be suf-
ficient to segment complete objects from extremely complex
scenes. For example, as illustrated in the last two rows of
Fig. 1, some object regions are missed by TSPOANet [17],
which may be attributed to the explored inaccurate part-
whole hierarchies. This issue may arise from the noisy capsule
assignments in TSPOANet [17], where the adopted two-stream
strategy directly divides the capsules into two groups for
capsules routing. Surprisingly, those missing object regions
can be identified by such contrast based methods, e.g., MINet
[14] and F3Net [16], which demonstrates the contrast cues
provide more exploration of local details compared to the part-
whole relational cues. Based on the above observation, the two
saliency cues, including the part-whole relational and contrast
cues, can complement and reinforce each other for more robust
salient object detection.

Considering that, in this paper, we propose a PWHCNet
for salient object detection by interacting two saliency cues,
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including part-whole hierarchies and contrast cues. Concretely,
two branches are put in place to explore the part-whole
hierarchies and contrast cues, respectively. In order to achieve
the complementary information between these two saliency
cues, we embed these two cues in a Self-Channel and Mutual-
Spatial (SCMS) attention module. Specifically, in SCMS, the
self-channel attention mechanism for one specific saliency
cue is achieved via the channel weights computed on this
cue itself, which helps to promote those informative chan-
nels while suppressing un-important ones. The mutual-spatial
attention mechanism provides the spatial importance for one
specific saliency cue with the aid of another saliency cue.
The combination of self-channel and mutual-spatial attentions
improves semantics for salient object detection.

Besides, to alleviate the problem of inaccurate part-whole
relationships caused by the noisy capsule assignments, a
Dynamic Grouping Capsules Routing (DGCR) strategy is
proposed in the part-whole hierarchies exploration branch.
Specifically, highly-correlated capsules are encouraged to be
clustered into the same group for further capsules routing
under the guidance of the proposed DGCR strategy. Such a dy-
namical grouping mechanism divides the capsules representing
the same entity into the same group, which helps to alleviate
noisy capsule assignments to some extent and thereby explores
more accurate part-whole relational cues.

Similarly, to learn primitive contrast cues, a DenseHRNet
framework is proposed on top of HRNet [19] to capture multi-
scale context information with different receptive fields from
the input image. The filtered results of different sub-layer con-
volutions are integrated through dense residual connections.
In the meanwhile, a Background Suppression (BS) module is
put at the head of the DenseHRNet sub-network, which aims
to use the part-whole relational cues to guide the primitive
contrast extraction. The resultant contrast cues will highlight
the object regions well while suppressing the background
region. As shown in Fig. 1, our model can produce more
precise saliency maps in complex scenes, compared with other
methods.

In summary, our contributions are summarized as follows:
1). A PWHCNet is proposed for salient object detection,

which embeds the part-whole hierarchies and contrast cues
into a SCMS attention mechanism to complement the infor-
mation between them. To the best of our knowledge, it is the
first attempt to simultaneously adopt the two saliency cues for
salient object detection.

2). A DGC strategy is proposed to dynamically divide
capsules with high correlations into a group for capsules
routing, which helps to alleviate noisy capsule assignments
and thereby explore more accurate part-whole relationships.

3). A DenseHRNet framework is designed to obtain more
primitive contrast information with multiple scales while im-
proving the flow of information and gradients throughout the
network. Besides, under the guidance of the part-whole rela-
tional cues, the DenseHRNet sub-network pays more attention
to the object regions.

The composition of this paper is described as follows. Sec.
II reviews the works related to our method. Sec. III details the
proposed network. Sec. IV conducts lots of experiments and

analyses to evaluate the proposed method. Sec. V concludes
this paper.

II. RELATED WORK

A. Saliency detection

Traditional saliency detection methods [20]–[22] usually
rely on hand-crafted priors. An overall review about these
methods can be referred to [23]. Due to difficulties in capturing
high-level semantics, these methods encounter a performance
bottleneck. CNNs have broken this performance bottleneck
because of their powerful representation abilities. For example,
Li et al. [24] mined multi-scale deep features for high-
precision visual saliency. In [25], a label decoupling frame-
work was proposed for salient object detection by decoupling
the saliency label into subject mapping and detail mapping.
Zhang et al. [26] improved the accuracy of saliency detection
by constructing an uncertain ensemble of internal feature units
in specific convolutional layers. Cong et al. [27] proposed
a depth-guided transformation model from RGB to RGBD
saliency by capturing the explicit and implicit information
from the depth map. In order to improve the performance of
SOD, BASNet [28], EGNet [13] embedded boundary cues into
the models to highlight the boundary regions of salient objects.
In order to drive the network to discover complement object
regions and details, Wang et al. [29] aggregated multi-scale
salient context information by fusing those of multiple sub-
regions. Chen et al. [30] proposed a reverse attention module
in the top-down pathway to guide residual saliency learning.

In addition, deep contextual information has proved to be
effective for SOD [31]. Zhang et al. [32] proposed a multi-
level feature aggregation network to better integrate global
contexts and local contexts by concatenating feature maps
from both high levels and low levels directly. Wang et al.
[33] used a weighted sum algorithm to integrate the estimated
local saliency with a set of searched global salient regions
to construct the final saliency map. In order to construct
informative contextual features, Liu et al. [34] hierarchically
embedded global and local context modules into a top-down
pathway. Zhu et al. [35] aggregated the attentional dilated fea-
tures by exploring the complementary information between the
global and local context. Zhang et al. [36] gradually integrated
multi-level contextual information through an attention guided
network. Pang et al. [14] integrated the features from adjacent
levels to obtain more efficient multi-scale features. Readers
can gain a comprehensive understanding about these methods
from [37].

The above mentioned methods try to extract more perceptual
contexts for salient object detection. However, they ignore the
fact that a target is composed of several geometric parts [38],
which will lead to incomplete segmentation of the salient
object. To address this problem, Liu et al. [17] proposed a
part-whole relational saliency by involving the part-whole re-
lational property in SOD with the aid of the Capsule Network
(CapsNet) [18]. Specifically, in [17] the activation value of
the capsule was used as the saliency value for each position.
On top of that, a TSPOANet was proposed in [17] to get
the whole saliency map through capsules routing, which was
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Fig. 2. The overall architecture of our proposed PWHCNet for salient object detection, which consists of a DGC sub-network and a DenseHRNet sub-network
to capture the part-whole hierarchies and contrast cues from input images, respectively. The part-whole relational cues are additionally used to guide the
feature extraction of DenseHRNet at the shallow layer via a BS module. On top of that, the above two saliency cues are interacted by a SCMS attention
module to achieve more primitive saliency semantics Fout, which are further used to predict the final saliency map. More details are provided in the text
body.

implemented by using two streams for more accurate part-
whole relationships while reducing the network parameters
and noisy capsule assignments.

Different from the existing SOD methods, in this paper, two
saliency cues, including contrast and part-whole hierarchies,
are jointly used to infer the saliency map. This mechanism
allows to obtain the whole saliency map with complete local
details.

B. Attention mechanism

Attention mechanism has been widely applied in many
fields, including machine translation [39], visual question an-
swering [40], semantic segmentation [41] and image caption-
ing [42]. In view of its advantages, the attention mechanism
has also been used for SOD. For example, Cheng et al.
[9] proposed a regional contrast algorithm to evaluate the
global contrast differences and spatial coherence for saliency
prediction. Kuen et al. [43] designed an attention network to
identify the salient objects based on the spatial transformer
and recurrent network. Liu et al. [34] proposed a pixel-wise
contextual attention network by generating a contextual rele-
vant spatial weight map to selectively attend the informative
pixels for salient object detection. Li et al. [44] proposed
an attention steered interweave fusion network for salient
object detection, which progressively integrated cross-modal
and cross-level complementarity from the RGB image and
corresponding depth map. In [45], a top-down reverse attention
mechanism was designed to guide a residual learning by using
spatial weight convolution features, which was further embed-
ded into each side output for residual refinement to detect
the salient object. Chen et al. [46] designed a gated multi-

modality attention module to capture long-range dependencies
from a cross-modal perspective for RGB-D saliency detection.
In order to utilize more useful features, some methods also
try to combine channel and spatial attentions. Zhang et al.
[36] proposed a progressive attention guided network, which
generated attentive features by channel-wise and spatial atten-
tion mechanisms sequentially to selectively integrate multi-
level contextual information for saliency detection. Zhao et
al. [47] proposed a pyramid attention based salient object de-
tection network via capturing the semantic high-level features
and enhancing the low-level spatial structural features by a
channel-wise attention module and a spatial attention module,
respectively.

Different from the previous attention based SOD methods,
we will design a new attention mechanism to well exploit
the interaction information between the contrast cues and the
part-whole hierarchies for SOD by simultaneously considering
the intra-cues channel interaction and the inter-cues spatial
interaction.

III. PROPOSED METHOD

Fig. 2 illustrates the overall architecture of the proposed
salient object detection network, which fuses part-whole hier-
archies and contrast cues to deal with the issue of inaccurate
segmentation of salient objects in cluttered scenes. Specifi-
cally, a Dynamic Grouping CapsNet (DGC) sub-network and
a DenseHRNet sub-network are proposed to capture the part-
whole hierarchies and contrast cues from the input images,
respectively. Additionally, the explored part-whole relational
semantics are utilized to design a Background Suppression
(BS) module to guide the shallow feature extraction in the
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DenseHRNet sub-network. On top of that, the above two
saliency cues are fully interacted by a Self-Channel and
Mutual-Spatial (SCMS) attention mechanism to predict the
final saliency map.

A. Exploring part-whole relationships stream

1L
F

2L
F

r
F
r
F

Resblock Maxpool
Dilated 

Convolution

Bilinear 

Upsampling

Conv+BN

+ReLU
Concatenation

224×224×64

112×112×128

56×56×256

28×28×512

14×14×512
C

C

C

C

C

Fig. 3. Details of U-Res34. Fr will be used for capsule construction in our
proposed model, while FL1 and FL2 will be used to recover salient object
boundaries in the final saliency prediction stage.

1) Feature extraction for capsules construction:
Before the capsules routing, a U-Res34 unit (as shown in

Fig. 3) is used to extract the deep semantic features Fr from
the input images. As observed from Fig. 3, the randomly
cropped input image (224 × 224 × 3) is first fed into six
basic res-blocks. To further capture the global information, a
bridge block composed of a dilation convolution layer (dilation
rate = 2) is added between the encoder and the decoder.
For the decoder, the input of each block is the concatenation
of previous upsampled feature maps and their corresponding
encoded feature maps, which is able to integrate high-level
contexts and low-level details. On top of that, the features Fr
are transformed into multiple types of matrix capsules1 (16
capsules in this paper), which is implemented by a Primary
Capsule (PrimaryCaps) layer, as in [17]. In addition to Fr,
as shown in Fig. 3, another two sets of shallow features, i.e.,
FL1 and FL2, will also be generated from the U-Res34 unit,
which will be further used to restore the boundaries of salient
objects in the final saliency inference stage.

