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Abstract

The discrete cosine transform (DCT) is a relevant tool in signal processing applications, mainly known for its good decor-
relation properties. Current image and video coding standards—such as JPEG and HEVC—adopt the DCT as a fundamental
building block for compression. Recent works have introduced low-complexity approximations for the DCT, which become
paramount in applications demanding real-time computation and low-power consumption. The design of DCT approxima-
tions involves a trade-off between computational complexity and performance. This paper introduces a new multiparametric
transform class encompassing the round-off DCT (RDCT) and the modified RDCT (MRDCT), two relevant multiplierless 8-
point approximate DCTs. The associated fast algorithm is provided. Four novel orthogonal low-complexity 8-point DCT
approximations are obtained by solving a multicriteria optimization problem. The optimal 8-point transforms are scaled
to lengths 16 and 32 while keeping the arithmetic complexity low. The proposed methods are assessed by proximity and
coding measures with respect to the exact DCT. Image and video coding experiments hardware realization are performed.
The novel transforms perform close to or outperform the current state-of-the-art DCT approximations.
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1 Introduction

Discrete transforms play a central role in digital signal processing tasks, such as analysis, filtering, and coding [51].

Remarkable transforms include the discrete Hartley transform, the Haar transform, the discrete Fourier transform, the

Karhunen-Loève transform (KLT), and the discrete sine and cosine transforms [2,16,58]. In the context of signal encoding,

the KLT holds optimal decorrelation properties [16] though being data-dependent [61] and, thus, computationally complex

and expensive [1, 61]. Nonetheless, the discrete cosine transform (DCT), which is signal-independent, performs close to

optimal when applied to a high correlated first-order Markov random process [31, 39]. Natural images belong to this

particular statistical class [55], which makes efficient implementations of the DCT to be widely adopted in current image

and video coding standards [45].

Block transformation, fast algorithms, and approximate computing are some of the approaches for reducing the compu-

tational cost of the DCT applications [16]. Traditional image and video coding standards—such as the Joint Photography

Experts Group (JPEG) [64] and the High Efficiency Video Coding (HEVC) [59]—operate in a block-based fashion, where

the input signal is firstly segmented into disjoint blocks and then transformed accordingly [66]. For instance, JPEG uses

the 8-point DCT [64], whereas HEVC adopts transforms of length 4, 8, 16, and 32 for taking advantage of highly-correlated

image parts of different sizes [54]. Applying the DCT on an image block may result in few localized, meaningful coefficients

that are further quantized. The low-frequency non-separable transform (LFNST) [38] explicitly discards high-frequency

coefficients before quantization for reducing memory usage and computation in the new Versatile Video Coding (VVC) [69].

Because of its relevance on image compression, several fast algorithms for the DCT calculation are reported in litera-

ture [18,31,39,41,42,63]. These approaches commonly explore sparse matrix factorizations [18,41], recursiveness [31,39],
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and relationships with other transforms [42,63]. These efforts resulted in algorithms that attain the theoretical minimum

multiplicative complexity [29], being nowadays a quite mature research area.

Even considering these algorithms, the DCT-based transformation requires irrational quantities to be computed

and stored, increasing the complexity of both encoders and decoders [45]. Irrational quantities are often represented

as floating-point in modern computers [33], however, such floating-point dependence may jeopardize the application

of the DCT in very low-power scenarios [24, 27]. Internet of Things (IoT) applications [3, 67] often employ low-power

wide area networks (LPWANs) for video transmission. Most IoT devices are designed at the lowest hardware cost,

smaller hardware size, and the lowest battery consumption possible, and the LPWANs present narrow bandwidths. Low-

complexity data compression mechanisms become crucial in such cases. In the past few years, several works proposed

low-complexity DCT approximations, mostly of length 8, capable of compromising between arithmetic complexity and cod-

ing efficiency [5, 10–14, 19, 28, 40, 48, 60]. Most of these linear transformation matrices have entries defined over the set

C = {0,± 1
2 ,±1,±2}, and, thus, can be implemented using only addition and bit-shifting operations [13, 19, 21]. Indeed,

multiplication-free transforms are remarkable for reducing circuitry, chip area, and power consumption in hardware im-

plementations [35,53].

Prominent 8-point approximate DCTs include the signed DCT [28], the series of transforms proposed by Bouguezel-

Ahmad-Swamy [10–14], the Lengwehasatit-Ortega transform [40], the angle similarity-based DCT approximation [48],

the classes of transforms from [60] and [17], and, especially, the round-off DCT (RDCT) [19], and the modified RDCT

(MRDCT) [5]. On the one hand, the RDCT outperforms the current state-of-the-art low-complexity DCT approximations

in terms of energy compaction properties [35,47] at the expense of 22 additions. On the other hand, the MRDCT is a very

low-complexity DCT-like transform that requires only 14 additions, the lowest arithmetic cost among the meaningful ap-

proximate DCTs archived in literature [21,23]. Other very low-complexity approaches include the 14-additions transform

from [53] and the pruned MRDCT [21], but they perform poorer in image coding applications.

Overall, the current literature still lacks unifying schemes that encompass known low-complexity DCT approximations.

Some authors, although, found that such formalizations might be useful for exploring structural properties and proposing

novel, more powerful, transforms [17,20,60]. Most of the classic related works focus on proposing 8-point DCT approxima-

tions only. Nowadays, however, there is a need for larger transforms for coping with high-resolution data [35, 59]. Some

works proposed 16-point transforms [6,22,23], but none focused on larger blocklengths. To the best of our knowledge, there

are only a few works exploring scalable approximate DCTs [12,14,17,35,48].

Our contributions are the following. First, we introduce a new class of low-complexity DCT-like transforms using a mul-

tiparametric formulation that encompasses the RDCT and the MRDCT as particular cases. Our formalism explores the

underlying search space aiming at transforms with both low-complexity and good energy compaction properties. Second,

we search for optimal transforms through a multicriteria optimization procedure and introduce new orthogonal 8-point

approximate DCTs. Third, we use a scaling method [35] for proposing novel 16- and 32-point DCT approximations based

on the optimal 8-point transforms, which are applicable to high-resolution image and video coding. The best performing

transforms are assessed through image, video, and hardware experiments, and then compared with state-of-the-art meth-

ods. The results indicate their potential applicability in low-power or real-time video transmission scenarios [24,27,53].

