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Towards more realistic human motion prediction
with attention to motion coordination

Pengxiang Ding, Jianqin Yin, Member, IEEE

Abstract—Joint relation modeling is a curial component in
human motion prediction. Most existing methods rely on skeletal-
based graphs to build the joint relations, where local interactive
relations between joint pairs are well learned. However, the
motion coordination, a global joint relation reflecting the simul-
taneous cooperation of all joints, is usually weakened because it
is learned from part to whole progressively and asynchronously.
Thus, the final predicted motions usually appear unrealistic. To
tackle this issue, we learn a medium, called coordination attractor
(CA), from the spatiotemporal features of motion to characterize
the global motion features, which is subsequently used to build
new relative joint relations. Through the CA, all joints are related
simultaneously, and thus the motion coordination of all joints can
be better learned. Based on this, we further propose a novel joint
relation modeling module, Comprehensive Joint Relation Extrac-
tor (CJRE), to combine this motion coordination with the local
interactions between joint pairs in a unified manner. Additionally,
we also present a Multi-timescale Dynamics Extractor (MTDE)
to extract enriched dynamics from the raw position information
for effective prediction. Extensive experiments show that the
proposed framework outperforms state-of-the-art methods in
both short- and long-term predictions on H3.6M, CMU-Mocap,
and 3DPW.

Index Terms—human motion prediction, joint relation model-
ing, motion coordination, enriched dynamics

I. INTRODUCTION

Human motion prediction aims to generate future skeleton
sequences from given past observed ones. It is a crucial
research field since it can help machines respond rapidly to
unknown situations in the future. Thus this technique has
attracted much attention in many scenarios, such as human-
robot interaction [1], [2], [3], [4], autonomous driving [5], and
pedestrian tracking [6], [7].

Predicting human motion is a challenging task because hu-
man motion is highly dynamic, non-linear, and more stochastic
over time. Traditional works [8], [9] extend classical sequential
models [10], [11] to motion prediction and achieved good
performance in simple actions. Recently, those learning-based
methods [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21] have proven to be more effective in the complicated
motions due to their better nonlinear fitting ability. They are
mainly divided into two categories: RNN-based methods [12],
[13], [14], [15], [16], [17] and Feed-forward methods[18],
[19], [20], [22], [21], [23]. RNN-based methods usually suffer
from some inherent problems existing in RNN, e.g., the
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prediction discontinuities and error-accumulation. Differently,
feed-forward methods, including CNNs [19], [18] and GCNs
[20], [22], [21], [23], can help alleviate those problems be-
cause the whole prediction process is not recursive. Besides,
compared with RNN-based methods, feed-forward methods
can model spatial and temporal relations simultaneously and
exploit richer motion features. Thus, recent SOTA approaches
mainly adopt feed-forward neural networks, and our work also
falls under this category.
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Past observed sequences Future predicted sequences0 400ms-400ms

Fig. 1. Qualitative results of short-term predictions of motion “discussion”
on H3.6M. From top to bottom, we show the ground truth, the results of
LTD [22], ConvS2S [18], ResSup [14] and our approach. Compared with
the result of our approach, the predicted motions of other works have the
same problem: the limbs are uncoordinated which makes the predicted motion
appear unrealistic.

Although promising results are achieved in previous works,
there is still a universal problem in previous works: they
mainly focus on the local interactive relations between joint
pairs but overlook the motion coordination, a specific global
joint relation that encodes the simultaneous cooperation of
all joints. In prior works, joint relations are usually modeled
according to skeletal structure [19], [20], [17], [16] or dynamic
graphs [23], [22], [21]. They can exploit rich local joint
relations between both spatial-connected and spatial-separated
joint pairs. However, global joint relations are usually learned
by fusing different body components’ local motion features.
In this way, the learned global joint relations can’t reflect
the simultaneous cooperation of all joints, and thus the final
predicted motion usually appears unrealistic, e.g., the arms and
legs are uncoordinated, as is shown in Fig. 1.

Therefore, in this paper, we propose to model motion
coordination by exploring the simultaneous cooperation of all
joints. To this end, we design a medium, called Coordination
Attractor (CA), to correlate all joints simultaneously in an
indirect way. In particular, the CA is learned by calculating
the feature aggregation of all joints to represent the global
motion features, which is next used to generate new relative
joint features by subtracting raw features of each joint. In

ar
X

iv
:2

40
4.

03
58

4v
1 

 [
cs

.C
V

] 
 4

 A
pr

 2
02

4



COPYRIGHT © 2022 IEEE. PERSONAL USE OF THIS MATERIAL IS PERMITTED. HOWEVER, PERMISSION TO USE THIS MATERIAL FOR ANY OTHER PURPOSES MUST BE OBTAINED FROM THE IEEE BY SENDING AN EMAIL TO PUBS-PERMISSIONS@IEEE.ORG.2

this way, all joints are correlated through the CA and gen-
erate new relative joint relations. Especially, the new relative
joint relations enhance the cooperative relations of joints by
reducing the motion commonality of joints to exploit more
pure motion coordination. And then, the resulting relative
joint features are next used to calculate joints similarities
to generate final joint relations. In this way, all joints are
correlated simultaneous in an indirect way, and thus the
motion coordination can be modeled explicitly. Furthermore,
the global motion coordination of all joints is not used alone
but is combined with the local interactions between joint pairs
to exploit richer joint relations for more accurate and realistic
predictions.

Additionally, it is beneficial to exploit the enriched motion
dynamics for effective prediction. As is well known, the
skeleton sequences only include the position information of
joints, which is insufficient to convey the dynamics of motion.
Previous works [26], [27] tended to introduce extra velocity
information to represent the motion dynamics via the two-
stream architecture. However, the velocity only extracts the
dynamics from neighbor frames, and thus more fine-grained
dynamics is hard to capture simply from velocity. Therefore,
in this paper, we propose to enrich the joint representation
by extracting more diverse dynamics existing in different
timescales.

Based on the above two aspects, we present our framework
to generate more realistic and accurate human motions. Given
observed motion sequences, we first learn enriched dynam-
ics from raw position information adaptively through Multi-
timescale Dynamics Extractor (MTDE). Next, we introduce
the Comprehensive Joint Relation Extractor (CJRE), including
a Local Interaction Extractor (LIE), a Global Coordination
Extractor (GCE), and an Adaptive Feature Fusing Module
(AFFM). The GCE is designed to present the global coor-
dination of all joints, and the LIE is used to encode the
local interactions between joint pairs. The above different joint
relations are adaptively aggregated in the Adaptive Feature
Fusing module (AFFM). Especially, we utilize the lateral con-
nections between CJRE blocks for more fine-grained motion
features. In this way, our proposed framework can capture
more comprehensive joint relations and generate more diverse
motion features for realistic and accurate predictions.

The main contributions of this paper are summarized as
follows.

• We present to model motion coordination, a specific
global joint relation that encodes the simultaneous coop-
eration of all joints, to enhance the realness of predicted
motion. This motion coordination is further combined
with the local interactions between joint pairs in a unified
joint relation modeling module, CJRE, to extract richer
joint relations for more realistic and accurate predictions.

• We also put forward an MTDE module to extract enriched
dynamics from the raw input data for effective prediction.

• Our proposed framework outperforms most state-of-the-
art methods for short and long-term motion prediction on
three standard benchmark datasets: H3.6M, CMU-Mocap,
and 3DPW.