2) Dynamic grouping for capsules routing:
Considering that CapsNet has the ability of capturing part-

whole relationships [17], [18], we also adopt CapsNet [18] to
explore the part-whole relational cues for saliency prediction
as in [17]. However, the direct grouping strategy in [17]
encounters noisy capsule assignments, which may cause inac-
curate part-whole relationships and subsequent unsatisfactory
results. Alternatively, taking into account the capsules corre-
lations, we involve a dynamic grouping strategy for CapsNet
to explore more accurate part-whole relationships in complex
scenes. The details will be illustrated in the following contents.

As shown in the top branch of Fig. 2, small circles of dif-
ferent colors indicate distinct types of capsules. The dynamic
grouping strategy is implemented before capsules routing to
facilitate high-correlated capsules grouping for capturing more

1Each capsule contains a 4× 4 pose matrix M and an activation value a.

accurate part-whole relationships. In essential, capsules from
the same object will have high familiarities. Therefore, highly
familiar capsules are encouraged to be clustered into the same
group for further routing within the group by virtue of the
proposed dynamic grouping strategy, which will reduce some
noisy capsule assignments. Specifically, the proposed dynamic
grouping strategy consists of three steps, i.e., calculating
capsule correlation matrix, determining initial capsules in each
group, and putting similar capsules into the same group.

Step 1: Calculating capsule correlation matrix: The
property of a capsule is represented by its pose matrix. Thus,
we measure the correlation among capsules by calculating the
Manhattan distance (i.e., L1 norm) among the pose matrices of
different capsules. Concretely, the correlation Lm,n between
capsules of type m and type n is expressed as follows:

Lm,n = ‖σ (Capsm)− σ (Capsn)‖1, (1)

where Capsm/n(m,n = 1, 2, ...,K) represents the attribute
information for the capsule of type m or type n. K denotes
the total number of capsule types and is set to 16 in this paper
as in [17]. Here, we use the Sigmoid activation function (i.e.,
σ(∗)) to compress the value of Lm,n to (0, 1), thus making
the calculation process easier. After splicing Lm,n, the capsule
correlation matrix L ∈ RK×K is thus obtained.

Step 2: Determining initial capsules in each group:
As discussed in Step 1, the correlation coefficient Lm,n in
the correlation matrix L ∈ RK×K represents the similarity
between the capsules of type m and type n. The larger the
correlation coefficient, the higher the dissimilarity between the
two capsules is. Then the horizontal and vertical coordinates,
o1 and o2, of the maximum value in L ∈ RK×K indicate
the serial numbers of two types of capsules with the farthest
similarity, i.e.,

[o1, o2] = arg max
m,n

(Lm,n) ,L ∈ RK×K , (2)

where arg max provides the indexes for the maximum value
in the matrix L. Correspondingly, Capso1 and Capso2 are
defined as the initial capsules of two capsule groups to be
constructed.

Step 3: Putting similar capsules into the same
group: The values in the one-dimensional vector, Lm ∈
R1×K (m = 1, 2, ...,K), for the m-th row of the correlation
matrix L ∈ RK×K represent the correlation coefficients
between the capsule of type m and those of other types. The
group with the initial capsule Capsoi(i = 1, 2) that a capsule
Capsp belongs to can be determined by

Capsp ∈ GCapsoj , where oj = arg min
i=1,2

(Lp,oi) , (3)

where Lp,oi(p = 1, 2, ..., 16, p 6= oi, i = 1, 2) represents
the correlation coefficient between the remaining 14 capsules
and the 2 initial capsules. arg min returns the index for the
smaller one between Lp,o1 and Lp,o2 . With this step, we may
dynamically divide the capsules into two groups G1 and G2.

By performing the same steps mentioned above on G1, we
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may further obtain two new capsule groups. Similarly, we
obtain another two new capsule groups by performing the
same steps on G2. Thus, we finally obtain four capsule groups,
i.e., Go1, Go2, Go3, Go4, with strong correlation within each
group.

Capsules routing. There is a 4×4 trainable transformation
matrix Wij between each capsule i(i ∈ ΩN ) in layer N and
each capsule j(j ∈ ΩN+1) in layer N + 1. ΩN denotes the
set of capsules in layer N . The pose matrix Mi of capsule
i is transformed by Wij to cast a vote Vij = MiWij for
the pose matrix Mj of capsule j. Vij and ai are utilized
for routing to obtain the poses and activations of all capsules
in the N + 1 layer, which is achieved through an iterative
Expectation-Maximization (EM) algorithm [18]. More details
can be seen in [18].

In this way, the part-whole relationships within the image
are obtained by assigning associated parts to their familiar
wholes. Similar to [17], the activation values from the last
convolutional capsule layer are used as the final feature maps
FPO for the next stage.

B. Extracting contrast information stream

1) Initial feature extraction for contrast cues:
In order to facilitate the extraction of contrast cues, as shown

in Fig. 2, a set of initial features F0 are first extracted in
the DenseHRNet branch via a Downsampling Node, which
is constructed by two convolutional layers and four residual
blocks.

2) BS module for highlighting the foreground regions:
Although local details are captured by contrast information,

salient objects in cluttered or low-contrast scenes, e.g., low-
contrast between foreground and background, are still difficult
to be segmented out from the background accurately just ac-
cording these local details. Notably, the position of the salient
object can be located through the part-whole relational cues.
Considering that, a Background Suppression (BS) module is
further appended on the Downsampling Node to guide the
primitive contrast extraction, which aims to produce more fine
details while effectively suppressing complex backgrounds and
highlighting the salient object regions.

Element-wise multiplication

+·

+

·

Element-wise addition

Conv

POF

0F

Fig. 4. The architecture of BS module.

Fig. 4 illustrates the details of the proposed BS module,
in which the objectness prior maps learned by the DGC sub-
network are utilized to generate channel-wise spatial attention.
The entire process is formulated as follows:

Fbs = F0 �
[
1 + σ

(
Conv

(
FPO;β1

))]
, (4)

where Fbs, F0 and FPO represent the outputs of the BS
module, the Downsampling Node and the DGC sub-network in
Fig. 2, respectively. � means the operation of the element-wise
multiplication. Conv(∗;β1) denotes a convolutional block
with its parameters β1, which is responsible for transforming
the channel number of FPO into the same as that of F0. The
value of the spatial weight map is activated by the Sigmoid
operation, i.e., σ(∗).

3) DenseHRNet for contrast information:
To make the potential spatial features more precise, we

propose the DenseHRNet sub-network based on HRNet [19]
to maintain high-resolution representations while ensuring the
maximum information flow between the network output layer
and the middle layers. As shown in the bottom branch of
Fig. 2, dense residual connections are embedded to integrate
the filtering results of different sub-layer convolution kernel
operations in the proposed DenseHRNet sub-network. This
embedding of such residual connections improves the flow
of information and gradients throughout the network, which
makes them easy to train.

Actually, the DenseHRNet sub-network is similar to HRNet
[19]. While, the difference between them is whether the
features of middle sub-layers are used. The small modification
leads to substantially different behaviors between the two
networks. As shown in Fig. 2, FC and Fu,v (u, v = 1, 2, 3, 4)
represent the final output of the network and the features of
each layer. The output of the original HRNet can be written
as:

FC = Cat (F4,v) , where v = 1, 2, 3, 4, (5)

where Cat denotes concatenating feature maps along the
channel dimension. Differently, the output of the DenseHRNet
sub-network can be formulated as:

FC = Cat (Fu,v) , where u, v = 1, 2, 3, 4. (6)

Due to such dense residual connections, the final features
not only integrate the features of different layers, but also
aggregate all the features of the previous layers at different
scales. The feature maps learned by any of the DenseHRNet
layers can be accessed by the last layer. Besides, when the gra-
dient is propagated back, partial information can directly reach
each middle layer without going through the deep network.
This forces the middle layer to learn more distinguishable
features. Therefore, more accurate contrast information can
be obtained by the proposed DenseHRNet sub-network.

C. Attention fusion mechanism for two cues integration

Considering different characteristics of the two cues, i.e.,
contrast cues prefer to capture object details and part-whole
relational cues prefer to detect the object wholeness, they can
complement to each other to improve the saliency prediction.
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Fig. 5. The architecture of SCMS module. Shadow regions marked by brown
and blue colors represent the SCC unit and the MWSA unit, respectively. ‘W-
ASP’ refers to the Weighted Atrous Spatial Pyramid (W-ASP) sub-module.

While simple addition or cascading operation cannot fully ex-
tract enough useful information for the saliency map. Besides,
the features of the same cue usually are affluent in spatial
or channel aspect, and also include redundant information.
To overcome such issues, a Self-Channel and Mutual-Spatial
(SCMS) attention module is designed to automatically select
those important features for the prediction of salient regions.
The SCMS attention module consists of two units: a Self-
branch Channel Correlation (SCC) unit and a Mutual-branch
Weighted Spatial Attention (MWSA) unit. The structure of
SCMS is shown in Fig. 5.

SCC. Different channels of features in CNNs generate var-
ious responses for different semantics and perform differently
for highlighting the salient object [48]. This is significant to
filter inaccurate features and focus more on valuable features.
For that, we assign larger weights to those channels that
show higher responses on salient regions by calculating the
correlation matrix among channels. In this way, long-range de-
pendencies along the channel dimension will be well exploited,
thus capturing more comprehensive channel characteristics for
the feature selection. This is different from the traditional
channel-wise attention module, where the weight for each
channel is calculated in a channel-independent way.

The orange regions shaded in Fig. 5 show the detailed
structure of the proposed SCC. First, we apply 1 × 1 con-
volution and reshape operations to transform the self-branch
input features Fself ∈ RC1×H×W to Wq ∈ RC1×HW . After
that, a channel correlation matrix is generated by performing
matrix multiplication and normalization operations on Wq and
its transpose. Negative values in the correlation matrix are
suppressed by ReLU activation function. Finally, the output
features FSCC of SCC are obtained by the matrix multiplica-
tion of the channel correlation matrix with the original self-
branch input features. The entire process is written as:

Wq = Nor
(
Reshape

(
Conv

(
Fself ;β2

)))
, (7)

FSCC =
(

Nor
(

ReLU
(
Wq ×Wq

T
)))
×Reshape (Fself ) ,

(8)

where Nor(∗) means normalizing the values in the channel
correction matrix to [0, 1]. Reshape(∗) means to transform
Fself from the size C1 ×H ×W to C1 ×HW .

