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Abstract—Recent works on learned image compression per-
form encoding and decoding processes in a full-resolution man-
ner, resulting in two problems when deployed for practical
applications. First, parallel acceleration of the autoregressive
entropy model cannot be achieved due to serial decoding.
Second, full-resolution inference often causes the out-of-memory
(OOM) problem with limited GPU resources, especially for high-
resolution images. Block partition is a good choice to handle the
above issues, but it brings about new challenges in reducing
the redundancy between blocks and eliminating block effects.
To tackle the above challenges, this paper provides a learned
block-based hybrid image compression (LBHIC) framework.
Specifically, we introduce explicit intra prediction into a learned
image compression framework to utilize the relation among
adjacent blocks. Superior to context modeling by linear weighting
of neighbor pixels in traditional codecs, we propose a con-
textual prediction module (CPM) to better capture long-range
correlations by utilizing the strip pooling to extract the most
relevant information in neighboring latent space, thus achieving
effective information prediction. Moreover, to alleviate blocking
artifacts, we further propose a boundary-aware postprocessing
module (BPM) with the edge importance taken into account.
Extensive experiments demonstrate that the proposed LBHIC
codec outperforms the VVC, with a bit-rate conservation of
4.1%, and reduces the decoding time by approximately 86.7%
compared with that of state-of-the-art learned image compression
methods.

Index Terms—Learned image compression, block-based, pre-
diction, postprocessing, acceleration.

I. INTRODUCTION

IMAGE compression is an essential technique to reduce the
costs of image transmission and storage. Traditional image

codecs, such as JPEG [1], BPG [2], and VVC (intra) [3],
adopt a hybrid coding framework consisting of prediction,
transformation, quantization, and entropy coding. However,
traditional image codecs are limited by handcrafted prediction
modes and lack adaptability. Owing to significant progress
in artificial neural networks, some works have attempted to
utilize CNN to replace the part of traditional codecs [4], which
is still limited to the handcrafted architecture. Meanwhile,
learned image compression methods have also been proposed
based on transformation coding with an automatic end-to-end
optimization [5].
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Learned image compression methods [5]–[14] perform en-
coding and decoding in a full-resolution manner, which com-
monly consists of transformation, quantization, and entropy
modeling. Among these modules, probabilistic-based entropy
modeling is an essential component to estimate rate for rate-
distortion optimization. Current advanced entropy modeling
achieves this aim through hyperprior modeling [6] and au-
toregressive context modeling [7]. The autoregressive context
module estimates the probability based on the previously
decoded contents in the latent space, which can achieve a bit-
rate conservation of 15.87% [7]. The context modeling confers
important benefits in compression but also greatly increases
the time complexity, especially in the decoding process. The
probability for the content to be decoded is estimated accord-
ing to the already-decoded contents. Thus, the entire decoding
step must be processed in sequence, which is severely time-
consuming. In addition, the required memory of the GPU
resources for the frame-level coding unit will dynamically
increase as the resolution of the input image increases, which
often causes the out-of-memory (OOM) problem with limited
GPU resources.

Considering the coding speed and limited GPU resources,
we are in pursuit of block-based coding frameworks that allow
us to perform encoding-decoding in a parallel manner. How-
ever, based on our experimental observations, block partition
commonly incurs compression performance degradation due to
the following reasons: First, the relevant information among
blocks cannot be utilized efficiently since adjacent blocks are
coded independently. Second, the padding operation in the
boundaries of the convolution affects the reconstruction of
edge pixels, resulting in block artifacts. In addition, explicit
intra prediction is easier to be designed for block-based
coding frameworks relative to full-resolution compression
frameworks.

This paper aims to solve the above limitations and propose
an effective and efficient learned image compression frame-
work. Unlike existing learned compression methods based
on transformation coding, we propose a learned block-based
hybrid image compression (LBHIC) method, which introduces
a contextual prediction module (CPM) to utilize the relation-
ship between adjacent blocks, and propose a boundary-aware
postprocessing module (BPM) to remove the block artifacts.

For better prediction among adjacent blocks, we analyze
the correlation map between all pixels of the predicted block
and reference blocks. As shown in Fig. 1(a), to compare the
advantages of different prediction methods, we randomly give
two points as an example to demonstrate the reference areas of
different prediction methods. Meanwhile, we also calculate the
correlation map of predicted points and all pixels in reference
blocks. According to Fig. 1(a), our CPM can captures the most
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Fig. 1: Example to illustrate why our CPM can extract more relevant information than the prediction modules of the traditional
codecs and convolution network. (a) The visualization of corresponding areas for different prediction methods. (b) The statistical
relationship between the distance and the correlation by calculating the correlation and distance of all pixels to be predicted
and all pixels in reference blocks.

relevance information from the reference block to prediction
block compared with other methods. To provide the statistical
analysis, we evaluate the relation between the distance and the
correlation of all predicted pixels and reference pixels from
whole kodak dataset [15], which can be seen in Fig. 1(b). In
these two plots of Fig. 1(b), each color line represents one
pixel to be predicted. We calculate the distance between the
predicted pixel and all pixels in reference blocks by Euclidean
distance, and utilize mean-normalization to normalize the dis-
tance in order to show the relative distance between different
points to be predicted and all points of reference blocks.
Based on the statistical results of correlation distribution in
the correlation map, we find that the positions of the pixel to
be predicted and the most relevant pixel in the reference block
are not matched and that their correlation is inversely related
to their distance. Nevertheless, traditional codecs utilize the
linear weighting of neighboring pixels to obtain the prediction
of the current pixel (e.g., the pink mask in Fig. 1(a)), which
only utilizes limited pixels and thus is difficult to optimize in
an end-to-end manner. Another straightforward solution is to
feed reference blocks directly into a convolution network for
prediction. However, the correlation between the target point
and its relevant context depends on their relative positions.
In addition, this correlation may be long range. Thus, the
convolution-based method encounters difficulty in extracting
the most relevant information for prediction (e.g., the gray
mask in Fig. 1(a)).

