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Abstract—3D point cloud registration is fragile to outliers,
which are labeled as the points without corresponding points.
To handle this problem, a widely adopted strategy is to estimate
the relative pose based only on some accurate correspondences,
which is achieved by building correspondences on the identified
inliers or by selecting reliable ones. However, these approaches
are usually complicated and time-consuming. By contrast, the
virtual point-based methods learn the virtual corresponding
points (VCPs) for all source points uniformly without distin-
guishing the outliers and the inliers. Although this strategy is
time-efficient, the learned VCPs usually exhibit serious collapse
degeneration due to insufficient supervision and the inherent
distribution limitation. In this paper, we propose to exploit the
best of both worlds and present a novel robust 3D point cloud
registration framework. We follow the idea of the virtual point-
based methods but learn a new type of virtual points called
rectified virtual corresponding points (RCPs), which are defined
as the point set with the same shape as the source and with
the same pose as the target. Hence, a pair of consistent point
clouds, i.e. source and RCPs, is formed by rectifying VCPs to
RCPs (VRNet), through which reliable correspondences between
source and RCPs can be accurately obtained. Since the relative
pose between source and RCPs is the same as the relative
pose between source and target, the input point clouds can be
registered naturally. Specifically, we first construct the initial
VCPs by using an estimated soft matching matrix to perform
a weighted average on the farget points. Then, we design a
correction-walk module to learn an offset to rectify VCPs to
RCPs, which effectively breaks the distribution limitation of
VCPs. Finally, we develop a hybrid loss function to enforce
the shape and geometry structure consistency of the learned
RCPs and the source to provide sufficient supervision. Extensive
experiments on several benchmark datasets demonstrate that our
method achieves advanced registration performance and time-
efficiency simultaneously.

Index Terms—Point cloud registration, distribution degen-
eration, rectified virtual corresponding points, correction-walk
module, hybrid loss function.

I. INTRODUCTION

As an important data type to describe 3D scene, point cloud
has received considerable attention [1]-[3]. More importantly,
3D point cloud registration, as a key problem in 3D computer
vision community, has been adopted in various applications,
such as 3D reconstruction [4], [5], autonomous driving [6],
[7], simultaneous localization and mapping (SLAM) [8], lo-
cating 3d object [9], point cloud code [10]. The point cloud
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Fig. 1: Illustration of our VRNet. @ source and @ target
have different poses and different shapes (broken tail and
wing in source and target respectively). The existing methods
will learn degenerated VCPs indicated by the pink in @
(c.f. Fig. 2). Conversely, our VRNet devotes to learning the
RCPs indicated by @, which maintain the same shape as the
source and the same pose as the target, by unfolding VCPs
and rectifying the partiality of the wing. Hence, the reliable
correspondences of these consistent point clouds, i.e. source
and RCPs, can be obtained easily since the influence of outliers
has been eliminated. Further, the relative pose between source
and RCPs can be solved accurately, which is same as the
relative pose between source and target.

registration task aims at solving the relative pose of 6 degrees
of freedom to optimally align the two input point clouds,
i.e. source and target, which has been studied for many
years. Many traditional approaches have achieved remarkable
performance. For example, [ 1], [12] advocate using a coarse-
to-fine strategy to solve for accurate 3D registration. Recently,
benefiting from the rise of deep learning technique, learning-
based 3D point cloud registration has become a new hot
spot, where correspondences-free methods (e.g. [13], [14]) and
correspondences-based methods (e.g. [15], [16]) are developed
depending on whether the correspondences are explicitly built
or not.

However, the widespread presence of outliers, i.e. the points
without corresponding points in the paired point clouds, has
always been a significant challenge for both correspondences-
free and correspondences-based point cloud registration meth-
ods. Note that the essence of the correspondences-free methods
is to estimate the relative pose by comparing the global repre-
sentations of two input point clouds [13], [14], [17]. Thus, the
outliers are destructive for these correspondences-free methods
because the difference between their global representations
can no longer indicate their pose difference (i.e. the relative
pose) accurately. In other words, the shape differences due
to the outliers, e.g., the head of rabbit only exists in the
source without corresponding points as illustrated in Fig. 3,
also contribute to the difference in their global representations.
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Fig. 2: The degeneration of the learned corresponding points.
The results are generated from the consistent input point
clouds for a clear comparison of loss function, where the
effect of the distribution limitation is excluded naturally. Red
and blue represent the source and the farget respectively. Pink
indicates the learned corresponding points. The matching lines
connect the source points and the corresponding points. Due
to insufficient supervision, the learned corresponding points
of DCP [18] and RPMNet [19] degenerate seriously. Our
VRNet achieves much better performance in which the learned
corresponding points maintain the original shape and geometry
structure due to the proposed hybrid loss function.

As a result, the correspondences-based methods are gaining
more and more attention, which advocate going further to deal
with the disturbance of the outliers by building some accurate
correspondences from the contaminated input point clouds.

To this end, a virtual point-based strategy is employed
[15], [18], [19]. It advocates the use of virtual corresponding
points (VCPs), which are constructed by performing weighted
average on the farget, instead of the real points in the rarget.
However, as shown in Fig. 2, the correspondences brought by
this strategy are not reliable because the learned VCPs exhibit
serious collapse degeneration and lose the shape and geometry
structure, which has been proved in [20]. Two reasons exist
for these degenerations: 1) the existing supervision usually
focuses on the relative pose only, which is insufficient and
more than one feasible solutions exist; 2) the distribution
of the virtual points is limited in the farget due to the
weighted average operation as depicted in Fig. 3. Nevertheless,
it is worth mentioning that because of the uniform treatment
of the source points without the complicated distinguishing
process, the virtual point-based approaches usually own a
high time-efficiency. Meanwhile, real point-based approaches
have received more and more attention recently, which build
reliable correspondences on real points. To this end, a natural
idea is to identify the inliers and then build correspondences
on these inliers only. PRNet [21] proposes to select the
points with more obvious feature as the inliers, however,
this operation is neither interpretable nor persuasive. [22]
utilizes the attention mechanism to recognize inliers, but this is
operationally complex as well as time-inefficient. Real point-
based approaches also devote to selecting reliable correspon-
dences from the constructed initial correspondences. In [23]-
[25], the correspondences are selected based on the learned
reliability weight of each correspondence. RANSAC is also
widely adopted to select consistent correspondences [16], [24].
However, these real point-based methods often struggle with
high computational efficiency and the ability to obtain reliable
correspondences.