The rest of this paper is organized as follows. Section 2 introduces our multiparametric 8-point DCT formulation as

well as its underlying arithmetic complexity and fast algorithm. Section 3 presents a constrained multicriteria optimiza-

tion procedure for acting over the search space associated with the proposed formalism and introduces the optimal 8-point

DCT-like transforms. Section 4 details the adopted approach for transform scaling and presents the resulting 16- and 32-

point DCT approximations. In Section 5, the optimal 8-point approximate DCTs, and their scaled versions are submitted

to image and video coding experiments in which quality degradation is measured. Section 6 presents a hardware imple-

mentation of the optimal 8-point approximate DCTs. A comprehensive comparison with competing methods is presented

in and in Sections 3, 4, 5, and 6. Section 7 concludes this work.
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2 Multiparametric approximate DCTs

Good approximations for the 8-point DCT matrix can be obtained according to a judicious substitution of the 64 matrix

entries by values in C = {0,± 1
2 ,±1,±2} while optimizing a given figure of merit. Because the search space increases

quadratically, approaching such optimization problem by exhaustive computational search has proven to be of limited

practicality in contemporary computers [52]; thus motivating alternative methods for obtaining approximate matrices. A

successful approach consists of limiting the search space according to constraints from a particular parametrization of the

DCT matrix entries [13,17,20,60].

In [13], a class of low-complexity transforms was introduced based on a single free parameter. A parametrization of

the real entries of the Feig-Winograd fast algorithm [25] was proposed in [60], leading to a multiparametric class that

encompasses several DCT approximations. At the same vein, the Loeffler fast algorithm [41] was given a parametrization

in [20] which furnished DCT approximations. The methodology in [17] focused on deriving DCT approximations based

on a unifying mathematical treatment for the suit of approximate transforms introduced by Bouguezel, Ahmad, and

Swamy [10–14].

2.1 Proposed Class of Low-complexity Transforms

We separate transformation matrices of the RDCT [19] and the MRDCT [5] and submit them to a parametrization of its

entries. These approximations were selected because of their relevance to the approximate DCT computation literature

in terms of combining high coding performance and very low arithmetic complexity, respectively. Both are 8-point orthog-

onal transforms whose associated low-complexity, integer transformation matrix entries are in the set {0,±1} ⊂ C , thus

demanding addition operations only. Our multiparametric formulation accounts for element changes in MRDCT matrix

with respect to the RDCT. The proposed multiparametric low-complexity transformation matrix is given by

T(a)=



1 1 1 1 1 1 1 1

1 a1 a2 0 0 −a2 −a1 −1

1 0 0 −1 −1 0 0 1

a3 0 −1 −a4 a4 1 0 −a3

1 −1 −1 1 1 −1 −1 1

a5 −1 0 a6 −a6 0 1 −a5

0 −1 1 0 0 1 −1 0

0 −a7 a8 −1 1 −a8 a7 0


, (1)

where a = [a1 a2 a3 a4 a5 a6 a7 a8]> is the parameter vector. In order to keep the complexity low and the search

space withing the available computation capabilities, we focus on the case that the elements of a are in the set C =
{0,± 1

2 ,±1,±2}. This set extends the low-complexity sets considered in [19] and [5] by the inclusion of {± 1
2 ,±2}. Thus, the

resulting parametrized matrices might require bit-shifting operations. The proposed multiparametric transform class in

(1) includes 78 = 5,764,801 different transformation matrices; constituting the search space in which we aim at finding

suitable transforms for image and video coding.

2.2 Fast Algorithm and Arithmetic Complexity

The arithmetic complexity provides a fair, unbiased assessment of the cost of applying a transform, and it is independent

of the available technology [8, 50]. Directly multiplying the matrix T(a) by a vector is as low as 24 additions (for a is the

null 8-point vector), increasing according to the particular choices of the parameter vector a. The computational cost of the

proposed multiparametric transform T(a) can be dramatically reduced by means of the following sparse factorization:

T(a)=P ·K(a) ·A2 ·A1, (2)
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Figure 1: SFG for the proposed multiparametric transform. Solid and dashed arrows represent multiplication by 1 and -1,
respectively. Blue arrows relate to the chosen parameter vector a.

where

A1 =
[

I4 Ī4

Ī4 −I4

]
, A2 = diag

([
I2 Ī2

Ī2 −I2

]
,I4

)
, (3)

K(a)= diag


[

1 1

1 −1

]
,−1,1,


−a4 −1 0 a3

a6 0 −1 a5

0 a2 a1 1

−1 a8 −a7 0



 , (4)

and P is a permutation matrix, given by (0)(14326)(5)(7), in cyclic notation. The matrices Id and Īd denote a identity and

counter identity matrix of order d, respectively. Matrices A1 and A2 require 8 and 4 additions, respectively. Matrix P is

a permutation matrix with null arithmetic complexity. The arithmetic cost of the matrix K(a) depends on the parameter

vector a and its additive complexity ranges from 2 to 10 additions. Fig. 1 depicts the underlying signal flow graph (SFG)

of the fast algorithm induced by (2).

The presented fast algorithm computes T(a) at additive and bit-shift complexities given by

A (a)= 22−
8∑

i=1
I{0}(ai) and S (a)=

8∑
i=1

I{ 1
2 ,2

}(ai), (5)

where IΘ(θ) is the indicator function that returns 1 if θ ∈Θ and zero otherwise.