Different from the above schemes, our CPM captures most
of the relevant information through the operation of strip pool-
ing [16], which is shown as the yellow mask in Fig. 1(a). Since
the upper and left blocks have different spatial relationships
with the points to be predicted, the distribution of the most
relevant pixels is different. For the upper block, the most
relevant information is located in the bottom part, while the
right part is the most relevant part for the left block. Therefore,

we extract relevant information through the vertical/horizontal
band for prediction, respectively. Next, we fuse the information
obtained from the upper and left reference blocks and feed it
to a network to realize the final prediction.

To further improve the subjective and objective quality of
the coded image, we also propose a boundary-aware postpro-
cessing module (BPM) to cope with the blocking artifacts
caused by the influence of padding in the network. Specif-
ically, we first locate the boundary between different coded
blocks of the image and then generate a boundary mask by
expanding the boundary. Afterwards, we utilize the boundary
mask to guide the postprocessing network to focus more on the
boundary area and remove the coding artifacts, especially the
edges across different blocks. Moreover, the coding artifacts
also contain multiple distortions (blur, noise, etc.). Here, to
improve the representation ability of the network, our BPM
consists of a multiscale architecture and revised grouped dense
residual blocks. Owing to our proposed BPM, we can remove
the block effect and achieve approximately 0.3 dB gain over
our basic block-based image compression network.

The contributions of this paper are summarized as follows:

• We design learned block-based hybrid image compression
(LBHIC). This approach takes advantage of the tradi-
tional hybrid coding method and learned image compres-
sion and compensates for their respective drawbacks.

• We analyze the correlation of the adjacent blocks and
propose a contextual prediction module (CPM) to achieve
long-range relevance capture, which yields more effec-
tive information decorrelation, thus achieving better rate-
distortion performance.

• We further propose the boundary-aware postprocessing
module (BPM) to remove artifacts and achieve better
subjective and objective quality.

• Extensive experiments validate that the proposed LB-
HIC achieves state-of-the-art (SOTA) compression perfor-
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mance compared with other image compression methods
in terms of PSNR, MS-SSIM, and coding speed.

The remainder of this paper is organized as follows. Sec-
tion II introduces work related to our endeavor. In Section III,
we formulate our LBHIC framework and then provide a
detailed description of our model. We will present experiment
results in Section IV and conclude with Section V.

II. RELATED WORK

Lossy image compression standard codecs have been de-
veloped for decades. As one of the most widely used stan-
dards, JPEG was first created in 1992. Subsequently, to im-
prove compression performance, standards such as JPEG2000,
WebP, BPG, and VVC (intra) were successively proposed. To
our knowledge, VVC (intra) offers the highest compression
performance among standard codecs.

Recently, learned image compression has attracted great
attention to achieve improved compression performance in
this field. From the perspective of neural topology, learned
image compression methods can be divided into two cate-
gories: recurrent models and variational autoencoder (VAE)
models. Recurrent models [8], [17], [18] compress the image
by iteratively feeding the residual information (between the
reconstructed image and the original image) into the encoder.
In the framework, the codec can realize variable rates through
a single network without any retraining process. VAE models
[5], [6], [9] are composed of nonlinear transformation, relaxed
quantization, entropy coding and postprocessing, which are
modified in following works to further improve compression
performance.
Nonlinear Transformation: To better remove the spatial
redundancy of images, GDN [19] and nonlocal attention [20]
are proposed to perform nonlinear transformation, removing
local and global redundancy, respectively. In addition, Qian
et al. [21] go one step further: they introduce the subtraction
operation in GDN to correct the mean-shifting problem.
Relaxed Quantization: Unlike traditional codecs, a rounding
operation is not differentiable and thus is not suitable for the
quantization in learning-based compression. To develop differ-
entiable quantization, Ballé [5] utilizes the additive uniform
noise as the substitution of the round operation during the
training, while Agustsson et al. [22] propose a substitution of
the vector quantization for better performance. Furthermore,
to eliminate the mismatch between training and testing phases
in quantization, universal quantization [23] is introduced in
recent works.
Entropy coding: Entropy coding is an essential part of
the VAE-based framework and serves the role of estimating
rates during rate-distortion optimization, which compresses the
discrete latent representation into a bit-stream in a lossless
manner. To improve the performance of entropy coding, a
probabilistic model [6] is first proposed, which uses a hyper-
prior to capture the dependencies in the latent space. Minnen
et al., Mentzer et al., and Lee et al. [7], [24], [25] utilize
the autoregressive model to establish the context relationship
between coded elements and the element to be coded in the
spatial latent space in order to further improve the accuracy

of probability estimation. In addition, a 3D-autoregressive
model [26] is considered for the same purpose, which com-
bines the spatial and channel relationships to further capture
the relationship within the elements. To further improve the
long-term dependency in the probabilistic model, Hu et al. [27]
propose hierarchical hyperprior layers to effectively reduce
spatial redundancy.
Postprocessing: With the development of image restoration
technologies, such as image denoising [28], [29], image
deblurring [30], [31] and hybrid-distorted image restoration
technologies [32], postprocessing has been applied in image
compression [33], [34]. Lee et al. [33] proposed to jointly train
the image compression network and postprocessing module to
reduce the artifacts caused by compression. To further improve
the subjective quality of image compression, some studies
[35], [36] utilize perceptual loss [37] and adversarial loss [37]
to guide the training process of the postprocessing network.

