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Unsupervised Domain Adaptation for
Disguised-Gait-Based Person Identification

on Micro-Doppler Signatures
Yang Yang , Xiaoyi Yang , Takuya Sakamoto , Senior Member, IEEE,

Francesco Fioranelli , Senior Member, IEEE, Beichen Li , and Yue Lang

Abstract— In recent years, gait-based person identification has
gained significant interest for a variety of applications, including
security systems and public security forensics. Meanwhile, this
task is faced with the challenge of disguised gaits. When a human
subject changes what he or she is wearing or carrying, it becomes
challenging to reliably identify the subject’s identity using gait
data. In this paper, we propose an unsupervised domain adap-
tation (UDA) model, named Guided Subspace Alignment under
the Class-aware condition (G-SAC), to recognize human subjects
based on their disguised gait data by fully exploiting the intrinsic
information in gait biometrics. To accomplish this, we employ
neighbourhood component analysis (NCA) to create an intrinsic
feature subspace from which we can obtain similarities between
normal and disguised gaits. With the aid of a proposed constraint
for adaptive class-aware alignment, the class-level discriminative
feature representation can be learned guided by this subspace.
Our experimental results on a measured micro-Doppler radar
dataset demonstrate the effectiveness of our approach. The
comparison results with several state-of-the-art methods indicate
that our work provides a promising domain adaptation solution
for the concerned problem, even in cases where the disguised
pattern differs significantly from the normal gaits. Additionally,
we extend our approach to more complex multi-target domain
adaptation (MTDA) challenge and video-based gait recognition
tasks, the superior results demonstrate that the proposed model
has a great deal of potential for tackling increasingly difficult
problems.

Index Terms— Micro-Doppler signatures, gait recognition,
radar-based person identification, transfer learning, unsupervised
domain adaptation.
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I. INTRODUCTION

PERSON identification has increasingly become a hot
research topic in numerous applications. Due to its unique

advantages that there is no need for cooperation from human
subjects, gait biometric is more suitable for the person identifi-
cation task than the common biometrics such as iris [1], finger-
print [2], and face [3]. In [4], the authors reveal the uniqueness
of individual gait patterns in clinical biomechanics. The most
widely used sensors for biometric-based person identification
include cameras [5], LiDAR [6], and wearable sensors [7].
Nevertheless, vision-based and LiDAR-based identification
systems will heavily suffer from the environments (such as
low light, bad weather, occlusion, etc.) and cameras easily
cause the risk of privacy leakage. Wearable sensors cannot
be used for non-cooperative targets. In recent years, people
have investigated the feasibility of gait recognition based on
Wi-Fi signals because of the advantages of low-cost, non-
intrusiveness, and light-insensitivity [8], [9]. On the other
hand, due to channel congestion, Wi-Fi signals are highly
susceptible to interference and environmental noise [10]. Thus,
it is desirable to investigate a sensor capable of detecting
human movement in complex settings.

Thanks to the micro-Doppler phenomenon [11], radar has
proved to be effective in gait-based person identification under
complex environments [12]. Micro-Doppler, also commonly
dubbed as micro-Doppler signatures (m-Ds), is the additional
frequency modulation of raw radar echoes, and this modulation
is caused by the micro-motions of the human body parts
(e.g., rotation of the torso, the periodic swing of the arms
and legs) when the subject moves in the radial direction of
radar illumination [11]. Abdulatif et al. [13] investigate how
the m-Ds are affected by the body mass index (BMI), which
is a key factor that causes the uniqueness of different human
gaits, and successfully recognize 22 human subjects with an
overall 98% accuracy on the unseen test set.

In recent years, several algorithms have been proposed
to use m-Ds for gait-based person identification [14]–[18].
However, these studies do not account for disguised states
(e.g., clothing, different moving speeds, whether carrying
objects, etc.). In this case, the person identification model will
easily suffer from the numerous unknown disguised human
gaits because the radar echo intensities, Doppler bandwidth
or period of motion will be altered when a test subject
changes his or her moving states. Basically, changing to a
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new moving state means that the original distribution of human
gait data will be shifted as well [19]. For example, the authors
of [19] investigate recognizing the subjects in different indoor
environments, and the discrepancies between the normal and
disguised gaits most likely lead to misclassification. Therefore,
the m-Ds in human backscattering echoes are varied by the
appearance of the subject, and it is quite challenging to identify
the subject when its m-Ds change.

The majority of approaches fail on this challenge because
they are based on the assumption that the data for normal
gaits and disguised gaits follow the independently identical
distribution (i.i.d) hypothesis. For the non-i.i.d problem, if the
gap between the new situations (a.k.a. target domain) and
the original scenarios (a.k.a. source domain) is not taken
into account, the classification model’s performance will be
significantly deteriorated.

This challenge is referred to as a ‘cross-domain’ problem,
and this problem enables a fresh research field of domain
adaptation (DA) [20]. The objective of DA is to bridge the
domain gap between the source and target domains so that
the knowledge in the source domain can be applied to the
task in the target domain. DA issues can be addressed in
a supervised or unsupervised manner, the former requires
adequate labeled data, whereas the latter does not. Annotating
images is both time-consuming and labor-intensive in practical
scenarios, researchers are likely to undertake domain adapta-
tion unsupervised rather than supervised [21]. If we train an
identification model in a supervised way, we must label a large
number of samples in new scenarios, which becomes more
difficult when the number of new scenarios is enormous.