II. RELATED WORK

Skeleton-based motion prediction has attracted increasing
attention recently. Recent works using neural networks [12],
[28], [29], [30], [31], [22], [13], [14], [15], [18], [19], [16],
[17], [20], [23], [21], [32], [33], [34] have significantly out-
performed traditional approaches [8], [9].

Human motion prediction. RNNs [13], [14], [15] are first
used to predict human motion for their ability on sequence
modeling. The first attempt was made by Fragkiadaki et al.
[13], who proposed an Encoder-Recurrent-Decoder (ERD)
model to combine encoder and decoder with recurrent layers.
They encoded the skeleton in each frame to a feature vector
and built temporal correlation recursively. Julieta et al. [14]
introduced a residual architecture to predict velocities and
achieved better performance. Chen et al. [12] propose to mod-
ify the RNN structure using a novel diffusion convolutional re-
current predictor to model spatialtemporal motion features for
better prediction. However, these works all suffer from discon-
tinuities between the observed poses and the predicted future
ones. Though Gui et al. [15] proposed to generate a smooth
and realistic sequence through adversarial training, it is hard to
alleviate error-accumulation in a long-time horizon inherent to
the RNNs scheme. A feedforward network was widely adopted
to help alleviate those above questions because its prediction
was not recursive and thus could avoid error-accumulation. Li
et al. [18] introduced a convolutional sequence-to-sequence
model that encodes the skeleton sequence as a matrix whose
columns represent the pose at every time step. However, their
spatiotemporal modeling is still limited by the convolutional
filters’ size. Recently, [19], [22] were proposed to consider
global spatial and temporal features simultaneously. They all
transformed temporal space to trajectory space to take the
global temporal information into account. It contributes to
capturing richer temporal correlation and thus achieved state-
of-the-art results. In this paper, we follow this scheme but use
different methods to model the spatial relations of joints.

Joint relation modeling. Previous work mainly focused
on skeletal constraints to model correlations between joints.
Jain et al. [16] first introduced a Structural-RNN model to
explicitly model structural information relying on high-level
spatiotemporal graphs. However, the graph is designed accord-
ing to kinetic structure and is not flexible for different motions.
Recently, some dynamic graph structures [22], [32], [20], [35]
were developed to model more flexible joint relations. Mao
et al. [22] used an adaptive graph to model motion, but it
is still unreliable because the graph is initialized randomly
without structure prior. Cai et al. [32] further combined
kinematic structure with dynamic graph structure. Li et al.
[20] used stacked GCNs to build the interaction of different
scales structure in each layer to model the correlation of both
neighbor and distant joints. However, those above learned joint
relations mainly refer to the local interactions between joint
pairs without considering global motion coordination of all
joints, which usually makes the final predicted motion appear
unnatural or unrealistic. Therefore, in this paper, we aim
to model more comprehensive joint relations, including both
global motion coordination of all joints and local interactions
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Fig. 2. The left panel describes the whole framework of our proposed framework and the right two panels represent the details of MTDE and CJRE. Based
on the two-stream architecture, the MTDE module is used to extract the enriched motion dynamics. The CJRE module is adapted to encode the global
coordination of all joints and local interactions between joint pairs through GCE and LIE, respectively. We here denote Icjre i and Ocjre i as input and
output of the ith CJRE module. AFFM is introduced to fuse features according to the channel-wise attention mechanism. The whole CJRE is built based on
the bottleneck architecture of ResNet [24] for efficiency. Especially, lateral connections are used to offer fine-grained motion features inspired by U-Net [25].
At last, two 1× 1 convolutions are successively used to transform temporal and spatial dimensions to get final prediction results.

between joint pairs.
Motion dynamics of skeleton sequences. The raw skeleton

sequences are insufficient to convey the dynamics of motion
because they only represent each joint’s position information
at each time step. Many attempts [26], [36], [27] proposed to
extract enriched dynamic representation from raw input data.
They tended to rely on the two-stream architecture to introduce
velocity information. A drawback of these methods is that they
only extract the dynamics from neighbor frames. Though Li
et al. [26] enlarged the time horizon by convolution operation,
it is still insufficient because different timescales encode
different dynamics. Therefore, in this paper, we propose to
extract the enriched through multi-timescale convolutions from
raw motion sequences.

III. OUR METHOD

The proposed framework aims to generate more realistic and
accurate human motions for effective prediction. The overall
architecture is shown in Fig. 2. It mainly includes two com-
ponents, Multi-timescale Dynamics Extractor (MTDE) and
Comprehensive Joint Relation Extractor (CJRE). The MTDE
extracts multi-timescale temporal information to achieve richer
motion dynamics for prediction. The CJRE mines compre-
hensive joint relations to model the spatiotemporal evolution
of human motion. There exist several components in the
CJRE. The global Coordination Extractor (GCE) and Local
Interaction Extractor (LIE) are proposed to model the global
coordination of all joints and local interactions between joint
pairs separately. The Adaptive Feature Fusion module (AFFM)
is introduced to fuse different joint relations according to the

channel-wise attention mechanism. Especially, the lateral con-
nections between CJRE blocks are designed to get more fine-
grained motion features for more accurate predictions. Finally,
two 1 × 1 convolutions are successively used to transform
temporal and spatial dimensions to get final prediction.

A. Problem formulation

We denote the historical 3D skeleton-based poses as
P1:Tp

=
[
p1, · · · , pTp

]
∈ RN×Tp×Dp and future poses as

PTp+1:Tf
=

[
pTp+1, · · · , pTf

]
∈ RN×(Tf−Tp)×Dp , where

pt ∈ RN×Dp represents the 3D pose at time t with N joints.
The Dp = 3 depicts the dimension of joint coordinates. Our
goal is to generate predicted poses, P̂Tp+1:Tf

= M(P1:Tp)
through the proposed framework M(·).

B. Multi-timescale Dynamics Extractor (MTDE)

Motion dynamics contains more motion cues compared
with the position information in the raw motion sequences.
It encodes the evolution of motion and thus is helpful to
anticipate future motion trends. However, most previous works
didn’t make use of this modality information. They tended
to introduce the velocity as another input branch to enrich
the input features and extract dynamics. Although it makes
sense to some extent, it is insufficient only to use velocity to
represent motion dynamics because more detailed and fine-
grained dynamics couldn’t be captured simply from the ve-
locity. We take Fig. 3 as an example. In this motion sequence,
the duration time of the head movement is about four frames,
while the left foot is ten frames. It shows two important details.
First, the motion dynamics of different joints in a motion
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sequence usually are various. This observation reminds us that
it is unsuitable to treat all joints equally, like the operation in
calculating velocity. Second, unlike the velocity which only
encodes the dynamics of adjacent frames, dynamics existing
in different temporal scales could offer more diverse motion
cues for accurate prediction.

The motion of head | duration time: 4 frames

The motion of left foot | duration time: 10 frames

Fig. 3. The obeservation of motion. It shows the duration time of the head
is four frames, while the left foot is ten frames.

To address these issues, we propose two improvements
based on the two-stream architecture in the Multi-timescale
Dynamics Extractor (MTDE). Firstly, we extend the feature
dimensions based on the raw joint position and velocity. In
this way, we can extract more dynamic motion cues in high
dimensional space, which bare position and velocity in 3D
space can’t provide. Secondly, considering the dynamics of
different joints are different even if in the same motion, we
here apply multiple temporal convolutions to model more
diverse motion dynamics existing in different temporal scales.
Notably, we here only learn intra-joint dynamics to extract
the motion dynamics without the interference of other joints.
In this way, our proposed MTDE could extract richer motion
dynamics to enrich intra-joint features, which is also beneficial
for later inter-joint relation modeling.