3 Optimization on the Multiparametric Class

To select which of the transforms are representative for the signal decorrelation problem, we set up a computational pro-

cedure that searches for optimal transformations according to preset objective metrics [17, 60]. Besides the orthogonality

property, three types of figures of merit are considered for rating a given approximate DCT: (i) the arithmetic complexity

for measuring its computational cost, (ii) proximity measures to the DCT in a euclidean distance sense, and (iii) coding

metrics for assessing its decorrelation capabilities. By construction, the proposed parametrization has zero multiplica-

tive cost. Thus, for assessing the arithmetic complexity, we considered the total additive and bit-shift complexity given

in (5). For measuring the transform similarity to the DCT, we adopted the total error energy [19] and the mean square

error (MSE) [16]. The coding capabilities of a given approximate DCT are often measured by the unified transform coding

gain [36] and transform efficiency [16] metrics.
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3.1 Orthogonality Constraint

Approximate transforms are often desired to be orthogonal [16] because orthogonality implies that both direct and inverse

transforms share the same computing structures [2]. In fact, the inverse transform is obtained by transposition, which

results in simpler software and hardware implementations [35].

In order to the matrix T(a) to posses an orthogonal vector basis, the nondiagonal elements of T(a) ·T(a)> must be null.

Thus, we have that

T(a) ·T(a)> =



8 0 0 0 0 0 0 0

0 τ1 0 τ2 0 τ3 0 τ4

0 0 4 0 0 0 0 0

0 τ2 0 τ5 0 τ6 0 τ7

0 0 0 0 8 0 0 0

0 τ3 0 τ6 0 τ8 0 τ9

0 0 0 0 0 0 4 0

0 τ4 0 τ7 0 τ9 0 τ10


, (6)

where τ1 = 2a2
1 +2a2

2 +2, τ2 = −2a2 +2a3, τ3 = −2a1 +2a5, τ4 = −2a1a7 +2a2a8, τ5 = 2a2
3 +2a2

4 +2, τ6 = 2a3a5 −2a4a6,

τ7 = 2a4 −2a8, τ8 = 2a2
5 +2a2

6 +2, τ9 =−2a6 +2a7, and τ10 = 2a2
7 +2a2

8 +2. Thus, the orthogonality conditions are

τ2 = τ3 = τ4 = τ6 = τ7 = τ9 = 0, (7)

τ1 6= 0,τ5 6= 0,τ8 6= 0,τ10 6= 0. (8)

We obtain orthonormal transforms C̃(a)—referred hereafter as DCT approximations—by means of normalizing the energy

of the basis vectors [30], according to:

C̃(a)=S(a) ·T(a), (9)

where S(a) is a diagonal matrix computed by

S(a)=
√(

T(a) ·T(a)>
)−1, (10)

and the square root operation is applied to each element of the argument matrix. Relying on the orthogonality property,

we have that

S(a)= diag
(

1

2
p

2
,

1p
τ1

,
1
2

,
1p
τ5

,
1

2
p

2
,

1p
τ8

,
1
2

,
1p
τ10

)
. (11)

If (7) and (8) are satisfied, then C̃(a) ·C̃(a)> = I8.

3.2 Arithmetic Complexity of the Approximation

The arithmetic complexity associated to the approximate DCT C̃(a) can be regarded as identical to the complexity of the

low-complexity matrix T(a), because the scaling factors of the diagonal matrix S(a) can be merged into the quantization

step of image and video enconders [11, 12, 19, 48, 52]. Thus, the arithmetic complexity assessment presented in (5) is

applicable to both direct and inverse transforms, because the same fast algorithm is applicable to both cases.
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Table 1: Optimal 8-point DCT approximations in the proposed class.

j aopt Description
1 [0 0 0 0 0 0 0 0]> MRDCT [5]
2 [1 0 0 0 1 0 0 0]> OCBT [49]
3 [1 0 0 1 1 0 0 1]> New
4 [1 0 0 0.5 1 0 0 0.5]> New
5 [1 1 1 -1 1 -1 -1 -1]> New
6 [1 1 1 1 1 1 1 1]> RDCT [19]
7 [1 0.5 0.5 1 1 0.5 0.5 1]> New

3.3 Multicriteria Optimization

By considering: (i) the search space implied by the proposed parametrization, (ii) the orthogonality condition, and (iii) the

above discussed figures of merit, we have the following multicriteria minimization problem:

aopt = argmin
a

{
ε(C̃(a)),MSE(C̃(a)),−C∗

g(C̃(a)),−η(C̃(a)),A (a),S (a)
}

(12)

subject to 
ai ∈C , i = 1,2, . . . ,8

τ j = 0, j = 2,3,4,6,7,9

τk 6= 0, k = 1,5,8,10

,

where ε( · ), MSE(·), C∗
g( · ), and η( · ) compute the total error energy, MSE, unified transform coding gain, and transform

efficiency of the argument transform. Note that coding metrics are sought to be maximized, whereas proximity to the

DCT (error) and complexity should be minimized. The obtained optimal parameter vectors aopt readily define the optimal

transforms according to C̃(aopt).

3.4 Optimal 8-point Transforms

The solution of (12) results on seven optimal 8-point transforms, which are listed in Table 1. For simplicity, hereafter,

we denote the optimal transforms as C̃( j)
8 , where j = 1,2, . . . ,7. Three of the optimal transformations are state-of-the-art

approximate DCTs already archived in literature, namely: the MRDCT [5], the transform by Oliveira et al. (OCBT) [49],

and the RDCT [19] ( j = 1,2,6, respectively). The transform OCBT can also be found in [15] and [17]. However, to the best of

our knowledge, the remaining four transforms presented in Table 1 are novel contributions to the literature ( j = 3,4,5,7).

Table 2 presents proximity and coding measurements relative to the DCT along with the arithmetic complexity as-

sociated to each of the obtained optimal 8-point transforms. Hereafter, in all the tables, the best results are highlighted

in boldface. The approximation C̃(1)
8 (MRDCT) still holds the lowest additive cost for an approximate DCT requiring 14

additions only. Also the approximation C̃(6)
8 (RDCT) still maintain its status as the transformation with the the smallest

total error energy measure. On the other hand, among the optimal transforms, the proposed transform C̃(7)
8 possesses the

lowest MSE measurement, a very low error energy, and attains the highest coding gain and efficiency.

