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TCSVT-06095-2021
Stereo Refinement Dehazing Network

Response to the Reviewers
REJECTAND INVITE TO RESUBMIT

Firstly, we would like to thank the Reviewers for their valuable comments and insightful advises on our paper, and for
the important opportunity to resubmit the paper. We have greatly benefited from the ideas and recommendations. Based on
the reviewer team’s inputs, we have been able to prepare a much better manuscript. We provide below a detailed account on
the changes that we have made in response to comments of the reviewers. The corresponding changes in the resubmitted
manuscript are marked in blue color. Apart from addressing these concerns from the editor and reviewers, we have also
further polished the presentation, and the changed parts are labelled in red in the resubmitted version.

To Reviewer # 1
1. In Section II, a recent work is missing, can the author explain the advantage of the proposed method over the method

below:

[R1] Song, T., Kim, Y., Oh, C. et al. Simultaneous Deep Stereo Matching and Dehazing with Feature Attention. IJCV,
2020.
Response: Thanks for your comment. The paper [R1] is a journal extension of the method SSDMN [8], in the early
submission we have compared SSDMN with our method in Section II and compared their dehazing performance in the
experimental part (Section IV). In addition, we add the method [R1] and explain the differences and advantages of our
proposed SRDNet in Section II. The method [R1], called SSDFA by us, is a multi-task method that estimates a clear image
and disparity simultaneously from a hazy stereo image pair. It introduces an attentional feature fusion in order to integrate
depth-related features effectively from the matching cost and haze transmission. Disparity estimation is time-consuming
and the estimation from haze images is a more challenging problem. Furthermore, achieving the two tasks optimal jointly
is hard. In contrast, we concentrate on the dehazing task without predicting disparity and obtain better dehazing
performance. In addition, SSDFA is still a dehazing network based on the physical model. Our SRDNet directly restores
haze-free stereo images, which is not limited in the computational relation of the physical model and generalizes real hazy
scenes well.

2. Except to the perceptual quality for high-level vision tasks on the foggy kitti dataset, the authors should also present
the dehazing performance such as the metrics of PSNR.
Response: Thanks for your advice. Following your advice, we evaluate the dehazing performance on the foggy KITTI
dataset in terms of PSNR and SSIM in Section IV.E. On the Stereo Foggy KITTI validation set, our SRDNet improves the
PSNR values from 11.89 dB and 10.96 dB to 22.83 dB and 22.14 dB in terms of the left view and the right view
respectively as presented in Tab. 1. For the metric of the SSIM, our SRDNet boosts 0.2301 and 0.2303 for the left view
and the right view, respectively.

Table 1. Comparing the dehazing performance of the foggy inputs and the outputs restored by our SRDNet on the KITTI validation set.

Left Right

PSNR SSIM PSNR SSIM

Foggy 11.89 0.5766 10.96 0.5697

SRDNet 22.83 0.8067 22.14 0.8066

3. For high-level vision tasks, only SRDNet results are presented. Please also include other networks for a fair
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comparison.
Response: Thanks for your advice. We compare our SRDNet and BidNet which both belong to the stereo dehazing
methods, in 3D detection task. In terms of each metric of AP3D in the different hazy scenes, Tab. 2 (i.e., Tab. VII in the
manuscript) shows that our method obtains higher accuracy and has better perceptual quality.
Table 2. 3D Detection performance comparisons on the KITTI validation set for car with all three settings: Light Haze, Medium Haze and Heavy Haze.

Specially, APE, APM andAPH are used to evaluate the performance of easy, moderate and hard sets respectively.

Haze AP3D Hazy BidNet SRDNet

Light

APE 40.75 46.34 47.06

APM 25.79 31.17 32.37

APH 23.75 25.59 26.90

Medium

APE 34.26 44.0 44.97

APM 21.49 27.2 31.13

APH 19.83 25.3 25.97

Heavy

APE 24.14 40.0 40.37

APM 14.89 26.35 27.16

APH 13.84 21.50 21.82

4. Some Typos:
(1) Page3Line50: The weight-sharing coarse dehazing network (WSCDN) enjoys a (an) encoder-decoder structure
and is shared by the left view and the right view.
(2) Page6Line49: The values of SSIM also reduce more than 0.0018 dB (delete dB) compared with employing the
GCSR module.
(3) Page7Line51: Our SRDNet achieves an obvious gain with 3.36 dB in the PSNR and 0.054 dB (delete dB) in the
SSIM compared with the MSBDN.
Response: Thank you very much for pointing out these problems. According to your suggestion, in the resubmitted version,
we have completely solved the acronym problems you mentioned. Furthermore, we have polished our manuscript and
marked them red.

To Reviewer #2
1. (1) The author only summarizes the two shortcomings of the previous methods, but does not explain the

improvement of their method in terms of these shortcomings. For example, how to solve the generalization problem?
Response: Thanks for your comment. In paragraph 2, line 58, right column, page 1, of the resubmitted version, we have
described how our method can solve the shortcomings including the generalization problem. For the sake of clarity, we
re-state the two shortcomings followed by describing how our method is capable of solving the corresponding
shortcomings. Specifically, there are two shortcomings in the previous stereo dehazing methods:

① They simultaneously restore clear images and predict disparity. Disparity estimation is time-consuming and the
estimation from haze images is a more challenging problem. A small error in disparity gives rise to a large variation in
depth and in estimation of haze-free image. Furthermore, achieving the two tasks optimal jointly is hard, it is preferable to
not directly utilizing disparity for haze removal. Although BidNet constructs the matrix in horizontal dimension to mining
the information from the cross view, when the width of the input image gets larger, the needed memories for the matrix
construction are very large. It can be observed from Tab. 4.

Page 2 of 20IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



② The previous stereo dehazing methods are based on the atmosphere scattering model. The performance of the
restored images is over dependent on the joint accurate estimations of the transmission map and the atmospheric light. The
atmosphere scattering model is crude and cannot fully express the complicated real scenes [R2] [R3].
[R2] Y. Qu, Y. Chen, J. Huang, and Y. Xie, “Enhanced pix2pix dehazing network,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition,2019, pp. 8160–8168.
[R3] X. Liu, Y. Ma, Z. Shi, and J. Chen, “Griddehazenet: Attention-based multi-scale network for image dehazing,” in Proc.
IEEE Conf. Computer Vision, 2019, pp. 7314–7323.

To address the above two shortcomings, ①our SRDNet concentrates on the dehazing task and does not predict disparity,
which makes the dehazing task optimal. Without applying the matrix, the SRDNet concatenates the left features with the
right features and mines the depth information through a stereo feature extractor. When the width of input gets large, the
improvement for the need of the computational memories is far lower than the matrix construction. We also design a
guided channel and spatial refinement (GCSR) module separating the features to choose the useful information for
different views, which impresses the negative effect of the inaccurate information and the irrelevant information. ② Our
SRDNet is an end-to-end deep learning model that directly restore haze-free stereo images and is not dependent on the
joint accurate estimations of the transmission map and the atmospheric light. In addition, our method is not limited in the
computational relation of the physical model and can model more complicated and redundant computational relation to fit
and generalize real foggy scenes.
In addition, experimental results demonstrate the superiority of the proposed method beyond two types of methods:

SSMDN and BidNet.