As is shown in Fig. 2, for the input P1:Tp ∈ RN×Tp×Dp ,
we first get the velocity of raw motion sequence V1:Tp−1 =
[v1, · · · , vTp−1] ∈ RN×(Tp−1)×Dp by calculating the differ-
ence between adjacent frames of P1:Tp

. These two different
branches P1:Tp

and V1:Tp−1 are all connected to a MTDE
module to encode enriched dynamics through multi-timescale
temporal convolutions respectively. Formally,

vt = (pt+1 − pt), t = 1, ..., Tp − 1

dpki
= σ(W p

ki
∗ P1:Tp), i = 1, 2, 3

dvki
= σ(W t

ki
∗ V1:Tp−1), i = 1, 2, 3

dp = Wp ∗ Concat([dpk1
, dpk2

, dpk3
]),

dv = Wv ∗ Concat([dvk1
, dvk2

, dvk3
]),

Xd = dp ⊕ dv

(1)

Here, the σ(·) is the activation function. W p
ki

and W v
ki

indicate the different 1× ki temporal convolution kernel with
different timescale ki (the size of output channel is D).
Concat(·) is the concatenation operation along the channel.
Wp and Wv denote the 1×1 convolution kernels used to fuse
multi-timescale dynamics. ∗ and ⊕ denote the convolution
operator and concatenation along temporal dimensions. For
different input branches P1:Tp

and V1:Tp−1, dp ∈ RN×Tp×D

and dv ∈ RN×(Tp−1)×D encode enriched dynamics exist-
ing in different timescales through fusing the features from
different temporal convolutions respectively. To make use of
different features of two branches, we synthesize dp and dv
along temporal dimensions to get the representation Xd ∈
RN×(2Tp−1)×D. This operation enables the model to capture
more detailed and fine-grained motion cues for later prediction.

C. Global Coordination Extractor (GCE)

The global coordination of all joints plays an essential role
in human motion. It describes the mutual constraints of all
joints during motion and thus could offer richer motion cues
to predict human motion. However, previous works mainly
focused on modeling local interactions of joint pairs, and thus
the global coordination wasn’t exploited well. Besides, there
exist two major observations as to the global coordination of
all joints. First, the global coordination essentially reflects the
relative relations of all joints without global motion trends,
which is not explored in previous works. Second, the learned
global relations in most previous works are predefined and
fixed, which is insufficient to represent the diversity of global
coordination, such as balance, inertia, etc.

As to the above two observations, we propose the global
Coordination Extractor (GCE) to model global coordination of
all joints. It mainly contains two important components: Fea-
ture Normalization Unit and Multi-head Self-attention Unit.
In the Feature Normalization Unit, we aim to extract relative
joint motion representation without the interference of global
motion trends for later global coordination relation modeling.
In the Multi-head Self-attention Unit, multiple relation graphs
of joints are built by calculating the self-attention of the
learned relative joint representation. Notably, we learn the
multiple relation graphs to combine different relative relations
to extract richer joint relations. Next, we will illustrate more
details in Fig. 4. Notably, in the following part, all of the
variables are simplified by removing superscript ”cjre i”. For
example, we use X represents the ith CJRE module’s variable
Xcjre i.

1) Definition of global motion trends: As we discussed
above, the global motion trends in this paper can be regarded
as that the trajectory of global coordination center. Notably,
we here learn it in high-dimensional trajectory space instead
of in 3D space. The reason is that it is better to exploit
more temporal consistency directly on trajectory space than
3D space, as illustrated in TrajCNN[19]. To better introduce
the trajectory of global coordination center, we first define it
in the 3D space mathematically. Specifically, we denote the
pose sequence as P1:Tp

=
[
p1, · · · , pTp

]
∈ RN×Tp×Dp where

pi represents the pose of ith frame. The global coordination
center cci of each pose can be regarded as the collective effect
of all joints. Notably, considering that a skeleton is a non-rigid
object, we use nonlinear transformation nt(·) to achieve cci,
which is formulated by formula 2.

pi = [j1, ..., jN ] ∈ RN×Dp

W = [w1, ..., wN ] ∈ R1×N

cci = nt(pi) = σ(W × pi) ∈ R1×Dp

(2)
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Fig. 4. The overall architecture of GCE. It mainly contains two parts. The Feature Normalization Unit is designed to extract relative joint motion representation
without the interference of global motion trends for later global coordination relation modeling. The Multi-head Self-attention Unit is proposed to generate
multiple relation graphs of joints to extract richer global coordination. (To simplify the representation, X and Fca are used to represent Xcjre i and F cjre i

ca ,
respectively.)

where σ(·) is the activation function and W is the weight
matrix. In this way, the trajectory of global coordination center
of all frames can be represented as CC = nt(P

′

1:Tp
) =[

cc1, · · · , ccTp

]
∈ R1×Dp×Tp . (Notably, we here use P

′

1:Tp
∈

RN×Dp×Tp through transposing the dimension Dp and Tp of
P1:Tp

to keep the dimension consistency.)
Next, we extend the definition from 3D space to trajectory

space. Concretely, we first get the features X = f(P1:Tp
) ∈

RN×D×T through the feature extractor f . Here D and T
represent the size of new features dimensions on trajectory
space. Similarly, we can use the nonlinear transformation
nt(·) to get the trajectory features of the global coordination
center CA = nt(f(P1:Tp

)) ∈ R1×D×T . Notably, we name
the trajectory features of the global coordination center in
trajectory space as Coordination Attractor CA to distinguish
it with the trajectory of the global coordination center CC in
3D space.

Furthermore, we illustrate the equivalent form of nonlinear
transformation nt. Formally,

CA = nt(X)

= Trans(σ(Wca ∗ Trans(X))
(3)

The σ(·) is the activation function. Wca is a 1× 1 convolu-
tion kernel (the size of output channel is 1) and ∗ denotes the
convolution operator. We use Trans(·) to transpose the joint
dimension and the temporal dimension. Because the size of
the input channel is N and the size of the output channel is 1,
the output of the convolution operator is the global response of
the N joint features. In other words, the convolution operator
computes the average weight of N feature maps, which is the
equivalent form of the nonlinear transformation nt(·) listed
on formula 2. We also use another Trans(·) to transpose the
joint dimension and the temporal dimension back.

2) Feature Normalization Unit: This module aims to gen-
erate relative joint representation without global motion trends
for later coordination modeling, as is illustrated in Fig 4.
Specifically, we first learn the Coordination Attractor (CA) to
characterize the global motion features according to formula
3. Subsequently, CA is used as a medium to build a new

relative joint representation Xr ∈ RN×D×T indirectly through
conducting feature subtraction. Formally,

Xr = X − CA (4)

In this way, the effect of global motion trends can be
removed and the global coordination of all joints can be better
modelled.