A large number of UDA approaches make great progress in
typical computer vision tasks such as image classification [22],
[23], person re-identification (Re-ID) [21], [24], [25], and
semantic segmentation [26]. To be specific, researchers employ
the constraints of adversarial training [27], [28], statistical
distance [29], and clustering methods [21], [30] to ensure the
projected features of source and target domain data can be
well aligned. Hence, UDA is considered a feasible solution
for person identification based on disguised gaits.

During the experimental exploration, we observed that the
discrepancy between the normal domain and different target
domains is not treated equally. This is because disguised gaits
differ in multiple scenarios, the discrepancy between various
disguised gaits and normal gaits will also differ. As depicted
in Fig. 1, some disguised scenarios deviated less from the
normal scenario, and some scenarios differed considerably
from the normal scenario. This observation inspires us that
such differences in the discrepancy should be considered
during domain adaptation.

In this paper, we propose a new UDA model for person
identification based on the disguised gaits using the radar
sensor. In our model, the original features of the source and
target images are learned under supervised and unsupervised
constraints. Considering the differences in the discrepancy
between normal and various disguised gaits, we use the neigh-
bourhood components analysis (NCA) [31] principle to guide
the learning of the intrinsic feature subspace. The primary
design of our model is shown in Fig. 2. As shown in this figure,

Fig. 1. Illustration of the differences in the discrepancy between disguised
gaits and normal gaits. The orange circle in the center represents the normal
gaits, and the other blue circles indicate the disguised gaits. The location of
each disguised gait, i.e., in the inner or outer ring, represents the similarity
between the normal gaits and the corresponding disguised gaits.

Fig. 2. Illustration of the proposed approach. The orange circle (solid line) is
the source domain (feature subspace), and the blue circle (solid line) indicates
the target domain (feature subspace). The triangles and stars in the circles
indicate the different classes in each domain, and the dash-dotted line circles
the instances of the same class. The green circle is the proposed NCA-guided
intrinsic subspace. The gray and green arrows indicate the intra-class and
inter-class alignment processes, and the size of the arrows represents the
self-adaptive alignment weights.

the guided intrinsic subspace integrates both the intra-class
similarity information and the inter-class discrepancy informa-
tion between the source and the target domains, as the features
of different domains are well-aligned at the class level. In order
to maintain the precise cross-domain alignment in the guided
subspace, we design a new self-adaptive class-aware alignment
constraint. We name our model as Guided Subspace Alignment
under the Class-aware condition (G-SAC).

Our contributions are summarized as follows:

• To the best of our knowledge, this work is the first
exploration that addresses the issue of person identifi-
cation based on disguised gaits using radar m-Ds. All
the previous research reported in the literature does not
consider the case of the disguised gaits.

• We propose a novel neural-network-based model
‘G-SAC’ to solve the problem. To overcome the distribu-
tion shifts at the class level in adaptation, G-SAC employs
supervised and unsupervised constraints to maintain the
consistency of the class-aware data distributions of both
source and target data in the original subspace.

• We notice the differences in the discrepancy between
normal and various disguised gaits and propose an
NCA-guided intrinsic subspace learning scheme to avoid
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the risk of inappropriate transfer caused by this discrep-
ancy. In addition, a self-adaptive class-aware alignment
constraint is designed for the optimization so that the
training process would not be impacted by the imbalance
within each class and between different classes.

• We build a monostatic radar system and establish a
dataset containing both normal and disguised gaits cap-
tured by this system. We also evaluate the G-SAC model
on this dataset, then use the state-of-the-art (SOTA) UDA
methods in computer vision tasks for comparison. The
experimental results show that the G-SAC outperforms
the other methods and is effective for disguised-gait-based
person identification.

The rest of the paper is structured as follows. Section II
briefly reviews related work. Section III presents the radar sys-
tem and the measurement of radar gaits in different scenarios.
In Section IV, we describe the proposed G-SAC algorithm
in detail. Section V presents the experiments and discussion.
Finally, we conclude the paper in Section VI.

II. RELATED WORK

A. Radar-Based Person Identification

In recent years, many researchers have explored a
number of radar-based person identification methods.
Trommel et al. [16] used a radar system to detect human
gaits and employed a deep convolutional neural network that
is able to recognize whether the human target is detected and
to identify the number of detected human targets. In [14],
a neural-network-based vote algorithm was presented for
gait-based person identification using m-Ds. Chen et al. [15]
utilized m-Ds to distinguish armed and unarmed people based
on a multi-static radar system. In [17], a 25 GHz frequency
modulated continuous wave (FMCW) single-input-single-
output (SISO) radar was employed in industrial safety for
real-time human-robot identification. Papanastasiou et al. [18]
recognized human individuals based on radar measurements
using an X-band radar. In [32], a low-power FMCW radar
system was established to automatically identify spontaneous
walkers in different rooms. In [13], the convolutional
autoencoder was used to extract the latent representations
from the m-Ds for person identification. Lang et al. [33] used
a mono-static radar system for joint motion classification and
person identification. The reservoir computing networks were
explored to identify a limited number of people in an indoor
environment [34].

These researches seek to build an effective system for
person identification based on gait, or to develop the capability
of using various radars or human movements for person
identification, but, to the best of our knowledge, none of them
considered the problem of disguised gaits in the classification
process.

B. Domain Adaptation

In terms of whether the labels of the data in the target
domain are accessible, domain adaptation can be divided
into supervised DA, semi-supervised DA, and unsupervised

DA [20]. The UDA is the most challenging task among them,
as the target labels cannot be accessed at all.