(2) The contribution is just a two-stage dehazing net, which is somewhat limited.
Response: Thanks for your comment. In the last three paragraphs of Section I of the resubmitted version, we have
re-summarized our core contributions. Importantly, we have also clarified and emphasized the challenges behind the
contributions. The challenges are mainly divided into two aspects:
On the one hand, it is not effective that directly apply a two-stage dehazing net of the domain of single image dehazing

into the scenario of stereo image dehazing because of lack of mechanism to adopting stereo information helpful for
dehazing. In the domain of stereo image dehazing, it is challenging to design an effective two-stage dehazing net in a
coarse-to-fine way.
On the other hand, it is challenging to make use of stereo information to positively refine the coarse dehazed images

because that the stereo information such as disparity/depth/distance is not accurate and employing the inaccurate
information can even damage the dehazed results. Therefore, it is considerately difficult to utilize stereo information for
designing a stereo dehazing framework immune to the negative effect of the inaccurate information.
To summarize, our contribution lies in how to deal with the challenges in designing a two-stage dehazing net in the

relatively new domain of stereo image dehazing.
It is the proposed SRDNet (Stereo Refinement Dehazing Network) that effectively deal with the above-mentioned

challenges. Our SRDNet is not a simple two-stage dehazing net. It incorporates a weight-sharing coarse dehazing network
(WSCDN) and a guided separated refinement network (GSRN). The GSRN learns the residues for the corresponding views
to refine the coarse dehazed image pair through a stereo feature extractor and a guided channel and spatial refinement
(GCSR) module. The stereo feature extractor makes full use of the information of cross views. The GCSR module
separates the features for different views and predicts the corresponding residues, which impresses the negative effect of
the inaccurate information and the irrelevant information. We also construct a two-stage dehazing net by replacing the
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GCSR module by a 3×3 convolutional layer. This simple two-stage dehazing net is compared with our method in Tab. 3
(i.e., Tab. IV in the manuscript).

Table 3. The ablation study on the Stereo Foggy Cityscapes validation set.

Methods
Left Right

PSNR SSIM PSNR SSIM

Case1 Single-stage: WSCDN w/o GSRN 28.55 0.9648 28.34 0.9648

Case2 Two-stage: 3×3 Convolution 28.70 0.9681 28.33 0.9681

Case3 Two-stage: GCSR module 30.27 0.9704 30.11 0.9699

From Tab. 3, a simple two-stage dehazing net work (i.e. case2) only outperforms the single-stage dehazing net (i.e. case1)
by a little margin. Instead, our two-stage network (i.e. case3) outperforms the other two cases by a large margin. Specially,
the dehazing results decrease 1.57 dB and 1.78 dB for left dehazed images and right dehazed images from the perspective
of PSNR once removing our designed GCSR module. In addition, compared with case2 (params: 753.23k), our network
(i.e. case3) only adds negligible overheads (params: 759.56k).

The contribution of our method can be mainly divided into three aspects:
We propose a stereo refinement dehazing network (SRDNet) to directly recover the clean stereo images in a

coarse-to-fine fashion, which is the first attempt to address the stereo image dehazing progressively. The SRDNet makes
full use of information collaboratively encoded in the cross views meanwhile without employing disparity or correlation
matrix. Our SRDNet is not limited to the simple physical model, and learns a more complicated model that better matches
the real foggy scenes. It is of great importance to eliminate the performance degradation of stereo based 3D detectors
caused by the foggy inputs.

The SRDNet incorporates a weight-sharing coarse dehazing network (WSCDN) and a guided separated refinement
network (GSRN). The WSCDN removes a part of haze and obtains a coarse dehazed image pair. The GSRN learns the
residues for the corresponding views to refine the coarse dehazed image pair through a stereo feature extractor and a
guided channel and spatial refinement (GCSR) module. The stereo feature extractor makes full use of the information of
cross views. The GCSR module separates the features for different views and predicts the corresponding residues, which
impresses the negative effects of the inaccurate information and the irrelevant information.

Experimental results demonstrate that our proposed SRDNet surpasses previous state-of-the-art image dehazing
methods by a large margin both quantitatively and qualitatively. Specially, our method outperforms the sota stereo
dehazing method by 4.70 dB and 4.44 dB for the binocular image pair on the Stereo Foggy Cityscapes dataset in terms of
the PSNR. Moreover, our SRDNet could be a preprocessing step of the stereo image-based 3D object detection and boost
the 3D detection accuracy in hazy scenes. By appending the SRDNet, the average precision improves by 16.23% in the
heavy haze condition on the KITTI Val dataset for easy sets.

2. (1)The contribution parts. First, why the method without employing disparity or correlation matrix is better? How to
solve the shortcomings by the proposed two-stage networks?
Response: Thanks for your comment. The disadvantages of the method employing disparity or correlation matrix are: (a)
Firstly, disparity prediction is a challenging task and achieving the two tasks optimal jointly is hard. A small error in
disparity gives rise to a large variation in depth and in estimation of haze-free image. In hazy scenes, it is hard to estimate
the correct disparity map or the correct correlation matrix. (b) Although the computation of the matrix is only in horizontal
dimension, when the width of the input image is large, the needed memories for the matrix multiplication are large too. In
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order to have a clear understanding about the needed memories of the horizontal matrix, we replace the horizontal matrix
by a convolution with the kernel size of 3 in a simple net. As presented in Tab. 4, when the input size gets large, the need
of the memory of the horizontal matrix [R4] improves a lot.
[R4] Y. Pang, J. Nie, J. Xie, J. Han, and X. Li, “Bidnet: Binocular image dehazing without explicit disparity estimation,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2020.
Table 4. In order to have a clear understanding about the needed memories of the horizontal matrix, we replace the horizontal matrix by a convolution

with the kernel size of 3 in some simple nets and test their needed memories on GeForce GTX 1070 GPU with batchsize of 1. . The simple net consists of

a convolution with the size of (3,64,3,3)(i.e. input channel, output channel, kernel width, kernel height), a convolution with the size (64,64,3,3) (or a

horizontal matrix as in BidNet), and a convolution with the size (64,3,3,3). When the input size gets large, the need of the memory of the horizontal

matrix improves a lot.

Input_size Input_channel Module (one branch) Memory

256×256
64 Conv3×3 661M ×1

64 Horizontal matrix 1013M ×1.53

512×256
64 Conv3×3 773M ×1

64 Horizontal matrix 2129M ×2.75

512×512
64 Conv3×3 965M ×1

64 Horizontal matrix 3669M ×3.80

In contrast, our SRDNet concentrates on the dehazing task and does not predict disparity, which makes the dehazing
task optimal. Without applying the matrix, the SRDNet concatenates the left features with the right features and mines the
depth information through a stereo feature extractor. When the width of input gets large, the improvement for the need
computational memories is far lower than the matrix construction. In order to choose the useful information for each view
and not introduce confusing information, we also design a guided channel and spatial refinement (GCSR) module to
separates the features of each view. From Tab. I in the manuscript, the dehazing performance of our SRDNet outperforms
other methods by a large margin, which also demonstrates the effectiveness of our method.
(2) Maybe the proposed method can solve these problems, but the introduction part is not clear, and should be
rewritten.
Response: Thanks for your advice. We rewrite and update the introduction in a clear and organized way. For better
understanding, the changed parts are labelled in blue in the resubmitted version.

3. The results on Drivingstereo dataset only compare with MSBDN on the quantitative results. More comparisons are
needed to make the results on the real data set convincing.
Response: Thanks for your comment. We compare quantitative results of more methods in Tab. 5 (i.e. Tab. III of the
manuscript) on Drivingstereo dataset.

Table 5. PSNR and SSIM comparisons on foggy synthetic Drivingstereo dataset.