3) Multi-head Self-attention Unit: We aim to generate
multiple joint relations which reflect global coordination by
measuring the similarities of new relative features of each
joint. Specifically, the whole process are shown as follows:

Xemb = σ(Wemb ∗Xr) = {xemb
t }Tt=1

Cemb = {cemb
t }Tt=1

cemb
t = SelfAtt(xemb

t )

(5)

The σ(·) is the activation function. SelfAtt(·) is the
function to calculate the self-attention of all joints in each
feature map. Wemb is a 1× 1 convolution kernel (the size of
output channel is T ) and ∗ denotes the convolution operator.
xemb
t ∈ RN×D and cemb

t ∈ RN×N are the feature map
of Xemb ∈ RN×D×T and Cemb ∈ RN×N×T respectively.
For the new relative joint features Xr, we first use Wemb to
learn a specific embedding for relation modeling. Next, we
aim to calculate the relative joint relations Cemb. Notably, we
calculate the relative relations on each feature map because
each feature map encodes specific spatiotemporal features and
should focus on different joint relations. We take xemb

t as an
example. For xemb

t , each row vector represents the features of
one joint. Therefore, we can calculate the cosine similarity be-
tween all row vector pairs to illustrate the correlation between
joint pairs. The reasons why we choose cosine similarity are:
(1) this metric contains angle information that corresponds to
the physical relations of joints; (2) the value is limited into
[−1, 1], which avoids the violent variance. In this way, we
could generate diverse global coordination through multiple
relations graphs.
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The last step is to calculate the coordinated motion features
according to the joint relations Cemb. Considering each feature
map of Cemb represents one specific coordination, we apply
channel-wise multiplication to make use of different relation
graphs. Specifically, 1×3 convolution Wintra is used to extract
intra-joint features and then combine with the guidance of
Cemb to get the final features Fca ∈ RN×D×T .

Fca = Cemb ⊙ (σ(Wintra ∗X)) (6)

where ⊙ represents channel-wise multiplication.

D. Local Interaction Extractor (LIE)
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Fig. 5. The implementation of Local Interaction Extractor (LIE). The left
is the path using a Non-local block without residual connection to learn
the relations between distant joint pairs. The right is the the path with
convolutions to learn the relations between adjacent joint pairs. (To simplify
the representation, X , Fadjacent and Fdistant are used to represent Xcjre i,
F cjre i
adjacent, F cjre i

distant respectively.)

Local Interaction Extractor (LIE) is used to learn local
interactions between joint pairs, including adjacent and distant
joints. The local connection via bones brings spatial correlation
for adjacent joints. For distant joints, some joints may have
a strong correlation even if they are not directly connected,
e.g., left hand and right hand are tightly correlated during
“eating”. Therefore, these two relations are equally important
for effective prediction.

As is shown in Fig. 5, given an input X ∈ RN×D×T which
is the same as GCE, there exist two main paths to separately
learn the relations between adjacent joint pairs and distant joint
pairs.

For the adjacent joints, we here use the 3×3 convolution to
combine the co-occurrence features of adjacent joints. In this
way, local interactions between adjacent joints can be built.

Fadjacent = σ(Wadjacent ∗X) (7)

For the distant joints, considering the spatially separated
joints are often far away from each other, we here adopt the
self-attention mechanism used in the Non-local [37] block to

exploit their relations without the limitation of their arrange-
ments in the feature maps.

Specifically, the input X = [q1, ..., qN×D] ∈ RN×D×T ,
where qi ∈ RT represents the features of ith pixel in all
feature maps. To encode the relations between i and different
position j, we calculate the similarity of the qi and qj as the
response of position j to position i. In this way, the features of
distant joints are correlated and the sum of all other position
j’s response form the resulting response yi. Formally,

g(qi) = Wgqi

f(qi, qj) = softmax(θ(qi)
T
φ(qj))

yi =
1

C(X)

∑
∀j

f(qi, qj)g(qj)

(8)

where θ, φ, g are 1× 1 convolutions and i, j ∈ [1, ..., N ×
D]. C(X) is the normalization parameter. θ and φ are used
to learn the similarity between different positions. g is used
to learn an embedding representation of raw input X. The
result yi is calculated by the weighted sum of other positions’
effect and finally constitutes the output Y = [y1, ..., yN×D] ∈
RN×D×T . In this way, the new feature Y gets the relations of
spatially separated joints without limiting their arrangements
in the feature maps. And thus it can be used to calculate the
final features of distant joints through the convolution kernel
Wdistant for further feature extraction.

Fdistant = σ(Wdistant ∗ Y ) (9)

E. Adaptive Feature Fusing Module (AFFM)
The different motions will have a respective preference for

local interactions between joint pairs and global coordination
of all joints. For example, dynamic actions like ’walking’ may
pay more attention to the local interactions between joint pairs
of which the movement are more obvious while static actions
like ’sitting’ may focus on the entire structure of all joints.
Thus, we aim to measure the importance of different features
in AFFM module.
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Fig. 6. The implementations of Adaptive Feature Fusing Module (AFFM).
The features learnt from previous block are fused with channel attention
machanism. (To simplify the representation, Fadjacent, Fdistant, Fca,
Fout are used to represent F cjre i

adjacent, F cjre i
distant, F cjre i

ca and F cjre i
out

respectively.)

Specifically, as is shown in Fig. 6, we first combine different
features extracted from GCE and LIE along the channel
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TABLE I
SHORT-TERM PREDICTION OF 8 SUB-SEQUENCES PER ACTIONON ON H3.6M. WHERE “MS” DENOTES “MILLISECONDS”.

motion Walking Eating Smoking Discussion
time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ResSup [14] 23.8 40.4 62.9 70.9 17.6 34.7 71.9 87.7 19.7 36.6 61.8 73.9 31.7 61.3 96.0 103.5
ConvS2S [18] 17.1 31.2 53.8 61.5 13.7 25.9 52.5 63.3 11.1 21.0 33.4 38.3 18.9 39.3 67.7 75.7

LTD [22] 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1
LPJP [32] 7.9 14.5 29.1 34.5 8.4 18.1 37.4 45.3 6.8 13.2 24.1 27.5 8.3 21.7 43.9 48.0

TrajCNN [19] 8.2 14.9 30.0 35.4 8.5 18.4 37.0 44.8 6.3 12.8 23.7 27.8 7.5 20.0 41.3 47.8
Ours 7.2 13.7 25.6 31.0 7.7 16.7 35.8 44.2 6.3 13.3 24.5 29.7 7.5 20.3 38.7 44.7

motion Direction Greeting Phoning Posing
time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ResSup [14] 36.5 56.4 81.5 97.3 37.9 74.1 139.0 158.8 25.6 44.4 74.0 84.2 27.9 54.7 131.3 160.8
ConvS2S [18] 22.0 37.2 59.6 73.4 24.5 46.2 90.0 103.1 17.2 29.7 53.4 61.3 16.1 35.6 86.2 105.6

LTD [22] 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9
LPJP [32] 11.1 22.7 48.0 58.4 13.2 28.0 64.5 77.9 10.8 19.6 37.6 46.8 8.3 22.8 65.6 81.8

TrajCNN [19] 9.7 22.3 50.2 61.7 12.6 28.1 67.3 80.1 10.7 18.8 37.0 43.1 6.9 21.3 62.9 78.8
Ours 9.3 21.1 45.0 55.0 11.2 23.9 63.4 79.6 10.2 18.5 34.3 38.5 6.8 20.5 60.6 76.6

motion Purchasing Sitting Sitting down Taking photo
time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ResSup [14] 40.8 71.8 104.2 109.8 34.5 69.9 126.3 141.6 28.6 55.3 101.6 118.9 23.6 47.4 94.0 112.7
ConvS2S [18] 29.4 54.9 82.2 93.0 19.8 42.4 77.0 88.4 17.1 34.9 66.3 77.7 14.0 27.2 53.8 66.2