Although the above schemes yield better compression per-
formance, coding images with full resolution ignores the
compression complexity. To accelerate coding time, Johnston
et al. [9] utilize automatic network optimization to reduce the
computational complexity of the network. Another solution
is to utilize block partition for compression. The block par-
tition was first applied in the learning based video coding
scheme proposed by Chen et al. [38], which utilized motion
extension and hybrid prediction networks to model block-level
spatiotemporal coherence, but its intra coding scheme still
functions in a full-resolution manner. For image compression,
Lin et al. [39] propose a block-based scheme for acceleration
and utilize RNN-based transformation to reduce the redun-
dancy between blocks by utilizing a copy-paste-like operation.
This approach is similar to the convolution network in Fig. 1,
which lacks the utilization of the most relevant information
and lacks applicability in most scenarios.

III. METHODOLOGY

A. Overview of our Framework

To reconcile compression efficiency with compression per-
formance, we propose a learned block-based hybrid image
compression framework (LBHIC), which integrates the pre-
dictive coding to remove the redundancy among adjacent
blocks and introduces the postprocess module to cope with
block artifacts. The overall framework is shown in Fig. 2,
containing block partition, nonlinear transform, quantization,
entropy model, arithmetic coding, inverse nonlinear transform,
contextual prediction module (CPM) and boundary-aware
postprocessing module (BPM).

Specifically, we first divide the input imageX into nonover-
lapping blocks as shown in Fig. 2. Then we utilize predictive
coding to capture and reduce the redundancy between the
current block Xi,j and adjacent decoded blocks from the
decoded block buffer.

Here, we denote the prediction network as gpred and its
parameters as θpred. Xi,j denotes the block in the i-th row
and j-th column, and X̂i,j denotes the corresponding decoded
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Fig. 2: Flowchart of the proposed LBHIC. Modules in gray are only included on the encoder side, while the module in green
is only contained on the decoder side.

block. With the prediction of Xi,j generated by CPM, we can
calculate the residual information Ri,j as:

Ri,j =Xi,j − gpred(X̂i−1,j , X̂i,j−1;θp). (1)

After prediction, we follow the structure of the VAE-based
image compression method to compress the residual informa-
tion. This approach utilizes a nonlinear transformation network
gnlt with parameters θnlt to map the residual information Ri,j

into a latent representation yi,j , which can reduce the spatial
redundancy inside the block. We then utilize quantization
module Q to discretize the value of the latent variable yi,j ,
which can reduce the information in a lossy way. The above
process can be formulated as:

ŷi,j = Q(yi,j) = Q(gnlt(Ri,j ;θnlt)). (2)

Similar to Minnen et al. [7], we estimate the probability
distribution of the quantized elements for more accurate rate
estimation in order to improve the compression performance.
Let ŷi,j,k denote the k-th element in the quantized latent
feature, where its probability distribution p̂i,j,k is described
by the Gaussian mixture model (GMM):

p̂i,j,k =

N∏
t=1

αi,j,k,t√
2πσ2

i,j,k,t

exp(− (yi,j,k − µi,j,k,t)
2

2σ2
i,j,k,t

), (3)

where the parameters θGMM (α, µ, and σ) of the GMM are
estimated by a parametric entropy coding model ge(ŷi,j ;θe).
Specifically, in our LBHIC, the entropy coding model contains
a hyperprior model [6] and autoregressive model [7]. Based on
p̂i,j,k, we convert the quantized element ŷi,j,k into bit-streams
through arithmetic coding.

To obtain the reconstructed block X̂i,j , we recover the
residual information through the inverse nonlinear transforma-
tion network ginlt with parameters θinlt. We then reconstruct
the block to be compressed according to the recovered residual
and the predicted content. As a result, the reconstructed block
X̂i,j is obtained as follows:

X̂i,j = ginlt(ŷi,j ;θinlt) + pred(X̂i−1,j , X̂i,j−1;θp). (4)

On the decoder side, we first reconstruct all blocks and
then assemble them into a full resolution reconstructed image

Shared Feature
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Prediction 

Network
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Horizontal

Pooling

i, jX

i-1, jX̂

Prediction

Expand

Expand

i, j-1X̂

Decoded 

Blocks 

Buffer

Upper block

Left block

Fig. 3: Pipeline of the proposed contextual prediction module
(CPM).

X̂ . To eliminate the block artifacts caused by the block-
based compression scheme, we further use postprocessing
network gpost with parameters θpost to improve subjective
and objective quality, which is formulated as:

X̃ = gpost(X̂;θpost). (5)

Details about the prediction gpred and postprocessing gpost
are presented in section III-B and section III-C, respectively.
The architectures of other modules are shown in section III-E.