For comparison purposes, we compile in Table 3 the performance measurements of representative competing trans-

forms found in the literature: the series of transforms introduced by Bouguezel, Ahmad and Swamy (BAS1 [10], BAS2 [11],

BAS3 [14], BAS4 [12] and BAS5 [13]); the level 1 transform (LO) by Lengwehasatit and Ortega [40]; and the approxima-

tions reported in [60], [48], and [17] referred to as TBC, OCBSML, and CSBC, respectively. Such selected transforms were

chosen so that they are not members of the proposed class of approximations. Hereafter, in the tables, the superscript on

CSBC and TBC identifies the instance from the class of transforms reported in the original papers [17, 60]; whereas the

6



Table 2: Measurements for the optimal 8-point approximate DCTs.

j ε( · ) MSE(·) C∗
g( · ) η( · ) A ( · ) S ( · )

1 8.6592 0.0594 7.3326 80.8969 14 0
2 6.8543 0.0275 7.9118 85.6419 16 0
3 5.0493 0.0246 7.9207 85.3793 18 0
4 5.0184 0.0241 8.1102 86.8665 18 2
5 16.0260 0.0333 8.1571 88.1932 22 0
6 1.7945 0.0098 8.1827 87.4297 22 0
7 2.1443 0.0083 8.4261 89.1383 22 4

Table 3: Measurements for the competing 8-point approximate DCTs.

Transform ε( · ) MSE(·) C∗
g( · ) η( · ) A ( · ) S ( · )

CSBC(1) [17] 6.8543 0.0275 7.9118 85.6419 16 0
BAS(0)

5 [13] 26.8642 0.0710 7.9118 85.6419 16 0
BAS2 [11] 6.8543 0.0275 7.9126 85.3799 18 0
TBC(6) [60] 8.6592 0.0588 7.3689 81.1788 18 0
BAS(1)

5 [13] 26.8642 0.0710 7.9126 85.3799 18 0
BAS1 [10] 5.9294 0.0238 8.1194 86.8626 18 2
BAS(1/2)

5 [13] 26.4018 0.0678 8.1194 86.8626 18 2
CSBC(9) [17] 4.1203 0.0214 8.1199 86.7297 20 3
TBC(5) [60] 7.4138 0.0530 7.5753 83.0846 20 10
BAS3 [14] 35.0639 0.1023 7.9461 85.3138 24 0
LO [40] 0.8695 0.0061 8.3902 88.7023 24 2
BAS4 [12] 4.0935 0.0210 8.3251 88.2182 24 4
OCBSML [48] 1.2194 0.0046 8.6337 90.4615 24 6

one next to BAS5 indicates the quantity considered in the parametric formulation from [13]. The DCT and the integer

DCT from HEVC [43] demand much more resources and are not used in the following comparisons.

To derive fair comparison, hereafter, we confront transforms possessing approximately the same arithmetic complexity.

The new approximate DCT C̃(3)
8 outperforms the other low-complexity transforms requiring 18 additions in terms of error

energy, MSE, and coding gain. The proposed transform C̃(4)
8 achieves smaller total error energy and the higher efficiency if

compared with other approaches that require exactly 18 addition and 2 bit-shifting operations. The introduced transform

C̃(5)
8 is more efficient than C̃(6)

8 , but has smaller error energy, MSE and coding gain. No other listed transform demands

exactly 22 additions. The DCT approximation C̃(7)
8 has no direct competitor found. Note, however, that C̃(7)

8 ranks in the

third and fourth places in terms of MSE and total error energy, and attains the second place according to coding gain

and efficiency measurements if compared with any other transform listed in Tables 2 and 3. Together with outstanding

DCT-like transforms as C̃(6)
8 (RDCT) [19], LO [40] and OCBSML [48], the proposed transform C̃(7)

8 composes the new

state-of-the-art on 8-point approximate DCTs.

4 Scaling 8-point to 16- and 32-point Transforms

Widely popular image and video coding standards—e.g. JPEG [64], H.262 [44], and H.264 [56]—employ the 8-point DCT

for decorrelation, thus attracting the community efforts to that specific length [5, 13, 28]. More recently, the HEVC stan-

dard proposed to use DCT-like transforms of different lengths: 4, 8, 16, and 32 [46]. Such design choice enhances the

compression of high-resolution video and improves the coding efficiency mainly at low bit-rates [66]. Generally, small-

sized transforms cope with textured regions, whereas the large-sized ones act on smoother video content [54].

7



Therefore, there is a demand for low-cost DCT-like transforms, since the computational complexity of the exact DCT

grows non-linearly [35]. Nevertheless, there are only a few works focusing on natively approximating the 16- or 32-point

DCT [6, 22, 23]. A practical approach for scaling up 8-point transforms to larger transforms of size 16 and 32 consists of

applying the method proposed by Jridi, Alfalou, and Meher (JAM) [35]. In a nutshell, the JAM method takes two instances

of a low-complexity multiplierless transform of length N to compose another transform of length 2N. The total arithmetic

complexity of the 2N-point transform is kept low. It requires twice the number of bit-shifts and twice plus 2N additions

demanded by the original N-point transform. Originally, the RDCT (C̃(6)
8 ) was used in the scaling process introduced

in [35]. For brevity, we refer the reader to the original paper for more details about the scalable JAM method [35].

4.1 16-point Scaled Transforms

The proposed optimal 8-point transforms were submitted to the JAM method in order to generate scaled transforms of

length 16. Table 4 summarizes the quality and complexity measurements for these DCT approximations. To the best of

our knowledge, five from the seven derived 16-point transforms are novel contributions to the literature. The 16-point

transforms C̃(6)
16 and C̃(2)

16 were introduced in (JAM) [35] and (CSBC(1)) [17], respectively. The results from Table 2 and Ta-

ble 4 shows that the JAM scaling could roughly transfer the performance from the 8-point to the 16-point approximations.