MWSA. The two cues from the two-stream network contain
different semantic information. The part-whole hierarchies
are responsible for the whole saliency regions, while the
contrast cues provide precise details. In order to effectively
combine the semantic features from the above two cues,
we design an MWSA unit to capture the long-range spatial
dependencies across the two cues, as shown in the blue
regions shaded in Fig. 5. Specifically, a spatial attention map
is generated from MWSA by using some atrous convolutional
pyramid operations to further provide spatial guidance for the
output of SCC FSCC . More specifically, the input features
Fmutual ∈ RC2×H×W of the mutual branch are first fed
into a Weighted Atrous Spatial Pyramid (W-ASP) sub-module
to extract their enhanced multi-scale contextual information
FW−ASP ∈ RC2×H×W . Then, similar to that in SCC, a
1×1 convolution layer and a reshape operation are performed
on FW−ASP , thus obtaining Wa ∈ RHW×C3 . After that, a
spatial correlation matrix is generated by performing matrix
multiplication and normalization operations on Wa and its
transpose. The output features FMWSA of MWSA are thus
obtained by the matrix multiplication of the spatial correlation
matrix with the output of SCC FSCC .

Especially, as shown in Fig. 5, an Atrous Spatial Pyramid
Pooling (ASPP) operation with the same structure as in
[49] but with different dilation rates (i.e., 1, 3, 5 and 7) is
first employed to capture some initial multi-scale contextual
information FASP ∈ RC2×H×W from the input features
Fmutual in the W-ASP sub-module. Then a 3×3 convolutional
layer together with a global averaging pooling (GAP) layer is
performed on the input features Fmutual to generate a set of
channel-wise weights Fweight ∈ RC2 . With the channel-wise
weights Fweight, enhanced multi-scale contextual information
FE−ASP ∈ RC2×H×W is obtained by performing a channel-
wise multiplication operation on the extracted FASP . By doing
so, the useful multi-scale features in FASP will be enhanced
while some disturbing information will be suppressed. The fi-
nal output features FW−ASP of W-ASP is obtained by further
performing a convolution layer on the addition of FE−ASP
with the original input features Fmutual. Mathematically, the
whole process of the proposed MWSA unit can be expressed
as follows:

FASP = ASP (Fmutual) , (9)

Fweight = σ
(
GAP (Conv (Fmutual));β

3
)
, (10)

FE−ASP = Fweight � FASP , (11)

FW−ASP = Conv
(
FE−ASP + Fmutual;β

4
)
, (12)

Wa = Nor
(
Reshape

(
Conv

(
Fa;β5

)))
∈ RHW×C3 , (13)
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FMWSA = FSCC ×
(

Nor
(

ReLU
(
Wa ×Wa

T
)))

, (14)

where GAP refers to the global average pooling operation.
ASP is the operation of stacked dilation convolutions with
different dilation rates of 1, 3, 5, and 7. Finally, we add
FMWSA and Fself to obtain the final output features FSCMS

of the proposed SCMS module so that the original self-branch
input features are retained, which can be written as:

FSCMS = Conv
(

Reshape
′
(FMWSA) + Fself

)
, (15)

where Reshape
′

denotes the inverse process of Reshape.
As shown in Fig. 2, two SCMS modules are applied to

integrate the features of two cues. When FPO is the self-
branch features and FC is the Mutual-branch features (i.e.,
Fself , Fmutual and FSCMS are FPO, FC and FPOSCMS ,
respectively), the local details of the part-whole hierarchies are
enhanced based on the contrast cues. Similarly, when FC is
the self-branch features and FPO is the Mutual-branch features
(i.e., Fself , Fmutual and FSCMS are FC , FPO and FCSCMS ,
respectively), the object wholeness of the contrast cues are
enhanced based on the part-whole hierarchies. Finally, the final
output features Fout from the two SCMS modules are obtained
by concatenating FPOSCMS and FCSCMS , i.e.,

Fout = Cat
(
FPOSCMS ,F

C
SCMS

)
. (16)

Different from previous attention mechanism algo-
rithms. Here we mainly discuss the uniqueness of the pro-
posed SCMS module compared to the attention mechanisms
in [50] and [51].

1) Comparison with non-local operation in [50]. Non-local
operations in [50] can calculate the dependencies among all
spatial positions, but the correlation among different channels
is not considered. Differently, we focus on spatial attention
while considering channel correlation, which can highlight
regions and channels that are critical to the saliency map.
Besides, the spatial correlation obtained by the proposed
MWSA is more accurate than that obtained in [50] because
of the introduction of the W-ASP structure, which can better
suppress confusing information while maintaining multi-scale
contextual information than the traditional ASPP module.

2) Comparison with DANet in [51]. The similarity between
our SCMS module and DANet in [51] lies in the simultane-
ous application of channel and spatial attention. While, the
differences between them mainly lie in the following two
folds. First, our SCMS module embeds the W-ASP structure
in MWSA to capture multi-scale contextual information. Sec-
ondly, we use the spatial weights generated by the two cues
to interactively guide feature extraction for better mining the
complementary advantages of the two cues.

D. Saliency inference

In addition to the output features Fout from the two SCMS
modules mentioned above, the shallow features FL1 and FL2
from the U-Res34 unit are also exploited via a Upsampling
Node to assist the prediction of final saliency maps for

accurate boundaries. As shown in Fig. 2, the Upsampling
Node is constructed by stacking upsampling and concatenation
operations, and the process can be mathematically expressed
by

Fmid = Conv
(
Cat (Up (Fout) ,FL2) ;β6

)
, (17)

P = Conv
(
Cat (Up (Fmid) ,FL1) ;β7

)
, (18)

where P refers to the final saliency map. Up means upsam-
pling operation by bilinear interpolation.

E. Loss function

For training the network, the cross-entropy loss function in
[52] and the IoU boundary loss function in [53] are used to
train the saliency prediction. The cross-entropy loss function
is defined as:

LCE = − 1
H×W

H∑
m=1

W∑
n=1

[G(m,n) logP(m,n)

+(1−G(m,n)) log(1−P(m,n))]
,

(19)

where G (m,n) ∈ {0, 1} is the ground truth label for the pixel
(m,n). P (m,n) is the predicted probability of being salient
object for the pixel (m,n). W and H represent the width and
height of the input image, respectively.

IoU is originally proposed for measuring the similarity of
two sets [54] and has been used for saliency detection in [53].
It can be defined as:

Liou = 1−

H∑
m=1

W∑
n=1

P (m,n)G (m,n)

H∑
m=1

W∑
n=1

[P (m,n) +G (m,n)−P (m,n)G (m,n)]

,

(20)

The final joint loss function that is used to train our proposed
model is constructed by combining the cross-entropy loss
function and the IoU Boundary loss function, i.e.,

Ljoint = LCE + Liou. (21)

IV. EXPERIMENTS

A. Datasets

We comprehensively evaluate our model on five bench-
marks: DUTS [55], HKU-IS [24], ECSSD [56], DUT-OMRON
[57] and PASCAL-S [58]. The DUTS is a challenging dataset,
which consists of 10,553 training images and 5,019 testing
images in complicated scenes. ECSSD contains 1000 images
of high content varieties. HKU-IS consists of 4447 images
with multiple disconnected objects. The images in this dataset
have diverse spatial distributions, and the similar appearances
between the foreground regions and the background regions
make it more difficult to distinguish the salient objects. DUT-
OMRON is composed of 5168 images with different sizes
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TABLE I
COMPARISONS OF THE PROPOSED METHOD AND OTHER 13 METHODS ON FIVE BENCHMARK DATASETS IN TERMS OF MAXIMUM AND MEAN F-MEASURE

(LARGER IS BETTER), E-MEASURE (LARGER IS BETTER), S-MEASURE (LARGER IS BETTER) AND MAE (SMALLER IS BETTER). THE BEST THREE
RESULTS ARE HIGHLIGHTED IN RED, GREEN AND BLUE, RESPECTIVELY.“-R” MEANS THE RESULTS ARE ACHIEVED WITH THE RESNET-50/101

BACKBONE ON THIS METHOD.

Fmax Favg Em Sm MAE Fmax Favg Em Sm MAE Fmax Favg Em Sm MAE Fmax Favg Em Sm MAE Fmax Favg Em Sm MAE

Ours 0.802 0.786 0.876 0.850 0.055 0.884 0.864 0.930 0.898 0.035 0.937 0.918 0.957 0.929 0.026 0.945 0.928 0.953 0.932 0.031 0.859 0.838 0.900 0.866 0.062

F3Net [16] 0.778 0.766 0.864 0.838 0.053 0.872 0.852 0.920 0.888 0.035 0.925 0.910 0.952 0.917 0.028 0.935 0.925 0.948 0.924 0.033 0.848 0.835 0.898 0.861 0.061

ITSD [65] 0.792 0.768 0.865 0.840 0.061 0.868 0.840 0.914 0.885 0.041 0.926 0.903 0.947 0.917 0.031 0.939 0.921 0.947 0.925 0.034 0.855 0.831 0.895 0.859 0.066

MINet-R [14] 0.769 0.757 0.860 0.833 0.056 0.865 0.844 0.917 0.884 0.037 0.926 0.909 0.952 0.919 0.029 0.938 0.923 0.950 0.925 0.033 0.846 0.830 0.896 0.856 0.064

GCPANet [66] 0.775 0.756 0.853 0.839 0.056 0.869 0.841 0.912 0.891 0.039 0.927 0.901 0.945 0.920 0.031 0.936 0.916 0.944 0.927 0.035 0.849 0.829 0.895 0.864 0.062

EGNet-R [13] 0.778 0.760 0.857 0.841 0.053 0.866 0.839 0.907 0.887 0.039 0.924 0.902 0.944 0.918 0.031 0.936 0.918 0.943 0.925 0.037 0.841 0.823 0.881 0.852 0.074

SCRN [67] 0.772 0.749 0.848 0.837 0.056 0.864 0.833 0.900 0.885 0.040 0.921 0.894 0.935 0.916 0.034 0.937 0.916 0.939 0.927 0.037 0.856 0.833 0.892 0.869 0.063

CPD-R [15] 0.754 0.742 0.847 0.825 0.056 0.840 0.821 0.898 0.869 0.043 0.911 0.892 0.938 0.905 0.034 0.931 0.913 0.942 0.918 0.037 0.833 0.819 0.882 0.848 0.071

AFNet [68] 0.759 0.742 0.846 0.826 0.057 0.839 0.812 0.893 0.867 0.046 0.910 0.888 0.934 0.905 0.036 0.924 0.905 0.935 0.913 0.042 0.844 0.824 0.883 0.849 0.070

BASNet [28] 0.779 0.767 0.865 0.836 0.056 0.838 0.823 0.895 0.866 0.048 0.919 0.902 0.943 0.909 0.032 0.931 0.917 0.943 0.916 0.037 0.835 0.818 0.879 0.838 0.076

MLMSNet [69] 0.734 0.710 0.831 0.809 0.064 0.828 0.792 0.883 0.862 0.049 0.910 0.878 0.930 0.907 0.039 0.917 0.890 0.927 0.911 0.045 0.835 0.807 0.876 0.844 0.074

TSPOANet [17] 0.750 0.728 0.840 0.818 0.061 0.828 0.800 0.885 0.860 0.049 0.909 0.884 0.932 0.902 0.038 0.919 0.899 0.928 0.907 0.046 0.830 0.809 0.872 0.842 0.077

PAGE [70] 0.758 0.743 0.849 0.824 0.062 0.815 0.793 0.883 0.854 0.052 0.907 0.884 0.935 0.903 0.037 0.924 0.904 0.936 0.912 0.042 0.830 0.811 0.878 0.842 0.076

JointCRF [71] 0.755 0.737 0.838 0.821 0.057 0.793 0.764 0.854 0.836 0.059 0.905 0.879 0.925 0.903 0.039 0.914 0.888 0.921 0.907 0.049 0.827 0.792 0.852 0.841 0.082

Pascal-S
Model

DUT-OMRON DUTS-TE HKU-IS ECSSD

and complex structures. PASCAL-S includes 850 challenging
images.