B. Contextual Prediction Module

In the traditional hybrid coding framework, intra predic-
tion takes previously decoded boundary pixels of the spa-
tially neighboring blocks as context to perform signal predic-
tion [40]. However, it only utilizes the boundary information
of adjacent blocks, which is not sufficient for learning based
image compression. Going beyond pixels around boundaries,
we use all pixels in neighboring blocks to provide long-
range contextual information for better prediction. A simple
prediction scheme is to feed the adjacent blocks into a CNN
module to predict the current block. However, the module
contains a limited receptive field and does not consider the
distribution of correlations between pixels of adjacent blocks
and the current block. To explore a better prediction scheme,
we statistically analyze the correlations between pixels in ad-
jacent blocks and current block, which is shown in Fig. 1. The
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Fig. 4: Pipeline of the boundary-aware postprocessing module
(BPM). Convolutional parameters are denoted as (kernel size,
stride). For information about the detailed nonlocal operations,
refer to [41].

.

correlation between pixels is inversely related to their distance,
which means that feeding the reference block directly to the
convolution network for prediction is inefficient. To capture
as much relevant information as possible for prediction, we
benefit from the operation of strip pooling [16] and design the
contextual prediction module (CPM), which is illustrated in
Fig. 3.

To this end, for enlarging the perceptive field for prediction,
we propose to utilize strip pooling to increase the receptive
field to cover more relevant pixels in adjacent blocks, thus
capturing more correlations from adjacent blocks for predic-
tion. Note that this approach is different from the original use
of strip pooling as in Hou et al. [16], which aims to obtain
self-attention information to assist scene parsing.

Specifically, for the block Xi,j to be predicted, we utilize
the adjacent upper decoded block X̂i−1,j and left decoded
block X̂i,j−1 to formulate the prediction result. We first feed
them into the shared feature extractor, including convolution
operation, normalization and nonlinear activation, to obtain
their respective latent representations. Then, for the feature of
the upper block, we utilize the vertical strip pooling method
to average feature values in a column, while horizontal strip
pooling is used to process the feature of the left block. To
fuse the information between the upper and left blocks, we
extend the pooled features through vertical/horizontal copying
and utilize element-wise addition to aggregate them. After the
fusion operation, the fused feature is sent to the prediction
network together with the decoded reference block to obtain
the prediction. The architecture of the prediction network is
based on Unet [42]. The detailed structure of the feature
extractor and prediction network is shown in section III-E.

C. Boundary-aware Postprocessing Module

To remove the block artifacts caused by the padding opera-
tion on edges, we introduce the concept of the boundary mask
to guide the postprocessing module, and further design the
boundary-aware postprocessing module (BPM). As shown in
Fig. 4, we generate a boundary mask by locating the boundary
areas.

We utilize the boundary mask M to guide the postprocess-
ing module in two ways. First, we concatenate the coded image
and the boundary mask as input and utilize the boundary mask
M to generate the mask-aware spatial attention to enhance
the boundary areas in feature space. Second, we propose
a boundary-aware loss based on the boundary mask. The
boundary-aware loss can be divided into two parts as shown in
Eq (6), namely, the global part D(X, X̂) and boundary part
D(M �X,M � X̂).

Lpost = D(X, X̂) + αD(M �X,M � X̂), (6)

where D, � and α are the distortion metric, element-wise
multiplication and weighting factor, respectively. In this paper,
we empirically set the weighting factor to 10. The global
part is utilized for the whole image, which can guide the
postprocessing module to further enhance the texture and
remove global noise. The boundary part is used to enhance
the boundary areas of the coded image.

For the backbone of the postprocessing module, we follow
MSGDN [36], which utilizes the multiscale information to
remove block artifacts. Here, we utilize the convolution layer
with stride 2 to downsample the feature map with × 1, ×
2, and × 4, separately. We then utilize the grouped residual
dense block (GRDB) [43] to process each feature. The GRDB
consists of four residual dense blocks (RDB) [44], and each
RDB contains a dense layer with 8 convolution layers. To
fuse features of different scales, we utilize the convolution
with kernel size 1 and nonlocal modules to capture the long
dependency in the features.

D. Block-wise Parallel Processing Strategy

Due to the parallelism of the block-based scheme, we are
allowed to compress multiple blocks in parallel to accelerate
the coding speed. Taking into account the characteristics of our
prediction scheme, which utilizes the reconstructions of the
upper block and left block as reference blocks, we propose
a feasible parallelism scheme by setting the coding order
of parallel coding blocks as shown in Fig. 5. Specifically,
we utilize a group of 45◦ straight lines to determine blocks
that can be calculated simultaneously. We number these lines
starting from zero and code them from the top line to bottom
line. Letting L represent the number of the L-th line, where
HN and WN represent the number of rows and number of
columns of the block inside the image, respectively, we can
define the set of parallel blocks formed by each line as follows:

SL = {Xi,L−i|0 ≤ i < HN , 0 ≤ L− i < WN}, (7)

where SL represents the set of blocks that can be calculated
in parallel at the L-th time. The maximum number of the
L is HN + WN − 2 because the last block to be coded is
XHN−1,WN−1.

For the blocks X0,L, XL,0 at upper and left edges of an
coded image, that only have one reference block, we do not
perform predictive coding on them. Of cause, training two
extra CPM models for above two patterns can further improve
the coding efficiency. But the blocks in upper and left edges
only take a small part of whole image, while it will increase
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Fig. 5: Diagram of parallel acceleration strategy. We process
the blocks on the same line in parallel.

the network parameters about two times. On the encoder side,
we follow the above scheme to encode the blocks in one
frame and obtain the bit-stream. Since the residual decoding
does not depend on adjacent decoded blocks, theoretically,
we can decode the residuals of all blocks at the same time.
Afterwards, we can use the parallel scheme provided in this
section to achieve predictive decoding and obtain the final
decoded image.