Due to the respective limitations of both virtual point-based
and real point-based approaches, we point out that constructing

Fig. 3: Illustration of the distribution limitation of VCPs. The
red and green represent the source and the rarget respectively.
In this case, only a part of corresponding points can be fitted
by the VCPs, which are generated by performing the weighted
average on the target. And the corresponding points of the
source points marked by the box can never be fitted since the
distribution of the VCPs is limited in the convex set of the
target.

the reliable corresponding points of all the source points
uniformly without distinguishing the inliers and the outliers
can effectively incorporate their advantages. By this way, high
time-efficiency and high accuracy can be achieved at the same
time. For this goal, we propose to learn a new type of virtual
points called rectified virtual corresponding points (RCPs),
which are defined as the point set with the same shape as the
source and with the same pose as the target, as shown in Fig. 1.
Therefore, a pair of consistent point clouds, i.e. source and
RCPs, can be formed to eliminate the influence of outliers via
rectifying VCPs to RCPs (VRNet). Then one can easily yield
reliable correspondences to solve for the relative pose between
the source and RCPs, i.e. the relative pose between the source
and target. Our VRNet consists of two main steps. Firstly, we
construct the initial VCPs by using a soft matching matrix
to perform the weighted average on the target point cloud.
Secondly, we propose a correction-walk module to learn an
offset to rectify VCPs to RCPs, which breaks the inherent dis-
tribution limitation of original VCPs. Besides, a novel hybrid
loss function is proposed to enhance the consistency of shape
and geometric structure between the learned RCPs and the
source point cloud. The proposed hybrid loss function consists
of corresponding point supervision, local motion consensus,
geometry structure supervision, and amendment offset supervi-
sion. It is proved to be effective to supervise the entire network
from the perspectives of the inliers distribution, the consistency
of local and global motions, the geometry structure, efc.
Finally, we evaluate the proposed VRNet through extensive
experiments on synthetic and real data, achieving state-of-
the-art registration performance. Furthermore, our method is
time-efficient since it circumvents the complicated processes
of inliers determination and correspondences selection.
Our contributions can be summarized as follows:

1). We propose a point cloud registration method named VR-
Net to guarantee high accuracy and high time-efficiency.
We present a new type of virtual points called RCPs,
which maintain the same shape as the source and the
same pose as the farget, to help build reliable correspon-
dences.

2). We design a novel correction-walk module in our VRNet
to learn an offset to break the distribution limitation
of the initial VCPs. Besides, a hybrid loss function is
proposed to enhance the rigidity and geometric structure
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consistency between the learned RCPs and the source.

3). Remarkable results on benchmark datasets validate the
superiority and effectiveness of our proposed method for
robust 3D point cloud registration.

II. RELATED WORK

Employing the deep learning technique to the 3D point
cloud registration task has received widespread attention re-
cently. In this section, we provide a brief review of the
learning-based point cloud registration methods. And the de-
tailed summary of traditional point cloud registration methods
has been provided in [26], [27].

A. Correspondences-free methods

Deep learning technique provides a new perspective for
the 3D point cloud registration task, i.e. solving the rigid
transformation by comparing the holistic representations of
the source point cloud and the rarget point cloud. This kind
of method is usually called the correspondences-free method
and consists of two main steps: global feature extraction and
rigid motion solving. PointNetLK [13] represents a pioneer,
which uses PointNet [I] to extract the global features of
the source and target. And then a modified LK algorithm is
designed to solve the rigid transformation from the difference
between these two global features. A similar work, PCRNet
[17], proposes to replace the modified LK algorithm with a
regression strategy, which brings more accurate registration
results. Huang et al. [14] propose a more effective global
feature extractor inspired by the reconstruction methods [28],
[29], in which an encoder-decoder network is designed to learn
a more comprehensive global representation. However, when
outliers exist, there are significant differences in shape and
geometry structure between the source and target in addition
to the poses, thus the correspondences-free method usually
fails to obtain accurate registration results.

B. Correspondences-based methods

Correspondences-based methods are built upon the corre-
spondences, which consist of two main steps: correspondences
building and rigid transformation estimation. Comparing with
the point-to-plane correspondences, plane-to-plane correspon-
dences, etc., the point-to-point correspondences are the most
common in correspondences-based methods. Among them,
feature extractor and reliable correspondences building mod-
ules are depthly explored for more accurate registration.
Feature extractors. A number of effective point feature
learning methods are employed in the point cloud registration
task to obtain more accurate and suitable descriptors for more
accurate alignment. 3DFeat-Net [30] utilizes a set abstraction
module proposed by [31] to summarize the local geometric
structure. DCP [18] uses DGCNN [2] and Transformer [32]
to learn the task-specific features. Different from the above
methods, RPMNet [19] proposes to use a 10D hybrid feature
representation, where the normal is additionally used besides
the 3D coordinate. To handle the large-scale scene data,
DGR [24] uses a fully connected network [33] to extract

features. Deng et al. propose to learn a globally informed 3D
local feature in [34]. Via an unsupervised learning network,
PPF-FoldingNet [35], a rotation invariant 3D local descriptor
is designed. In [36], a rotation invariant feature, voxelized
smoothed density value, is used for point matching. D3Feat
[37] leverages KPConv [38] to predict both a detection score
and a feature for each 3D point, which helps to detect key
points and extract effective features at the same time. With
the advent of deep learning techniques, learning-based feature
extractors have become standard modules that are easy to
integrate.

Correspondences building. Note that the accuracy of the
correspondences is more important than the number of corre-
spondences in the registration task, constructing some reliable
correspondences for robust registration has become a widely
accepted strategy. To this end, some methods propose to dis-
tinguish inliers and outliers, and then solely build correspon-
dences on the identified inliers. For example, Predator [22]
proposes an overlap attention module to recognize the inliers.
PRNet [21] selects the points with more obvious features
as inliers. Besides, selecting reliable correspondences from
the constructed initial correspondences is also an effective
method. 3DRegNet [23], DGR [24], and consensus maxi-
mization method [25] concentrate on estimating the reliability
weight of each correspondence. The 3DRegNet derives each
pair of points individually, and DGR considers the neighbor
information by high dimension convolution. The consensus
maximization method is unsupervised using the principle of
maximizing the number of consistent correspondences. More-
over, consistent correspondences are also selected based on the
RANSAC [16]. However, these operations are complicated and
time-consuming. Thus, an alternative virtual point-based strat-
egy is proposed, which constructs the correspondences for all
source points without distinguishing inliers and outliers using
virtual points. In DeepVCP [15], these virtual corresponding
points are constructed by the weighted average on the points
generated based on the prior transformation. In contrast, all
the points in the farget point cloud are used in DCP [18].
However, this virtual point-based outlier processing strategy
suffers from the serious degeneration due to two reasons, i.e.
the insufficient supervision and the distribution limitation of
the learned virtual corresponding points.

Rigid transformation estimation. The Procrustes algorithm
[39] is the most common strategy to solve the rigid transforma-
tion [15], [18], [19], [21], which has been proved to be optimal
based on the correct correspondences. In addition, the direct
regression of motion parameters has also received widespread
attention in recent years [16], [17], [23].