B. Evaluation criteria

We use five metrics to evaluate the proposed method, i.e.,
Precision-Recall (PR) curve, F-measure [59], E-measure [60],
S-measure [61] and Mean Absolute Error (MAE) [62].

PR curves. Precision and recall values are computed by
comparing the binary saliency map with the ground truth
to plot the PR curve with different thresholds in the range
of [0, 255]. Specifically, Precision = TP/(TP + FP ) and
Recall = TP/(TP+FN), where TP , FP and FN represent
true-positive, false-positive and false-negative, respectively.
The larger the area under the PR curve, the better the per-
formance is.

F-measure. Fβ is formulated as the weighted harmonic
mean of precision and recall, i.e.,

Fβ =

(
1 + β2

)
· Pr ecision× Recall

β2 · Pr ecision+ Recall
, (22)

where β2 is set to 0.3 to emphasize the precision over
recall as suggested in [59]. Here, we report the maximum F-
measure (Fmax) computed from all precision-recall pairs and
use an adaptive threshold that is twice the mean value of the
prediction to calculate the mean F-measure (Favg).

E-measure. Em combines local pixel values with the
image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

S-measure. Sm computes the object-aware and region-
aware structure similarities between the prediction and the
ground truth, which can be written as:

Sm = α · So + (1− α) · Sr, (23)

where α is set to 0.5. So and Sr represent the prediction and
the ground truth, respectively.

MAE. MAE is defined as the average pixel-wise absolute
difference between the normalized prediction and the ground
truth:

MAE =
1

H ×W

H∑
m=1

W∑
n=1

|P (m,n)−G (m,n)|, (24)

where P and G represent the saliency maps and the ground
truth, respectively.

C. Implementation details

We implement our model on Pytorch 1.0.0. An NVIDIA
GTX 1080 Ti GPU (with 11GB memory) is used for both
training and testing. The DUTS training dataset containing
10553 images is used to train the network. Before training,
the dataset is augmented by horizontal flipping to avoid the
over-fitting problem. During the training stage, each image is
first resized to 256×256 and randomly cropped to 224×224.
The U-Res34 is initialized from the ResNet-34 model [63].
The DenseHRNet sub-network parameters are initialized by
the weights pretrained on the ImageNet. Other convolutional
layers are initialized by Xavier [64]. The stochastic gradient
descent (SGD) model is adopted to train our model, where the
initial learning rate, momentum and weight decay are set to
1e-3, 0.9 and 0.0005, respectively. We adopt the exponential
decay strategy with base 0.95 to gradually decrease the learn-
ing rate. Our network is trained with a mini-batch of 4. The
whole training process takes about 65 hours. The code and
results will be released.

D. Comparison with state-of-the-arts

We compare the proposed algorithm with 13 state-of-the-
art salient object detection methods, including F3Net [16],
ITSD [65], MINet [14], GCPANet [66], EGNet [13], SCRN
[67], CPD [15], AFNet [68], BASNet [28], MLMSNet [69],
TSPOANet [17], PAGE [70] and JointCRF [71]. For fair
comparisons, all the saliency maps of the above methods are
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Fig. 6. PR curves (1st row) and F-measure curves (2nd row) on the five saliency datasets.

generated by running their source codes or pre-computed by
their authors.

Quantitative Comparison. To fully compare the proposed
method with state-of-the-art approaches, we report the detailed
experimental results in terms of the five metrics, which are
listed in Table I. As can be seen clearly, the proposed algorithm
consistently performs better than the competitors across all of
the five metrics on most datasets. In particular, in terms of Favg
and Sm, the performance is improved by more than 1% on
the three most challenging data datasets (i.e., DUT-OMRON,
DUTS and HKU-IS). This indicates our model achieves good
structural similarities with the ground truth.

In addition, we display PR curves and F-measure curves in
Fig. 6. In terms of both PR curves and F-measure curves, our
approach (red solid line in Fig. 6) keeps the best results on
DUT-OMRON, DUTS-TE, HKU-IS and ECSSD, and is also
competitive with others on PASCAL-S.

Furthermore, we compare the floating point operations (i.e.,
FLOPs), the number of parameters (i.e., Params) and the
inference time (i.e., Time) with other popular methods in Table
II. Input sizes of different methods are set according to their
released codes. The comparisons in Table II show that our
model is slightly more complicated than other methods, which
may be owe to the complex capsule routing algorithm in DGC
sub-network.

Qualitative Evaluation. To further illustrate the superior
performance of our method, Fig. 7 shows the visual compar-
isons of our model and other methods by displaying some
images covering different scenarios, including low contrast,
similar backgrounds, small objects and multiple objects. It
can be easily seen that our proposed method can highlight the
whole salient objects with satisfactory uniformity. In contrast,
the methods using contrast cues (i.e., (e)-(l) in Fig. 7) just
detect parts of the salient objects and fail to capture the whole
objects in low contrast scenes or similar backgrounds (as
shown in the first six rows of Fig. 7). Furthermore, the objects
and the backgrounds cannot be well distinguished by these
methods, resulting in poor saliency maps with background
noise interference in complex scenes (as illustrated in the 6th,

TABLE II
THE NUMBER OF PARAMETERS, FLOPS AND INFERENCE TIME

COMPARISONS OF OUR METHOD WITH SOME STATE-OF-THE-ART
NETWORKS.

Method Input size 
FLOPs

(G) 

Params

(M) 

Time 

(s) 

F3Net [16] 352 × 352 16.43 25.54 0.022 

ITSD [65] 288 × 288 15.94 26.07 0.022 

GPACNet [66] 320 × 320 54.31 67.06 0.020 

BASNet [28] 256 × 256 127.40 87.06 0.032 

MINet-R [14] 320 × 320 87.03 162.38 0.036 

EGNet-R [13] ~380 × 320 287.67 111.66 0.091 

Ours 256 × 256 137.64 153.26 0.167 

 

7th and 8th rows of Fig. 7). Besides, for those scenes with
multiple objects, the compared methods miss some salient
object parts, while our approach can locate all the salient
objects and predict complete object shapes. This results from
the fact that these methods ignore the correlation among
different object parts. Fortunately, our method can effectively
suppress background noise while detecting the whole salient
objects in various scenes. This owes to the fact that the part-
whole hierarchies are added in our proposed model to infer
the saliency maps.

In addition, although TSPOANet can also obtain the whole
salient objects for some scenes, the problem of blurred edges
is not well solved (as illustrated in the 1st, 2nd, 10th and 11th

rows of Fig. 7(d)). Differently, more accurate prediction maps
can be obtained by adding contrast cues in our method. As
well, in the scenes with similar backgrounds or low contrast
(e.g., the 3rd, 4th and 5th rows in Fig. 7), TSPOANet cannot
predict the complete salient objects. But our method shows
perfect performance. This may owe to the proposed dynamic
grouping strategy for capsules routing in our proposed model,
which can better reduce the noise distribution of capsules than
the fixed grouping strategy in TSPOANet. As a result, the
proposed method can consistently produce more accurate and
complete saliency maps with sharp boundaries and coherent
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Fig. 7. Visual comparisons of different methods. (a) Image; (b) GT; (c) Ours; (d) TSPOANet [17]; (e) MINet [14]; (f) F3Net [16]; (g) EGNet [13]; (h)
GCPANet [66]; (i) SCRN [67]; (j) AFNet [68]; (k) PAGE [70]; (l) JointCRF [71].The right side indicates the name of the dataset for each image.

details in these challenging scenes than TSPOANet, as shown
in Fig. 7.

E. Ablation study

In this section, we carry out a series of experiments to
validate the effectiveness of each key component used in
our network. The ablation study contains two parts: different
components and different capsule grouping strategies. The
ablation experiments are conducted on the challenging DUT-
OMRON dataset and DUTS-TE dataset.

Different components. To prove the effectiveness of each
component in our model, we report the quantitative com-
parison results in Table III. Here, “B” denotes the common
basic model (ResNet-50). “H” and “H+” represent the original
HRNet [19] and the improved HRNet (i.e., DenseHRNet),
respectively. “PO” and “PO+” mean fixed grouping and
dynamic grouping strategies adopted in the capsule network,
respectively. “H+ + PO+” means that the DGC output FPO
and the DenseHRNet output FC are integrated by the addition

operation (Here, the BS module is not used in this structure).
“BS” denotes that the background suppression module is
inserted into DenseHRNet. “S-C” denotes the SCMS module
in Fig. 5.

As shown in Table III, by comparing the 1st and 2nd rows,
we can see that F -measure increases by more than 1% if
“H”, instead of “B”, is used as the baseline. This proves
that maintaining high-resolution representations through the
whole process can improve the detection performance. By
embedding residual connections in HRNet [19], DenseHRNet
(i.e., “H+”) has further improved the performance while hardly
increasing FLOPs and the number of parameters, which can be
illustrated by observing the “H” and “H+” rows in Table III.
Similarly, the comparison of “PO” and “PO+” indicates that
the proposed dynamic grouping capsules strategy can improve
performance without increasing FLOPs and the number of
parameters. Besides, it can be observed from the comparison
between “H + PO” and “H” or “PO” in Table III that the
idea of integrating the above two cues is feasible, which
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(a) (b) (c) (d) (e) (g) (h) (i)(f)

Fig. 8. Visual comparisons with different components. (a) Image; (b) GT; (c) “H+” + “PO+” + “BS” + “S-C”; (d) “H+” + “PO+” + “BS”; (e) “H+” +
“PO+”; (f) “PO+”; (g) “H+”; (h) “H”; (i) “B”.