Methods
Left Right

PSNR SSIM PSNR SSIM

BidNet 22.96 0.8765 23.06 0.8785

MSBDN 24.75 0.8949 - -

GCANet 27.41 0.8962 - -

Ours 28.01 0.9017 28.13 0.9065
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Additionally, we provide more results in Fig. 1 (i.e., Fig.6 in the resubmitted manuscript) to make the results on the real
data set convincing. Fig. 1 gives qualitative comparisons of our dehazed results with the state-of-the-arts: MSBDN,
BidNet and GCANet on the real hazy images from the Drivingstereo dataset. It can be observed that there still exists quite
a lot of haze in the results of MSBDN. Color distortion is introduced by BidNet. Compared with GCANet, our method
performs better in the regions of the sky of row-4 and the road of row-5. Our method has visually appealing results.

Figure 1. Evaluation on real foggy stereo images from the Drivingstereo Dataset. We only present the left dehazed images.

To Reviewer #3
1. For GCSR, only the feature from each view is used as the input. Why the residue information of each view is not fed

to GCSR like the SFE? Please clarify it.
Response: Thanks for your comment. This is a typo in the Fig.2(b) of the manuscript, we correct the figure and the
corresponding description in the manuscript. We use the residue information to conduct the channel refinement and the
feature from each view is used in the spatial refinement as shown in Fig.2 (i.e., Fig.2(b) in the resubmitted manuscript).

Figure 2. Guided channel and spatial refinement (GCSR) module
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2. Why the max and average pooling are both used in GCSR and the basic block, but only the max-pooling is used in
WSCDN? Please clarify the reasons and add more ablation experiments.
Response: Thanks for your comments. There may exists an ambiguity. In the GCSR module and the basic block, we
utilize the global average pooling (GAP) and the global max pooling (GMP) to gather global statistic information and
discriminative information, respectively. Our WSCDN consists of the Basic Blocks and some max-pooling operator with
stride 2 to extract features. The max-pooling with stride 2 in WSCDN is used to expand the receptive field. We modify the
description and the figures to eliminate the ambiguity in the resubmitted manuscript.

In addition, we add some ablation experiments to explore the effects of the global max-pooling and the global
average-pooling in the Basic block in Tab.6 (i.e., Tab. IV in the resubmitted manuscript). It shows that combing the GAP
and the GMP could extract more abundant information and obtain the best dehazing performance.
Table 6. The ablation study on the Stereo Foggy Cityscapes validation set, which exploring the effects of the global average pooling (GAP) and the global

max pooling (GMP) in the Basic block.

Basic Block
Left view Right view

PSNR SSIM PSNR SSIM

GAP 29.76 0.9696 29.54 0.9695

GMP 29.65 0.9693 29.60 0.9697

GAP+ GMP 30.27 0.9704 30.11 0.9699

3. In Section IV-C, the authors should also add some subjective comparisons between the dehazing results of WSCDN
and the proposed two-stage method.
Response: Thanks for your comment. We add some subjective comparisons between the dehazing results of WSCDN and
the results of the GSRN in Fig. 3 (i.e., Fig.5 of the resubmitted manuscript), which demonstrates that the GSRN indeed
refines the dehazing results.

Figure 3. Subjective comparisons between the coarse dehazed results of the WSCDN and the refined results of the GSRN. We present the dehazed results
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of left images. The right images dehazed by our method have analogous results.

4. In the caption of Fig. 6, the citation for Stereo Foggy KITTI Dataset is mistaken.
Response: Thanks for your comment. We have modified the citation in our resubmitted manuscript.

5. It would be better to add the comparison of parameters and FLOPS for different methods.
Response: Thanks for your advice. We add the comparison of parameters and FLOPS for different methods in Tab. 7 (i.e.,
Tab. II in the manuscript). From Tab. 7, our SRDNet achieves a better trade-off between the performance and the
computational cost when comparing with the methods: SSMDN, GCANet, MSBDN, and BidNet.

Table 7. Parameters and FLOPS comparison of our method with other methods when the input resolution is 512 ×1024. For clear comparison, the FLOPS

of monocular dehazing methods are doubled (×2) because they are applied in the left view and the right view separately. We also present the value of the

PSNR on the Stereo Foggy Cityscapes validation set in terms of the left view.

Method Params FLOPS PSNR(L)

SSMDN 75.16M 82.18G 22.37

GCANet 702.82k 121.76G×2 27.66

MSBDN 31.35M 196.19G×2 24.73

BidNet 323.06k 26.86G 25.57

SRDNet(ours) 759.56k 63.47G 30.27
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1

Stereo Refinement Dehazing Network
Jing Nie, Yanwei Pang, Senior Member, IEEE, Jin Xie, Jing Pan, and Jungong Han, Senior Member, IEEE

Abstract—The performance of stereo vision tasks degrades
when haze exists in the input stereo image pair. Independently
applying single image dehazing algorithm on left and right
images is not optimal. To overcome the problem, we propose
an effective framework, called SRDNet, for simultaneously de-
hazing stereo images. The main idea of SRDNet is to make
full use of the stereo information from cross views improving
dehazing performance. It does not explicitly employ the disparity
estimation and the correlation matrix. SRDNet comprises two
parts: a weight-sharing coarse dehazing network (WSCDN) and
a guided separated refinement network (GSRN). The WSCDN
is utilized to predict a coarse dehazed image pair. Then the
GSRN is introduced to predict the residues for different views by
extracting the fused information of cross views and separating
the features of different views with a guided channel and spatial
refinement module. The residues are added to the coarse dehazed
pair so as to make refinement and remove the remained haze.
The experimental results demonstrate that our proposed SRDNet
surpasses previous image dehazing methods by a significant
margin both quantitatively and qualitatively. Moreover, our
SRDNet could be a preprocessing step of the stereo image-based
3D object detection and boost the 3D detection accuracy in hazy
scenes.

I. INTRODUCTION

Stereo vision has numerous advantages over monocular
vision. For example, stereo vision is able to provide more
precise depth and three-dimensional information of the objects
and scenes [1], [2], [3], [4], [5], [6]. Therefore, stereo vision
is widely applied in practical applications such as advanced
driving assistance system, self-driving vehicles, unmanned
surface vessel, and human-machine intelligence. However, the
visibility of the stereo images and the scene understanding
ability of stereo vision are deteriorated when haze occurs. The
low-level vision tasks such as stereo dehazing [7], [8], [9], [10]
and stereo deraining [11], [12], [13] are very necessary and
have attracted increasing research attention in the computer
vision community, which restores the stereo images from the
corrupted inputs. Moreover, stereo images provide more infor-
mation from cross views, which could boost the performance
of the dehazing methods since they are depth related.