E. Implementation Details

a) Quantization: We utilize the round operation as the
quantization Q in our LBHIC. Since the round operation is
nondifferentiable in neural training, we follow Ballé et al. [5]
to utilize additive uniform noise u as the substitution in the
training stage:

ŷi,j = Q(yi,j) = yi,j + u(−1

2
,
1

2
). (8)

However, the additive noise will cause a mismatch between the
training and testing stage. To solve this problem, we straight-
through the gradients to substitute gradients of the round
operation, which can be formulated as:

ŷi,j = Q(yi,j) = yi,j − Stop(yi,j − byi,je), (9)

where be denotes the round operation and Stop denotes
stopping the gradient. Note that we only utilize the approx-
imation of the Eq (9) in the input of the inverse nonlinear
transformation, while the input of the entropy model still
adopts the quantization method in Eq (8).

b) Model Training: We jointly train all modules of
LBHIC, except the BPM, through rate-distortion optimization.
Specifically, the rate and distortion are weighted against each
other with a Lagrange multiplier λ as:

L = rate+ λDistortion, (10)

where the distortion term can be any differentiable metric in
our framework. According to information theory, the minimum
code rate is the cross entropy of the real distribution pi,j and
the estimated distribution p̂i,j , which can be calculated by the
following formula:

rate = Epi,j
[−log(p̂i,j)]. (11)

In the experiments, we train different models with different
λ to evaluate the rate-distortion performance for various ranges
of bit-rate. For MSE, we evaluate our models with seven
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Fig. 6: Detailed layer information in LBHIC. Q, AE and AD
denote quantization, arithmetic encoder, and arithmetic de-
coder, respectively. Conv represents the convolution operation,
and TConv stands for the transpose convolution operation.
The parameters of Conv and TConv are denoted as (number
of filters, kernel size, stride). The parameters N and M are
selected according to the corresponding rate-distortion model.

λ values: 128, 256, 512, 1024, 2048, 4096 and 8192. For
MS-SSIM, we evaluate the rate-distortion performance of
our LBHIC with six λ values: 8, 16, 32, 64, 128 and 256.
The network training includes four stages. First, we train the
baseline model, that is, the structure of LBHIC without CPM
and BPM. The number N of the GMM model is set to 3 in
our baseline model. Second, we train CPM to predict the block
according to the decoded reference blocks. Then, we jointly
train the baseline model with CPM in an end-to-end manner.
Finally, we train BPM to remove the block effects caused by
the block-based schemes. In all stages, we use Adam [45] as
the optimizer to train the network, and the initial learning rate
is set to 5×10−5. For the third stage, we increase the learning
rate decay by 0.5 after every 300,000 iterations. The minibatch
size is set as 8, and the whole system is implemented based
on PyTorch.
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Fig. 7: Structures of feature extractor and prediction network
in CPM.

c) Detailed Layer Information: In this section, we pro-
vide a detailed layer description of the nonlinear transforma-
tion, inverse nonlinear transformation, and entropy model, as
shown in Fig. 6. We adapt N as 128 and M as 192 in five low-
rate models. For the other high-rate models, N and M are set
as 256 and 448, respectively, which requires more channels to
preserve high-frequency information. In the entropy model, the
hyperprior model [6] and the autoregressive context model [7]
are both utilized to estimate the probability of elements in
the feature ŷi,j . We also provide the detailed structures of the
feature extractor and prediction network in our CPM, which
are illustrated in Fig. 7. In BPM, GRDB is our basic unit. For
the basic architecture of the GRDB, refer to [46]. Here, we
set the RDB number in each GRDB to 4 and the number of
layers in each RDB to 8.

d) Parallel Threads: In this paper, the maximum number
of the parallel threads we set is 8. As shown in Table I, the
encoding time is 0.8780s and decoding time is 4.9419s with
the kodak dataset. When the number of parallel thread is set 1,
the encoding time is 6.8026s and decoding time is 24.1270s,
which can evaluate the effectiveness of our proposed parallel
scheme.

IV. EXPERIMENT RESULTS

A. Experimental Setup

a) Datasets: We use Imagenet [47] as the training set
for the first three training stages, and utilize the DIV2K
dataset [48] and CLIC 2020 challenge training set for the
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Fig. 8: R-D performance covering a wide range of traditional
and learned compression methods.

fourth training stage. We augment training datasets by ran-
domly cropping the images into 256 × 256 patches. To eval-
uate the performance of our method, we utilize the Kodak
dataset [15] and Tecnick SAMPLING dataset [49] as our test
dataset. The Kodak dataset contains 24 lossless images of size

https://challenge.compression.cc/tasks
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BPG444 VTM8.0

0.082bpp/31.32dB/ 0.970/0.1547 0.073bpp/32.35dB/0.975/0.1429

0.203bpp/26.20dB/ 0.956/0.3076 0.177bpp//26.64dB/0.960/0.2746

0.074bpp/29.73dB/ 0.972/0.1666 0.073bpp/31.00dB/0.976/0.1464

0.106bpp/28.41dB/ 0.952/0.3010 0.096bpp/29.21dB/0.959/0.2643

Ours

0.067bpp/32.57dB/ 0.978/0.1397

0.165bpp/26.20dB/ 0.965/0.2523

0.070bpp/31.14dB/ 0.978/0.1473

0.095bpp/29.45dB/ 0.960/0.2648

Lee et al. (ICLR2019)

0.081bpp/32.22dB/0.976/0.1403

0.202bpp/26.03dB/0.964/0.2378

0.088bpp/30.806dB/0.977/0.1395

0.125bpp/28.90dB/0.960/0.2632

Fig. 9: Comparisons of BPG, VTM8.0 (intra), Lee [25] and our LBHIC with low rate in terms of BPP/PSNR/SSIM/LPIPS.