TABLE III
ABLATION STUDIES OF DIFFERENT COMPONENTS. THE BEST

PERFORMANCE IS MARKED BY BOLD. “B” REPRESENTS THE COMMON
BACKBONE (RESNET-50). “H” AND “H+” REPRESENT THE HRNET [19]

AND THE DENSEHRNET, RESPECTIVELY. “PO” AND “PO+” MEAN FIXED
GROUPING AND DYNAMIC GROUPING STRATEGIES ADOPTED IN THE

CAPSULE NETWORK, RESPECTIVELY. “BS” AND “S-C” DENOTE THE BS
AND SCMS MODULES, RESPECTIVELY.

Configurations 
DUT-OMRON DUTS-TE FLOPs 

(G) 
Params 

(M) Fmax Favg MAE Fmax Favg MAE 

B 0.754 0.740 0.057 0.833 0.810 0.040 7.86 33.61 

H 0.768 0.753 0.061 0.848 0.828 0.042 26.98 66.32 

PO 0.758 0.736 0.065 0.840 0.814 0.046 111.92 86.41 

H + PO 0.772 0.761 0.062 0.852 0.836 0.041 137.04 152.68 

H+ 0.786 0.762 0.059 0.866 0.838 0.039 27.10 66.77 

PO+ 0.758 0.742 0.064 0.848 0.826 0.044 111.92 86.41 

H+ + PO+ 0.792 0.772 0.057 0.870 0.848 0.037 137.14 153.13 

H+ + PO+ + BS 0.799 0.778 0.056 0.878 0.854 0.036 137.33 153.19 

H+ + PO+ + BS + S-C 0.802 0.786 0.055 0.884 0.864 0.035 137.64 153.26 

 

can significantly improve the saliency detection performance.
Meanwhile, the proposed “H+ + PO+” achieves consistently
higher performance than “H + PO” does by integrating “H+”
and “PO+”. On top of “H+ + PO+”, we progressively extend
it with different units, including background suppression (i.e.,
“BS”) and SCMS (i.e., “S-C”) modules. The results in the
last two rows of Table III illustrate the effectiveness of each
unit. As can be seen, our PWHCNet architecture achieves the
best performance among these configurations. In addition, it
can be seen from the columns FLOPs and Params in Table
III that a large number of parameters are mainly caused by
the DGC sub-network, which covers complex capsule routing.
Reducing the complexity of the capsule network to implement
an efficient architecture is what we need to optimize further.

Visual comparisons can be found in Fig. 8. As shown in
Fig. 8(g-i), the proposed DenseHRNet sub-network can better
capture the salient object regions than the traditional basic
model and the original HRNet [19] do. Moreover, the whole
saliency maps can be well obtained by further combining the

part-whole hierarchies with DenseHRNet, as can be shown in
Fig. 8(e) and (f). By comparing (d) and (e) in Fig. 8, it can
be easily observed that the background noise is suppressed by
virtue of the BS module. Besides, it can be also noticed from
Fig. 8(c) that the two salience cues can be well integrated by
the proposed SCMS module.

Capsule grouping strategies. To prove the effectiveness of
the proposed dynamic grouping algorithm for capsules routing,
we report the quantitative comparison results in Table IV.
Here, “O” and “T” represent the original CapsNet [18] (i.e., no
grouping for capsules routing) and the improved two-stream
CapsNet (i.e., directly dividing capsules into two groups with-
out distinction for capsules routing) in [17], respectively. “Dγ”
(γ = 2, 4, 8) denotes that capsules are dynamically divided
into γ groups according to the proposed dynamic grouping
method.

TABLE IV
ABLATION STUDIES OF DIFFERENT CAPSULE GROUPING STRATEGIES. THE
BEST PERFORMANCE IS MARKED BY BOLD. “O” DENOTES NO GROUPING

STRATEGY. “T” AND “Dγ ” (γ = 2, 4, 8) REPRESENT FIXED GROUPING
STRATEGY AND DYNAMIC GROUPING STRATEGIES WITH DIFFERENT

GROUP NUMBERS, RESPECTIVELY.

Configurations 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

H+ + O 0.769 0.753 0.060 0.847 0.830 0.040 

H+ + T 0.782 0.763 0.058 0.861 0.838 0.039 

H+ + D2
 0.791 0.767 0.058 0.868 0.841 0.039 

H+ + D4 0.792 0.772 0.057 0.870 0.848 0.037 

H+ + D8 0.790 0.769 0.057 0.867 0.845 0.038 

 

In Table IV, the 1st and 2nd rows show the performance
using the fixed grouping strategy (i.e., H+ + T) and using the
dynamic grouping strategy (i.e., “H++D2”). Numerically, the
dynamic grouping strategy is effective and further alleviates
the noise distribution phenomenon. In addition, we find that
the number of groups also has an impact on the performance
in the experiment. As shown in the last three rows of Table IV,
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dividing capsules into 4 groups (i.e., “H+ +D4”) achieves the
best performance. The reason for the performance degradation
by dynamically dividing capsules into 8 groups (i.e., “H+ +
D8”) may be that a little fewer capsules in each group are not
enough to characterize the part-whole hierarchies.

(a) (b) (c) (d) (e)

Fig. 9. Visual comparisons with different capsule grouping strategies. (a)
Image; (b) GT; (c) H+ +D4; (d) H+ +T; (e) H+ +O.

The visualization in Fig. 9 also illustrates the above quan-
titative results. Allowing each low-level capsule (part) to vote
for all the high-level ones (object) will sometimes generate
noisy assignment, thus giving rise to performance declines.
By comparing (d) and (e) in Fig. 9, the grouping strategy
in [17] does predict a better saliency map compared to the
original capsule in [18]. Moreover, as seen from Fig. 9(c) and
Fig. 9(d), it is obvious that the dynamic grouping strategy can
produce better saliency maps by further alleviating the noise
distribution phenomenon.

Feature extraction architectures for DGC sub-network.
As discussed in TSPOANet [17], the feature extraction stage
before capsules routing is critical to explore the part-whole
relationships. To demonstrate the validity of U-Res34, we
replace U-Res34 in our proposed DGC sub-network with
FLNet in [17] or the two Conv+ReLU layers in the original
CapsNet [18]. It can be easily observed from Table V that
U-Res34 boosts the saliency detection performance of our
proposed model significantly. As shown in Fig. 10(c-e), it is
obvious that U-Res34 makes the framework possess the ability
of identifying the salient object wholly, which is attributed to
the rich features learned by U-Res34.

TABLE V
ABLATION STUDIES OF DIFFERENT FEATURE EXTRACTION

ARCHITECTURES FOR DGC SUB-NETWORK. THE BEST PERFORMANCE IS
MARKED BY BOLD. HERE, THE CAPSULES ARE DYNAMICALLY DIVIDED

INTO FOUR GROUPS.

Feature Extraction 
Architectures 

DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

Two Conv+ReLU layers 0.506 0.452 0.195 0.552 0.482 0.182 

FLNet 0.712 0.695 0.071 0.797 0.769 0.055 

U-Res34 0.758 0.742 0.064 0.848 0.826 0.044 

 

Different integration strategies. To demonstrate the advan-
tages of the proposed integration strategy (i.e., SCMS module)

(a) (b) (c) (d) (e)

Fig. 10. Visual comparisons with different feature extraction architectures for
DGC sub-network. (a) Image; (b) GT; (c) U-Res34; (d) FLNet in [17]; (e)
Two Conv+ReLU layers.

over Non-local [50] and DA [51] modules, we report the
quantitative comparison results in Table VI. As shown in Table
VI, it can be seen that the proposed SCMS module can obtain
the competitive performance compared with non-local [50] and
DA module [51]. Meanwhile, from the last three rows of Table
VI, it can be seen that the performance obtained by only using
SCC or MWSA is inferior to that obtained by using SCMS.
This demonstrates that simultaneously considering the intra-
cues channel interaction and the inter-cues spatial interaction
indeed helps to improve performance.

TABLE VI
ABLATION STUDIES OF DIFFERENT INTEGRATION STRATEGIES. THE BEST

PERFORMANCE IS MARKED BY BOLD.

Integration Strategies 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

Baseline (H+ + PO+) 0.792 0.772 0.057 0.870 0.848 0.037 

+ Non-local [50] 0.799 0.772 0.060 0.880 0.850 0.037 

+ DA module [51] 0.800 0.781 0.056 0.881 0.858 0.035 

+ SCC 0.789 0.772 0.055 0.876 0.853 0.036 

+ MWSA 0.796 0.782 0.056 0.880 0.859 0.035 

+ SCMS 0.802 0.786 0.055 0.884 0.864 0.035 

 

F. Failure cases

Image GT Ours

Fig. 11. Some failure cases for our proposed method.
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Fig. 11 shows some failure cases for our proposed method.
The scenes in those images contain some unique scenes. It
can be seen that, under the effect of part-whole hierarchies,
some objects with certain relations are detected together,
e.g., computer and keyboard, table and sofa, television and
television cabinet, etc., instead of one individual object as
masked by the ground truth. We will study this issue as the
future work, which may be solved using scene parsing [72].

V. CONCLUSION

In this paper, we have proposed a PWHCNet for salient
object detection by interacting part-whole hierarchies and
contrast cues, which consists of two branches, including a
part-whole relationships exploration branch and a contrast
cues extraction branch. Specifically, the former exploits the
dynamic grouping strategy to obtain more accurate part-whole
relationships while the latter captures multi-scale contrast
information through the DenseHRNet. In addition, the above
two cues are interacted and integrated by the proposed BS and
SCMS modules to retain useful features for the final saliency
map. Extensive experiments validate that our proposed al-
gorithm can well detect the whole salient objects together
with their accurate boundaries even in the cluttered scenes.
Moreover, our model outperforms some current state-of-the-
art methods on five datasets.

It should be also noted that high saliency detection results
obtained by our proposed model are at the cost of complex
architectures, which limits its applications in some other vision
tasks. In the future, we will further reduce the complexity of
the capsule network to achieve a smaller architecture for SOD
tasks while maintaining the saliency detection accuracy.
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Authors’ response to the reviewers’ comments on “Engaging Part-whole Hierarchies and 

Contrast Cues for Salient Object Detection” (TCSVT-06173-2021) 

We thank the reviewers, the Associate Editor and Editor-in-Chief for their constructive 

suggestions, which are of great importance for improving the quality of our work as well as for their 

patience with this revision all along. In the revised version, we have conducted more in-depth analysis 

and several experiments to address the reviews’ comments. We believe that all comments raised in the 

review report have been carefully accommodated to the best of our knowledge. The main changes are 

highlighted in blue in the manuscript and the point-by-point responses to all comments/questions raised 

by the reviews are as follows. 

 

Response to the comments of Editor-in-Chief: 

Q1. What are the 3-5 papers published in the IEEE Transactions on Circuits and Systems for Video 

Technology, which are most closely related to your manuscript? 

Response: Thank you very much for your suggestions. We believe that the following three papers are 

most closely related to our manuscript: 

[r1] Lei Zhu et al. “Aggregating attentional dilated features for salient object detection,” IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 30, no. 10, pp. 3358-3371, 2019. 