1) Alignment-Based UDA: Many studies aimed to learn
domain-invariant representations by establishing the objec-
tive function with different metric criteria, e.g., maximum
mean discrepancy (MMD) [35], CORAL [29], Kullback-
Leibler (KL) divergence [36], and Wasserstein distance [37].
Zhu et al. [23] proposed a new local distribution metric to
measure the discrepancy between relevant subdomains within
the same category of different domains. Taking advantage
of the adversarial learning strategy of the GAN, GAN-
based UDA methods [27], [38] have attempted to make a
domain invariant feature space using the well-trained gener-
ator. Luo et al. [26] designed a GAN model to alleviate the
negative transfer during the feature alignment. Cui et al. [28]
proposed a new network to reduce domain-specific representa-
tions. In [22], the nuclear-norm was considered as an objective
function to enhance the discriminability and diversity of the
features. Xu et al. [39] gradually encouraged feature-norm
enlargement across domains for each sample.

2) Clustering-Based UDA: A variety of methods [30], [39]
show that maintaining the structure of the target domain is
necessary during domain adaptation, and clustering is a widely
used method for this purpose. Tang et al. [30] enhanced the
target discrimination by target domain clustering and structural
source domain regularization. Huang et al. [21] proposed a
method for determining the likelihood that an input sample
belongs to a cluster via a dynamic clustering confidence value.
In [24], the authors designed an uncertainty-guided noise
resilient network to mitigate the negative effects of noise
pseudo labels when clustering.

3) Subspace-Based UDA: To construct a domain-invariant
subspace, using geometric constraint is also explored in these
years. Gong et al. [40] employed numerous low-dimensional
subspaces for establishing a domain-invariant flow path
based on the geodesic flow kernel. The authors of [41]
explored a feasible solution for constructing a discriminative
domain-agnostic subspace by using the two-stage learning
strategy.

The purpose of this work is to address the problem of
person identification based on disguised gaits by offering a
novel UDA-based method. Unlike the approaches described
above, our method is more suitable to the concerned problem
because we take the differences in the discrepancy between the
source and target domains as a significant prior in the design
of G-SAC.

III. MICRO-DOPPLER DATASET

In this part, we first present a measured radar gait dataset of
m-Ds to evaluate the proposed approach. To accomplish this,
a SISO radar system with an ultra-wideband (UWB) radar
module and two directional antennas is built. The frequency
band of the radar system is 3.1–4.8 GHz, with a pulse
repetition frequency of 368 Hz.

Eight gait patterns are considered in the measurements,
which include: walking normally (Normal), walking fast
(Fast), walking slowly (Slow), walking with a backpack
(Backpack), walking with a handbag (With bag), walking with
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Fig. 3. (a) The measurement setup. (b) Experimental environment in the
‘Coat’ disguised pattern.

TABLE I

THE NUMBER OF GENERATED SAMPLES OF RADAR MEASUREMENTS

FOR EACH GAIT PATTERN

a stick (Stick), walking with a cell phone (Phone), and walking
in a coat (Coat). Nine subjects including four males and
five females participated in the radar measurements. Subjects
perform eight patterns starting from a distance of 10 m towards
the radar (see Fig. 3). All of the experiments are operated in
an indoor environment. Each participant performs a single gait
pattern ten times, and each measurement is recorded as an
echo segment. Thus, the total number of echo segments was
(9persons) × (8patterns) × (10repeats) = 720.

After the radar measurements, we obtain the m-Ds by
following two steps. Firstly, in order to obtain the human
backscattering echos with a high signal-to-noise ratio (SNR),
we follow a standard pipeline to improve the quality of raw
radar data. Average background subtraction is employed to
remove the direct current (DC) component, and then we
filter the echos from static objects with a moving target
indicator (MTI), so that the component of human movements
in raw radar signal can be completely retained. The threshold
detection is the next operation, which is used for suppressing
the noise in the raw radar signals. Finally, we may acquire
radar echoes free of interference from the environment or
electrical circuits.

The second step is to produce radar spectrograms using
the time-frequency transform. We use the short-time Fourier
transform (STFT) to convert radar signals to spectrograms in
our study. The STFT is calculated based on a 0.2 s Hanning
window and 2048 sampling points, which can be formulated
as follows,

SSTFT(τ, ω) =
∣∣∣∣
∫ ∞

−∞
x(t − τ )h(t)dt

∣∣∣∣2

, (1)

where x (t) denotes signal segments in the time domain, and
h (t) is the window function. Afterward, we use the sliding
window augmentation [33] on each echo segment, and set
90% overlap to divide the signal into segments and perform
windowing. We finally obtain more than 90,000 spectrograms
on all the measurements. The numbers of each gait pattern’s
images are listed in Table I.

Fig. 4. The Micro-Doppler spectrograms of four subjects in ‘Normal’ pattern.

Fig. 5. The Micro-Doppler spectrograms of the same subject in eight gait
patterns.

From Fig. 4, we can observe intuitively that the m-Ds of
different targets with the same pattern have similar envelopes.
Meanwhile, there are clear distinctions between the normal
gaits and several disguised gaits (C, S, St, and W). The
distinctions are probably caused by the change of Doppler
shifts as shown in Fig. 5 or period of motion, and this
dissimilarity might occur locally (different echo intensities)
or globally (different Doppler bandwidth).

IV. PROPOSED METHOD

The G-SAC model is introduced in this section. To begin
with, we formulate the disguised-gait-based person identifi-
cation problem in Sec. IV-A. Then, the unsupervised deep
clustering constraints are presented in Sec. IV-B. We detail
the NCA-guided intrinsic subspace learning in Sec. IV-C. The
following section presents the joint supervised and unsuper-
vised optimization, and the proposed self-adaptive class-aware
alignment constraint. The general framework of the G-SAC
model is depicted in Fig. 6.