LTD [22] 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6
LPJP [32] 18.5 38.1 61.8 69.6 9.5 23.9 49.8 61.8 11.2 29.9 59.8 68.4 6.3 14.5 38.8 49.4

TrajCNN [19] 17.1 36.1 64.3 75.1 9.0 22.0 49.4 62.6 10.7 28.8 55.1 62.9 5.4 13.4 36.2 47.0
Ours 17.1 38.0 65.0 73.0 7.8 19.9 44.9 56.4 9.2 23.7 47.7 59.4 5.6 14.3 37.6 48.9

motion Waiting Walking dog Walking Together Average
time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ResSup [14] 29.5 60.5 119.9 140.6 60.5 101.9 160.8 188.3 23.5 45.0 71.3 82.8 30.8 57.0 99.8 115.5
ConvS2S [18] 17.9 36.5 74.9 90.7 40.6 74.7 116.6 138.7 15.0 29.9 54.3 65.8 19.6 37.8 68.1 80.2

LTD [22] 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3 12.1 25.0 51.0 61.3
LPJP [32] 8.4 21.5 53.9 69.8 22.9 50.4 100.8 119.8 8.7 18.3 34.2 44.1 10.7 23.8 50.0 60.2

TrajCNN [19] 8.2 21.0 53.4 68.9 23.6 52.0 98.1 116.9 8.5 18.5 33.9 43.4 10.2 23.2 49.3 59.7
Ours 7.7 18.8 48.0 64.7 22.0 49.2 90.9 110.0 7.8 17.3 32.1 43.3 9.6 22.0 46.2 57.0

dimension. The next global average pooling squeeze each
feature map as a scalar. In this way, each feature map can be
encoded into a global feature. Then to learn the importance
ratio between channels, we use the nonlinear transformation
by two 1 × 1 convolution layers and use a sigmoid layer to
get the final importance ratio. Formally,

Fconcat = Concat([Fdistant, Fca, Fadjacent])

ratio = Sigmoid(Wa2 ∗ σ(Wa1 ∗GAP (Fconcat)))

Fout = ratio⊙ Fconcat

(10)

where Concat(·) is the concatenation operation along the
channel. GAP is the global average pooling. Wa1 and Wa2

indicate the different convolution kernel to be used to nolin-
ear transformation. The σ(·) is the activation function. The
Sigmoid(·) function is used to limit the value of ratio in
[0, 1]. The ⊙ represents channel-wise multiplication. At last,
channel attention mechanism can be used to conduct channel-
wise multiplication between ratio and concatenated features
Fconcat to reform new features. In this way, those features
with higher important ratios can be enhanced and the later
prediction could pay more attention to those enhanced features,
which is beneficial to more precise prediction.

F. Loss Function

Following [19], [22], we make use of the Mean Per Joint
Position Error (MPJPE). In particular, for one training sample,
the loss is as follows:

L =
1

N × (Tf − Tp)

Tf∑
i=Tp+1

N∑
j=1

∥ Pi,j − P̂i,j ∥2 (11)

where P̂i,j ∈ R3, representing the 3D coordinates of the jth
joint of the ith human pose, is the predicted result and Pi,j ∈
R3 is the ground truth.

IV. EXPERIMENTS

In this section, we first introduce the datasets used in our
experiments and the implementation details of our work. Then,
we compare our method with baselines. Next, we carry out
some experiments to analyze the contributions of the proposed
method and visualize the predictive performance of our model.

A. Datasets and Implementation Details

Human3.6M [38] is the most widely used benchmark for
motion prediction. It involves 15 actions performed by pro-
fessionals, and each human pose involves a 32-joint skeleton.
Following [22], [19], we compute the joint’s 3D coordinates
by applying forward kinematics and down-sample the motion
sequence to 25 frames per second. After removing the global
rotation, translation and constant 3D coordinates of each
human pose, there remains 22 joints. We test our method on
subject 5(S5). Considering [32] and [27] show the setting of 8
random sub-sequences may lead to high variance, we test our
model with two different division methods in previous works.
One is 8 random sub-sequences per action on subject 5 (S5)
and another is 256 sub-sequences per action.

3DPW [39] The 3D Pose in the Wild dataset(3DPW) [39]
consists of challenging indoor and outdoor actions. The dataset
consists of various activities such as shopping, doing sports,
and hugging, including 60 sequences and more than 51k
frames. For a fair comparison, we evaluate the whole test sets.
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TABLE II
LONG-TERM PREDICTION OF 8 SUB-SEQUENCES PER ACTIONON ON H3.6M. WHERE “MS” DENOTES “MILLISECONDS”.

motion Walking Eating Smoking Discussion Directions Greeting Phoning Posing
time(ms) 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
LTD [22] 42.2 51.3 56.5 68.6 32.3 60.5 70.4 103.5 85.8 109.3 91.8 87.4 65.0 113.6 113.4 220.6

TrajCNN [19] 37.9 46.4 59.2 71.5 32.7 58.7 75.4 103.0 84.7 104.2 91.4 84.3 62.3 113.5 111.6 210.9
Ours 35.5 42.7 57.3 70.3 30.9 55.0 74.3 105.7 89.7 103.5 91.1 90.5 59.1 110.5 107.3 211.9

motion Purchases Sitting Sitting down Taking photo Waiting Walking Dog Walking Together Average
time(ms) 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
LTD [22] 94.3 130.4 79.6 114.9 82.6 140.1 68.9 87.1 100.9 167.6 136.6 174.3 57.0 85.0 78.5 114.3

TrajCNN [19] 84.5 115.5 81.0 116.3 79.8 123.8 73.0 86.6 92.9 165.9 141.1 181.3 57.6 77.3 77.7 110.6
Ours 82.1 117.6 73.1 105.1 78.0 126.1 75.9 88.9 85.9 154.4 130.2 170.7 57.1 82.2 75.1 109.0

TABLE III
SHORT-TERM PREDICTION OF 256 SUB-SEQUENCES PER ACTIONON ON H3.6M. WHERE “MS” DENOTES “MILLISECONDS”.

motion Walking Eating Smoking Discussion
time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ResSup [14] 23.2 40.9 61.0 66.1 16.8 31.5 53.5 61.7 18.9 34.7 57.5 65.4 25.7 47.8 80.0 91.7
ConvS2S [18] 17.1 33.5 56.3 63.6 11.0 22.4 40.7 48.4 11.6 22.8 41.3 48.9 17.1 34.5 64.8 77.6

LTD [22] 11.1 21.4 37.3 42.9 7.0 14.8 29.8 37.3 7.5 15.5 30.7 37.5 10.8 24.0 52.7 65.8
HRI [27] 10.0 19.5 34.2 39.8 6.4 14.0 28.7 36.2 7.0 14.9 29.9 36.4 10.2 23.4 52.1 65.4

Ours 9.4 18.9 34.5 41.3 5.6 13.0 27.5 35.2 6.2 13.7 28.3 35.4 8.8 21.8 50.5 63.8
motion Direction Greeting Phoning Posing

time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ResSup [14] 21.6 41.3 72.1 84.1 31.2 58.4 96.3 108.8 21.1 38.9 66.0 76.4 29.3 56.1 98.3 114.3