[r2] Liansheng Wang et al. “Deep sub-region network for salient object detection,” IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 31, no. 2, pp. 728-741, 2021. 

[r3] Xiaowei Hu et al. “SAC-Net: Spatial attenuation context for salient object detection,” IEEE 

Transactions on Circuits and Systems for Video Technology, vol. 31, no. 3, pp. 1079-1090, 2021. 

In the revised manuscript, these references and some descriptions about these references have 
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been added. See Section II.B and References [35, 29, 31] in the revision. 

Q2. What is distinctive / new about your current manuscript related to these previously published 

papers? 

Response: The most distinctive point between our proposed method and these previously published 

papers lies in that we integrate two saliency cues, i.e., part-whole hierarchies and contrast cues, instead 

of only contrast cues. More specific differences between each of these previous methods can be 

illustrated separately in the following contents:  

(1) [r1] proposes a deep learning model to aggregate the attentional dilated features for salient 

object detection by exploring the complementary information between the global context and the local 

context. Unlike [r1] only based on contrast saliency cues, we propose a PWHCNet for salient object 

detection by interacting two saliency cues, i.e., part-whole hierarchies and contrast cues. This 

mechanism allows to obtain the whole saliency map with complete local details. What’s more, [r1] 

employs some simple concatenation operations to achieve the fusion of multi-level features. While in 

our model, a Self-Channel and Mutual-Spatial attention module is designed to achieve the fusion of 

two types of saliency features (i.e., part whole hierarchies and contrast cues), and further automatically 

select those important features for the prediction of salient regions. 

(2) Similar to [r2], we have also noticed that the importance of multi-scale salient context 

information for predicting the saliency map. For that, [r2] equips with a sequence of subregion dilated 

blocks by aggregating multi-scale salient context information of multiple sub-regions, such that the 

global context information from the whole image and the local contexts from sub-regions are fused 

together. Different from [r2], we present a DenseHRNet framework to capture multiscale context 

information with different receptive fields from the input image. The filtered results of different 
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sub-layer convolutions are integrated through dense residual connections. In addition, our proposed 

model also embeds the part-whole hierarchies to obtain the whole saliency map. 

(3) [r3] presents a saliency detection network based on the spatial attenuation context by 

integrating the aggregated features with some weights that are learned from an attention mechanism. In 

contrast to [r3], we focus on employing a Self-Channel and Mutual-Spatial attention module to explore 

the long-range dependencies along the self-channel dimension and capture the long-range spatial 

dependencies across the two cues. 

 

Response to the comments of Associate Editor: 

Q1. Depending on the review comments, the details are unclear and some comparisons need to be 

added as well. 

Response: Thank you very much for your suggestions. Following your and reviewers’ suggestions, we 

have revised the manuscript carefully, which makes the statements and diagrams more accurate and the 

experiments richer. The specific modifications are as follows. 

(1) To make the details of our algorithm clearer, we have revised some illustrations and 

statements of the manuscript as follows. 

a). To better illustrate the diagram of our proposed the DGC sub-network, as shown in Fig. R1 

(See the response to the comments of Reviewer 1), we have modified Fig. 2 and its statements in the 

revised manuscript. This better illustrates that the dynamic grouping strategy is applied before capsules 

routing to facilitate the exploration of more accurate part-whole relationships. In addition, as shown in 

Fig. R3 (See the response to the comments of Reviewer 1), we have modified Fig. 5 and some 

statements in the revised manuscript. This further clearly describes the inputs and mechanism of the 
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SCMS module. Please see Section III in the revised version. 

b). For Fig. 6 and Fig. 7 in Section IV (i.e., Experimental part) of the original manuscript, we have 

improved Fig. 6 and Fig.7 in the revised manuscript according to the reviewer 2 suggestions. Please see 

Section IV.D in the revised version. 

(2) In the revised manuscript, we have carried out more ablation studies to demonstrate the 

advantages of the method that integrates part-whole hierarchies and contrast cues for salient object 

detection. 

a). Some new ablation studies for different components were carried out. Table R3 (See the 

response to the comments of Reviewer 2) below provides the experimental results. As shown in Table 

R3, we can see that the effectiveness of the proposed different components in our network. Meanwhile, 

it can be seen from Table R3 that a large number of parameters are mainly caused by the capsule 

routing of the DGC sub-network. We will further reduce the complexity of the capsule network to 

achieve an efficient architecture for SOD tasks in the future. Besides, to better demonstrate the 

performance of our model, we have carried out some new ablation experiments on DUTS-TE dataset 

with different scenes and various sizes. Table R6, Table R7, Table R8 and Table R9 (See the response 

to the comments of Reviewer 2) below provides the new experimental results on DUTS-TE dataset. 

This indicates that the experimental results of different components on different datasets in the 

proposed model are generally consistent, which further proves the effectiveness of our method. 

b). To prove the validity of the proposed U-Res34, we compared the DGC sub-network that learns 

features through U-Res34 with its modified versions, which learns features of input images through 

FLNet in [17] or two Conv+ReLU layers used by the original CapsNet [18]. Table R10 and Fig. 

R5(See the response to the comments of Reviewer 2) provide the qualitative and quantitative results of 
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the experiment, respectively. It is obvious that U-Res34 makes the framework possess the ability of 

identifying the salient object wholly, which is attributed to the rich features learned by U-Res34. 

c). In addition, we have also added a new ablation study on the integration strategy of the two cues 

in the revision. A new experiment was conducted to compare the proposed SCMS with SCC, MWSA, 

non-local [50] and DA module [51]. As shown in Table R9 (See the response to the comments of 

Reviewer 2, i.e., Table VI in the revised manuscript), the proposed SCMS module can obtain the best 

performance compared with non-local [50] or DA module [51]. This demonstrates the superiority of the 

SCMS module. 

(3) Following reviewers’ suggestions, as shown in Table R11 (See the response to the comments 

of Reviewer 2), we compare the floating point operations (i.e., FLOPs), the number of parameters (i.e., 

Params) and the inference time (i.e., Time) with other popular methods. We have added Table R11 (i.e., 

Table II in the revised manuscript) and its statements in Section IV.D in the revised manuscript. Please 

see Section IV.D in the revised version. 
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Response to the comments of Reviewer #1: 

This paper proposed a PWHCNet for salient object detection by interacting part-whole hierarchies 

and contrast cues. At the cost of complex architectures, the performance is satisfactory and experiment 

is sufficient. However, the design is not clear enough. Some details should be further clarified. 

Response: Thank you very much for your positive comments and constructive suggestions. Our 

responses to your comments are as follows: 

Q1. The top branch structure (DGC) in Fig. 2 is not clearly described. Does it describe the three steps 

of the dynamic grouping strategy, i.e., calculating capsule correlation matrix, determining initial 

capsules in each group, and putting similar capsules into the same group? If it is, is it consistent with 

dividing into 2 groups and then 4 groups as described in the paper; if not, what does the top branch 

structure (DGC) of Fig. 2 describe? 

Response: Thank you very much for your suggestions. We are sorry that vague Fig. 2 in the original 

manuscript may mislead your understanding on our proposed DGC sub-network. Actually, Fig. 2 

describes the whole architecture of the proposed DGC subnetwork, including dynamic grouping and 

capsule routing, instead of only the dynamic grouping strategy. To avoid misunderstanding, we have 

modified Fig. 2 to Fig. R1 (i.e., Fig. 2 in the revised manuscript) below. As shown in Fig. R1, the 

dynamic grouping strategy (i.e., “D G” in Fig. R1) is implemented before capsules routing (i.e., “C R” 

in Fig. R1) to facilitate high-correlated capsules grouping for capturing more accurate part-whole 

relationships. Specifically, capsules with similar properties are grouped into the same group for further 

capsule routing in the group. For example, by virtue of the dynamic grouping strategy, capsule 9 is 

finally allocated into a group with capsules 2, 3, and 6 (rather than 1, 5, and 14) for routing. We have 

revised the relevant statements in the revised manuscript. Please see Section III and Fig. 2 in the 
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Fig. R1. The overall architecture of our proposed PWHCNet for salient object detection, which consists of a DGC 

sub-network and a DenseHRNet sub-network to capture the part-whole hierarchies and contrast cues from input 

images, respectively. The part-whole relational cues are additionally used to guide the feature extraction of 

DenseHRNet at the shallow layer via a BS module. On top of that, the above two saliency cues are interacted by a 

SCMS attention module to achieve more primitive saliency semantics Fout, which are further used to predict the 

final saliency map. More details are provided in the text body. 

Q2. In the contributions, the author mentions “under the guidance of the part-whole relational cues, the 

DenseHRNet sub-network pays more attention on the object regions”, so whether it can be better 

explained by the performance of DenseHRNet sub-network without the DGC guidance in the ablation 

study. 

Response: Thanks for your comments. The ablation study results in Table R1 and Fig. R2 (i.e., the 7th 

and 8th rows of Table III and Fig. 8 (d) and (e) in the revised manuscript) demonstrate the performance 

with the DGC guidance. “H+ + PO+” and “H+ + PO+ + BS” represent the results without and with the 

DGC guidance, respectively. From Table R1, we can see that the saliency detection performance has 

been improved by using the DGC guidance. Besides, from the visual comparisons in Fig. R2 (c) and 
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(d), it can also be observed that the background noise is well suppressed by virtue of the BS module. In 

other words, under the guidance of the part-whole relational cues, the DenseHRNet sub-network may 

pay more attention to the object regions. 

Table R1. Ablation studies on the DGC. The best performance is marked by bold.  

Configurations Fmax Favg MAE 

H+ + PO+ 0.792 0.772 0.057 

H+ + PO+ + BS 0.799 0.778 0.056 

(a) (b) (c) (d)  

Fig. R2. Visual comparisons for the DGC. (a) Image; (b) GT; (c) “H+ + PO+ + BS”, i.e., the results with the 

DGC guidance; (d) “H+ + PO+”, i.e., the results without the DGC guidance.  

Q3. What is the input of Fig. 5, which is not described clearly. In addition, are the colors in Fig. 2 

related to the colors in Fig. 5? 

Response: Thank you for your comments and constructive suggestions. 

(1) We are sorry for that vague Fig. 5 in the original manuscript. There are two inputs in Fig. 5, 

i.e., selfF  and mutualF . Specifically, to achieve PO
SCMSF , selfF  and mutualF  are the output features POF  

of the DGC branch and the output features CF  of the DenseHRNet branch, respectively. Similarly, to 

achieve C
SCMSF , selfF  and mutualF  are the output features CF  of the DenseHRNet branch and the 

output features POF  of the DGC branch, respectively. In order to better illustrate the inputs of Fig. 5, 

we have added these statements in the revised manuscript. Please see Section III.C and Fig. 5 in the 
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revised version. 