Table 4: Measurements for the scaled 16-point approximate DCTs.

j ε( · ) MSE(·) C∗
g( · ) η( · ) A ( · ) S ( · )

1 29.7486 0.0935 7.5816 66.0681 44 0
2 25.1300 0.0674 8.1577 70.9808 48 0
3 21.5172 0.0646 8.1664 70.5897 52 0
4 21.6809 0.0644 8.3560 72.1975 52 4
5 41.1430 0.0707 8.4036 73.8217 60 0
6 14.7402 0.0506 8.4285 72.2296 60 0
7 15.8124 0.0507 8.6711 75.8460 60 8

Table 5 lists representative 16-point DCT approximations: the BAS3 and BAS4 transforms, the approximations in [22]

(SOBCM) and [23] (SBCKMK); and the approximation in [6] (BCEM). We also included JAM-scaled versions of the 8-point

approximations CSBC [17] and OCBSML [48].

Table 5: Measurements for competing 16-point approximate DCTs.

Transform ε( · ) MSE(·) C∗
g( · ) η( · ) A ( · ) S ( · )

SOBCM [22] 40.9996 0.0947 7.8573 67.6078 44 0
CSBC(4) [17] 20.8777 0.0648 8.1587 71.4837 52 2
CSBC(5) [17] 23.0211 0.0641 8.3653 71.8269 52 4
CSBC(9) [17] 18.7688 0.0615 8.3663 72.3414 56 6
CSBC(10) [17] 19.6427 0.0621 8.3659 72.1040 56 6
SBCKMK [23] 30.3230 0.0639 8.2950 70.8315 60 0
CSBC(13) [17] 18.5159 0.0599 8.3647 72.6288 60 4
BAS3 [14] 97.8678 0.4520 8.1941 70.6465 64 0
BAS4 [12] 16.4071 0.0564 8.5208 73.6345 64 8
OCBSML [48] 13.7035 0.0474 8.8787 76.8108 64 12
BCEM [6] 8.0806 0.0465 7.8401 65.2789 72 0

The proposed approximation C̃(1)
16 outperforms SOBCM in proximity metrics, requiring 44 additions only. Transform

C̃(3)
16 has no direct competitor with the same arithmetic cost but performs close to CSBC(4) and CSBC(5), which require two
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and four extra bit-shifting operations, respectively. The DCT approximation C̃(4)
16 attains smaller error energy and higher

efficiency when compared with CSBC(5). The proposed approximate DCT C̃(5)
16 outperforms SBCKMK in coding metrics,

and achieves better transform efficiency than C̃(6)
16 . The transform C̃(7)

16 ranks on the fourth place in terms of proximity to

the DCT, and is the second best-performing in coding metrics among the transforms in Tables 4 and 5.

4.2 32-point Scaled Transforms

By invoking the JAM method twice, we can scale 8-point transforms and obtain 32-point DCT approximations. The

obtained error and coding measurements as well as the arithmetic complexity of the obtained 32-point transforms are

presented in Table 6. We found C̃(1)
32 , C̃(3)

32 , C̃(4)
32 , C̃(5)

32 , and C̃(7)
32 as contributions to the literature. The scaled transforms

C̃(2)
32 and C̃(6)

32 coincide with 32-point versions of CSBC(1) and JAM proposal, respectively. Peering approaches and their

respective quality and cost measurements are listed in Table 7. Excepting for SOBCM, SBCKMK, and BCEM which

are 16-point transforms only, the other competing approaches are the 32-point versions of those in Table 5. Namely, we

consider the 32-point BAS3, BAS4, CSBC and OCBSML transforms.

Table 6: Measurements for the scaled 32-point approximate DCTs.

j ε( · ) MSE(·) C∗
g( · ) η( · ) A ( · ) S ( · )

1 77.7215 0.1497 7.6584 52.2784 120 0
2 68.1287 0.1278 8.2306 56.1785 128 0
3 61.2029 0.1251 8.2393 55.8320 136 0
4 61.7212 0.1252 8.4287 57.1200 136 8
5 96.7291 0.1302 8.4771 58.4748 152 0
6 48.0956 0.1124 8.5010 56.9700 152 0
7 50.4638 0.1133 8.7429 60.4018 152 16

Table 7: Measurements for competing 32-point approximate DCTs.

Transform ε( · ) MSE(·) C∗
g( · ) η( · ) A ( · ) S ( · )

CSBC(4) [17] 59.4743 0.1253 8.2320 56.7808 136 4
CSBC(5) [17] 63.9307 0.1249 8.4382 56.7210 136 8
CSBC(6) [17] 60.6931 0.1218 8.2516 56.4665 144 0
CSBC(9) [17] 55.2764 0.1224 8.4396 57.3346 144 12
CSBC(10) [17] 56.3736 0.1227 8.4390 56.9787 144 12
CSBC(13) [17] 52.9321 0.1186 8.4389 57.5669 152 8
BAS3 [14] 192.1804 0.7609 8.2693 55.9114 160 0
BAS4 [12] 117.0653 0.2411 8.4998 58.4956 160 16
OCBSML [48] 46.2658 0.1104 8.9505 61.0272 160 24

To the best of our knowledge, the novel transform C̃(1)
32 possesses the smaller arithmetic complexity archived in the

literature. Transform C̃(3)
32 has smaller error energy than CSBC(5), smaller MSE than CSBC(4), and higher coding gain

than CSBC(4), while requiring fewer arithmetic operations. The transform C̃(4)
32 outperforms CSBC(5) in terms of error

energy and efficiency, both requiring 136 additions and 8 bit-shifts. C̃(5)
32 has no direct competitors, but presents competitive

coding gain and transform efficiency measurements. Once again, C̃(5)
32 stands out, by ranking on third and second places

for proximity to the exact DCT and coding capabilities, respectively, among all considered 32-point transforms.
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5 Application to Image and Video Coding

In this section, we describe computational experiments on both still-image and video compression aiming at assessing the

behavior of the selected transforms on such applications.

5.1 Still-Image Compression

We performed a JPEG-like experiment to assess the optimal 8-point DCT-like transforms and their scaled 16- and 32-

point counterparts in the context of still-image compression. The experiment consisted of subdividing the input image into

disjoint blocks A of size N ×N. Each block was individually processed as follows. The direct transformation was applied

to A according to B = TN ·A ·T>
N , where TN is a N-point orthogonal transform and B is the resulting transformed block.