III. PROPOSED METHOD
A. Preliminaries

3D point cloud registration devotes to estimating the rigid
transformation best aligning the two given point clouds X =
[x;] € R¥>*Nx and Y = [y;] € R¥>*NY, where x; € R3,
yj € R3, Nx and Ny are the numbers of points in X and Y
respectively and Nx, Ny do not need to be equal. Usually,
X and Y are called the source point clouds and the rarget
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Fig. 4: The network architecture of our proposed VRNet. Given the source and target, DGCNN and Transformer are applied to
extract point features. Then, a soft matching matrix is achieved based on the constructed similarity matrix. Virtual corresponding
points and corresponding point features are obtained by using the matching matrix to perform the weighted average on the
target point cloud and the rarget point features respectively. To break the distribution limitation, a correction-walk module is
proposed to learn the offset to amend the VCPs to the desired RCPs. Finally, the rigid transformation is solved by the Procrustes
algorithm. The network is supervised by the proposed hybrid loss function, which enforces the rigidity and geometry structure
consistency between the learned RCPs and the source point cloud.

point clouds, respectively. In this paper, we model the rigid
transformation by the rotation matrix R € SO(3) and the
translation vector t € R3.

Furthermore, point matching is a key problem in the 3D
point cloud registration task, which is usually tackled by
solving a binary matching matrix M = [m;;] Ny x Ny, Where
mij € {0,1}, ie.

1 if x; and y, are matched, 0
mi; = .
! 0 otherwise.

Within the virtual point-based methods, the matching matrix
M is relaxed to [0,1]Vx*NY where m;; represents the
matching probability between the point x; and the point y;,
and M is called the soft matching matrix.

B. VRNet architecture

We advocate constructing the reliable corresponding points
of all the source points uniformly without distinguishing the
inliers and the outliers to ensure both high time-efficiency and
high accuracy. To this end, we propose to learn a new type
of virtual points called RCPs, which are defined as the point
set with the same shape as the source and with the same
pose as the target. By this way, a pair of consistent point
clouds, i.e. source and RCPs, is produced to eliminate the
influence of outliers. Meanwhile, rectifying VCPs to RCPs
facilitates generating reliable correspondences to solve for the
relative pose between the source and RCPs, which is same
with the relative pose between the source and target. The
entire architecture of our VRNet is illustrated in Fig. 4. First,
the initial VCPs are constructed. Then, the RCPs are achieved
by learning a rectified offset in the correction-walk module.
Finally, the rigid transformation is estimated by the Procrustes
algorithm. We introduce these procedures in detail as follows.
VCPs construction. Inspired by DCP [18], we construct the
virtual corresponding points by using the matching matrix M

to perform weighted average on the farget point cloud Y.
To this end, we apply the “DGCNN + Transformer” as our
feature extractor at first. Specifically, a shared DGCNN [2] is
employed to compute the initial point features for the two input
point clouds because it can achieve informative representation
by summarizing the neighbor information through edge con-
volution operation. Besides, inspired by the recent success of
attention mechanism, the Transformer module [32] is also used
to learn co-contextual information of the source point clouds
and the target point clouds. Formally, the DGCNN feature
extraction can be summarized as,

F. = maxpool(MLP, (cat(F{ ' Fi 1)), Fy,, € N(Fy,),

2
where / represents the ¢-th layer of edge convolution. N(Fy,)
denotes the K-nearest neighbors of Fx, in thhe feature space
with the pre-defined parameter K, ie. k € [1,K]. The
initial point feature is the original 3D coordinate. MLP,, is
a multi-layer perceptron (MLP) network parameterized by a.
cat(-, -) represents the concatenation operation and maxpool(-)
represents the max-pooling operation. After several edge con-
volutions, point features are achieved and denoted as Fx =
[Fy,] € RVx*¢ Fy = [Fy ] € RNY*¢ where c is the pre-
defined feature dimension. Then, the Transformer module is
applied as,

{‘I’X =Fx +m(Fx,Fy) 3)

Py =Fy +n2(Fy,Fx)’

where 7; : RVxX¢ x RNy xe 5 RNxXe and gy : RVYX€ x
RANxxe _y RNvX¢ represent the Transformer function. The
features of x; and y; are denoted as ®, and <I>yj, so &x €
RNxX¢ and &y € RNY ¢ indicate the final point features of
all source points and farget points.

Then, we take the scaled dot product attention metric to
calculate the similarity matrix S = [s;;] Ny x Ny, Where

51 = Py, <I>§j /V/e. 4)
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Next, row-wise softmax operation is employed for final soft
matching matrix M = softmax(S). Then, VCPs of the source
point cloud are achieved as Y’ = YMT, Y’ € R3*Nx,
RCPs construction by correction-walk. Constructing the
VCPs to fit the real corresponding points is the fundamen-
tal principle of existing virtual point-based methods. This
idea makes sense when the real corresponding points are
surrounded or overlapped by the target points. In this case,
these points can be fitted by learning a soft matching matrix
M € [0,1]¥x*N¥_ However, note that the weighted average
on target using the soft matching matrix M can only cover
a convex set in 3D space, some real corresponding points of
outliers cannot be fitted since they are outside the range of
this convex set. A typical example is presented in Fig. 3. This
shortage is common in practice and results in many wrong
correspondences. To break this distribution limitation of the
VCPs, we propose a correction module called correction-walk
to learn the offsets to rectify VCPs to RCPs.

For VCPs Y’, we construct the corresponding virtual point
features analogously, i.e. Py = &y MT. Then, we formulate
E = cat(®x,Py’) € RVx*2¢ where cat(-,-) denotes the
concatenation operation. Because we advocate rectifying the
degenerated VCPs to the RCPs, whose shape is defined to
be the same as the source. Thus, according to the feature
differences between the VCPs and the source, i.e. dx and
Py, it is expected that the offsets from VCPs to RCPs are
generated from E. Therefore, E is called seeds in our paper.
The proposed correction-walk module learns the correction
displacement from the seeds. Specifically, the correction-walk
module is implemented by another MLP network, which
consumes the seeds and outputs the Euclidean space offset
Atx € RSXNX, ie.

Atx = MLP4(E). (5)

Thus, the final learned RCPs are produced by adding the
learned offset to VCPs, i.e. Y/ =Y’ + Atx, Y € R3*Nx,
Rigid transformation estimation. After matching the points
in X with the points in Y”, the rigid transformation between
the source and RCPs can be solved in closed-form by the Pro-
crustes algorithm [39]. Because the pose of RCPs is same as
the target, the desired final relative pose is obtained naturally.
Specifically, H = Zfi"l (x; — X)(y! — y”)T, where X and
y”" are the centers of X and Y”. Then, by using the singular
value decomposition (SVD) to decompose H = UDV™, we
obtain the final rigid transformation as,

R =VUT
t=-Rx+y’ ©

Note that the Procrustes algorithm makes sense based on
the correct correspondences. Hence, this rigid transformation
estimation solvers would be problematic or even invalid if
the learned virtual corresponding points degenerate. Unfor-
tunately, this trap has been generally ignored. In this paper,
we propose the RCPs, which rectify this inherent drawback
of original VCPs to guarantee the reliability of constructed
correspondences for the final relative pose estimation.