There are two strategies for dehazing stereo images. The
first and straightforward strategy is independently dehazing
the left image and right image captured by a binocular vision
system. It can be accomplished by applying existing excellent
single image dehazing methods such as GCANet [14], and
MSBDN [15]. However, the single image dehazing methods

J. Nie, Y. Pang and J. Xie are with the School of Electrical and In-
formation Engineering, Tianjin University, Tianjin 300072, China. (E-mail:
{jingnie,pyw, jinxie}@tju.edu.cn)

J. Pan is with the School of Electronic Engineering, Tianjin Univer-
sity of Technology and Education, Tianjin 300222, China (E-mail: jing-
pan23@gmail.com)

J. Han is with the School of Computer Science, Aberystwyth University,
UK, (E-mail: jungonghan77@gmail.com)

(a) Foggy (b) MSBDN [15]

(c) BidNet [7] (d) Ours

Fig. 1. Visual comparison between our method and the state-of-the-art
MSBDN [15] and BidNet [7] methods for a hazy image from the Stereo
Foggy Cityscapes dataset [7].

do not utilize the relationship between the binocular images.
Therefore, directly applying single image dehazing methods
is not optimal for dehazing binocular images. The second
strategy [7], [8], [10] is stereo image dehazing methods,
utilizing the depth information contained in the stereo image
pairs to help predict the dehazed images, which demonstrates
the superiority of the stereo images. Na et al. [10] and
Song et al. [8] explicitly estimated disparity and merged the
intermediate features for disparity estimation into a dehazing
network. Because disparity estimation from haze images is a
more challenging problem and achieving the two tasks optimal
jointly is hard, it is preferable to not directly utilizing disparity
for haze removal. BidNet [7] dehazes the binocular images by
mining the correlation between left and right images through
constructing the matrix without explicitly estimating disparity,
which achieves the state-of-the-art. Although the computation
of the matrix is only in horizontal dimension, when the width
of the input image gets large, the needed computational re-
sources and the need of memories for the matrix multiplication
are very large. The above stereo image dehazing methods are
based on the atmosphere scattering model [16] and utilize
the depth information contained in the stereo image pairs to
help predict the transmission maps. Though of success, the
performance of the model-based methods is over dependent on
the joint accurate estimations of the transmission map and the
atmospheric light. The model is too crude to fit the real foggy
scenes and the dehazed results of the model-based methods
for the real-world hazy images are unsatisfactory.

To address the above issues, we design a stereo refine-
ment dehazing network (SRDNet) in this paper to directly
transform hazy stereo images to haze-free stereo images in
a coarse-to-fine manner. Our SRDNet is not limited in the
computational relation of the physical model and can model
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2

more complicated and redundant computational relation to
fit and generalize real foggy scenes. Our SRDNet employs
neither disparity nor correlation matrix. It concentrates on the
dehazing task and does not predict disparity, which makes the
dehazing task optimal. Firstly a part of haze are removed by
our designed weight-sharing coarse dehazing network called
WSCDN for both the left view and the right view. Then we
could generate the residues between the coarse dehazed stereo
image pair and the input foggy stereo image pairs, which
are combined with the features from the WSCDN together as
the input to a guided separated refinement network (GSRN).
The GSRN is composed of a stereo feature extractor and
a guided channel and spatial refinement (GCSR) module.
Without applying the matrix, the SRDNet concatenates the
left features with the right features and mines the depth
information through a stereo feature extractor. When the width
of the input gets larger, the improvement for the need of the
computational resources and memories is far lower than the
matrix construction. The stereo feature extractor makes full use
of the information of cross views. The GCSR module separates
the features for different views and predicts the corresponding
residues for the coarse haze-free image pairs. The residues
help refine the coarse dehazed stereo image pairs to remove
the remained haze. To summarize, our contributions are three-
fold as below:

(1) We propose a stereo refinement dehazing network (SRD-
Net) to directly recover the clean stereo images in a coarse-
to-fine fashion, which is the first attempt to address the stereo
image dehazing progressively. The SRDNet makes full use
of information collaboratively encoded in the cross views
meanwhile without employing disparity or correlation matrix.
Our SRDNet is not limited to the simple physical model,
and learns a more complicated model that better matches the
real foggy scenes. It is of great importance to eliminate the
performance degradation of stereo based 3D detectors caused
by the foggy inputs.

(2) The SRDNet incorporates a weight-sharing coarse de-
hazing network (WSCDN) and a guided separated refinement
network (GSRN). The WSCDN removes a part of haze and
obtains a coarse dehazed image pair. The GSRN learns the
residues for the corresponding views to refine the coarse
dehazed image pair through a stereo feature extractor and a
guided channel and spatial refinement (GCSR) module. The
stereo feature extractor makes full use of the information of
cross views. The GCSR module separates the features for
different views and predicts the corresponding residues, which
impresses the negative effects of the inaccurate information
and the irrelevant information.

(3) Experiments demonstrate that our proposed SRDNet
surpasses previous state-of-the-art image dehazing methods by
a large margin both quantitatively and qualitatively. Specially,
our method outperforms the sota stereo dehazing method
by 4.70 dB and 4.44 dB for the binocular image pair on
the Stereo Foggy Cityscapes dataset in terms of the PSNR.
Moreover, our SRDNet could be a preprocessing step of the
stereo image-based 3D object detection and boost the 3D
detection accuracy in hazy scenes. By appending the SRDNet,
the average precision improves by 16.23% in the heavy haze

condition on the KITTI Val dataset for easy sets.

II. RELATED WORKS

Haze deteriorates the visibility and quality of images and
introduces low contrast, blurring and so on [17], [18], [19],
which leads the poor performance of image based tasks
including object detection [20], [21], [22], classification [23],
[24], tracking [25], [26] and person re-identification [27],
[28], etc.. Image dehazing is a highly ill-posed problem and
very challenging. In this section, we first describe single
image dehazing method and then review stereo image dehazing
methods.

A. Single Image Dehazing Methods

Single image dehazing methods can be divided into two
categories: prior-based approaches and learning-based ap-
proaches. Most dehazing methods rely on the atmosphere
scattering model formulated as:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) and J(x) denote the hazy image and the clear
image respectively. A is the global atmospheric light intensity,
and t(x) represents the transmission map. t(x) is a function of
depth: t(x) = e−βd(x), in which β and d(x) are the atmosphere
scattering parameter and the distance, respectively.

Prior-based approaches [29], [30], [31], [32], [33] employ
strong priors as extra constraints to estimate the transmission
maps and the global atmospheric lights, and then compute
the haze-free results according to the atmosphere scattering
model mentioned above. In order to boost the visibility of
hazy images, Tan et al. [33] proposed to maximize the local
contrast. The dark channel prior (DCP) [29] is put forward to
estimate the transmission maps and restore the clean outdoor
images. Berman et al. [32] developed an effective non-local
path prior for single image dehazing.

Recently, most deep monocular dehazing methods achieve
great success. The previous learning-based approaches [34],
[35], [36], [37] also rely on the atmosphere scattering model,
which first utilize the CNN to estimate transmission maps and
atmospheric lights, and then restore clear images. Zhang et
al. [18] regard the image dehazing problem as a iterative
progress: first divide a hazy image into different regions
and then optimize the atmospheric light and transmission
simultaneously and iteratively based on local physical fea-
tures. Several recent works [38], [14], [39], [40], [15], [41]
reduce the image dehazing problem to an image-to-image
translation problem. The Enhanced Pix2pix Dehazing Net-
work (EPDN) [39] utilizes a generative adversarial network
augmented with a well-designed enhancer to restore clear
images directly. The Gated Context Aggregation Network
(GCANet) adopts the smoothed dilated technique and fuses
multi-level features for haze removal. The GCANet learns the
residue between the clear image and the input foggy one. In
contrast, the learning target of our guided separated refinement
network is the residues between the coarse dehazed stereo
image pairs and the final haze-free ones. GriddehazeNet [40]
is an enhanced GridNet [42] with residual dense blocks [43]
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Fig. 2. The architecture of our SRDNet, the guided channel and spatial refinement module and the basic block.

for dehazing. A Multi-Scale Boosted Dehazing Network (MS-
BDN) [15] applies the boosting strategy and the error back-
projection technique to improve the performance of dehazing.
To solve the widely diffusing caused by the haze, an end-
to-end Pyramid Global Context Network (PGCNet) [17] is
proposed to learn the global context. Zhang et al. [19] designed
two modules adaptively fusing multi-level features to keep fine
details and extract semantics.