Using the zig-zag scan sequence [64], we kept the first r coefficients while setting the remaining coefficients to zero. The

truncated block is represented by B̃. Then, we applied the inverse transformation to each block B̃ through Ã=T>
N ·B̃ ·TN .

The correct rearrangement of all the blocks Ã resulted on a TN -compressed version of the input image at compression rate

r/N2.

In this experiment, we evaluated the performance of a given transform TN by objectively assessing the quality of the

compressed image. For that end, we employed the peak signal-to-noise-ratio (PSNR) [32] and the structural similarity

index (SSIM) [65] following the procedure described in [10, 11, 13, 15, 28, 35]. We also include results for the learned per-

ceptual image patch similarity (LPIPS) [68], a perceptual-based metric, which correlates to the mean opinion score [37].

We report the averaged results for 45 512×512 grayscale images from a public database [62], with r varying from 1 to ap-

proximately 0.75N2, with N = 8,16,32. The chosen quantities of retained coefficients r roughly correspond to compression

rates ranging from 25% to 99%.

5.1.1 Results for the 8-point Approximations

Fig. 2(a) and Fig. 2(b) depict the average SSIM and PSNR measurements, respectively, for selected 8-point transforms.

Namely, we separated the best-performing novel transform C̃(7)
8 , and the followings competing methods: LO, OCBSML,

RDCT, BAS4, and the exact DCT. Note that the transform C̃(7)
8 achieves the second-best PSNR gains for high compression

rates (r < 5). It also performs comparably to the LO approximation for intermediary compression rates (20 < r < 35), and

outperforms the RDCT in all the cases. Similar results are obtained for the SSIM measurements. Fig. 2(c) depicts the

LPIPS measurements, suggesting that approximate transforms can outperform the DCT for some r values.

Complementary, we provide the SSIM, PSNR and LPIPS gains per addition operation—which can be useful for com-

paring transforms of different complexities. Bit-shifting operations are often regarded as virtually costless in hardware

implementations [47,48], and are thus suppressed in our analysis. Fig. 2(d) and Fig. 2(e) show that the proposed DCT-like

transform C̃(7)
8 has consistently higher SSIM gains per addition unit, also reflected in terms of PSNR measurements. The

RDCT, well-known for its outstanding coding capabilities, behaves similarly to C̃(7)
8 , but presenting slightly worse results.

Fig. 2(f) shows the LPIPS values per addition, where C̃(7)
8 roughly compares to LO, BAS4, and OCBSML.

5.1.2 Results for the 16-point Approximations

Fig. 3(a) and Fig. 3(b) present the average SSIM and PSNR measurements for the experiment involving 16-point trans-

forms. We separated the scaled transforms C̃(1)
16 , C̃(7)

16 , and C̃(6)
16 , besides peering approaches like BAS4, SBCKMK, SOBCM,

OCBSML, and the exact DCT. The proposed transform C̃(7)
16 outperforms all other approximate DCTs, excepting for OCB-

SML, for r < 140. The transform C̃(1)
16 achieves comparable PSNR and SSIM measurements roughly for 50 < r < 100 if

compared with SOBCM, both requiring 44 additions only. Fig. 3(c) show the LPIPS scores. The results indicate C̃(7)
16 and

OCBSML as best-performing together with the exact DCT.

The SSIM, PSNR, and LPIPS curves normalized by the number of additions required by the selected low-complexity

16-point transforms are shown in Fig. 3(d), Fig. 3(e), and Fig. 3(f), respectively. The curves indicate a favorable performance
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Figure 2: Image compression results for novel and competing 8-point DCT approximations. The legends are shared across
the multiple graphics.

for C̃(1)
16 in terms of SSIM/PSNR gain per addition unit. The approximate DCT C̃(7)

16 has comparable SSIM gain per addition

regarding C̃(6)
16 , and consistently outperforms SBCKMK, BAS4 and OCBSML both in normalized PSNR and SSIM gains

per addition operation.

5.1.3 Results for the 32-point Approximations

Finally, the mean SSIM and PSNR curves for selected 32-point transforms are shown in Fig. 4(a) and Fig. 4(b). We

exhibit the scaled DCT approximations C̃(1)
32 , C̃(2)

32 , C̃(6)
32 , and C̃(7)

32 , besides peering methods like BAS4, OCBSML, and the

exact DCT. The transform C̃(7)
32 performs better than all other competing approaches, except for OCBSML. Although C̃(1)

32
performs relatively poorly, it saves up to 25% of the total number of additions when compared with the other approaches

and does not require any bit-shifting operation. Fig. 4(c) shows that the DCT is outperformed by C̃(6)
32 and OCBSML for

r < 500 values in terms of LPIPS.

Fig. 4(d), Fig. 4(e), and 4(f) depict the SSIM, PSNR, and LPIPS gains per addition operation for the considered 32-

point transforms, respectively. The method C̃(1)
32 achieves the best SSIM and PSNR gains per addition unit when compared

with the other approaches for practically any r value. The curves also show that the proposed transform C̃(7)
32 presents

consistently better results than the remaining approaches, C̃(6)
32 , BAS4, and OCBSML. LPIPS by addition unit further

highlights the results of C̃(6)
32 and OCBSML.

Fig. 5 exemplifies the compression of the “Lena” image by selected transforms: C̃(1)
N and C̃(7)

N , and the DCT for N ∈
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Figure 3: Image compression results for proposed and competing 16-point DCT approximations. The legends are shared
across the multiple graphics.

{8,16,32}. We select r values so that the compression rate is roughly 84%. Note that transforms C̃(7)
8 , C̃(7)

16 , and C̃(7)
32 have

high PSNR values and virtually no visual degradation.