512 × 768, while the Tecnick dataset contains 40 images of
size 1200× 1200.

b) Evaluation Setting: We measure the quality of recon-
structed images with the metrics PSNR and MS-SSIM [50],
and we calculate bits per pixel (bpp) for each image to
measure coding cost. To verify the effectiveness of our LBHIC,
we compare our LBHIC with the state-of-the-art learned
image compression methods [6], [7], [27], [39], [51] and
the traditional codecs (JPEG, JPEG2000, BPG, and VVC).
In this paper, we evaluate VVC by using VVC standard

reference software VTM 8.0. Specifically, we use the VTM
encoder intra vtm.cfg as our configuration file, and we
set InputChromaFormat=444 for all datasets. Given an input
image in RGB format, we first convert it to YUV444 format
and then compress it with VTM 8.0 (intra). Afterwards, the
reconstructed file is converted back into RGB color space
for evaluation. We also compare the encoding and decoding
speeds for different learning-based codecs. To ensure fairness,
we test these schemes on the same machine (Intel Core i7-
8700 CPU / NVIDIA GTX 1080 GPU).
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TABLE I: Quantitative evaluation results compared with recent works.

Dataset Method Encode time (s) Decode time (s) GPU VRAM(MiB) BD-rate (%) Low rate
model size (MB)

High rate
model size (MB)

Kodak

VTM (Anchor) 74.9985 0.1074 – 0.0 7.2 7.2
Lee (ICLR19) 10.7854 27.7725 1173 17.0 123.8 292.6
Hu (AAAI20) 13.2832 38.2971 1437 11.1 84.6 290.9

Cheng (CVPR20) 24.3037 19.6567 1387 4.8 134.3 299.11
Ours 0.8780 4.9419 1247 -4.1 288.8 474.6

Tecnick

VTM (Anchor) 165.9363 0.2624 – 0.0 7.2 7.2
Lee (ICLR19) 38.617672 101.5829 2945 30.3 123.8 292.6
Hu (AAAI20) 29.4867 116.8766 3459 16.8 84.6 290.9

Cheng (CVPR20) 64.4792 62.9775 5009 6.5 134.3 299.11
Ours 3.1255 16.7236 1247 -6.4 288.8 474.6

B. Overall Performance Results

As shown in Fig. 8a and Fig. 8b, we visualize RD curves
of our LBHIC model and the SOTA methods (including Lin
(CVPR20) [39], Cheng (CVPR20) [51], Hu (AAAI2020) [27],
Minnen (NIPS18) [7], Mentzer (NIPS2020) [14] and Lee
(ICLR19) [25]) in terms of the PSNR and MS-SSIM metrics
on the Kodak dataset, respectively. Our methods outperform all
previous methods with respect to both metrics with the same
coding cost. We also compare our LBHIC with traditional
codecs (including JPEG, JPEG2000, BPG, and VTM8.0).
Compared with the latest traditional codec VTM 8.0 (intra),
our LBHIC framework can achieve approximately 0.3 dB gain
in PSNR at all rate points. Since the learned codec can flex-
ibly learn better representation for a given distortion metric,
our method achieves better MS-SSIM performance than the
traditional codec VTM8.0. In addition, owing to the CPM and
BPM, our model achieves obvious improvements compared
with the learned codecs. To further verify the generalization
performance of our LBHIC, we directly apply our LBHIC
to encode the Tecnick dataset with the same weights utilized
to encode the Kodak dataset. The corresponding performance
is shown in Fig. 8c. Our model can be generalized to high-
resolution (1200×1200) image datasets and can still outper-
form existing traditional (VTM 8.0, BPG, and JPEG) and
learned image compression methods [25], [27] in terms of
PSNR.

We also provide the subjective comparison of our LBHIC
framework with traditional codecs (including BPG444 and
VTM 8.0 (intra)) in the low rate setting. Fig. 9 shows the
raw image and the results produced by the three compression
methods. Visual artifacts such as blur, ringing, and block
effects can be observed in reconstructions of the traditional
codecs (such as the graffiti on the wall on the first line,
the text on the airplane on the third line, and the roof on
the last line). Compared with BPG444 and VTM 8.0 (intra),
our scheme eliminates the ringing effect, noising and blurring
under similar rate cost, providing better visual quality.