B. Stereo Image Dehazing Methods

Stereo images processing has attracted increasing attention
due to the advantages such as providing comparable depth
accuracy. The methods based on stereo images have made
great progress, such as 3D object detection [5], [4], [6]
and stereo matching [44], [45], [46]. There are 18 stereo
based 3D object detectors in the leaderboard of 3D detection
evaluation on the KITTI website in the past two years. More
information are provided from cross views by stereo images
that have thus been utilized to improve the quality of various
low-level tasks, including super-resolution [47], stereo image
deraining [11], [12], [13] and stereo image dehazing [7], [8],
[9], [10]. Li et al.presented a method recovering the clear
images from foggy videos, which jointly predicts scene depths.
They regarded that the stereo matching and the dehazing can
reinforce each other. Song et al. [8] and Yun et al. [10]
both proposed the deep-learning based multi-task methods
that estimate a clear latent image and disparity simultaneously
from a hazy stereo image pair. The intermediate features for
disparity estimation are fused into a dehazing network to
enhance each other. Song et al. [48] extends the work [8] by
introducing an attentional feature fusion in order to integrate

depth-related features effectively from the matching cost and
haze transmission. Their attentional feature fusion consists
of a channel/spatial attention fusion and a gated fusion. The
channel/spatial attention fusion is separately conducted on the
stereo features or on the transmission features, which is in a
self-learning way. The gated fusion is to adaptively fuse the
stereo features and the transmission features through a learning
weight map. Differently, we propose a guided channel and
spatial refinement (GCSR) module to extract features for the
respective view from the mixed stereo features. The GCSR
module is composed of a guided channel refinement and a
guided spatial refinement, which are not in a self-learning
way and instead is learned by the guidance of the residue
information from the WSCDN and the feature from each
view. Recently, BidNet [7] is proposed and does not explicitly
estimate disparity. It explicitly computes correlation matrix of
left and right features which is closely related to disparity. By
contrast, our SRDNet employs neither disparity nor correlation
matrix. The above methods based on the atmosphere scattering
model are too simple to fit the real foggy scenes.

To address the aforementioned issues, this paper designs
a stereo refinement dehazing network to directly recover the
clean stereo pair from the foggy input pair, which utilizes the
information from cross views and is more effective than single
image dehazing methods in stereo tasks without estimating
disparity.

III. METHODS

The visibility of the stereo images and the scene understand-
ing ability of stereo vision are degraded when haze exists.
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Stereo dehazing could be a preprocessing step of the high-
level vision tasks such as the stereo image-based 3D object
detection. Different from that existing stereo dehazing methods
are based on the physical model, in this paper, we propose an
end-to-end stereo refinement dehazing network (SRDNet) to
directly recover the clean stereo images from the foggy input
pair. It restores the haze-free stereo images in a coarse-to-
fine manner: firstly learn a coarse haze-free image pairs and
then learn the residues to refine the coarse images through
excavating the depth information from the stereo image pairs.

A. Overall Architecture

Fig. 2(a) shows the overall architecture of the SRDNet
which contains two parts: a weight-sharing coarse dehazing
network (WSCDN) and a guided separated refinement network
(GSRN). The WSCDN is utilized to predict a coarse dehazed
image pair directly, whose weights are shared between the left
images and the right images. The coarse dehazed stereo pair
is removed most of haze. The residues between the coarse
dehazed stereo image pair and the input foggy stereo image
pairs are combined with the left and right features from the
WSCDN, which are input to the GSRN. The GSRN utilizes
a stereo feature extractor to fuse the information of cross
views instead of predicting disparity. In addition, the GSRN
designs a channel and spatial refinement module to separate
the features for different views to predict the residues. The
predicted residues refines the coarse dehazed images, which
removes the remained haze and obtains clearer image pairs.

B. Weight-Sharing Coarse Dehazing Network

The weight-sharing coarse dehazing network (WSCDN)
enjoys an encoder-decoder structure and is shared by the left
view and the right view. The encoder of the WSCDN inputs the
left foggy image Il or the right foggy image Ir and stacks basic
blocks and max-pooling with stride 2 to extract the features.
The encoder first utilizes a basic block to learn better input
features and then downsamples the input features through a
max-pooling followed with a basic block, which is repeated 4
times and iteratively enlarges the receptive field. The decoder
accordingly applies the bilinear interpolation with one basic
blocks by 4 times to restore the detailed structure. The same
level feature maps between the encoder and the decoder are
concatenated to preserve spatial information at each resolution.
The final feature maps Fl and Fr output from the weight-
shared decoders of the left view and the right view will be
further fed into two separated 3 × 3 convolutional layer to
restore the coarse dehazed image pair: Ĵcl and Ĵcr , which are
removed most of haze.
Basic Block: As shown in Fig. 2(c), a basic block is composed
of a 3 × 3 convolutional layer with ReLU and another 3 × 3
convolutional layer with self gated mechanism. The self gated
mechanism is to learn the channel-wise weight Gs for the input
feature Fin to recalibrate the features adaptively. We choose
the global max pooling (GMP) and the global average pooling
(GAP) along spatial dimension to obtain the global spatial
information, which is formulated as Eq. 2. Then we use two
1 × 1 convolutional layers followed with ReLU and sigmoid

respectively to further fuse the useful information and generate
channel-wise weights which are used to multiply with the
input feature to recalibrate the input feature along the channel
dimension.

Pc = Concat(Pmax(Fin),Pavg(Fin)), (2)

Gs = σ(C1×1(δ((C1×1(Pc))))), (3)

where Concat means concatenating the outputs of the global
max pooling Pmax and the global average pooling Pavg . σ and
δ are the sigmoid function and the ReLU function respectively.

Finally, the output feature are obtained below:

Fo = Gs � Fin + Fin. (4)

where � refers to channel-wise product.

C. Guided Separated Refinement Network

In order to utilize the information from cross views and re-
fine the predicted coarse dehazed stereo images Ĵcl and Ĵcr , we
design a guided separated refinement network, called GSRN.
The GSRN first uses a stereo feature extractor to extract stereo
mixed features and fuse the information from cross views.
Then a guided channel and spatial refinement (GCSR) module
is designed to guide to separate the features for different views.
The separated features predict the separated residues R̂l and
R̂r for refining the left coarse dehazed image and the right
coarse dehazed image respectively.
Stereo Feature Extractor: For the stereo feature extractor,
we combine the left feature Fl, the right feature Fr out from
the WSCDN, the original stereo foggy images Il and Ir, and
the predicted coarse dehazed stereo images Ĵcl and Ĵcr as the
input Sin, which is formulated as:

Sin = Concat(Fl, (Ĵ
c
l − Il), Fr, (Ĵcr − Ir)), (5)

Specially, we input the residues between the coarse dehazed
stereo image pair and the input foggy stereo image pair
to add the cues of the already detected haze. The stereo
feature extractor has the similar structure as the WSCDN.
It contains three Basic Block-MaxPooling and three bilinear
interpolation-Basic Block, in which skip connection are ap-
plied with features across scales (s = 2, 4, 8) corresponding
to the same dimension. The extractor only downsamples the
input with stride 8 to keep more detail information compared
with the WSCDN. Through the stereo feature extractor, the
mixed feature Fm is obtained and includes the information
from cross views.
Guided Channel and Spatial Refinement Module: If the
mixed feature Fm output from the stereo feature extractor is
directly utilized to predict the residues for the coarse dehazed
stereo pair, some confusing information would be introduced.
Therefore, we design a guided channel and spatial refinement
(GCSR) module to guide the network to learn the respective
residue for the corresponding view. As shown in Fig. 2(b),
our GCSR module consists of two steps: guided channel
refinement and guided spatial refinement.