C. Loss function

In existing virtual point-based point cloud registration meth-
ods, e.g. DCP [18], the loss function usually only focuses on
supervising the final rigid transformation. Due to this insuffi-
cient constraint, the distribution of the learned corresponding
points degenerates as shown in Fig. 2. To solve this problem,
we propose a novel hybrid loss function, which devotes to
driving the learned RCPs and the source point cloud keep
consistent in terms of the rigidity and geometry structure.
Corresponding point supervision. This supervised loss func-
tion concentrates on the predicted matching matrix M. Al-
though M is a soft probability matrix, it is enforced to the
ground truth binary matching matrix to keep rigidity. Herein,
we design the loss function as:

S (miim))
where the superscript “pred” and “gt” represent the prediction
and ground truth respectively, m;; is the entry of the matching
matrix M. However, if x; is outlier, m‘f; = 0 for all
j=1,..., Ny. At present, mli’;-ed is divergent, i.e. Ly can only
supervise the inliers but ignore the outliers. By corresponding
point supervision, we emphasize the distribution of inliers.
Local motion consensus. To guarantee the predicted corre-
sponding points to keep rigidity, the rigid motion estimated
according to all correspondences and the rigid motion esti-
mated according to the correspondences subset should be the
same, that is local motion consensus. Specifically, because the
source point cloud X and the predicted RCPs Y are matched,
the correspondences set can be obtained as 2 = {(x;,y})|i €
[1,Nx],x; € X,y € Y"}. The global optimal rigid motion
can be solved by the Procrustes algorithm [39] based on (2,
notated as R, t. Then, we select G subsets of correspondences
randomly, i.e., Q, C Q, g € [1, G]. The size of each subset is
|€24] > 3. At present, the local rigid motion Ry, t, can also
be solved according to €2, by the Procrustes. Ideally, Ry, t,
should be the same as R,t. Based on this observation, we
define an unsupervised loss function as:

1 &
Ly = el Z(rmse(RgR, I3) + rmse(t,, t)), (8)
g=1

Ly = (N

where I5 is a 3-order identity matrix, rmse(-,-) is the root
mean squared error. £; should converge to O ideally. By the
local motion consensus, we drive the motion of each local part
to be consistent with the global motion.

Geometry structure supervision. In this part, the source point
cloud X and the predicted RCPs Y” are formulated as two
graphs, respectively. Each point is a node and the distance of
arbitrary two points is an edge. Obviously, the edge of x;,x; €
X should be the same as the edge of the corresponding two
points y;',y; € Y”. Here, we denote the edge matrix of the
source as D,

0 dy,2 di, Ny
da1 0 da, Ny
D= . . ) )
dnyx,1 dng2 - 0
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where d;; is the Euclidean distance of points x;,x;, D €
RNx*Nx  Analogously, we achieve the edge matrix of the
learned RCPs Y” as D" € RV¥x*Nx  Because X and Y”
are matched sequentially, we propose to supervise these two
edge matrices by defining the loss function as:

L5 = rmse(D,D"). (10)

In addition to the edge constraint, we also supervise the
node. Here, we constrain the node distribution by defining the
unsupervised loss function as follows:

L3 = rmse(RPX + tPed Y"), (11)

where RP™ and t*d is the predicted rigid motion. By the
geometry structure supervision, we emphasize the geometry
structure consistency of the two point clouds.

Amendment offset supervision. In addition to emphasizing
the rigidity and geometry structure, a special supervised loss
function is proposed here to supervise the amendment offset
explicitly, which is defined as:

L4 = rmse(R¥X + t& — Y, Atx), (12)

where R#' and t&' represent the ground truth rigid motion. By
amendment offset supervision, we enforce the correction-walk
module to learn the offset accurately.

In our implementation, we train the feature extractor at first
by Lo. Then, we freeze this part and train the correction-walk
module by £y, Lo, L3 and L4 as follows, where Ay, Ao, A3
and A4 are trade-off parameters.

L=ML1+XoLo+ A3L3 + ALy (13)

Note that £, is a supervised loss function and £, Lo, L3 are
unsupervised loss functions.

D. Implementation details

Network architecture details. The framework is shown in
Fig. 4, where two deep learning modules exist, i.e. feature
extractor and correction-walk. The feature extractor module
consists of the DGCNN and the Transformer. The correction-
walk module is an MLP network.

In DGCNN part, five edge convolution layers are used
where the numbers of filters are set to [64, 64, 128, 256, 512].
In each edge convolution layer, BatchNorm and ReLU are
taken. The parameter K in Eq. (2) is set to 20. In Transformer
part, one encoder and one decoder are applied with 4 heads
and the embedding dimension c is set to 512.

The output dimension of the correction-walk module is set

as [512,256,512, 256,128,16,3]. Except for the final layer,
BatchNorm and ReLU are applied. The final 3D output
represents the “walk” on the XYZ coordinates.
Training the network. At first, we train the network using
Ly by the Adam optimizer with an initial learning rate of le-
3 and the batch size of 28 for 100 epochs. We implement the
network with PyTorch and train it on GTX 1080Ti. Then, we
freeze the feature extractor part and fine-tune the network for
100 epochs resetting the initial learning rate to le-4. Here, we
use the loss £ and empirically set Ay = Ao = A3 = 1.0 and
Ay = 100 in Eq. (13). We set G = 10 in Eq. (8).

IV. EXPERIMENTS AND EVALUATION

In this section, to demonstrate the superiority of our pro-
posed method, we perform extensive experiments and compar-
isons on several benchmark datasets, including the synthetic
dataset, ModelNet40 [40], real indoor dataset, SUN3D [41]
and 3DMatch [42], and real outdoor dataset, KITTI [43].

A. Evaluation on synthetic dataset: ModelNet40

Dataset and processing. We first evaluate our method on
ModelNet40 [40], which is a synthetic dataset consisting of
3D CAD models from 40 categories. ModelNet40 is a widely
used benchmark in point cloud registration evaluation [13],
[14], [18], [19], [21]. Following [18], [19], [2]], we sample
1024 points randomly as the source point cloud X. And then,
X is rigidly transformed to generate the farget point cloud Y.
Because the dataset is synthetic and the rfarget is generated
from the source, the correspondences are obtained naturally.
The employed rotation and translation are uniformly sampled
in [0°,45°] and [—0.5, 0.5] respectively along each axis. Both
the source and target point clouds are shuffled. These settings
are widely adopted in the community for a fair comparison.