(2) The colors in Fig. 2 are not related to the colors in Fig. 5. To avoid confusion, as shown in 

Fig. R3 (i.e., Fig. 5 in the revised manuscript), we have modified the colors of Fig. 5. Please see Fig. 5 

in the revised version. 
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Fig. R3. The architecture of SCMS module. Shadow regions marked by brown and blue colors represent the SCC 

unit and the MWSA unit, respectively. ‘W-ASP’ refers to the Weighted Atrous Spatial Pyramid (W-ASP) 

sub-module. 

Q4. It can be seen from Fig. 2 that the model should be very large, how much is it, and how about the 

running time of the proposed method? 

Response: Thank you very much for your suggestions. 

(1) The number of parameters (Params) and FLOPs of our proposed model are 153.26M and 

137.64G, respectively. For a deeper understanding, Table R2 lists the parameter numbers and FLOPs of 

different component. It can be seen from Table R2 (i.e., Table III in the revised manuscript) that the 

large number of parameters of our proposed model is mainly caused by the DGC sub-network (i.e., 

PO+), which covers complex capsule routing. 
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Table R2. The FLOPs and the number of parameters for different components. “H+” and “PO+” represent the 

DenseHRNet and DGC sub-network, respectively. “BS” and “S-C” denote the BS and SCMS modules, 

respectively. 

Configurations FLOPs(G) Params(M) 

H+ 27.10 66.77 

PO+ 111.92 86.41 

H+ + PO+ 137.14 153.13 

H+ + PO+ + BS 137.33 153.19 

H+ + PO+ + BS + S-C 137.64 153.26 

(2) In addition, the running time of the entire model for each image is 0.167 s. 

Q5. Some related works of SOD should be discussed in the paper for completeness, such as Review of 

visual saliency detection with comprehensive information, TCSVT 2019; ASIF-Net: Attention steered 

interweave fusion network for RGBD salient object detection, TCyb 2021; DPANet: Depth 

potentiality-aware gated attention network for RGB-D salient object detection, TIP 2021; Going from 

RGB to RGBD saliency: A depth-guided transformation model, TCyb 2020. 

Response: Thank you for your suggestions. We have discussed the above related works in the revised 

manuscript. Please see Section II.B and references [37, 44, 46, 27] in the revised manuscript. 
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Response to the comments of Reviewer #2: 

This paper proposes a PWHCNet for salient object detection by interacting part-whole hierarchies and 

contrast cues. The part-whole relationships exploration branch innovates on the basis of TSPOANet, 

and the contrast cues extraction branch innovates on the basis of HRNet. The innovation of this paper is 

that two salient cues, part-whole and contrast, are simultaneously used for salient object detection. The 

following points are concerned: 

Response: Thank you very much for your positive comments and constructive suggestions. Our 

responses to your comments are as follows: 

Q1. The idea to integrate part-whole and contrast cues for salient object detection is good, but the 

weakness of the paper is that too many tricks or modules are added into the whole network. Thus, we 

doubt that the good performance achieved is mainly by the idea or by integrating various tricks. 

Response: Thank you very much for your comments. As shown in Table R3 (i.e., Table III in the 

revised manuscript), the significant performance increase for our proposed network mainly results from 

the integration of part-whole hierarchies and contrast cues, though we have to admit that some 

proposed modules also slightly improve the performance of proposed model. 

In the revised manuscript, Table R3 illustrates some new ablation studies on different components 

to demonstrate the effectiveness of the integration of part-whole hierarchies and contrast cues for 

salient object detection. “H” , “PO” and “H + PO” represent three structures, i.e., contrast cues 

extracted by the HRNet [19], part-whole hierarchies explored by fixed grouping capsule network, and 

the combination of the above two cues by the addition operation. By comparing “H + PO” with “H” or 

“PO” in Table R3, we can see that the idea to integrating the above two cues is feasible, which can 

significantly improve the saliency detection performance. Meanwhile, the prediction results of “H” and 
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“PO” are, respectively, improved by the proposed “H+” (i.e., DenseHRNet sub-network) and “PO+” 

(i.e., DGC sub-network). Additionally, it can be seen from Table R3 that “H+ + PO+” further improves 

the performance of our proposed model by the combination of the two cues. We have added these 

statements in the revised manuscript. Please see Section IV.E and Table III in the revised version. 

Table R3. Ablation studies of different components. The best performance is marked by bold. “B” represents the 

common backbone (ResNet-50). “H” and “H+” represent the HRNet [19] and the DenseHRNet, respectively. “PO” 

and “PO+” mean fixed grouping and dynamic grouping strategies adopted in the capsule network, respectively. 

“BS” and “S-C” denote the BS and SCMS modules, respectively.  

Configurations 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

B 0.754 0.740 0.057 0.833 0.810 0.040 

H 0.768 0.753 0.061 0.848 0.828 0.042 

PO 0.758 0.736 0.065 0.840 0.814 0.046 

H + PO 0.772 0.761 0.062 0.852 0.836 0.041 

H+ 0.786 0.762 0.059 0.866 0.838 0.039 

PO+ 0.758 0.742 0.064 0.848 0.826 0.044 

H+ + PO+ 0.792 0.772 0.057 0.870 0.848 0.037 

H+ + PO+ + BS 0.799 0.778 0.056 0.878 0.854 0.036 

H+ + PO+ + BS + S-C 0.802 0.786 0.055 0.884 0.864 0.035 

Q2. Similar to the above question, the ablation has been done on the effectiveness of different 

components in this method, however, the comparison to this level is not enough. That’s because one 

single component in this paper actually contains more than one units, such as SCMS module for two 

different saliency cues integration including SCC and MWSA. More experimental comparisons on the 

effectiveness about these two units should also be provided. Similar problems also exist in 

DenseHRNet. The influence by the initial feature extraction to the whole module is also expected. 

Response: Thank you for your comments and constructive suggestions. 

(1) Following what you have suggested, as shown in Table R4, we compare the proposed SCMS 

with SCC, MWSA for better understanding the proposed model. It can be seen that the performance 
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obtained by using SCC or MWSA individually is inferior to that obtained by using SCMS, which 

demonstrates that simultaneously considering the intra-cues channel interaction and the inter-cues 

spatial interaction indeed helps to improve performance. We have added these statements in the revised 

manuscript. Please see Section IV.E and Table VI in the revised manuscript. 

Table R4. Ablation studies of different integration strategies. The best performance is marked by bold. 

Integration Strategies 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

Baseline(H++PO+) 0.792 0.772 0.057 0.870 0.848 0.037 

+ SCC 0.789 0.772 0.055 0.876 0.853 0.036 

+ MWSA 0.796 0.782 0.056 0.880 0.859 0.035 

+ SCMS 0.802 0.786 0.055 0.884 0.864 0.035 

(2) In order to demonstrate the influence of the initial feature extraction on DenseHRNet, we 

have carried out a new experiment by replacing the initial feature extraction block in the original 

manuscript with a simpler feature extraction block, i.e., two convolutional layers. Table R5 shows the 

experimental results. We can see that the influence of the initial feature extraction on the performance 

of the DenseHRNet sub-network is negligible. This structure that is adopted in our proposed model is 

consistent with that in HRNet [19]. Considering the space limitation, we only showed this result in the 

response. 

Table R5. The experimental results of two feature extraction manners. 

Downsampling Node Favg MAE 

Two convolutional layers 0.760 0.061 

Initial feature extraction 0.762 0.059 

Q3. From Table 1, we can see that the proposed method achieved the second best results from Sm and 

MAE two evaluation metrics on PASCAL-S dataset. It should be explained why this method does not 

work so well on this dataset. 

Response: Thank you for your comments. Compared with other datasets, PASCAL-S dataset contains 

some unique scenes. It can be seen from Fig. R4 (i.e., Fig. 11 in the revised manuscript) that, under the 
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effect of part-whole hierarchies, some objects with certain relations are detected together, e.g., 

computer and keyboard, table and sofa, television and television cabinet, etc., instead of one individual 

object as masked by the ground truth, which may cause poor mS  and MAE . We will study this issue 

as the future work, which may be solved using scene parsing [72]. We have added these statements and 

Fig. R4 in the revised manuscript. Please see Section IV.F and Fig. 11 in the revised manuscript. 

Image GT Ours  

Fig. R4. Some failure cases for our proposed method.  

Q4. Fig.7 provides the visually detected SOD results. Better to present the results in groups of the 

employed datasets. By this way, we can know clearly which dataset each image is from. 

Response: Thank you very much for your suggestions. Presenting the results in groups is a very 

constructive suggestion. However, considering that the starting point of this paper is to solve the 

saliency detection problem in various complex scenes, we show the visual comparisons of our 

proposed model and other methods in Fig. 7 of the revised manuscript by displaying some images 

covering different scenarios (i.e., low contrast, similar backgrounds, small objects and multiple objects), 

rather than from different datasets. This will better illustrate the superiorities of our proposed method 

over others in various scenes. As well, to clearly know which dataset each image is from, we marked 

the name of the dataset for each image on the right part of Fig. 7 in the revised manuscript. Please see 

Section IV.D and Fig. 7 in the revised version. 
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Q5. As for Figure 6 of the experimental part, some curves are too closely overlapped to be clearly seen. 

Try resetting the spacing or the width of the curve to draw the graph. 

Response: Thank you for your suggestions. To show the PR curve and F-measure curves of different 

methods more clearly, we have modified Fig. 6 in the revised manuscript. Please see Section IV.D and 

Fig. 6 in the revised version. 

Q6. The ablation experiment in this paper was only carried out on DUT-OMRON data set. Are there 

any ablation experiments on other data sets? 

Response: Thank you very much for your comments and suggestions. To provide more comprehensive 

ablation studies, we have added ablation experiments on DUTS-TE dataset, resulting in ablation 

experiments on DUT-OMRON and DUTS-TE, i.e., Table R6, Table R7, Table R8 and Table R9. Please 

see Section IV.E, Table III, Table IV, Table V and Table VI in the revised version. 

Table R6. Ablation studies of different components. The best performance is marked by bold. “B” represents the 

common backbone (ResNet-50). “H” and “H+” represent the HRNet [19] and the DenseHRNet, respectively. “PO” 

and “PO+” mean fixed grouping and dynamic grouping strategies adopted in the capsule network, respectively. 

“BS” and “S-C” denote the BS and SCMS modules, respectively.  

Configurations 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

B 0.754 0.740 0.057 0.833 0.810 0.040 

H 0.768 0.753 0.061 0.848 0.828 0.042 

PO 0.758 0.736 0.065 0.840 0.814 0.046 

H + PO 0.772 0.761 0.062 0.852 0.836 0.041 

H+ 0.786 0.762 0.059 0.866 0.838 0.039 

PO+ 0.758 0.742 0.064 0.848 0.826 0.044 

H+ + PO+ 0.792 0.772 0.057 0.870 0.848 0.037 

H+ + PO+ + BS 0.799 0.778 0.056 0.878 0.854 0.036 

H+ + PO+ + BS + S-C 0.802 0.786 0.055 0.884 0.864 0.035 
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Table R7. Ablation studies of different capsule grouping strategies. The best performance is marked by bold. “O” 

denotes no grouping strategy. “T” and “Dγ” (γ= 2, 4, 8) represent fixed grouping strategy and dynamic grouping 

strategies with different group numbers, respectively. 