The guided channel refinement is similar with the self gated
mechanism in the basic block. The difference is that the guided
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channel refinement learns the channel weights Gleftcr for the
mixed feature by learning from the left feature Fcl instead of
learning from itself. The left feature Fres l is learned from
the coarse residues (Ĵcl −Il) through a 3×3 convolution. The
detailed process for predicting the residue of left view is given
below:

P leftc = Concat(Pmax(Fres l),Pavg(Fres l)), (6)

Gleftrc = σ(C1×1(δ((C1×1(Pc))))), (7)

F leftcr = Gleftcr � Fm. (8)

where F leftcr denotes the left feature after guided channel
refinement by the left feature. Analogously, we replace the
left feature Fres l by the right feature Fresr learned from the
coarse residues (Ĵcr − Ir) to guide channel refinement and
obtain the refined right feature F rightcr .

As for the guided spatial refinement, we use a 3 × 3
convolutional layer to learn the spatial offsets ∆pleftk from the
left feature Fl in terms of the left view. As the kernel offsets
in the deformable convolution operator, ∆pleftk augments the
regular sampling grid G at position p0 obtaining a refined
feature F leftsr , as follows:

F leftsr (p0) =
∑

pkεG
wr · F leftcr (p0 + pk + ∆pleftk ). (9)

where F leftcr is the input feature to be sampled, and G is
a regular grid (i.e.If the kernel is 3 × 3 with dilation 1,
G = (−1,−1), (−1, 0), ..., (0, 1), (1, 1)) sampling the input
features. pk is a position of G, whose corresponding con-
volutional weight is wr. Finally, we apply another 3 × 3
convolutional layer on the spatial refined feature F leftcr to
predict the left residue R̂l. The process of learning the residue
R̂r for the right view is the analogous process. The final
dehazed stereo image pair Ĵl and Ĵr are generated as follows:

Ĵl = Ĵcl + R̂l, Ĵr = Ĵcr + R̂r, (10)

D. Loss Function

Our SRDNet is trained by adopting the smooth L1 loss and
the perceptual loss [49]. The total loss L is defined as:

L = Lleftcoarse + Lrightcoarse + Lleftresidue + Lrightresidue, (11)

Lcoarse = LS(Ĵc, J) + LP (Ĵc, J), (12)

Lresidue = LS(R̂, J − Ĵc) + LP (R̂, J − Ĵc). (13)

where LS and LP are the smooth L1 loss and the perceptual
loss respectively. Ĵc and J are the predicted coarse dehazed
image and the ground truth respectively. R̂ is the predicted
residue for the corresponding coarse dehazed image.

IV. EXPERIMENTS

It is a great challenge to collect a large-scale foggy stereo
dataset including real-world foggy stereo images and their
clear counterparts for learning-based stereo dehazing methods.
To address this problem, Pang et al. [7] extended the Foggy
Cityscapes dataset to a Stereo Foggy Cityscapes dataset with
8,925 stereo foggy image pairs in the training set and 1500

TABLE I
STATE-OF-THE-ART DEHAZING METHODS COMPARISON ON THE STEREO

FOGGY CITYSCAPES VALIDATION SET. THE SYMBOL ”*” MEANS THAT WE
TRAIN THE METHODS ON THE STEREO FOGGY CITYSCAPES TRAINING

SET. THE REST RESULTS ARE REPORTED IN [7].

Methods Left Right
PSNR SSIM PSNR SSIM

SSMDN [8] 22.37 0.9120 - -
GCANet* [14] 27.66 0.9534 - -
MSBDN* [15] 24.73 0.9395 - -

BidNet [7] 25.57 0.9438 25.67 0.9451
SRDNet(ours) 30.27 0.9704 30.11 0.9699

stereo foggy image pairs in the validation set. The dataset is
produced by setting the global atmosphere light ranging from
0.7 to 1.0 and the scatter parameter β ε [0.005, 0.01, 0.02]. In
this work, we utilize the synthetic Stereo Foggy Cityscapes
training set to train the model and then utilize the validation
set to test our method.

A. Training Details

We train the SRDNet on Pytorch with the size 256 × 256
and augment the training with randomly vertical flip. We set
the training batch size as 8 and the total number of epochs
as 30. We use Adam optimizer [50], where β1 and β2 are set
as the default values: 0.9 and 0.999 respectively. We employ
the cosine annealing strategy [51] to adjust the learning rate
from the initial value 1 × 10−3 to 0. The cosine function is
formulated as:

lt =
1

2
(1 + cos(

tπ

T
))l0 (14)

where the total number of batches is T . l0 and lt are the initial
learning rate and the learning rate at the batch t respectively.
The training is carried on 2 TitanX GPUs and only one GPU
is used for testing.

B. Comparison with State-of-the-art Methods

The proposed network is tested on the synthetic Stereo
Foggy Cityscapes validation set for qualitative and quan-
titative comparisons with the state-of-the-arts that include
SSMDN [8], GCANet [14], MSBDN [15] and BidNet [7]. We
exploit the metrics of PSNR and SSIM [52] to evaluate the
performance of restored images. Besides, we compare param-
eters and FLOPS for different methods. For fair comparisons,
we re-train GCANet and MSBDN according to their provided
training details in their papers on the same Stereo Foggy
Cityscapes training set and evaluate them on the same Stereo
Foggy Cityscapes validation set as ours. It is worthy noting
that we test all methods with the image size of 1024× 512.

Quantitative Results: Tab. I shows the quantitative com-
parison on the Stereo Foggy Cityscapes validation set between
our SRDNet with SSMDN [8], GCANet [14], MSBDN [15]
and BidNet [7] in terms of the PSNR and the SSIM. The
single image dehazing methods only restore the left images.
The stereo image dehazing methods: BidNet and our SRDNet
obtain dehazed the left images and dehazed the right images
simultaneously. It can be found that our proposed SRDNet
surpasses all four different state-of-the-art methods by a wide
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(a) Foggy (b) GCANet [14] (c) MSBDN [15] (d) BidNet [7] (e) SRDNet (f) GT

Fig. 3. Qualitative comparisons on the Stereo Foggy Cityscapes validation set. We present the dehazing results of left images.

margin. Our method is 2.61 dB and 0.017 better than the
second-best GCANet [14] in terms of PSNR and SSIM values
respectively for the left images. Our SRDNet outperforms
BidNet with significant gains of 4.70 dB and 4.44 dB for
the metric of PSNR for the left view and the right view
respectively. We also add the comparison of parameters and
FLOPS for different methods in Tab. II. For the fair and
clear comparison, the flops of monocular dehazing methods
are doubled (×2) because they are applied in the left view
and the right view separately in stereo foggy scenes. From

Tab. II, our SRDNet achieves a better trade-off between the
performance and the computational cost when comparing with
the methods: SSMDN, GCANet, MSBDN, and BidNet.

Qualitative Results: Fig. 3 shows qualitative state-of-the-
arts [14], [15], [7] comparison with the presented SRDNet on
the Stereo Foggy Cityscapes validation set. Fig. 3 only shows
eight examples which consists of the left foggy images, the left
haze-free images dehazed by existing image dehazing methods
and our proposed SRDNet, and the ground truth images. Four
upper rows are examples with thin fog and the rest examples
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(a) (b) (c) (d) (e) (f)
Fig. 4. Stereo images haze removal examples on the Stereo Foggy Cityscapes val Dataset. (a) and (d) are Stereo foggy image pairs. (b) and (e) are Stereo
haze-free results of our SRDNet. (c) and (f) are the Ground truth.