We test the proposed VRNet on ModelNet40 with/without
outliers. Here, four data processing settings are provided as
follows. Note that each of the consistent input point clouds
consists of 1024 points as mentioned above.

o Consistent point clouds (CO). The source and target point
clouds are exactly same except for the pose, i.e. each
point has a corresponding point in the paired point cloud.

« Partial-view (PV). Following PRNet [21], given a random
point in 3D space, we select its nearest 768 points from
the original consistent input point clouds. However, de-
spite this strategy is widely adopted, it results in the same
distribution of overlapped parts, and limited partiality is
obtained with low outliers ratio.

o Random-sample (RS). We randomly select 768 points
from each consistent point cloud, leading to the random
distribution of outliers and high outliers ratio.

o Partial-view & Random-sample (PV+RS). A more chal-
lenging data processing setting is provided by combining
the above partial-view and random sample strategies.
Specifically, we select 896 points randomly from each
consistent point cloud at first, and then 768 nearest points
are selected from these sampled 896 points, respectively.

Dataset split setting. Following [18], [21], three dataset split
settings are applied here for a comprehensive evaluation.

¢ Unseen Point Clouds (UPC). The ModelNet40 is divided
into training and testing sets with the official setting.

« Unseen Categories (UC). To test the generalization ability
to the unseen point cloud categories, we divide Mod-
elNet40 according to the object category. The first 20
categories are selected for training and the rest are used
for testing. This setting is consistent with [18], [19], [21].

o Noisy Data (ND). To test the robustness, random Gaus-
sian noise (i.e., N'(0,0.01), and the sampled noise out of
the range of [—0.05,0.05] will be clipped) is added to
each point. The dataset splitting is the same as UPC.
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TABLE I: Evaluation on the consistent point clouds. The boldface indicates the best performance and the underline represents
the second-best performance. The green indicates the increase of our method compared with the second-best results. And if
ours is not the best, it indicates the gap compared with the best results. All tables follow this protocol.

Method RMSE(R) MAE(R) RMSE(t) (x10~%) MAE(t) (x10—4)
UPC uc ND UPC uc ND UPC uc ND UPC uc ND

ICP 12282 12707 11971 4613 5075 4497 47744 48532 48320 2280 2355  43.35
FGR 20054 21323 18359  7.146 8077 6367 44121 45777 39101 16420 1807 14487
PTLK 13751 15901 15692  3.893 4032 3992 19900 261.15 23958 4452 6213 5637
DCPv2 1094 3256 8417 0752 2102 5685 1717  63.07 31837 1173 4629  233.70
PRNet 1722 3060 3218 0665 1326 1446 6372 10095 11178 4652 7580  83.78
VRNet 091 0200 255 0012 0038 L0l6 297 783 5702 047 099 2897

¢ +91.68% +93.17% +20.51% +98.20% +97.89% +29.74% +82.70% +87.60% +48.99% +95.99% +94.52% +33.17%

TABLE II: Evaluation on point clouds processed by partial-view, random sample, partial-view & random sample strategy.

Method RMSE(R) MAE(R) RMSE(®) MAE(®)
UPC uc ND upC uc ND UPC uc ND UPC uc ND
ICP 33.683 34894 35067 25045 25455 25564 0293 0293 0294 0250 0251  0.250
FGR 11238 9932 27653 2832 1952 1379 0030 0038 0070 0008 0007 0039
PTLK 16735 22943 19939 7550 9655 9076 0045 0061 0057 0025 0033 0032
DCP-v2 6709 9760 6883 4448 6954 453 0027 0034 0028 0020 0025 0021 %
PRNet  3.199 498 4323 1454 2329 2051 0016 0021 0017 0010 0015 0012
VRNet 982 2121 3615 049 0585 1637 00061  0.0063 00101  0.003 00039  0.0063
¢ +69.30% +57.46% +16.38% +65.89% +70.03% +20.19% +61.88% +70.00% +40.59% +51.25% +44.29% +47.50%
ICP 11247 12723 11472 4531 5280 4752 00421 00454 00430 00232 00231  0.0249
FGR 19203 19.62 37452 7054 7566 23230 00414  0.0433 3606727 00157 00167  6.0463
DCP-v2 5018 6015 5536 2921 3964 3162 00116 00147 00127 00087 00112  0.009
PRNet  4.851 3484 3824 2420 1764 L1781 00174 00129 00128 00134 00100 0009 2
VRNet 1496 5651 3099 0593 1971 1476 00025  0.0041 00077  0.0016  0.0071  0.0057
€ +69.16% -62.20% +18.96% +75.59% -11.73% +17.13% +78.45% +68.22% +39.37% +81.61% +36.61% +40.63%
ICP 11971 13669 12215 5298 6018 5624 00499 00521 00502 00296 00287  0.0309
FGR 7837 9187 32491 2076 2017 14680 00167 00168 00604 00063  0.0065  0.0360
DCP-v2 5818 7059 6286 3399 4564 3844 0018 00176 00222 00138 00131 00168 &
PRNet  4.924 3836 4519 2573 1901 1925 00162 00163 00139 00112 00112 0009 <
>
VRNe 1109 1842 2411 0513 0702 1020 00037 00045 00072 0.0023  0.0026 00050 &
+77.48% +51.98% +46.65% +75.29% +63.07% +47.01% +77.16% +72.39% +48.20% +63.49% +60.00% +49.49%
Evaluation metrics. Following [18], [21], root mean square setting specifically, achieves the second-best performance in

error (RMSE), and mean absolute error (MAE) between the
ground truth and the prediction in Euler angle and translation
vector are used as our evaluation metrics, notated as RMSE(R),
MAE(R), RMSE(t) and MAE(t) respectively.

Performance evaluation. Herein, we present the rigid motion
estimation results in the mentioned settings for a compre-
hensive comparison. Meanwhile, we also provide the time-
efficiency to validate the proposed VRNet.

e Consistent point clouds: Following the protocol of DCP
[18], we take consistent point clouds as our input. The results
are reported in Table. I. In UPC setting, among all baselines,
PRNet [21] achieves the best performance in MAE(R) and
DCP-v2 obtains the best results in RMSE(R), RMSE(t) and
MAE(t). However, our proposed VRNet are better than all
these baselines. In UC setting, VRNet maintains the best
performance while PRNet achieves the second-best results for
rotation estimation, and DCP-v2, FGR obtain the second-best
results in RMSE(t) and MAE(t) respectively. In ND setting,
our proposed VRNet improves the performance to a large
extent in all evaluation metrics compared with all baselines,
which validates the robustness of our method further.

o Partial-view: Following PRNet [21], we test the perfor-
mance of the proposed method using the partial-view input
point clouds. We report the registration results in Table. II,
where the proposed method achieves the best results in all
evaluation metrics including RMSE(R) MAE(R), RMSE(t)
and MAE(t) in all dataset split settings including UPC, UC
and ND. Besides, PRNet, which is designed for partial-view

most evaluations.

e Random-sample: Due to the random sample strategy,
the outliers distribute randomly. The registration performance
is reported in Table. II. Our VRNet achieves the best perfor-
mance in UPC, ND. In UC, VRNet obtains the best estimation
of translation, and the second-best rotation estimation results.

e Partial-view & Random-sample: In this part, we com-
bine the above two data processing strategies to evaluate our
VRNet, and the results are presented in Table. II. Obviously,
our VRNet achieves the best performance in all evaluation
metrics including RMSE(R), MAE(R), RMSE(t) and MAE(t)
in all dataset split settings including UPC, UC, and ND.

e Time-efficiency: We counts the average inference time
of all learning-based methods in partial-view setting using a
Xeon E5-2640 v4@2.40GHz CPU and a GTX 1080 Ti, where
768 points exist in each input point cloud. Table. III shows
that ours achieves advanced time-efficiency meeting the real-
time requirement since the complicated processes of inliers
recognition and reliable correspondences selection are avoided.