ConvS2S [18] 13.5 29.0 57.6 69.7 22.0 45.0 82.0 96.0 13.5 26.6 49.9 59.9 16.9 36.7 75.7 92.9
LTD [22] 8.0 18.8 43.7 54.9 14.8 31.4 65.3 79.7 9.3 19.1 39.8 49.7 10.9 25.1 59.1 75.9
HRI [27] 7.4 18.4 44.5 56.5 13.7 30.1 63.8 78.1 8.5 18.3 39.0 49.2 10.2 24.2 58.5 75.8

Ours 6.3 16.9 42.1 54.0 11.9 27.9 61.3 76.1 7.6 17.1 37.4 47.6 8.4 21.9 54.8 71.7
motion Purchasing Sitting Sitting down Taking photo

time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ResSup [14] 28.7 52.4 86.9 100.7 23.8 44.7 78.0 91.2 31.7 58.3 96.7 112.0 21.9 41.4 74.0 87.6

ConvS2S [18] 20.3 41.8 76.5 89.9 13.5 27.0 52.0 63.1 20.7 40.6 70.4 82.7 12.7 26.0 52.1 63.6
LTD [22] 13.9 30.3 62.2 75.9 9.8 20.5 44.2 55.9 15.6 31.4 59.1 71.7 8.9 18.9 41.0 51.7
HRI [27] 13.0 29.2 60.4 73.9 9.3 20.1 44.3 56.0 14.9 30.7 59.1 72.0 8.3 18.4 40.7 51.5

Ours 11.3 27.6 60.6 74.9 8.0 18.1 41.1 52.7 13.0 28.5 56.5 70.2 7.4 17.0 39.3 50.2
motion Waiting Walking dog Walking Together Average

time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ResSup [14] 23.8 44.2 75.8 87.7 36.4 64.8 99.1 110.6 20.4 37.1 59.4 67.3 25.0 46.2 77.0 88.3

ConvS2S [18] 14.6 29.7 58.1 69.7 27.7 53.6 90.7 103.3 15.3 30.4 53.1 61.2 16.6 33.3 61.4 72.7
LTD [22] 9.2 19.5 43.3 54.4 20.9 40.7 73.6 86.6 9.6 19.4 36.5 44.0 11.2 23.4 47.9 58.9
HRI [27] 8.7 19.2 43.4 54.9 20.1 40.3 73.3 86.3 8.9 18.4 35.1 41.9 10.4 22.6 47.1 58.3

Ours 7.4 17.0 41.0 52.3 17.4 37.0 71.2 85.0 8.0 17.1 33.7 41.9 9.1 21.0 45.3 56.8

CMU-Mocap [40] The CMU mocap dataset mainly in-
cludes five categories, naming “human interaction”, “interac-
tion with environment”, “locomotion”, “physical activities &
sports” and “situations & scenarios”. Be consistent with [22],
[19], we select 8 detailed actions: “basketball”, “basketball
signal”, “directing traffic”, “jumping”, “running”, “soccer”,
“walking” and “washing window”. We evaluate our model
with the same approach as we do for H3.6M.

Network Setting. We take three timescales: 1, 3, and 5
frames around the target frame in MTDE. The size of the
high-level dimension D and T is 32 and 64. To get enough
receptive field, we adapt nine stacked CJRE modules with the
lateral connection.

Training. All training is conducted on the pytorch platform
with one 2080Ti GPU. We use Adam [41] optimizer with an
initial learning rate of 0.0005. We use a weight decay of 0.96
and set the learning rate as 0.0001 at the epoch 4. The batch
size is set to 16.

B. Comparison with baselines

Here we show the prediction performance for both
short-term and long-term motion prediction on Human3.6M
(H3.6M), CMU-Mocap and 3DPW. We quantitatively evaluate
various methods by the mean per joint position error (MPJPE)

between the generated motions and ground truths. To be con-
sistent with the literature [19], [22], we report our results for
short-term (< 500ms) and long-term (> 500ms) predictions.
For all datasets, we are given 10 frames (400 milliseconds) to
predict the future 10 frames (400 milliseconds) for short-term
prediction and to predict the future 25 frames (1 second) for
long-term prediction.

1) Results on H3.6M: TABLE I provides the short-term
prediction of 8 sub-sequences per action on H3.6M for the 15
activities and the average results. Note that our method out-
performs all the baselines on average and almost all motions,
which indicates our proposed framework’s effectiveness. These
possible reasons are twofold: (1) Our model extracts better
motion features with our proposed joint relation modeling.
These features contain both global coordination of all joints
and local interactions between joint pairs and thus could offer
more reliable guidance for effective prediction. (2) Our model
extracts enriched motion dynamics in MTDE, which provide
more motion cues for later motion prediction. Thus, our model
generally outperforms the listed baselines in almost all actions.
Specifically, for those motions that need the upper body and
lower body to cooperate, e.g., “Walking dog”, “Phoning” and
“Sitting down”, our method outperforms most, which reflects
the efficacy of our proposed global coordination of all joints.
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TABLE IV
LONG-TERM PREDICTION OF 256 SUB-SEQUENCES PER ACTION ON H3.6M. WHERE “MS” DENOTES “MILLISECONDS”.

motion Walking Eating Smoking Discussion
time(ms) 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

ResSup [14] 71.6 72.5 76.0 79.1 74.9 85.9 93.8 98.0 78.1 88.6 96.6 102.1 109.5 122.0 128.6 131.8
ConvS2S [18] 72.2 77.2 80.9 82.3 61.3 72.8 81.8 87.1 60.0 69.6 77.2 81.7 98.1 112.9 123.0 129.3

LTD [22] 51.8 56.2 58.9 60.9 50.0 61.1 69.6 74.1 51.3 60.8 68.7 73.6 87.6 103.2 113.1 118.6
HRI [27] 47.4 52.1 55.5 58.1 50.0 61.4 70.6 75.7 47.6 56.6 64.4 69.5 86.6 102.2 113.2 119.8

Ours 47.9 52.5 56.2 59.6 47.6 59.2 68.1 73.2 48.4 57.7 64.9 69.6 85.3 100.5 110.0 115.3
motion Direction Greeting Phoning Posing

time(ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ResSup [14] 101.1 114.5 124.5 129.1 126.1 138.8 150.3 153.9 94.0 107.7 119.1 126.4 140.3 159.8 173.2 183.2

ConvS2S [18] 86.6 99.8 109.9 115.8 116.9 130.7 142.7 147.3 77.1 92.1 105.5 114.0 122.5 148.8 171.8 187.4
LTD [22] 76.1 91.0 102.8 108.8 104.3 120.9 134.6 140.2 68.7 84.0 97.2 105.1 109.9 136.8 158.3 171.7
HRI [27] 73.9 88.2 100.1 106.5 101.9 118.4 132.7 138.8 67.4 82.9 96.5 105.0 107.6 136.8 161.4 178.2

Ours 72.8 87.3 98.4 104.6 99.4 115.8 128.7 134.6 66.2 82.2 96.2 105.1 105.3 113.4 115.9 170.4
motion Purchasing Sitting Sitting down Taking photo

time(ms) 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000
ResSup [14] 112.1 137.2 148.0 154.0 113.7 130.5 144.4 152.6 138.8 159.0 176.1 187.4 110.6 128.9 143.7 153.9