Configurations 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

H+ + O 0.769 0.753 0.060 0.847 0.830 0.040 

H+ + T 0.782 0.763 0.058 0.861 0.838 0.039 

H+ + D2 0.791 0.767 0.058 0.868 0.841 0.039 

H+ + D4
 0.792 0.772 0.057 0.870 0.848 0.037 

H+ + D8 0.790 0.769 0.057 0.867 0.845 0.038 

Table R8. Ablation studies of different feature extraction architectures for DGC sub-network. The best 

performance is marked by bold. Here, the capsules are dynamically divided into four groups. 

Feature Extraction 
Architectures 

DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

two Conv+ReLU layers 0.506 0.452 0.195 0.552 0.482 0.182 

FLNet 0.712 0.695 0.071 0.797 0.769 0.055 

U-Res34 0.758 0.742 0.064 0.848 0.826 0.044 

Table R9. Ablation studies of different integration strategies. The best performance is marked by bold. 

Integration Strategies 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

Baseline(H+ + PO+) 0.792 0.772 0.057 0.870 0.848 0.037 

+ Non-local [50] 0.799 0.772 0.060 0.880 0.850 0.037 

+ DA module [51] 0.800 0.781 0.056 0.881 0.858 0.035 

+ SCC 0.789 0.772 0.055 0.876 0.853 0.036 

+ MWSA 0.796 0.782 0.056 0.880 0.859 0.035 

+ SCMS 0.802 0.786 0.055 0.884 0.864 0.035 

Q7. Have you done the ablation experiment of U-Res34 in the feature extraction stage? 

Response: Thank you very much for your suggestions. To prove the validity of U-Res34, we have 

carried out a new ablation experiment in the feature extraction stage. We replace U-Res34 in our 

proposed DGC sub-network with FLNet in [17] or the two Conv+ReLU layers in the original CapsNet 

[18]. It can be observed from Table R10 (i.e., Table V in the revised manuscript) that U-Res34 boosts 

the saliency detection performance of our proposed model significantly. As shown in Fig. R5(c-e) (i.e., 

Fig. 10 (c-e) in the revised manuscript), it is obvious that U-Res34 makes the framework possess the 
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ability of identifying the salient object wholly, which is attributed to the rich features learned by 

U-Res34. We have added the above statements, Table R10 and Fig. R5 in the revised manuscript. 

Please see Section IV.E, Table V and Fig. 10 in the revised version. 

Table R10. Ablation studies of different feature extraction architectures for DGC sub-network. The best 

performance is marked by bold. Here, the capsules are dynamically divided into four groups. 

Feature Extraction 
Architectures 

DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

two Conv+ReLU layers 0.506 0.452 0.195 0.552 0.482 0.182 

FLNet 0.712 0.695 0.071 0.797 0.769 0.055 

U-Res34 0.758 0.742 0.064 0.848 0.826 0.044 

(a) (b) (c) (d) (e)  

Fig. R5. Visual comparisons with different feature extraction architectures for DGC sub-network. (a) Image; (b) 

GT; (c) U-Res34; (d) FLNet; (e) Two Conv+ReLU layers. 

Q8. What’s the number of parameters and run-time compare to other methods, and which module 

caused the complexity. 

Response: Thank you for your comments and constructive suggestions.  

(1) Following your suggestion, as shown in Table R11, we compare the floating point operations 

(i.e., FLOPs), the number of parameters (i.e., Params) and the inference time (i.e., Time) with other 

popular methods. Table R11 shows that our model is complicated than other methods. This illustrates 
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that the performance improvement of our proposed model is at the cost of computational complexity. 

We have added these statements in the revised manuscript. Please see Section IV.D and Table II in the 

revised version. 

Table R11. The number of parameters, FLOPs and inference time comparisons of our method with some 

state-of-the-art networks. 

Method Input size 
FLOPs 

(G) 
Params

(M) 
Time 

(s) 

F3Net [16] 352 × 352 16.43 25.54 0.022 

ITSD [65] 288 × 288 15.94 26.07 0.022 

GPACNet [66] 320 × 320 54.31 67.06 0.020 

BASNet [28] 256 × 256 127.40 87.06 0.032 

MINet-R [14] 320 × 320 87.03 162.38 0.036 

EGNet-R [13] 380 × 320 287.67 111.66 0.091 

Ours 256 × 256 137.64 153.26 0.167 

(2) Table R12 lists parameter numbers and FLOPs of different components. It can be seen from 

Table R12 (i.e., Table III in the revised manuscript) that the large number of parameters of our 

proposed model are mainly caused by the DGC sub-network, which covers complex capsule routing. In 

the future, we will further reduce the complexity of the capsule network to achieve an efficient 

architecture for SOD tasks. 

Table R12. The FLOPs and the number of parameters for different components. “H+” and “PO+” represent the 

DenseHRNet and DGC sub-network, respectively. “BS” and “S-C” denote the BS and SCMS modules, 

respectively. 

Configurations FLOPs(G) Params(M) 

H+ 27.10 66.77 

PO+ 111.92 86.41 

H+ + PO+ 137.14 153.13 

H+ + PO+ + BS 137.33 153.19 

H+ + PO+ + BS + S-C 137.64 153.26 

Q9. I am wondering when there are multiple salient objects on the image whether the proposed method 

still can get the good performance. 

Response: Thank you very much for your suggestions. Our model can still achieve good performance 
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for those scenes with multiple salient objects, as illustrated in Fig. R6. Such illustrations have also been 

added in the revised manuscript. Please see Fig. 7 in the revised version. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Multiple objects

 

Fig. R6. Visual comparisons of different methods. (a) Image; (b) GT; (c) Ours; (d) TSPOANet [17]; (e) MINet 

[14]; (f) F3Net [16]; (g) EGNet [13]; (h) GCPANet [66]; (i) SCRN [67]; (j) AFNet [68]; (k) PAGE [70]; (l) 

JointCRF [71] 

 

Page 34 of 38IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Response to the comments of Reviewer #3: 

The authors propose salient object detection method by engaging two saliency cues, i.e., the part-whole 

hierarchies and contrast cues. The part-whole hierarchies is implemented via Capsule Network and they 

propose a Dynamic Grouping Capsules Routing (DGCR) strategy to alleviate the problem of inaccurate 

part-whole relationships caused by the noisy capsule assignments. Such technique is reasonable and 

effective. A DenseHRNet framework is designed to obtain more primitive contrast information with 

multiple scales. Experimental results validate the effectiveness of the proposed method. However, there 

are several shortcomings should be improved. 

Response: Thank you very much for your positive comments and constructive suggestions. Our 

responses to your comments are as follows: 

Q1. The proposed method is very complicated. Therefore, I would like to see the inference time of the 

proposed method and other compared methods. 

Response: Thank you very much for your suggestions.  

Table R13. The number of parameters, FLOPs and inference time comparisons of our method with some 

state-of-the-art networks. 

Method Input size 
FLOPs 

(G) 
Params

(M) 
Time 

(s) 

F3Net [16] 352 × 352 16.43 25.54 0.022 

ITSD [65] 288 × 288 15.94 26.07 0.022 

GPACNet [66] 320 × 320 54.31 67.06 0.020 

BASNet [28] 256 × 256 127.40 87.06 0.032 

MINet-R [14] 320 × 320 87.03 162.38 0.036 

EGNet-R [13] 380 × 320 287.67 111.66 0.091 

Ours 256 × 256 137.64 153.26 0.167 

As what you pointed out, the proposed model is very complicated. As shown in Table R13, we 

compare the floating point operations (i.e., FLOPs), the number of parameters (i.e., Params) and the 

inference time (i.e., Time) with other popular methods. This shows that the saliency detection 
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performance improvement of our proposed model is at the cost of computational complexity. We have 

added these statements in the revised manuscript. Please see Section IV.D and Table II in the revised 

version.  

Q2. The authors discuss the uniqueness of the proposed SCMS module compared to the attention 

mechanisms in [45] and [46]. So what if replacing [45] or [46] with SCMS. Can the authors show the 

superiority of SCMS module over [45] and [46]. 

Response: Thank you very much for your constructive suggestions. Following what you have 

suggested, we have added a new ablation study on the integration strategy of the two cues in the 

revision, i.e., comparing the proposed SCMS with non-local [50] (i.e., [45] in the original manuscript) 

and DA [51] modules (i.e., [46] in the original manuscript). As shown in Table R14 (i.e., Table VI in 

the revised manuscript), it can be seen that the proposed SCMS module can obtain the best 

performance compared with non-local [50] or DA module [51], which demonstrates the superiority of 

our proposed SCMS module. Please see Section IV.E and Table VI in the revised version. 

Table R14. Ablation studies of different integration strategies. The best performance is marked by bold. 

Integration Strategies 
DUT-OMRON DUTS-TE 

Fmax Favg MAE Fmax Favg MAE 

Baseline(H+ + PO+) 0.792 0.772 0.057 0.870 0.848 0.037 

+ Non-local [50] 0.799 0.772 0.060 0.880 0.850 0.037 

+ DA module [51] 0.800 0.781 0.056 0.881 0.858 0.035 

+ SCMS 0.802 0.786 0.055 0.884 0.864 0.035 

Q3. Can the Downsampling Node be replaced by U-Res34 (sharing weights), such that the inference 

time may be reduced. 

Response: Thank you very much for your suggestions. Following your suggestion, we re-trained the 

network after replacing the Downsampling Node with U-Res34 (sharing weights). The experimental 

results are shown in Table R15. It can be seen that although this strategy can slightly reduce the 
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inference time of the network, it greatly reduces the saliency detection performance of our proposed 

model. Considering that, we still employ the Downsampling Node in our proposed model to achieve 

the initial feature extraction for the DenseHRNet branch. 

Table R15. Ablation studies of different architectures on DUT-OMRON dataset. 

Architectures Fmax Favg MAE Time 

Sharing weight 0.789 0.771 0.060 0.133 

Don’t sharing weight 0.802 0.786 0.055 0.167 
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Response to the comments of missing key references: 

Reviewer #1: Missing key ref:  

Reviewer #2: Missing key ref:  

Reviewer #3: Missing key ref: J. Wei, S. Wang, Z. Wu et al. Label Decoupling Framework for Salient 

Object Detection. CVPR, 2020. 

Response: In the revised manuscript, the missing key references and some descriptions about the 

references have been added in the revised manuscript. See Section II.B and References [25] in the 

revision. 
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