TABLE III: Inference time comparison on ModelNet40.
PTLK DCP
472

Methods PRNet RPMNet

54.75

VRNet
19.92

Time[ms] 17.66  37.48

B. Evaluation on real indoor dataset: SUN3D, 3DMatch

Dataset. Besides the synthetic dataset, we also conduct evalu-
ations on real indoor scene dataset, SUN3D [41] and 3DMatch
[42]. SUN3D is composed of 13 randomly selected scenes, and
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the version processed by 3DRegNet [23] is used here, which is
a sparse dataset with around 3000 points in each point cloud.
3DMatch is a hybrid indoor dataset, and the input has been
voxelized with the voxel size of Scm following [24]. This
dataset is a dense, large-scale dataset and each point cloud
contains around 50000 points. To train the network, we con-
struct the ground truth correspondences manually. Specifically,
we transform the source point cloud based on the ground
truth transformation matrix first. Then, the nearest neigh-
bor searching is applied to solve the corresponding points.
Notably, if the distance between the transformed point and
the searched corresponding point is greater than a predefined
threshold (e.g. 3cm for SUN3D and Scm for 3DMatch in our
implementation), the match is discarded.

Evaluation metrics. For a fair comparison, we follow the
evaluation metrics of 3DRegNet [23] and DGR [24] respec-
tively. For SUN3D, we report the mean, median rotation error
(RE), and the mean, median translation error (TE), and time-

efficiency (Time), where RE and TE are calculated by
180
0

RE = arccos((trace(R™'R&) — 1)/2)
TE = o — 622

; (14)

where the superscript “gt” indicates the ground truth. For
3DMatch, besides the mean RE, mean TE and time-efficiency,
we also report the recall following [24], which is the ratio of
successful pairwise registrations. Here, the successful pairwise
is confirmed if the rotation error and translation error are
smaller than the pre-defined thresholds (i.e. 15 deg, 30cm).
It is worth mentioning that, mean RE and mean TE reported
in Table. V are computed only on these successfully registered
pairs since the relative poses returned from the failed registra-
tions can be drastically different from the ground truth, making
the error metrics unreliable.

TABLE IV: Comparison of registration results in SUN3D
following the metrics of 3DRegNet [23]

Methods RE[deg] RE[deg] TE[m] TE[m] Time[ms]
Mean Median Mean Median

FGR 2.57 1.92 0.121 0.067 44.34

ICcp 3.18 1.50 0.146 0.079 32.17

RANSAC 3.00 1.73 0.148 0.074 170.2

3DRegNet 1.84 1.69 0.087 0.078 166.7
1.49 0.38 0.075 0.058

VRNet +19.02% +74.67%  +13.79%  +13.43% 25.6

Performance evaluation. In Table. IV, we provide the perfor-
mance comparison on SUN3D. Traditional methods, including
ICP [11], FGR [44] and RANSAC, all present an acceptable
registration result. Moreover, ICP and FGR even achieve
the second-best performance on median TE and median RE
metrics respectively within all methods. The learning-based
method, 3DRegNet [23] presents the better performance on
mean RE and mean TE than these traditional methods, how-
ever, it is complicated. We also conduct DCP-v2 and PRNet,
unfortunately, they fail in this setting with divergent results.
Our proposed VRNet outperforms all these baselines on both
transformation estimation and time-efficiency performance,
which validates the superiority of our method.

TABLE V: Evaluation on 3DMatch dataset.

Methods TE[cm] RE[deg] Recall(%) Times[s]
ICP 18.1 8.25 6.04 0.25
FGR 10.6 4.08 427 0.31
Go-ICP 14.7 5.38 229 771.0
Super4PCS 14.1 5.25 21.6 4.55
RANSAC 8.85 3.00 66.1 1.39
DCP-v2 21.4 8.42 3.22 0.07
PTLK 21.3 8.04 1.61 0.12
DGR 7.34 243 91.3 1.21
VRNet 8.64 3.12 729 0.11

Table. V presents the evaluation results on 3DMatch, we
find that ICP [11] achieves the weakest performance because
the dataset is so challenging since the large rigid motion exists
and there is no reliable prior provided. Meanwhile, a sampling-
based algorithm, SuperdPCS [45], and the ICP variant with
branch-and-bound search, Go-ICP [46] perform similarly. The
feature-based methods, i.e. FGR and RANSAC, perform much
better than these methods which are built on the 3D point
directly. As for learning-based methods, DGR [24], which
is designed for dense scene dataset specifically, achieves the
best performance in all registration metrics. However, because
DGR devotes to selecting reliable correspondence, it is compli-
cated and time-consuming. PointNetLK is a correspondences-
free method, which fails in this setting because of the nu-
merous outliers. DCP-v2 also fails here despite the best time-
efficiency is achieved, we suspect that the feature extractor
of DCP-v2 is not suitable to 3DMatch dataset. Inspired by
this, we use the FCGF [33] feature extractor instead in our
VRNet, which is designed for such large-scale scene point
clouds specifically. Furthermore, although only the second-
best rigid transformation estimation results are achieved by
ours, which is weaker than DGR, our VRNet obtains the better
time-efficiency when ignoring the failed method, DCP. This
characteristic of balancing the transformation estimation and
the running time is crucial in actual applications.