ConvS2S [18] 111.3 129.1 143.1 151.5 82.4 98.8 112.4 120.7 106.5 125.1 139.8 150.3 84.4 102.4 117.7 128.1
LTD [22] 99.4 114.9 127.9 135.9 78.5 95.7 110.0 118.8 99.5 118.5 133.6 144.1 76.8 95.3 110.3 120.2
HRI [27] 95.6 110.9 125.0 134.2 76.4 93.1 107.0 115.9 97.0 116.1 132.1 143.6 72.1 90.4 105.5 115.9

Ours 96.2 111.5 124.3 131.6 75.1 92.0 105.6 113.8 94.9 114.6 131.1 142.5 72.3 90.3 105.0 113.8
motion Waiting Walking dog Walking Together Average

time(ms) 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000
ResSup [14] 105.4 117.3 128.1 135.4 128.7 141.1 155.3 164.5 80.2 87.3 92.8 98.2 106.3 119.4 130.0 136.6

ConvS2S [18] 87.3 100.3 110.7 117.7 122.4 133.8 151.1 162.4 72.0 77.7 82.9 87.4 90.7 104.7 116.7 124.2
LTD [22] 75.1 88.7 99.5 106.9 105.8 118.7 132.8 142.2 58.0 63.6 67.0 69.6 79.5 94.0 105.6 112.7
HRI [27] 74.5 89.0 100.3 108.2 108.2 120.6 135.9 146.9 52.7 57.8 62.0 64.9 77.3 91.8 104.1 112.1

Ours 69.7 83.4 95.0 102.4 102.9 115.2 131.8 141.6 53.1 58.1 61.3 63.8 75.8 90.3 102.2 109.5

TABLE V
SHORT-TERM AND LONG-TERM PREDICTION ON CMU-MOCAP.

motion basketball baskeball Signal Directing Traffic
time (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
LTD [22] 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.9 7.4 15.1 31.7 42.2 152.4

TrajCNN [19] 11.1 19.7 43.9 56.8 114.1 1.8 3.5 9.1 13.0 49.6 5.5 10.9 23.7 31.3 105.9
Ours 11.1 19.5 42.8 55.7 113.1 1.9 3.5 9.3 13.0 57.5 5.8 11.7 25.6 33.4 139.0

motion Jumping Running Soccer
time (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
LTD [22] 16.9 34.4 76.3 96.8 164.6 25.5 36.7 39.3 39.9 58.2 11.3 21.5 44.2 55.8 117.5

TrajCNN [19] 12.2 28.8 72.1 94.6 166.0 17.1 24.4 28.4 32.8 49.2 8.1 17.6 40.9 51.3 126.5
Ours 11.4 28.0 72.7 94.1 155.3 16.4 20.1 22.9 27.6 41.9 8.6 18.3 39.1 48.4 103.6
motion Walking Wash Window Average

time (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
LTD [22] 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3 11.5 20.4 37.8 46.8 96.5

TrajCNN [19] 6.5 10.3 19.4 23.7 41.6 4.5 9.7 29.9 41.5 89.9 8.3 15.6 33.4 43.1 92.8
Ours 5.9 9.0 17.4 21.1 38.8 4.6 10.0 28.6 39.0 73.1 8.2 15.1 32.3 41.5 90.3

These motions all need the whole body to participate in, and
thus global coordination could offer more reliable guidance.
Besides, the result on 320ms and 400ms increase most, which
shows our method is good at capturing temporal continuity for
long-term prediction compared with other methods.

In TABLE II, we compare our model with other baselines
for long-term prediction of 8 sub-sequences per action on
H3.6M. With the uncertainly of motion increasing, our method
still obtains competitive performances on almost all motions.
In TABLE III and TABLE IV, we also show the short-term
and long-term prediction of 256 sub-sequences per action
on H3.6M for the 15 activities and the average results. We
can find that with the number of test data increasing, our
method still outperforms all baselines in almost all motions. It
proves that our method has great generalization in different
situations, whether the samples are big or not. The above
observations all demonstrate the advantages of our proposed
enriched dynamics and comprehensive joint relation modeling.

2) Results on CMU Mocap and 3DPW: TABLE V re-
ports the MPJPE for short-term and long-term prediction on
CMU-Mocap and TABLE VI reports the results on 3DPW.
Essentially, the conclusions remain unchanged: our method

TABLE VI
SHORT AND LONG-TERM PREDICTION ON 3DPW.

time (ms) 200 400 600 800 1000
LTD [22] 36.0 69.0 91.0 107.6 118.6

Ours 34.7 66.7 85.6 98.0 108.4

consistently outperforms the baselines for both short-term and
long-term prediction.

C. Ablation study

In this section, we conduct several ablation experiments
to testify the effectiveness of different components in our
proposed framework. The models are trained on the H3.6M
training set and evaluated on the test dataset. The comparison
results are shown in TABLE VII, VIII, IX, X, XI.

1) Multi-timescale dynamics: The multi-timescale dynam-
ics could offer enriched motion cues than position or velocity
information provided by the raw input motion sequences. And
we design the MTDE module to encode this information in
our work. As is shown in Table VII, we design two extra
experiments. “TS” means that we only adopt two-stream input
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Fig. 7. The middle panel is the visualizations of one feature map of Cemb, of which the size is [22× 22]. The right panel is the corresponding prediction
results. The left panel is the annotation of the feature map. From top to bottom, we show the ground truth and our approach of two different motions.

and “TS+FE” means that we intorduce bare 1*3 convolution
without extra designs. Our final scheme is “TS+FE+MT”
which adds the multiple temporal convolutions compared with
“TS+FE”. We can see “TS+FE” is superior to “TS”, which
indicates that more motion cues are useful. Besides, after
using “TS+FE+MT”, we could get a fairly good promotion by
adopting the MTDE module in all time horizons. Significantly,
the results of 320ms and 400ms increase a lot, showing that
enriched dynamics could offer more meaningful guidance for
middle or long-term prediction.

TABLE VII
RESULTS OF ABLATION EXPERIMENTS ON MTDE

MTDE 80 160 320 400
TS 10.2 22.9 49.5 60.6

TS+FE 9.8 22.6 48.0 58.4
TS+FE+MT 9.6 22.0 46.3 57.0

2) Global coordination of all joints: The global coordina-
tion of all joints could reflect the entirety and coordination of
the predicted motion and thus is one vital joint relation. In
our work, we propose the GCE module to model this global
coordination. We here illustrate the effectiveness of several
special designs in this module. In the Feature Normalization
(FNU), relative joint motion representation is a vital design
used to remove the effect of global motion trends because the
global coordination essentially reflects the mutual constraints
of all joints. Here, we denote “RJ” to represent the usage of
relative joint motion representations. In the Multi-head Self-
attention Unit (MSU), we generate multiple relation graphs
to extract richer motion coordination. Here we use “MR” to
represent the usage of multiple relation graphs. Besides, In
the MSU, we also choose cosine similarity to calculate the
joint relations in our paper and illustrate the advantage of this
choice. To prove the effectiveness, we design an experiment
with the softmax function as a comparison. Here “Simc” and
“Sims” represent the usage of cosine similarity or softmax.

(1) By adopting the relative joint representation, the final
performance outperforms 0.1, 0.3, 1.1, 1.4 for 80ms, 160ms,
320ms, 400ms, respectively. This proves that the relative
joint representation without the global motion trends is more
suitable for modeling joints’ global coordination.