5.2 Video Coding

This section reports the suitability results of the introduced best-performing 8-point transform—C̃(7)
8 —together with its

scaled 16- and 32-point versions to video coding. We also included in our analysis the optimal 8-point transform C̃(1)
8

(MRDCT) and its scaled versions of lengths 16 and 32 since they possess a very low arithmetic complexity and still com-

pelling coding results. In this experiment, we embedded the two groups of 8-, 16- and 32-point transforms into a publicly

available HEVC reference software [34], and then assessed the performance of the resulting systems. For simplicity, here-

after we refer to these groups as C̃(1)
group and C̃(7)

group. The core HEVC integer DCT (intDCT) transforms of lengths 8, 16

and 32 require 50, 186, and 682 additions and 30, 86, and 287 bit-shifts, respectively [43]. The 4-point intDCT HEVC

transform requires no approximation because it is already a low-complexity multiplierless transformation.

We encoded the first 100 frames of representative video sequences from each A to F class according to the recommen-

dations detailed in the Common Test Conditions (CTC) document [9]. The following 8-bit videos were selected: “PeopleOn-

Street” (2560×1600 at 30 fps), “BasketballDrive” (1920×1080 at 50 fps), “RaceHorses” (832×480 at 30 fps), “BlowingBub-

bles” (416×240 at 50 fps), “KristenAndSara” (1280×720 at 60 fps), and “BasketballDrillText” (832×480 at 50 fps). We set

the encoding parameters for the Main profile and All-Intra (AI), Random Access (RA), Low Delay B (LD-B), and Low Delay
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Figure 4: Image compression results for the proposed and competing 32-point DCT approximations. The legends are
shared across the multiple graphics.

P (LD-P) configurations according to the CTC document. Our experiments consider varying the quantization parameter

(QP) in {22,27,32,37} as recommended by the CTC documentation [9].

The reference software itself measures the MSE and PSNR for each frame and color channel (in YUV color space), and

we compute the YUV-PSNR [46]. We used these measurements for each QP value for computing the Bjøntegaard’s delta

PSNR (BD-PSNR) and delta rate (BD-Rate) [7, 26] for the two groups of transforms and the four coding configurations.

Table 8 lists the obtained BD-PSNR and BD-Rate measurements. Fig. 6 presents the corresponding rate-distortion (RD)

curves, which are interpolated by cubic splines for better visualization [20,26]. Although the proposed transforms present

some quality loss, they require a fraction of the required operations by HEVC core transforms.

The transform C̃(7)
group obtained much better results than C̃(1)

group for all configuration modes and video sequences. These

findings corroborate the results from the still-image compression experiments from Section 5.1. Note that replacing the

original HEVC transforms by C̃(7)
group results in a loss of no more than 0.54 dB in AI configuration, which may be negligible

depending on the target application.

Fig. 7 depicts the eighteenth frame of the “BasketballDrillText” video sequence encoded using the original HEVC

transform suit compared with the results from the transform groups C̃(1)
group and C̃(7)

group. We also provide the YUV-PSNR

measurements for the selected frame. These results consider the four configuration modes and QPs. Note that there is

no visually noticeable degradation associated to the approximate DCTs. These results suggest that the original HEVC

transforms can be substituted by C̃(1)
group or C̃(7)

group without significant losses in image/video quality.
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(a) PNSR = 31.6393 dB (b) PNSR = 26.6691 dB (c) PNSR = 30.4560 dB

(d) PNSR = 32.0423 dB (e) PNSR = 26.6102 dB (f) PNSR = 30.3091 dB

(g) PNSR = 32.5315 dB (h) PNSR = 26.6179 dB (i) PNSR = 30.3445 dB

Figure 5: “Lena” image compressed by (a)(d)(g) the DCT, (b)(e)(h) C̃(1)
N , and (c)(f)(i) C̃(7)

N for (a–c) N = 8, (d–f) N = 16, and
(g–i) N = 32. The parameter r is set to 10, 40, and 155, for N = 8,16,32, respectively.

6 Hardware Implementation

The proposed 8-point low-complexity transforms were implemented on a field programmable gate array (FPGA). The device

adopted for the hardware implementation was the Xilinx Artix-7 XC7A35T-1CPG236C.

The designs use pipelined systolic architecture for implementing each of the transforms [4,57]. The implemented blocks

compute the transform using the fast algorithm outlined in (2) and displayed in Fig. 1. Each matrix in the factorization
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Table 8: Average BD-PSNR and BD-Rate for the transforms C̃(1)
group and C̃(7)

group embedded into the HEVC reference soft-
ware

Config. Video sequence
BD-PSNR (dB) BD-Rate (%)
C̃(1)

group C̃(7)
group C̃(1)

group C̃(7)
group

AI

“PeopleOnStreet” −0.5405 −0.4156 10.7981 8.2472
“BasketballDrive” −0.3312 −0.2013 13.0744 7.7961

“RaceHorses” −0.6681 −0.5373 8.7455 7.0180
“BlowingBubbles” −0.2569 −0.1568 4.5457 2.7863
“KristenAndSara” −0.4717 −0.3225 9.8382 6.6716

“BasketballDrillText” −0.2049 −0.1320 4.0161 2.5766

RA

“PeopleOnStreet” −0.2908 −0.2132 7.1735 5.2135
“BasketballDrive” −0.2560 −0.1609 12.1530 7.5263

“RaceHorses” −0.9507 −0.6369 16.0780 10.9197
“BlowingBubbles” −0.2009 −0.1119 5.4653 3.0192

“BasketballDrillText” −0.2490 −0.1704 6.2465 4.2235

LD-B

“BasketballDrive” −0.2381 −0.1537 10.6718 6.7131
“RaceHorses” −0.9274 −0.6399 14.5320 10.1138

“BlowingBubbles” −0.2023 −0.1122 5.6422 3.0933
“KristenAndSara” −0.2351 −0.1640 8.2957 5.7539

“BasketballDrillText” −0.2895 −0.2054 7.6528 5.3746

LD-P

“BasketballDrive” −0.2411 −0.1539 10.6911 6.7416
“RaceHorses” −0.8873 −0.6207 13.7702 9.7240

“BlowingBubbles” −0.1890 −0.1087 5.3818 3.0557
“KristenAndSara” −0.2227 −0.1493 8.1583 5.5457

“BasketballDrillText” −0.2697 −0.1960 7.2204 5.2078

in (2) was implemented in a different sub-block, and were then wrapped together in a large module that implements the

complete transform. Each sub-block that involves an arithmetic operation increases the wordlength in one bit in order to

avoid overflow and its outputs are registered.