C. Evaluation on real outdoor data: KITTI

The typical outdoor scene dataset, KITTI [43] is used
here to evaluate our VRNet, which consists of LIDAR scans.
Following [24], we build the point cloud pairs with at least
10m apart, and the ground-truth transformation is generated
using GPS followed by ICP to fix the inherent errors. The
strategy to construct ground truth correspondences is the same
as the strategy for the SUN3D, 3DMatch datasets, and the
threshold to determine the acceptable correspondences is set
to Scm. Besides, we use the voxel size of 30cm to downsample
the input point clouds. It is worth mentioning that we use the
FCGEF [33] feature extractor in our VRNet as Sec. IV-B, which
is designed for such large-scale scene dataset. Table. VI reports
the registration performance. In learning-based approaches,
the proposed VRNet obtains better performance on translation
estimation while DGR [24] achieves better rotation estimation
results. Meanwhile, the best time-efficiency is achieved by our
VRNet, which is important in actual applications. DCP [18]
and PRNet [21] also can make sense in this setting. However,
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since the GPU consuming is out of memory for “DGCNN +
transformer” feature extractor in DCP and PRNet, we have
to downsample the input point clouds with the voxel size of
70cm further for these two baselines. Thus, we do not report
their time-efficiency here for a fair comparison.

TABLE VI: Evaluation on KITTI dataset.

Methods Rotation[deg] Translation[cm] Time[s]
RMSE MAE RMSE MAE

ICP 7.54 2.10 4.84 2.94 1.44
FGR 60.45 27.81 42.1 12.69 1.50
DCP 11.09 10.42 18.04 16.29 -
PRNet 10.93 7.86 13.28 10.52 -
DGR 5.59 2.32 4.72 2.31 2.42
VRNet 7.56 3.42 1.72 1.18 0.24

D. Ablation studies

The consistency comparison. The essence of our method
is to construct correspondences for all source points without
distinguishing outliers and inliers. To this end, we drive the
learned corresponding points to keep rigidity and geometry
structure consistency with the source point cloud. Here, we
measure this consistency using the Chamfer distance, which
can be calculated as follows,

1 1
CD(X.Y) = > min|lx—y|3+5- > min [x—yl:.
xeX yeY
15)
We provide the comparison in Fig. 5, where “Source &
VCPs” represents the Chamfer distance between the source
point cloud and the learned VCPs, “Source & RCPs” rep-
resents the Chamfer distance between the source and the
learned RCPs, and “Source & Target” represents the Chamfer
distance between the source and target. The source has been
transformed with the ground truth rigid transformation. As
shown in Fig. 5, because of outliers, the source and the
target are not entirely the same, thus even the ground truth
transformation is applied, the corresponding Chamfer distance
is still large. Meanwhile, because the distribution limitation
has been broken, the learned RCPs are more consistent with
the source point cloud in which the less Chamfer distance is
obtained.
Registration improvement by the correction-walk module.
To break the distribution limitation, we propose a correction-
walk module to learn an offset to amend the corresponding
points. Herein, we give a quantitative effectiveness analysis
of this module by comparing the registration performance.
As shown in Fig. 6, via our correction-walk module, the
registration performance shows an obvious improvement in
all metrics and all settings.
Coefficients of loss functions. In this paper, we take a hybrid
loss function for point cloud registration. As mentioned in
Sec. III-C, corresponding point supervision £ is used to
train the feature extractor and the local motion consensus L1,
geometry structure supervision Lo, L3 and the amendment
offset supervision £, are used to train the correction-walk
module. Here, £1, Lo, L3 are unsupervised, where we take

x10°
:

; ;
I Source & VCPs
[ Source & RCPs
[ Source & Target |4

w
T

Chamfer distance
N

[N

bl

PV RS PV+RS CO+ND

PV+ND

RS+ND PV+RS+ND

Fig. 5: We count the Chamfer distance in different settings
including partial-view, random-sample, partial-view&random-
sample, consistent point clouds in noise (CO + N D), partial-
view in noise (PV + ND), random-sample in noise (RS +
ND), partial-view&random-sample in noise (PV + RS +
ND). The corresponding points learned by the VRNet are
more consistent to the source, because the Chamfer distances
between the source and the learned RCPs are always smallest.

A1 =X = A3 = 1. And L, is supervised and we have a test
about )4 in partial-view setting.

As shown in Fig. 9, our proposed VRNet achieves the best
performance when Ay = 100, which is taken in our applica-
tion. Besides, we compare the performance of tests conducted
with different loss function combinations in Table. VII. We
find that the unsupervised loss functions not only help keep
the shape and geometry structure of the learned corresponding
points, but also improve the final registration performance.

TABLE VII: The comparison of different loss function com-
binations applied in correction-walk module training.

RMSE(t) MAE(®)

Methods  RMSE(R) MAER) 0" 0%
L4 1.254 0.639 0.838 0.540
La+L1 1.062 0.593 0.672 0.403
La+L2 1.054 0.539 0.638 0.410
La+L3 1.119 0.608 0.715 0.462
All loss 0.982 0.496 0.611 0.389

VRNet with iteration. Currently, our method has achieved a
high-quality registration performance in a single pass. Here,
we provide an evaluation to test our VRNet in the iteration
strategy like ICP. Specifically, in each iteration, we refine the
source point clouds with the predicted transformation matrix
solved in the last iteration, and resolve the new transformation
matrix between the updated source point clouds and the rarget
point clouds. Finally, all predicted transformation matrices
are summarized to obtain the final estimated transformation
matrix. The tests are conducted on ModelNet40 under the UPC
using the partial-view. The results are provided in Table. VIII.

TABLE VIII: The performance comparison when inserting
the VRNet to the iteration pipeline.

RMSE(t) MAE(t)

Iteration RMSER) MAER) (x 10,2> (><10’2) Times[ms]
1 0.982 0.496 0.611 0.389 19.92
2 0.931 0.447 0.563 0.327 41.73
3 0.904 0.412 0.528 0.301 65.34
4 0.886 0.398 0.501 0.292 96.42
5 0.884 0.401 0.497 0.292 127.51
6 0.891 0.399 0.495 0.291 162.46
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Fig. 6: We show the improvement caused by the correction-walk module. The orange/blue indicates the results without/with

the correction-walk module. In all settings and all metrics, the

registration results are improved.
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Fig. 7: The registration performance decreases as the outliers ratio increases. Traditional methods, like RANSAC, FGR,
present excellent performance. Our VRNet achieves state-of-the-art performance in rotation estimation and the best translation

estimation in learning-based methods.
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Fig. 8: The performance comparison of RANSAC strategy and

From Table. VIII, we can find that, before the 4-th iteration,
the registration performance has been significantly improved
as the number of iterations increases. However, when the
number of iterations increases further, the performance tends
to be stable. The time-efficiency becomes weaker due to the
iteration strategy.