A. Problem Formulation

In UDA, given the spectrograms for the normal scenario
as the source domain S with ns labeled samples X s ={(

xs
i , ys

i

)}ns

i=1 and the spectrograms for one of the disguised
scenarios as the target domain T with nt unlabeled samples

X t =
{(

xt
j

)}nt

j=1
, where X s ,X t ∈ R

D . Source domain S
and target domain T share a label space Y , where yS ∈
{1, 2, . . . , K } denote the source domain label of K classes.
The target domain label yT ∈ {1, 2, . . . , K } cannot be
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Fig. 6. (a) The proposed G-SAC framework is an end-to-end network shared by the source and target domains. In the subspace learning phase, the feature
extractor captures the original feature representation, followed by using NCA to guide the subspace learning and finally using the classifier to predict. In the
clustering phase, we use standard K -means clustering based on the current feature representation of source and target samples. (b) Visualization of the
NCA-guided subspace learning process. The network projects the original features onto the intrinsic subspace by learning a set of mappings with parameters.
Detailed description can be found in Section IV.

accessed. UDA aims to make the prediction of each ŷt
j using

X s , X t , and Ys .
Our approach is to bridge the gap in the distribution of

the source and target domains with a neural network. The
G-SAC consists of three modules: a feature extractor fe (·; θ),
a classifier fc (·; φ) and a guiding module fg (·; ω), where
θ , φ and ω are the parameters of the corresponding modules
respectively. Given the feature extraction network fe (·; θ), the
inputs x ∈ X are mapped into a raw feature space Z ∈ R

d

(d � D) by a feature embedding process: X θ−→ Z . Let
fg : Z ω−→ O be a transformation from the input z ∈ Z to
the intrinsic subspace O ∈ R

d . The classifier fc (·; φ) assigns
a probability vector p ∈ R

K to each feature representation
z ∈ Z or o ∈ O by seeking an optimal h in the functional

space Fh , where h ∈ Fh : {Z φ−→ R
K && O φ−→ R

K }, and the
optimization is constrained by ps

i,k = ys
i .

B. Deep Target Domain Discriminative Clustering

In our design, the clustering is implemented in the original
feature space, so we choose a flexible embedding cluster-
ing [42] framework for deep clustering, as this method can
take the feature representation as inputs. Each xt

k is projected
into the original feature space based on a backbone network
fe (·; θ), and the feature representation

{
zt

k

}K
k=1 is obtained.

Next, we employ the unsupervised deep embedding cluster
loss [42] to force

{
zt

k

}K
k=1 to surround a group of learnable

prototypes U = {
μt

k, k = 1, 2, . . . , K
}

in terms of k-th class.
The objective function of the deep target domain discrimi-

native clustering is defined as

min
θ,Qt ,{μt

k}K
k=1

Lt
cluster = KL(Qt � P̃t ) − H (ρ) , (2)

where P̃t = {{ p̃t
j,k}

nt
k

j=1}K
k=1 denotes the probability distribu-

tions of zt and μt , Qt = {{qt
j,k}

nt
k

j=1}K
k=1 is the auxiliary target

distribution evolving from P̃t , H (ρ) refers to the entropy loss
of ρ which is the expectation of Qt , and the KL divergence
loss can be written as

KL(Qt � P̃t ) = 1

nt

nt∑
j=1

K∑
k=1

qt
j,k log

(
qt

j,k

p̃t
j,k

)
. (3)

We use the Student’s t-distribution [43] combined with a
multinomial logistic regression (softmax) function to calculate
the probability p̃t

j,k of assigning zt
j to μt

k in the target domain,
which is

p̃t
j,k =

exp

((
1 +

∥∥∥zt
j − μt

k

∥∥∥2
/δ

)− δ+1
2

)

K∑
k�=1

exp

((
1 +

∥∥∥zt
j − μt

k�
∥∥∥2

/δ

)− δ+1
2

) . (4)

Following [42], we let δ = 1 for all experiments.
Similar to [30], [42], the P̃t is iteratively refined by learn-

ing from high confidence assignments with the help of Qt .
To update the auxiliary target distribution Qt , an alternative
update strategy is employed. At the first stage, fe (·; θ) and{
μt

k

}K
k=1 are fixed. We can get the closed-form solution of qt

j,k
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with the subject to
K∑

k=1
qt

j,k = 1 [44],

qt
j,k =

p̃t
j,k/

√
nt∑

j �=1
p̃t

j �,k

K∑
k�=1

p̃t
j,k�/

√
nt∑

j �=1
p̃t

j �,k�

. (5)

Next, we fix Qt and update fe (·; θ) and
{
μt

k

}K
k=1 following

Eq. (6), i.e.,

min
θ,{μt

k}K
k=1

Lt
cluster = − 1

nt

nt∑
j=1

K∑
k=1

qt
j,k log p̃t

j,k, (6)

which can be treated as a standard cross-entropy loss function
with the target distribution Qt as the label.

As stated in [45], degenerate solutions probably occur when
excessive instances are assigned to the same cluster. We intro-
duce a regularization term H (ρ) to balance the number of

assignments in clusters. This term H (ρ) = −
K∑

k=1
ρk logρk

denotes the entropy of the probability ρk = 1
nt

nt∑
j=1

qt
j,k . This

objective function is encouraged to maximize the entropy of
Qt , so that the total loss can equally contribute to each cluster.
In addition, this can allow the cluster boundaries of the target
domain to pass through low-density regions [35].