(2) We can find the results are better with the usage
of multiple relation graphs. It demonstrates that combining

TABLE VIII
RESULTS OF ABLATION EXPERIMENTS ON GCE

RJP MR Simc Sims 80 160 320 400
! ! ! 10.2 23.4 49.5 60.6

! ! 9.7 22.3 47.4 58.4
! ! 9.8 22.1 46.7 57.7
! ! ! 9.6 22.0 46.3 57.0

different relations is beneficial to get richer and more diverse
coordination.

(3) The cosine similarity is better compared with the
softmax function used in computing self-attention. It arises
from two aspects. First, it avoids violent differences in the
softmax function because cosine similarity limits the value in
[−1, 1]. Second, it has the angle information to represent both
orientation and intensity of correlation, while softmax only
represents the intensity of correlation.

TABLE IX
RESULTS OF ABLATION EXPERIMENTS ON GCE, LIE AND AFFM

GCE LIE AFFM 80 160 320 400
! ! 9.7 22.6 48.3 58.9

! ! 10.1 23.1 49.2 60.0
! ! 9.6 22.4 46.8 57.4
! ! ! 9.6 22.0 46.3 57.0

3) Importance of different joint relations: The global co-
ordination of all joints and local interactions between joint
pairs are complementary and crucial joint relations. In TABLE
IX, we could easily find that these two joint relations can
promote each other, and adopting both of them can achieve
better improvement. Notably, the method with a single GCE
outperforms the one with a single LIE. This observation
demonstrates that global coordination could extract more cues
and offer more effective guidance than local interactions in
prediction.

Furthermore, we also conduct the experiments in TABLE
X to verify the performance of different combination method
of GCE and LIE. We denote the “Parallel” as putting the
GCE and LIE in the parallel path and “Serial” means that
local interaction is conditioned on global coordination. We
can see that if we set the LIE behind the GCE, we won’t get
equivalent performance compared with putting the GCE and
LIE in parallel. The main reason is the output features of GCE
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(a) Sitting 0°

(b) Sitting 30°

(c) Sitting 90°

(d) Sitting 120°

Fig. 8. Qualitative comparison of multi-view long-term predictions on H3.6M. From top to bottom, we show the ground truth, the results of LTD [22], and
our approach. The highlight illustrates the difference between three sequences.

(a) Walking dog 0°

(b) Walking dog 30°

(c) Walking dog 90°

(d) Walking dog 120°

Fig. 9. Qualitative comparison of multi-view short-term predictions on
H3.6M. From top to bottom, we show the ground truth, the results of LTD
[22], and our approach. The highlight illustrates the difference between three
sequences. The results evidence that our approach generates high-quality
predictions.

are not suitable to act as the input of LIE. More concretely, the
output features of GCE represent the joint features relative to
the CA. Thus, the adjacent pixels in the new relative feature

maps lost the adjacent relations existing in the raw skeletal
structure, which is the prerequisite of the LIE module.

TABLE X
RESULTS OF ON THE COMBINATION METHOD OF GCE AND LIE

combination method 80 160 320 400
Serial 10.5 23.5 49.6 60.4

Parallel(Ours) 9.6 22.0 46.3 57.0

Besides, we consider that different motions may have dif-
ferent preferences for those above two joint relations and
thus design the AFFM module. As is shown in TABLE IX,
AAFM improves the results by 0.4 on average. It reflects
that fusing the motion features achieved from different joint
relations enhances the whole performance. Notably, the limited
improvement of AFFM reflects that the joint coordination
modeling is the key design to improve the final prediction
performance.

To demonstrate how LIE and GCE are weighted in AFFM
module, we here offer the relative weight of different fea-
tures in different motions. As is shown in TableXI, wdistant,
wadjacent, wca represent the relative weight of Fdistant,
Fadjacent, Fca respectively. From the results, we can find
the ratio of global motion coordination wca varies a little,
which means that the global motion coordination is of almost
equal importance in all kinds of motions. Besides, we can
also find wdistant and wadjacent are usually contrary. For
those motions with little movement like “smoking”, “sitting
down” and “posing”, the importance of Fdistant is higher. For
those motions with more movement like “walking’, “walking
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(a) Running 0°

(b) Running 30°

(c) Running 90°

(d) Running 120°

Fig. 10. Qualitative comparison of multi-view short-term and long-term predictions on CMU-Mocap. From top to bottom, we show the ground truth, the
results of LTD [22], and our approach. The highlight illustrates the difference between three sequences.

TABLE XI
RELATIVE WEIGHT OF DIFFERENT FEATURES OF DIFFERENT MOTIONS IN

AFFM

Motions wdistant wadjacent wca

walking 0.26 0.40 0.34
eating 0.32 0.36 0.33

smoking 0.35 0.33 0.31
discussion 0.31 0.36 0.33
directions 0.31 0.36 0.33
greeting 0.30 0.36 0.34
phoning 0.31 0.37 0.32
posing 0.35 0.33 0.33

purchases 0.31 0.36 0.33
sitting 0.34 0.34 0.32

sittingdown 0.35 0.33 0.32
takingphoto 0.33 0.34 0.33

waiting 0.29 0.37 0.34
walkingdog 0.28 0.38 0.34

walkingtogether 0.27 0.39 0.34

dog” and “walking together”, the importance of Fadjacent is
higher. It demonstrates that dynamic motions may focus on
the movement of local bodies while static motions pay more
attention to the overall structure of the human body.

D. Qualitative analysis

1) Visulization of different motions on H3.6M and CMU
Mocap: As is shown in Fig. 8, Fig. 9, and Fig. 10, we list
more qualitative visualizations of different datasets. We can
find that our method outperforms LTD[22] in both short-term
and long-term prediction. In detail, compared with LTD[22], it

is easier for our model to capture motion tendency and make
more precise predictions. For example, in Fig. 9, we can see
that the movement of the left leg are well learned from four
perspectives in our prediction for the motion “Walking dog”
while not in LTD[22]. And in the motion “Sitting”, our model
is more precise in predicting upper limb movements from
multiple viewpoints. It demonstrates that our methods can
better capture the mutual constraints of different body parts,
and thus the resulting predicted motion appears more natural
and realistic. Besides, for those motions like “Running”, our
results usually outperform other methods, which shows the
enriched dynamics can offer more useful motion cues for
motion prediction.

2) Visulization of global coordination: In Fig. 7, we show
the one feature map of Cemb, which reflects the global
coordination of all joints. The value increases with the color
become brighter. For the motion “Eating”, there exist high
correlations on the upper body because the joints on the
upper body need to coordinate to finish the motion. While
for motion “Posing” there exist fewer correlations between
different body parts because this motion is more static than
“Eating”. Thus, the coordination only occurs in the local body
parts. This observation demonstrates that our proposed GCE
extract reliable global coordination for effective prediction.

V. CONCLUSION

In this paper, we focus on more realistic human motion
prediction with attention to motion coordination. To this end,
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we propose the CJRE to explore richer joint relation modeling,
mainly including GCE and LIE. The former presents the
global coordination of all joints and the latter encodes local
interactions between joint pairs. Besides, we also extract
enriched motion dynamics of raw skeleton data through the
MTDE to exploit more motion cues for effective prediction.
Experimental results on three benchmark datasets suggest that
our proposed framework is able to improve the coordination of
predicted motions with lower errors to generate more realistic
actions.
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