The designs were tested employing the scheme shown in Fig. 8, together with a state-machine serving as controller and

connected to a universal asynchronous receiver-transmitter (UART) block. The UART core interfaces with the controller

state machine using the ARM Advanced Microcontroller Bus Architecture Advanced eXtensible Interface 4 protocol. A

personal computer (PC) communicates with the controller through the UART by sending a packet of eight 8-bit coefficients,

corresponding to an input for the transform block. The values of the 8-bit coefficients are randomly generated integers in

the interval [−10,10]. The set of the eight coefficients is then passed to the design and processed. Then the controller state

machine sends the eight output coefficients back to the PC, which are then compared with the output of a software model

used to ensuring the hardware design is correctly implemented.

Table 9 shows the hardware resource utilization for the new transforms in Table 1, together with the following 8-point

transforms from the literature: RDCT [19], MRDCT [5], OCBSML [48], and LO [40]. We also compare the 8-point intDCT

from HEVC [59]. The displayed metrics are the number of occupied slices, number of look-up tables (LUT), flip-flop (FF)

count, latency (L) in terms of clock cycles, critical path delay (Tcpd), maximum operating frequency Fmax = T−1
cpd, and

dynamic power (Dp) normalized by Fmax.

Among all considered transforms, the proposed low-complexity matrices T(3)
8 and T(4)

8 display the best power efficiency.

The T(3)
8 is the one displaying the best normalized dynamic power, demanding about 11.3% less power than the second best

transform T(4)
8 , about 11.6% less than the OCBT, and 46.8% and 50.54% less than LO [40] and OCBSML [48], respectively.

The transform T(3)
8 is also the one demanding the lowest number of slices, while the MRDCT [5] requires the lowest

number LUTs and FFs. The transform OCBT achieves the highest maximum operating frequency, which is followed by

the new transform T(3)
8 and the RDCT [19]. One can notice that LO [40] has one of the highest need for resources and

requires the largest latency, being outperformed in terms of speed by the new transforms T(3)
8 and T(7)

8 . The OCBSML [48]
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Figure 6: RD curves for different configuration modes and video sequences. Curves associated to “PeopleOnStreet”, “Bas-
ketballDrive”, “RaceHorses”, “BlowingBubbles”, “BasketballDrillText”, and “KristenAndSara” are represented by colors
blue, green, red, cyan, yellow, and magenta, respectively.

Table 9: FPGA measures of the implemented architectures new and competing 8-point transforms

Transform
Metrics

Slices LUT FF
L Tcpd Fmax Dp

(cycles) (ns) (MHz) (µW/MHz)

MRDCT [5] 76 165 299 4 4.244 236.627 25.464
OCBT [49] 77 168 322 4 3.773 265.041 22.638
T(3)

8 72 177 328 4 3.991 250.564 19.995
T(4)

8 82 187 328 4 4.509 221.779 22.545
T(5)

8 96 234 421 5 4.473 223.564 26.838
RDCT [19] 96 233 421 5 4.043 247.341 24.258
T(7)

8 106 245 421 5 4.092 244.379 24.552
LO [40] 110 314 476 6 4.176 239.464 37.584
OCBSML [48] 98 253 421 5 4.492 222.618 40.428
IntDCT (HEVC) [59] 291 874 377 3 7.068 141.483 127.224

transform is the most inefficient in terms of normalized dynamic power, and it is followed by LO [40], both requiring

approximately double of the normalized power required by T(3)
8 . IntDCT demands four times more slices and more than

five times more LUTs than the best performing in these metrics (T(3)
8 and MRDCT [5], respectively). The HEVC core
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(a) YUV-PSNR = 42.5687 dB (b) YUV-PSNR = 37.7729 dB (c) YUV-PSNR = 35.1120 dB

(d) YUV-PSNR = 32.6642 dB (e) YUV-PSNR = 42.4473 dB (f) YUV-PSNR = 37.6475 dB

(g) YUV-PSNR = 34.9257 dB (h) YUV-PSNR = 32.4855 dB (i) YUV-PSNR = 42.4770 dB

(j) YUV-PSNR = 37.6561 dB (k) YUV-PSNR = 35.0318 dB (l) YUV-PSNR = 32.5330 dB

Figure 7: Compressed frame of “BasketballDrillText” using the (a–d) original HEVC, (e–h) C̃(1)
group and (i–l) C̃(7)

group trans-
forms under different configuration modes and QP values. Results for (a)(e)(i) AI and QP = 22, (b)(f)(j) RA and QP = 27,
(c)(g)(k) LD-B and QP= 32, and (d)(h)(l) LD-P and QP= 37.

PCUART
Design Under

Test (UUT)
Controller

State Machine

tx

rx

Figure 8: Testbed architecture for testing the implemented designs.

transform transform also has rougly doubled latency with respect to OCBSML [48] and demands more than six times

dynamic power consumption compared to and T(3)
8 .
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7 Conclusion

This paper introduced a multiparametric class of transforms that encompasses several methods archived in literature,

such as [5, 15, 19, 49]. The proposed formalism expands the element set that was used for proposing both the RDCT and

MRDCT, by allowing transforms that require bit-shifting operations. We present a fast algorithm and the associated arith-

metic complexity analysis for the entire class of transforms. To derive optimal approximations, we set up a multicriteria

optimization problem that minimizes the arithmetic complexity and the proximity to the exact DCT and maximizes the

transform decorrelation capabilities. To the best of our knowledge, this paper introduces four 8-point DCT-like transforms.

The proposed methods were comprehensively assessed and realized in hardware using FPGA technology. We also scaled

the introduced optimal 8-point DCT approximations and obtained five 16-point and six 32-point transforms suitable for im-

age and video coding. The proposed 8-, 16-, and 32-point transforms were submitted to still-image and video compression

experiments, proving to be competitive or better than state-of-the-art methods found in literature.
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