In addition to serving as the unsupervised constraints of the
G-SAC, the clustering is also assigned the task of predicting a
pseudo-label for each xt

j which is required for the NCA-guided
subspace modeling (in Sec. IV-C), and the detailed procedure
of generating pseudo labels is presented in Sec. IV-D.

C. NCA-Guided Intrinsic Subspace Learning

The study in [30] notes that the source generalization error
will be accumulated when the domain alignment does not
take the class-level information into consideration at an early
stage. Based on this study, we take a closer perspective
from domain-level to class-level. Specifically, we construct
a learnable class-aware intrinsic subspace and introduce an
alignment constraint to alleviate the risk of discrepancies in
the degree between normal and various disguised gaits.

1) Neighbourhood Component Analysis Overview:
NCA [31] aims to find the class-aware feature representations
using a linear/non-linear transformation. Its appeal comes from
the fact that the features can preserve their manifold structure
after the transformation. Compared with the classical PCA [46]
and linear discriminant analysis (LDA) [47] algorithms, NCA
neither requires complicated matrix inversion operations nor
does it need to make strong parametric assumptions on the
class distribution structure and decision boundaries [35].

NCA is closely related to the K -nearest neighbor (KNN)
algorithm and handles the tasks of feature selection and dimen-
sionality reduction with this algorithm. Because the NCA
takes the distance differences among each pair of samples into
account based on a KNN-determined metric space, it is more
appropriate for the problem addressed in this paper.

2) NCA-Guided Subspace Modeling: Given a source
domain feature embedding zs and a target domain feature
embedding zt . We pre-mix zs and zt for each class k before
NCA-based projection. The mixing operation follows Eq. (7),

z̃st
k,i j = βzs

k,i + (1 − β)zt
k, j , (7)

where β ∈ [0, 1] is a trade-off coefficient to adjust the mixing
ratio of the source and target domain features. A parametric
metric based on Mahalanobis distance is employed to project
the mixed features into an intrinsic feature subspace, and
this step is strictly restricted by the NCA assumption. The
Mahalanobis distance is commonly used in cluster analysis
and classification approaches due to its advantages of being
unitless, scale-invariant, and taking into account the dataset’s
correlations [48]. In terms of the NCA principal, the para-
metric metric should be considered as a positive semi-definite
matrix, and given the constraint of Q = ωT ω. This metric can
be formulated as:

M(m, n) = (m − n)TQ(m − n)

= (ωm − ωn)T (ωm − ωn). (8)

According to Sec. IV-A, we can obtain Ost from the mixed
feature subspace Z̃st , and the distances between each random
pairs in Ost can be calculated by Eq. (8) following the random
neighborhood soft assignment strategy [31]. Then, we can get
the probability qmn of assigning each mixed feature z̃st

m to z̃st
n

(m �= n) using the softmax operator in subspace Z̃st , which
is

qmn = exp
(−M(z̃st

m , z̃st
n )

)
nst∑

n=1
m �=n

exp
(−M(z̃st

m , z̃st
n )

) , (9)

where nst denotes the number of intrinsic subspace samples.
Finally, we can get the probability of correct assignments of
z̃st

m following

pm =
∑

I (km = kn) qmn, (10)

where the I (·) is the indicator function. It should be noted
that a few numbers of wrong pseudo-labels would not affect
the optimization, because 1) the pm is determined by all the
qmn where the km = kn condition is satisfied, and 2) each
z̃st

m is derived from the subspace Zs where the samples are
accurately labeled.

In order to avoid the risk of overfitting, an additional
regularization term is considered to constrain the parameter
space of the learnable parameters ω based on the structural risk
minimization (SRM) theory [49]. Based on the consideration
above, the objective function for establishing the NCA-guided
intrinsic subspace is defined as follows:

min
ω

Lst
neighbor = − 1

nst

nst∑
m

log (pm) + τ �ω�2
F , (11)

where τ acts as a non-negative regularization parameter,
and � · �2

F indicates the Frobenius matrix norm. This term
ensures complexity control on ω elements, so that the
high-dimensional intrinsic features in subspace Ost would
become more robust in extracting discriminative features [50].

Authorized licensed use limited to: TU Delft Library. Downloaded on October 03,2022 at 07:18:48 UTC from IEEE Xplore.  Restrictions apply. 



6454 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 9, SEPTEMBER 2022

3) Class-Aware Alignment Constraint: The class-aware
alignment loss is designed to align the subspace Z with the
subspace Ost in both source and target domain conditions,
so that the features in Z would be class-aware and domain-
invariant. The class-aware alignment loss is formulated as
follows,

min
θ,φ

Lst
align

= 1

K

K∑
k=1

(
Lwd

(
Zs

k ,Ost
k

) + Lwd
(
Z t

k ,Ost
k

))
︸ ︷︷ ︸

intra

− 1

K

1

K − 1

K∑
k=1

K∑
k�=1
k� �=k

Lwd
(
Ost

k ,Ost
k�

)
︸ ︷︷ ︸

inter

, (12)

where Lwd is the Wasserstein distance (also called The Earth
Mover Distance). Following [37], we simply calculate the
Wasserstein distance under the Kantorovich-Rubinstein dual
principle, i.e.,

WD
(
X s,X t ) = sup∥∥∥ f̂

∥∥∥
L
≤1

xs∼X s

[
f̂
(
xs)] − xt∼X t

[
f̂
(
xt)] ,

(13)

where
∥∥∥ f̂

∥∥∥
L

is the Lipschitz constant for f̂ (·). In this case,
the Lwd in Eq. (12) can be formulated as