PSNR/SSIM:
15.01/0.7354

PSNR/SSIM:
27.45/0.9552

PSNR/SSIM:
29.74/0.9602

PSNR/SSIM:
9.58/0.6585

PSNR/SSIM:
25.17/0.9255

PSNR/SSIM:
27.00/0.9348

PSNR/SSIM:
11.50/0.6906

PSNR/SSIM:
26.23/0.9255

PSNR/SSIM:
29.18/0.9454

PSNR/SSIM:
13.05/0.7400

PSNR/SSIM:
27.00/0.9516

PSNR/SSIM:
29.22/0.9596

PSNR/SSIM:
12.33/0.7285

PSNR/SSIM:
26.93/0.9454

PSNR/SSIM:
27.62/0.9469

PSNR/SSIM:
15.84/0.8300

PSNR/SSIM:
27.41/0.9622

PSNR/SSIM:
28.95/0.9650

PSNR/SSIM:
15.57/0.8149

PSNR/SSIM:
32.53/0.9724

PSNR/SSIM:
34.04/0.97.48

PSNR/SSIM:
16.13/0.7951

PSNR/SSIM:
28.58/0.9603

PSNR/SSIM:
30.26/0.9645

(a) Foggy (b) Coarse (c) Fine (a) Foggy (b) Coarse (c) Fine
Fig. 5. Subjective comparisons between the coarse dehazed results of the WSCDN and the refined results of the GSRN. We present the dehazed results of
left images.

have thick fog. We can observe that the MSBDN can not
remove the haze entirely, especially the row-5. The processing
power of the BidNet at the sky in the first three rows is
unsatisfactory. The GCANet recovers images with excessive
brightness relative to ground truth. In addition, the sky in the
first row and the building in the fifth row for the GCANet
still remains a great amount of haze. In contrast, our method
achieves better and visually appealing results. Analogously,
the corresponding right images dehazed by our method are
also appealing. In addition, we present some haze-free stereo
image pairs of our method in Fig. 4.

C. Ablation Study

We conduct the ablation study on the Stereo Foggy
Cityscapes validation set. Tab. III shows the impacts of the
WSCDN and our GCSR module. Without the GSRN, we use
the WSCDN directly to restore the clear stereo pair, the values
are reduced by 1.72 dB and 1.77 dB in terms of the PSNR
from Tab. III. It demonstrates that only dehazing once is not
optimal and using our GSRN could indeed refine the dehazing
results. To demonstrate the effectiveness of the GCSR module,
we perform an experiment replacing the GCSR module by the
3× 3 convolutional layer. As shown in Tab. III, the dehazing
results decrease 1.57 dB and 1.78 dB for left dehazed images
and right dehazed images from the perspective of PSNR.

Page 15 of 20 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

Foggy MSBDN [15] BidNet [7] GCANet [14] SRDNet
Fig. 6. Evaluation on real foggy stereo images from the Drivingstereo Dataset [53]. We only present the left dehazed images.

TABLE II
PARAMETERS AND FLOPS COMPARISON OF OUR METHOD WITH OTHER

METHODS WHEN THE INPUT RESOLUTION IS 512× 1024. FOR CLEAR
COMPARISON, THE FLOPS OF MONOCULAR DEHAZING METHODS ARE

DOUBLED (×2) BECAUSE THEY ARE APPLIED IN THE LEFT VIEW AND THE
RIGHT VIEW SEPARATELY. WE ALSO PRESENT THE VALUE OF THE PSNR
ON THE STEREO FOGGY CITYSCAPES VALIDATION SET IN TERMS OF THE

LEFT VIEW.

Method Params FlOPS PSNR
SSMDN [8] 75.16M 82.18G 22.37
GCANet [14] 702.82k 121.76G×2 27.66
MSBDN [15] 31.35M 196.19G×2 24.73
BidNet [7] 323.06k 26.86G 25.57
SRDNet(ours) 759.56k 63.47G 30.27

TABLE III
THE ABLATION STUDY ON THE STEREO FOGGY CITYSCAPES VALIDATION

SET.

Methods Left Right
PSNR SSIM PSNR SSIM

WSCDN w/o GSRN 28.55 0.9648 28.34 0.9648
Convolution 28.70 0.9681 28.33 0.9681

GCSR module 30.27 0.9704 30.11 0.9699

The values of SSIM also reduce more than 0.0018 compared
with employing the GCSR module, which shows that the
concatenated stereo features contains confusing information
and our GCSR module could separate the useful information
belong to the left image and the information belong to the
right image. We add some ablation experiments to explore
the effects of the max-pooling and the average-pooling in the
Basic block of WSCDN in Tab. IV. From Tab. IV, it shows
that combing the global average pooling (GAP) and the global

TABLE IV
THE ABLATION STUDY ON THE STEREO FOGGY CITYSCAPES VALIDATION
SET, WHICH EXPLORING THE EFFECTS OF THE GLOBAL AVERAGE POOLING

(GAP) AND THE GLOBAL MAX POOLING (GMP) IN THE BASIC BLOCK.

Basic Block Left Right
PSNR SSIM PSNR SSIM

GAP 29.76 0.9696 29.54 0.9695
GMP 29.65 0.9693 29.60 0.9697

GAP and GMP 30.27 0.9704 30.11 0.9699

TABLE V
PSNR AND SSIM COMPARISONS ON FOGGY SYNTHETIC DRIVINGSTEREO

DATASET.

Methods Left Right
PSNR SSIM PSNR SSIM

BidNet [7] 22.96 0.8765 23.06 0.8785
MSBDN [15] 24.75 0.8949 - -
GCANet [14] 27.41 0.8962 - -
SRDNet(ours) 28.01 0.9017 28.13 0.9065

max pooling (GMP) could extract more abundant information,
which gathers global statistic information and discriminative
information, respectively.

We add some subjective comparisons between the dehazing
results of WSCDN and the results of the GSRN in Fig. 5
of Section IV-C, which demonstrates that the GSRN indeed
refines the dehazing results.

D. Real-world Hazy Images

Moreover, for evaluations on real-world images, we use
the stereo foggy images from Drivingstereo dataset [53]. The
Drivingstereo dataset is a large-scale dataset including stereo
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TABLE VI
DETECTION PERFORMANCE (AP) COMPARISONS (IoU > 0.7) ON THE STEREO FOGGY KITTI VALIDATION SET AS FOR CAR WITH ALL FIVE SETTINGS:

HEAVY + S AND HEAVY + SR ARE SHORT FOR HEAVY + STEREO R-CNN AND HEAVY + SRDNET FOLLOWED BY STEREO R-CNN, RESPECTIVELY;
SIMILARLY FOR THE OTHER GROUPS. ”GROUND-TRUTH” IS REPRESENTING THE DETECTION RESULTS OF STEREO R-CNN ON THE CLEAR VALIDATION

SET.

metric Setting Heavy + S Heavy + SR Medium + S Medium + SR Light + S Light + SR Goundtruth

AP3d

APE 24.14 40.37 34.26 44.97 40.75 47.06 54.91
APM 14.89 27.16 21.49 31.13 25.79 32.37 37.72
APH 13.84 21.82 19.83 25.97 23.75 26.90 32.17

APbv

APE 28.89 50.30 43.61 56.58 51.58 59.06 68.16
APM 21.74 34.97 28.99 36.32 34.45 42.24 48.98
APH 15.85 29.13 22.81 34.53 28.07 35.73 48.16

TABLE VII
3D DETECTION PERFORMANCE COMPARISONS ON THE KITTI

VALIDATION SET FOR CAR WITH ALL THREE SETTINGS: LIGHT HAZE,
MEDIUM HAZE AND HEAVY HAZE. SPECIALLY, APE , APM AND APL

ARE USED TO EVALUATE THE PERFORMANCE OF EASY, MODERATE AND
HARD SETS RESPECTIVELY.