Robustness to outliers. To verify the robustness to outliers,
we evaluate the registration performance of ours and the
baselines under different outliers ratios as shown in Fig. 7.
The tests are conducted on ModelNet40 under the UPC
using the partial-view. By different sample ratios, different
outliers ratios are achieved. And the fewer points are sampled,
the higher outliers ratio are obtained. Specifically, there are
1024 points in the each original consistent input point cloud,
whether it is the source or the rarget. We reconstruct the
source and the target by sampling some nearest points from

our proposed correction-walk module with the different outliers.

them. The corresponding relationship between the size of the
sampled point cloud and the outliers ratio is 960 (6.67%), 896
(15.33%), 832 (23.08%), 768 (33.33%), 704 (46.39%). From
Fig. 7, obviously, for rotation estimation, VRNet achieves
stable and the most accurate performance. For translation
estimation, FGR achieves the better performance. However, for
learning-based methods, ours remains the best performance’.
Correct matches ratio vs. outliers ratio. We evaluate the
correct matches ratio as the outliers ratio increases in Fig. 10.
We compare the ground truth, i.e. the correct matches ratio of

n the ablation study of “robustness to outliers”, “correct matches ratio vs
outliers ratio”, “RANSAC vs correction-walk” and “visualization”, for a clear
comparison and analysis of the proposed VRNet, we adjust the partial-view
setting proposed in PRNet [21]. Specifically, we set the view points at the
symmetrical position to sample the source and target rather than the same
position. This operation will result in a larger outliers ratio and more obvious
partiality. These tests are conducted on ModelNet40 under UPC.
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Fig. 9: The illustration of registration performance with re-
spect to different weights of the amendment offset supervision,
i.e. \y. X-axis is labeled with this weight coefficient \,. We
notice that, the proposed method achieves the best perfor-
mance when Ay = 100, which is taken in our applications.

the source point cloud and the target point cloud, the correct
matches ratio of the source and the learned VCPs, and the
correct matches ratio of the source and the learned RCPs.
The thresholds to confirm the successful matches are set to
0.15, i.e., if the distance between the predicted corresponding
point and the ground truth corresponding point is less than
the threshold, this match is a successful match. From Fig. 10,
the correct matches ratio of the source and the VCPs approxi-
mates the ground truth, which validates our method leaned an
accurate corresponding points distribution of inliers due to the
proposed sufficient supervision. And the correct matches ratio
of the source and RCPs is even better than the ground truth,
which verifies that the distribution of the learned RCPs is more
consistent with the source than the original target point cloud
due to the correction-walk module.
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Fig. 10: The correct matches ratio comparison with the
different outliers ratios.

RANSAC vs. correction-walk. The principle behind the VR-
Net is to consider the source uniformly without distinguishing
inliers and outliers rather than selecting reliable correspon-
dences. Here, we evaluate these two strategies. RANSAC,
which is the representative correspondences selection method,
is compared here. The results of RANSAC, which are applied
to source point cloud and the target point cloud, are presented
in Fig. 8. Obviously, our VRNet achieves more accurate
results with different outliers ratios than RANSAC in terms
of rotation estimation and RMSE(t). With respect to MAE(t),
when the outliers ratio is high, RANSAC method is better
while ours obtains more accurate results when the outliers ratio
is low. To sum up, VRNet achieves better performance than
RANSAC, especially facing low outliers ratio. Besides, we test
the performance of combining the RANSAC and our VRNet.
Two settings are carried out here, i.e. employing RANSAC

to the source and the learned VCPs, employing RANSAC
to the source and the learned RCPs. From Fig. 8, we can
find that, RANSAC between the source and the learned RCPs
gets a litter better performance than RANSAC between the
source and the learned VCPs. Meanwhile, these two settings
are both much more stable than using RANSAC or VRNet
alone when outliers ratio increases. It is worth mentioning
that, when outliers ratio is low, especially approximates to 0,
RANSAC provides negative affect to our VRNet. We suspect
that the tolerance in RANSAC strategy (i.e. the threshold to
determine the reliable correspondences) decreases the regis-
tration performance.

Visualization We provide the visualization of the learned
VCPs, the learned RCPs and the offset learned by the
correction-walk module in Fig. 11. VCPs are limited in the
target point cloud, however, they are amended to RCPs that
are more consistent with the source point cloud. In addition,
for a clear presentation of the effectiveness of the proposed
VRNet, we provide some registration results on 3DMatch and
KITTI datasets in Fig. 12 and Fig. 13.

V. DISCUSSION AND CONCLUSION

In this paper, we have proposed VRNet, an end-to-end
robust 3D point cloud registration network. However, some
limitations also exist in our method. Specifically, 1) our
proposed method cannot handle the object or scene with strong
symmetry well. Our method advocates learning the correction
displacement by comparing the features of the source point
clouds and the virtual point clouds to facilitate the RCPs to
tend to be consistent with the source point clouds. However,
if the point features are confused due to the same geometry
in the symmetric object, the learned offsets are also confused,
which can not rectify the VCPs accurately; 2) even though
our method has presented strong robustness as the overlap
ratio decreases, when the overlap ratio becomes very low,
the registration performance also will be significantly affected.
This is a stubborn illness in the point cloud registration field
[18], [21], [24]. For our method, we suspect the reason is that
the learned RCPs cannot be built accurately since there are
too many outliers in the source that need to be fitted by the
virtual points.

Nevertheless, our VRNet can effectively avoid the compli-
cated inliers and outliers screening and reliable correspon-
dences selection by modeling the corresponding points for
all source points uniformly. Its is proven to be effective and
efficient in recovering the rectified virtual corresponding points
that maintain the same shape as the source and same pose of
the target, thanks to the use of the proposed correction-walk
module and the hybrid loss function. Our experiments show
that VRNet can achieve state-of-the-art rigid transformation
estimation results and high time-efficiency on both synthetic
and real sparse datasets. Meanwhile, for large-scale dense
datasets, VRNet can balance time-efficiency and accuracy.
It not only achieves comparable performance as the most
advanced methods but also maintains good time superiority,
which is crucial for practical applications. In the future, we
plan to extend our VRNet to 2D-2D and 2D-3D registrations.
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Fig. 11: Visualization of the source point (purple), the target point cloud (green), the learned VCPs (gray), RCPs (blue),
and the learned offset (red line). All points clouds are calibrated to the same pose for clear comparison. Obviously, the VCPs
approximate the source as much as possible but it is limited in the farget distribution. Then, the correction-walk module amends
the VCPs to the RCPs, which present a more consistent distribution with the source than the VCPs and the origianl rarget.
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Fig. 12: Our VRNet presents the accurate registration results on real indoor dataset, 3DMatch including 8 subsets, where Left
is the input source and target point clouds, and Right is the aligned point clouds.
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Fig. 13: Our VRNet achieves accurate registration performance on the real outdoor KITTI dataset. The left subfigure is the
input pair and the right subfigure indicates the registration result of our VRNet. We can find the input source and target point
clouds are with different poses while the point clouds in the right subfigure are aligned. For example, in the left subfigure, the
edges of the road are biased. And the blank parts of the center overlap marked by the blue box but they should be different
in fact because the scanner locates at different positions. Then, in the right subfigure, the edges overlap, and the blank parts
deviate since the point clouds have been registered successfully.
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In addition, we would further investigate more effective down-
sampling strategies to help VRNet improve the registration
accuracy for large-scale dense point cloud data.
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