Lwd
(
Zk,Ost

k

)= 1

nk

∑
zk∈Zk

fc (zk)− 1

nst
k

∑
ost

k ∈Ost
k

fc
(
ost

k

)
(14)

and the zk can be zs
k or zt

k in the training phase.
It should be pointed out that the intra-class terms of Eq. (12)

aim at narrowing the domain gap by minimizing the distances
between the intrinsic features and original features in both the
source and target domains, while also reducing the intra-class
discrepancies between those features. The inter-class term
mainly focuses on increasing the dissimilarity between differ-
ent classes in the subspace Ost by maximizing the distances
between each pair of intrinsic features from different classes.
Note that the Wasserstein distance is calculated based on the
expectations of distributions, so it is considered inherently
noise-robust against the few incorrect pseudo-labels [37].

Combining Eq. (11) and Eq. (12), we can obtain the
total objective function for the NCA-guided intrinsic subspace
learning:

min
θ,φ,ω

Lst
guide = Lst

align + Lst
neighbor. (15)

Besides, we minimize the classification error of the source
domain labeled data by using the cross-entropy loss

min
θ,φ

Ls
cls = − 1

ns

ns∑
i=1

K∑
k=1

I
[
k = ys

i

]
log ps

i,k , (16)

where ps
i,k is the k-th element of the predicted probability vec-

tor ps
i of source instance xs

i . Therefore, the overall objective

of G-SAC can be formed as

min
θ,φ,ω,Qt ,{μt

k}K
k=1

Ltotal = Ls
cls + αLt

cluster + γLst
guide. (17)

D. Joint Supervised and Unsupervised Optimization

In each epoch of training, the optimization of the G-SAC
model and the clustering in the original feature subspace
Z are performed alternately. Clustering is crucial in our
approach since it enables the combination of supervised and
unsupervised optimization. For the supervised learning, the
clustering method provides the pseudo labels of each xt

j , and
the Lst

guide is heavily associated with these pseudo labels.
Meanwhile, the Lt

cluster is affected by the learnable prototypes
μt , which are acquired from the cluster centers ct provided by
the clustering method (the dash line in Fig. 6). It is noted that
ct differs from μt as the former is initialized by the clustering
at the beginning of each epoch, while the latter is continuously
updated under the constraint of Eq. (2).

1) Cluster Center Updating: In our design, as the clus-
ter centers have a substantial impact on the pseudo labels,
the assignment and optimization of these cluster centers are
detailed in this section.

At the start of each epoch, we employ the K -means [51]
algorithm to assign pseudo-labels to each xt

j by taking two

factors, one is the number of categories K in the source
domain S, the other is the cluster centers of the samples
X s to initialize the ct

k : ct
k = cs

k , where cs
k is computed by

cs
k = 1

ns
k

∑
zs

k∈Zs
k

zs
k�zs
k� .

Then, the cluster centers ct are further optimized based
on the error minimization algorithm [51] following two
steps. The first step is to calculate the vector vzt

j →ct =[
dcos

(
zt

j , ct
1

)
, dcos

(
zt

j , ct
2

)
, . . . , dcos

(
zt

j , ct
K

)]
based on the

cosine similarity metric dcos (·). In this case, the index number
of the maximum value in vzt

j →ct is considered as the pseudo

label of the input zt
j . The second step is to re-assign pseudo

label of zt
j , and the ct

k is updated until the error between each
re-assignment is less than an extremely low number �.

After clustering, we set a threshold D0 ∈ (0, 1)
to filter those features far away from each ct

k , i.e.,{(
xt

j , ŷt
j

)
|dcos

(
zt

j,k, ct
k

)
> D0

}
. This step seeks to improve

the pseudo label prediction results by rejecting those ambigu-
ous cases.

2) Self-Adaptive Alignment Weights: As mentioned in the
introduction, there are discrepancies between the two data
domains. Furthermore, another issue arises from this observa-
tion: the disparities between inter-class and intra-class samples
with different domains are likewise diverse. In order to deal
with the problem of this imbalance within each class and
between different classes, we design two self-adaptive weights
for Eq. (12) base on the cluster centers cs , ct and the
cosine similarity distance [30]. The k-th intra-class weight

is calculated by wkk
intra = 1 − ct

k
�cs

k�ct
k��cs

k� ∈ [0, 1], and the

inter-class weight between class k and k � is obtained following
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TABLE II

CLASSIFICATION ACCURACY (%) FOR DIFFERENT ADAPTATION TASKS ON THE MEASURED RADAR MICRO-DOPPLER DATASET

wkk�
inter = (ct

k+cs
k )

�
(ct

k� +cs
k� )

�ct
k+cs

k�
∥∥∥ct

k� +cs
k�

∥∥∥ ∈ [0, 1]. The weighted alignment

loss is given by

min
θ,φ,ω

Lst
align

= 1

K

K∑
k=1

wkk
intra

(
Lwd

(
Zs

k ,Ost
k

) + Lwd
(
Z t

k ,Ost
k

))
︸ ︷︷ ︸

intra

− 1

K

1

K − 1

K∑
k=1

K∑
k�=1
k� �=k

wkk�
interLwd

(
Ost

k ,Ost
k�

)
︸ ︷︷ ︸

inter

. (18)

By incorporating weights into the objective function, it is
possible to perform the class-aware alignment procedure using
the clustering results as a prior. In this case, we could pay dif-
ferent attention to each class, and the class-level disequilibrium
within the features in subspace Ost and Z will be eliminated.