To analyze the encoding and decoding time complexity of
our codec, in Table I, we first reproduce SOTA learned image
compression methods (including [27], [33], [51]) and compare
the encoding and decoding runtime on the same machine
to ensure fairness. The encoding and decoding runtime are
measured by averaging the encoding and decoding time across
all images in Kodak dataset. Then, we calculate the BD-

rate [52] of each method with the anchor VTM 8.0 (intra)
, where the BD-rate metric represents the average rate saving
with equivalent distortion between two methods. Here, we
utilize the PSNR as the distortion metric. Compared with
existing learning based solutions, our method provides better
compression performance while providing nearly 5x improve-
ment in decoded runtime (i.e., a decoding time savings of
74.8% compared with that in Cheng [51]) on Kodak dataset.
Under the acceleration of GPU, our decoding time is 4.9419s.
Without GPU acceleration, our decoding time is 62.9160s. It
is worth noting that even compared with the latest traditional
standard VVC (VTM 8.0), our solution can save 4.1% of bits
while maintaining the same compression quality. On Tecnick
dataset, our method also provide similarly improvement in
decoded runtime, and achieves 6.1% bit saving compared
with VVC. Although our scheme still has a gap in runtime
compared with traditional codec, we think that the proposed
method provides a feasible direction for acceleration on the
learning based scheme, which provides enough potential for
practice application. We believe that with the development
of GPU chip technology and the further optimization of
engineering, it can achieve preformance exceeding in all
aspects compared with traditional codec. To demonstrate the
friendliness of our solution to GPU memory, we give the
GPU memory consumption of different solutions in Table I.
We can see that the GPU consumption of existing solutions
will increase with the increase of image resolution. Since the
coding unit of our solution is a fixed-size block, its video

TABLE II: Prediction performance of CPM compared with the
SOTA prediction methods on the Kodak dataset.

Prediction
network

Dumas et al.
(TIP19)

Hu et al.
(TMM19) CPM

PSNR (dB) of
Prediction 16.6812 18.9015 19.0539 19.4279

PSNR (dB) of
Reconstruction 30.2551 30.2882 30.3795 30.4426

MS-SSIM of
Reconstruction 0.9747 0.9749 0.9755 0.9758

Bpp 0.2002 0.2008 0.2034 0.2012

Params (MB) 106.01 76.52 960.59 196.05

Average
Runtime (ms) 12.82 7.15 30.60 21.99
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memory usage will not increase with the increase in resolution,
which is more hardware-friendly. In the last two columns of
the Table I, we compare the model sizes of different methods.
It can be seen that due to the addition of the prediction module,
our scheme has nearly doubled the model size compared with
existing methods. But we believe that this increase in storage
is worthwhile in terms of the nature of fixed GPU memory
and the benefits of acceleration.

C. Ablation Study

1) Effectiveness of the Contextual Prediction Module
(CPM): Since there are fewer works which attempt to utilize
explicit prediction in learned image compression, here, we
compare our CPM with some neural network based prediction
methods [53], [54] that have been proposed for the tradi-
tional hybrid coding framework. Specifically, we reproduce
their works and integrate them into our learned compression
framework. We then utilize mean square error as the goal of
distortion optimization and train each model with the same
rate-distortion point (λ = 256), which is trained on the
same training set (Imagenet [47]). To measure the quality of
prediction, we calculate the distortion between original blocks
and predicted blocks for each of the prediction methods.
Besides, we further analyze the model parameters and time
complexity of each model. The qualitative prediction results
on the Kodak dataset are shown in the first row of Table II.
Compared with existing prediction methods (including Dumas
et al. [53] and Hu et al. [54]), our CPM can achieve better
prediction quality with a higher PSNR. Although compared
with Prediction network and Dumas et al., our CPM adds
additional model parameters and runtime, the runtime of the
prediction actually accounts for a minor part of the coding
time. Hence, it is worth paying for the above minor overhead
for performance.

We also attempt to directly include the pixel row/column
used for prediction in traditional codec into our prediction
network CPM. And then, we retrain the prediction network
from scratch. The prediction result is 19.4358dB, which is
only a gain of 0.008dB compared with our CPM and can be
ignored.

To analyze the prediction results more intuitively, we visual-
ize results between our CPM and the above existing prediction
results, as seen in Fig. 10.

From Fig.10, we can see that our prediction scheme can
predict continuous textures (window edges in row 1, wall
pattern in row 2, face profile in row 3, etc.) through context
blocks. For the contents that cannot be provided by neigh-
boring blocks, they cannot be predicted completely (leaves in
row 1, text in row 2, necklace in row3, etc.) and they can
be further reconstructed by residual coding. We also provide
corresponding rate and distortion evaluation of reconstructed
blocks in the second and third rows of Table II, which
proves the effectiveness of our CPM in improving compression
performance.

The goal of the prediction is to predict as accurately as
possible, thereby reducing the transmitted rate of the residual
to be compressed. Therefore, we design an experiment to

Fig. 10: Visualization of the prediction result.

indirectly verify the effectiveness of our CPM by estimating
the rate of our residual. Specifically, we utilize the sum
of absolute transformed differences (SATD) [55] to measure
the rate size required to transmit the information. We first
transform the input through the Hadamard transformation and
then calculate the sum of absolute transformed coefficients
to obtain the SATD. We calculate the SATD of the original
images on the Kodak dataset and calculate the SATD of
the corresponding residual obtained by the low rate model
(λ = 256), and the result is shown in Fig. 11. Compared
with the original image, the residual information obtained after
prediction has a smaller SATD on all test images, which means
that our CPM removes the correlation between blocks and
obtains more compressible residual representation.

2) Effectiveness of the strip operation: To prove the ef-
fectiveness of strip operation in our CPM, we first simply
concatenate reference blocks. Specifically, for the reference
block feature with a feature shape of H×W×3, the operation
of concatenation is to connect the above two features in the
channel(RGB) dimension. After the concatenation, we feed
them into the prediction network (Fig. 3) to test its prediction
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Fig. 11: SATD of the original image and corresponding
residual on the Kodak dataset.
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w BPM w BPM w BPM

Fig. 12: Visualization of image qualities before and after the
boundary-aware postprocessing module (BPM).

results, which is labeled as prediction network in Table II.
Without the strip operation, the prediction network can achieve
only approximately 16.6812 dB for prediction, which is 2.7
dB lower than that obtained by our CPM. The reason is that
our CPM (strip operation with prediction network) can capture
more relevant information from adjacent blocks for prediction
with the strip operation.