Haze AP3D Hazy BidNet [7] SRDNet

Light
APE 40.75 46.34 47.06
APM 25.79 31.17 32.37
APH 23.75 25.59 26.90

Medium
APE 34.26 44.0 44.97
APM 21.49 27.2 31.13
APH 19.83 25.3 25.97

Heavy
APE 24.14 40.0 40.37
APM 14.89 26.35 27.16
APH 13.84 21.5 21.82

image pairs in real autonomous driving scenarios, in which
2000 frames with 4 different weathers (sunny, cloudy, foggy,
rainy) are selected for specific needs. In terms of the 500
foggy stereo image pairs, their corresponding clear pairs are
not available.

We leverage the fog simulation pipeline described in [7] to
add fog to the sunny and cloudy sequences in the Drivingstereo
dataset, and randomly divide the dataset into the training set
and the validation set. We generate the random atmospheric
light from 0.7 to 1.0 and set β ε [0.005, 0.01, 0.02] for each
stereo image pair. We finetune our model, BidNet [7], MS-
BDN [15] and GCANet [14] pre-trained by the Stereo Foggy
Cityscapes training set on the generated foggy Drivingstereo
training set containing 2400 stereo pairs and evaluate them on
the generated validation set containing 800 foggy stereo pairs.
Tab. V compares the dehazing performance of our SRDNet and
other methods on the synthetic foggy Drivingstereo validation
set. Our SRDNet achieves an obvious gain with 3.36 dB in the
PSNR and 0.054 in the SSIM compared with the MSBDN. In
terms of the SSIM value, our method outperforms the second
best method GCANet by 0.0055.

Fig. 6 gives qualitative comparison of our dehazed re-
sults with the state-of-the-arts: MSBDN [15], BidNet [7] and
GCANet [14] on the real hazy images from the Drivingstereo
dataset. It can be observed that there still exists quite a lot of
haze in the results of MSBDN. Color distortion is introduced
by BidNet. Compared with GCANet, our method performs
better in the regions of the sky of row-4 and the road of row-
5. Our method has visually appealing results. The right images
dehazed by our method have analogous results.

E. Perceptual Quality for High-level Vision Tasks

As the stereo dehazing algorithms are usually used as the
pre-processing step for high-level computer vision tasks such
as 3D object detection, the accuracy of 3D object detection
can be treated as an indirect indicator of the stereo dehazing
quality. We adopt the accuracy of stereo image-based 3D
object detection on the KITTI dataset to evaluate the per-
ceptual quality of our dehazing method. KITTI dataset [54]
is a challenge benchmark for evaluating the performance of
3D object detection, which is divided into training set and
validation set with 3,712 images and 3,769 images respec-
tively. In order to generate foggy stereo images for the KITTI
dataset, we first estimate the depth map for each image by
a stereo matching method PSMNet [55], and then use the
depth map to synthesize foggy stereo images using the fog
simulation pipeline described in [7]. This synthetic dataset
is referred to as the Stereo Foggy KITTI dataset in this
work. We produce the atmospheric light randomly from 0.7
to 1.0 and use β ε [0.02, 0.04, 0.06] for each stereo image
pair. Hence, there are 11,136 stereo foggy image pairs for
training, and 11,307 stereo foggy image pairs for validation.
We first train the SRDNet on the Foggy Stereo KITTI training
set following Sec. IV-A. On the Stereo Foggy KITTI validation
set, our SRDNet improves the PSNR values from 11.89 dB
and 10.96 dB to 22.83 dB and 22.14 dB in terms of the left
view and the right view respectively. For the metric of the
SSIM, our SRDNet boosts 0.2301 and 0.2303 for the left
view and the right view respectively. For the 3D detection
accuracy, we choose Stereo R-CNN [4] pretrained on the
KITTI clear training set to evaluate the dehazed results of
our methods in light (β=0.02), medium (β=0.04), and heavy
(β=0.06) foggy scenes. Specially, the Stereo R-CNN model
uses ResNet101 [56] and FPN [57] as the backbone.

Generally, the metrics of 3D detection and 3D localization
performance are Average Precision for 3D box (AP3d) and
birds eye view (APbv). APE , APM and APL are the average
precision of easy, moderate and hard sets divided according
to the KITTI setting, respectively. Tab. VI compares the 3D
detection accuracy (AP3d) only Stereo R-CNN and SRDNet
concatenated with Stereo R-CNN in foggy scenes using IoU
= 0.7 on the Stereo Foggy KITTI validation set, which proves
that our SRDNet as the pre-process for the detector can stably
boost the accuracy in the conditions of light, medium, and
heavy haze. Specifically, the heavy haze degrades AP3d by
30.77%, 22.83% and 18.33% across the easy, moderate and
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Light+S Light+SR

Medium+S Medium+SR

Heavy+S Heavy+SR

Fig. 7. Qualitative 3D detection results of Stereo R-CNN [4] on the Stereo Foggy KITTI Dataset [54]. Heavy + S and Heavy + SR are short for Heavy +
Stereo R-CNN and Heavy + SRDNet followed by Stereo R-CNN, respectively; similarly for the other groups.

hard sets. By appending the SRDNet, the APE , APM and
APL improve by 16.23%, 12.27% and 7.98% respectively in
the heavy hazy circumstance. Further, as shown in Tab. VI,
the haze degrades the 3D localization accuracy (APbv) of the
Stereo R-CNN. After concatenating our SRDNet, the APbv for
birds eye view obtains a notable absolute gain, demonstrating
the high perceptual quality of our stereo dehazing method. We
compare our SRDNet and BidNet in 3D detection task, which
both belong to the binocular dehazing methods. In terms of
each metric of AP3D in the light hazy scenes, the medium
hazy scenes, and the heavy hazy scenes, Tab. VII shows that
our method obtains higher accuracy and has better perceptual
quality.

Fig. 7 gives some stereo detection visual results of Stereo
R-CNN in the conditions of light, medium, and heavy haze.
The birds eye view images projected from the 3D box are also
presented. When the haze gets heavier, there are more objects

that are missed by the Stereo R-CNN. After appending the
SRDNet, the missed objects are correctly detected and located.
Our SRDNet is flexible and can pre-process the foggy stereo
inputs for up-to-date stereo based 3D object detectors, which
eliminates the degradation of the foggy inputs.

V. CONCLUSION

In this paper, we have proposed a stereo refinement dehazing
network directly restoring the haze-free stereo image pair
without disparity estimation in a coarse-to-fine manner. It is
composed of two parts : a weight-sharing coarse dehazing
network restoring a coarse dehazed image pair; and a guided
separated refinement network designed to predict the residues
for different views. The guided separated refinement network
fuses information of cross views and separates the features of
different views through a guided channel and spatial refine-
ment module. The residues are added to the coarse dehazed
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pair in order to make refinement and remove the remained
haze. Extensive evaluations demonstrate the superiority of
the proposed network against state-of-the-art methods on the
synthetic dataset. In addition, our SRDNet generalizes well for
the real stereo foggy scenes. Furthermore, our SRDNet as the
pre-process of the stereo image-based 3D object detection can
boost its accuracy in the hazy scenes.
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