V. EXPERIMENTAL RESULTS

A. Setups

Typically, the UDA problem is seen as a single-target
domain adaptation (STDA) problem, with identical classes
in the source and target domains. By expanding the num-
ber of target domains, a more complex UDA problem, the
multi-target domain UDA (MTDA) problem, was recently
introduced [55].

1) Dataset Construction: We assign the N domain as the
source domain based on the measured radar data mentioned
in Sec. III, and the other domains as the target domains
independently. We build eight multi-target domains in the
MTDA setup by randomly selecting two domains from among
those that are not the N domain base on the measured radar
data.

2) Implementation Details: The input spectrograms are
augmented by random cropping and horizontal flipping, and
each of them is resized to 224 × 224 pixels before being
fed into the network. The ResNet-50 [52] with the ImageNet

pre-trained model [56] is selected as our backbone network
(the feature extractor fe (·; θ) in Sec. IV-A), and the last fully-
connected (FC) layer is removed. The classifier ( fc (·; φ) in
Sec. IV-A) is a 3-layer perceptron. The mini-batch stochastic
gradient descent (SGD) solver is used for the optimization, and
its momentum is 0.9 and weight decay is 0.001. We set the
initialized learning rate at 0.001 for fe (·; θ), 0.01 for fc (·; φ),
and 0.0001 for fg (·; ω). We follow the same learning rate
strategy as [30]: the learning rate decays with the factor of(
1 + η e

E

)−ρ , where e and E denote the process of training
epochs and total epochs respectively, η = 10, and ρ = 0.75.
We follow [27] to increase γ from 0 to 1 by γe = 2 ×
(1 + exp (−ϑe))−1 − 1, where ϑ = 10. We set the mixing
factor β = 0.5 (see Sec. IV-C) and the filtering threshold
D0 = 0.05 (see Sec. IV-D). We follow [50] to set τ = 27 (see
Sec. IV-C). The maximum number of epochs is set to 100,
and the batch size is set to 16. Our implementation is based
on the PyTorch open-source framework [57].

B. Results on Radar-Based Person Identification Task

The state-of-the-art UDA algorithms, including the domain-
alignment-based methods BNM [22], SAFN [39], and
DCAN [35], adversarial-learning-based methods DANN [38],
DAAN [27], and GVB [28], class-aware-based methods
SRDC [30], CLAN [26], DSAN [23], and pseudo-label-based
methods ATDOC [53] and FixBi [54] are taken into consid-
eration for the comparison.

1) STDA Setup: The results of all approaches on the pro-
posed dataset in the STDA setup are shown in Table II. Based
on the above source-only results, we group C, S, St and
W with less than 50% accuracy as strongly-disguised gaits,
whereas B, F, and P as weakly-disguised gaits. As demon-
strated in the table, our method outperforms the other meth-
ods by at least 6.91%, proving our approach’s significant
competitiveness for disguised-gait-based person identification.
On the other hand, the significant disparities between the
various accuracies (e.g., the accuracy of N→C is 63.34%,
whereas the accuracy of N→F achieves 94.95%) demonstrate
the variations across the UDA tasks. We find that DCAN
achieves an excellent result in N→S, but it is not robust
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TABLE III

CLASSIFICATION ACCURACY (%) FOR DIFFERENT MTDA TASKS OF THE MEASURED RADAR MICRO-DOPPLER DATASET

TABLE IV

CLASSIFICATION ACCURACY (%) OF ABLATION STUDIES ON THE MEASURED RADAR MICRO-DOPPLER DATASET.
FOR DEFINITIONS OF THE DIFFERENT METHODS, SEE THE TEXT IN SECTION IV

enough in weakly-disguised gaits, and GVB can identify
the target accurately in weakly-disguised gaits, but it cannot
fight the disturbance in strongly-disguised gaits. By contrast,
our method can effectively compensate for large domain
discrepancy while avoiding over-transfer for small domain
discrepancy and achieves robust performance in any disguised
gait condition.

2) MTDA Setup: Table III shows the comparison results
on the radar micro-Doppler dataset under the MTDA setup.
The results indicate that our method achieves the SOTA
performance for the disguised-gait-based person identification
task.

C. Ablation Studies

1) Effectiveness of NCA-Guided Intrinsic Subspace Learn-
ing: To verify the efficacy of the intrinsic subspace learning,
we remove the Lst

guide in G-SAC and perform the experi-
ments on this variant based on the dataset in Sec. III. The
ablation results in Table IV demonstrate the important role
of intrinsic subspace learning in the problem at hand. The
average accuracy reduces by nearly 10% when compared
to the G-SAC. In this task, considering the large number
of biomechanical gait variables involving various joints and
planes of motion, the results indicate that the NCA focuses
on the information concerning individual discrimination, while
discarding the irrelevant pieces of information.

2) Effectiveness of Deep Target Domain Discriminative
Clustering: The Lt

cluster is removed to verify the effectiveness
of clustering. In Table IV, we note that clustering has a
significant impact on improving the accuracy, demonstrating
the critical relevance of giving pseudo labels during the feature
extractor’s learning process.

3) Effectiveness of Self-Adaptive Alignment Weights: We
conducted the ablation experiments by replacing the Eq. (18)
with Eq. (12) in the G-SAC model, and the corresponding
results on the seven adaptation tasks are listed in Table IV.
As can be seen, the proposed self-adaptive weights are benefi-
cial in all cases. Specifically, accuracy increases significantly
for scenarios in which the target domain is obtained using
strongly-disguised gaits, however, there is little difference
between the counterparts of weakly-disguised gaits scenarios.
This observation also suggests that the class-level imbalance
is more severe in scenarios with strongly disguised gaits than
in those with weakly disguised gaits.