3) Comparison to Postprocessing Networks: To verify the
effectiveness of our BPM, we compared our method with
state-of-the-art (SOTA) postprocessing methods, including
DHDN [56], GRDN [46] and CLIC19 MS [43]. All of the
above methods are retrained on the same dataset and tested
on the Kodak dataset. As shown in Table III, our BPM is
superior to existing works, achieving approximately 0.1 dB
gain compared with the GRDN [46]. To demonstrate the visual
difference of decoded images before and after the BPM, we
visualize the decoded images, which are encoded with the
model optimized for MSE with λ = 192. As shown in Fig. 12,
due to the effect of the padding operation, reconstructed
edge pixels of neighbor blocks contain chromatism, which
results in blocking effects that greatly affect the subjective
quality. Through utilizing the information between blocks, our
BPM module can smooth out the sudden changes in edges
and recover some information that has been lost during the
transformation (e.g., eyepit), which achieves better subjective
quality.

4) Ablation on proposed modules and block size: To an-
alyze the contributions of CPM and BPM in our work, we
utilize the LBHIC model without the CPM and BPM as our

TABLE III: Performance of BPM compared with the SOTA
postprocessing methods on the Kodak dataset.

Method DHDN GRDN CLIC19 MS BPM

PSNR (dB) 30.617 30.614 30.488 30.702
MS-SSIM 0.9766 0.9766 0.9761 0.9769

Params (MB) 168.2 112.43 6.36 50.30
Runtime (s) 0.0710 0.0340 0.0086 0.0936
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Fig. 13: Ablation study.

baseline model, which means that we compress and reconstruct
the blocks directly after block partition. We then investigate
the effectiveness of the CPM and BPM by adding them to
the baseline model separately. As shown in Fig. 13a, the
CPM (baseline with CPM) and BPM (baseline with BPM) can
produce comparable compression performance improvement
compared with the baseline. With the combination of CPM and
BPM (our method), we can further improve the compression
performance compared to that with only CPM or BPM.

We also investigate the effects of block sizes on the com-
pression performance in Fig. 13(b). Specifically, we utilize
VTM as the anchor, and calculate the BD rate between
the VTM and different methods in Fig. 13(b). The im-
pacts of block size on learned block-based coding can be
summarized into three aspects: 1) performance loss caused
by block partition, 2) performance gain caused by block
prediction, and 3) performance gain obtained by removing
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TABLE IV: Proportion of different modules in coding time.

CPM Transformation Encode
Entropy

Inverse
Transformation

Decode
Entropy BPM

Percen-
-tage 3.79% 1.40% 8.19% 1.46% 69.02% 16.14%

block artifacts. For block partition, the smaller block will
bring worse performance for the existing learned codecs,
because the correlation between blocks is destroyed. As for
the block prediction, its performance will improve as the block
becomes smaller, because the prediction is easier on smaller
blocks. Since smaller blocks tend to have more blockiness,
the gain obtained by post-processing on smaller blocks tend
to be more obvious. Due to the influence of above three
aspects, the factors affecting the final performance actually
depend on the impact degree of these three aspects. Hence,
in Fig. 13(b), we conduct further experiments to reveal the
influence of the above three aspects. It can be seen that due
to the influence of block partition, the baseline models (i.e,
w/o CPM and BPM) of different blocks size have different
performances and smaller blocks cause worse performance
due to the impact of block partition. Meanwhile, the relative
gain of prediction and post-processing (i.e, Baseline+CPM
and Baseline+CPM+BPM) increases as the block becomes
smaller. However, due to the greater impact of block partition
on learned image compression, in the end, smaller blocks
cannot achieve better performance. Furthermore, we can notice
that our LBHIC (i.e, Baseline+CPM+BPM) with block size
128 and 256 can achieve similar BD-rate. Nevertheless, as
the block size increases, the performance gain will steadily
decrease, and the degree of parallelism also decreases sub-
stantially. Considering a trade-off of coding performance and
parallelism, we finally use 128 as our block size in our LBHIC.

5) Proportion of different modules in coding time.: We
analyze the proportion of different modules in the compression
network to the total encoding and decoding time, and the
results are given in Table IV. Since the context entropy model
at the decoder requires element-by-element decoding in a auto-
regressive manner, it occupies most of the coding time, which
promotes the birth of our block-based coding scheme. Because
the block-based scheme can alleviate this problem through a
parallel strategy.

V. CONCLUSION

In this paper, we reconcile compression efficiency with rate-
distortion performance when fostering progress in developing
a learning-based image compression framework. We inherit
the advantages of the traditional image codecs in the pro-
posed learned block-based hybrid image compression scheme
(LBHIC) to improve both the efficiency and effectiveness.
Our proposed framework is composed of a block partition,
contextual prediction module (CPM), and boundary-aware
postprocessing module (BPM). Among these components, the
block partition activates the possibility of acceleration, CPM
effectively utilizes the correlation between blocks to improve
coding efficiency, and BPM takes into account the block

effect to improve the subjective and objective quality. The
experimental results show that our approach not only achieves
SOTA performance but also provides almost 10x improvement
in decoded runtime, yielding a high-performance, efficiently
learned image codec.
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