4) Effectiveness of the Class Alignment With Wasser-
stein Distance: We additionally discuss the efficacy of the
Wasserstein distance in the class-level alignment. We chose
some commonly used metrics in transfer learning, including
MMD [35] and KL divergence [36], to replace the Wasserstein
distance employed in this paper, and the results are depicted
in Fig. 7a and Fig. 7b. It can be observed in these figures
that the accuracy curve of the proposed method is smoother
than those using MMD and KL divergence. Moreover, G-SAC
performs more accurately than the other variations in those
challenging adaptation tasks involving strongly disguised gaits,
e.g., the N→S.

D. Parameters Study

This section discusses the effects of pre-defined parame-
ters on the performance of the G-SAC model, including the
clustering loss weight α and the mixing factor β. As it can
be seen in Fig. 7c, the accuracy fluctuates only in a small
range when α ∈ {0.5, 0.75, 1}. The results prove that our
model is not susceptible to the change of α. We set the range
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Fig. 7. (a) and (b) show comparison results of our method and two variants. (c) and (d) show accuracy (%) under different values of different parameters
α and β.

Fig. 8. The t-SNE visualization of embedded features on the transfer task N→F, where the numbers in the legend indicate nine human subjects. Note that
the top and side plots represent the marginal domain distributions (where the source domain is in yellow and the target domain is in blue), while the middle
plots represent the class conditional distributions.

Fig. 9. The target domain confusion matrices on the transfer task N→F.

of β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, as the corresponding results
are shown in Fig. 7d. The best average accuracy is achieved
when β = 0.5. This intriguing result reveals an interesting
observation: a large β results in a weak connection between
the intrinsic subspace and the target domain, whereas a small β
results in a lack of supervision from the source domain. Thus,
a better result can be achieved by averaging the contributions
of both the source and target domains.

E. Further Discussion

1) Feature Visualization: We use the t-SNE [43] algorithm
to visualize the distribution of features for the classification
based on the dataset in Sec. III. Fig. 8 illustrates the feature
distribution in the 2-dim space based on the adaptation task

N→F. Our approach, as expected, generates class-discrepancy
features in the target domain. Within the same class, there is
still a distinct domain boundary between the source and target
domains, demonstrating that the domain-level data structure
can be well maintained.

2) Confusion Matrix: Fig. 9 shows the confusion matrix for
the misclassification analysis based on the N→F adaptation
task. From the confusion matrix of our method shown in
Fig. 9d, we can see that the rate of misclassification between
subjects is quite low. We can also see that the No.3 and
No.6 subjects are prone to confusion on this adaptation task,
as the misclassification rates are greater than 10% in all
other compared algorithms. This reaches up to 58% when the
classification model is only trained by the source data. Under
comparison, our algorithm achieves a misclassification rate of
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Fig. 10. (a) CASIA-C data collection. (b) GEI samples.

TABLE V

CLASSIFICATION ACCURACY (%) FOR DIFFERENT

ADAPTATION TASKS ON CASIA-C DATASET

7% in the identical condition. Moreover, from Figs. 9a and 9b,
we can see that there is significant confusion between all tar-
gets with each other, indicating the UDA method’s difficulties
in handling such disguised-gait-based person recognition tasks.

F. Results on Video-Based Person Identification Task

We compare the performance of G-SAC with other
approaches using a publicly accessible gait dataset, CASIA-C
[58], to explore its effectiveness on the video-based person
identification task. This dataset contains 1530 video seg-
ments that were captured using thermal infrared cameras
with a resolution of 320 × 240 pixels and a frame rate of
25 frames per second (FPS). Each video segment depicts a
single individual walking in one of four distinct ways (see
Fig. 10a), including walking normally (Normal), walking fast
(Fast), walking slowly (Slow), and walking with a backpack
(Backpack). There are 130 male participants and 23 female
participants in total. The authors of this dataset also provide
a representation method of human gait in video sequences,
named gait energy image (GEI), which is shown in Fig. 10b.

The per-task adaptation performance can be found in
Table V. From this Figure, it is clearly that our model
surpasses the others on each adaptation task. Compared to
the performance of the source-only model, we achieve a
19.41% improvement on the average accuracy. Furthermore,

the G-SAC shows significant improvements in all tasks, espe-
cially in the most difficult N→B task.

VI. CONCLUSION AND FUTURE WORK

We address the challenge of person identification using
disguised gaits in this research. We formulate this challenge
as an unsupervised domain adaptation problem and propose
a new model for solving it named ‘G-SAC’. This approach
projects both source and target data, i.e., normal and disguised
gaits, into an intrinsic feature subspace for feature alignment,
and uses supervised and unsupervised constraints to ensure the
consistency of the class-aware data distributions. We create a
micro-Doppler gait dataset to evaluate the G-SAC model, and
the findings demonstrate that our method outperforms other
existing approaches in both single- and multi-target domain
adaptation scenarios. Additionally, ablation experiments and
specific insights are included to demonstrate the usefulness of
our designs. We further validate the performance of G-SAC on
a publicly accessible CASIA-C dataset, and the results show
that the proposed model could be employed successfully for
video-based gait recognition tasks. Given that an individual’s
m-Ds are susceptible to the presence of other moving objects,
future studies will focus on person identification tasks in sce-
narios involving several individuals or other moving subjects.
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