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Drone-based RGB-Infrared Cross-Modality Vehicle
Detection via Uncertainty-Aware Learning

Yiming Sun, Bing Cao, Pengfei Zhu, and Qinghua Hu, Senior Member, IEEE

Abstract—Drone-based vehicle detection aims at finding the
vehicle locations and categories in an aerial image. It empowers
smart city traffic management and disaster rescue. Researchers
have made mount of efforts in this area and achieved considerable
progress. Nevertheless, it is still a challenge when the objects
are hard to distinguish, especially in low light conditions. To
tackle this problem, we construct a large-scale drone-based
RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs,
covering urban roads, residential areas, parking lots, and other
scenarios from day to night. Due to the great gap between RGB
and infrared images, cross-modal images provide both effective
information and redundant information. To address this dilemma,
we further propose an uncertainty-aware cross-modality vehicle
detection (UA-CMDet) framework to extract complementary
information from cross-modal images, which can significantly
improve the detection performance in low light conditions. An
uncertainty-aware module (UAM) is designed to quantify the
uncertainty weights of each modality, which is calculated by the
cross-modal Intersection over Union (IoU) and the RGB illu-
mination value. Furthermore, we design an illumination-aware
cross-modal non-maximum suppression algorithm to better in-
tegrate the modal-specific information in the inference phase.
Extensive experiments on the DroneVehicle dataset demonstrate
the flexibility and effectiveness of the proposed method for cross-
modality vehicle detection. The dataset can be download from
https://github.com/VisDrone/DroneVehicle.

Index Terms—uncertainty-aware, cross-modality, drone-based
vehicle detection, feature fusion.

I. INTRODUCTION

DRONE-based vehicle detection plays an important role
in smart city traffic management and disaster rescue [1]–

[5]. Camera-equipped drones can collect images with a wider
angle of view, which is more conducive to capturing objects on
the ground. However, due to the highly complex backgrounds
and different illumination, object detection based on aerial
images [6]–[9] is still an active and challenging task in
computer vision.

Recently, some works [10]–[15] related to aerial images
object detection has appeared. These methods are designed
for the RGB modality alone, which cannot cope with the
challenges in low-light complex scenarios. But for smart city
traffic management, disaster rescue, and other applications, a
method that can deal with complex scenarios at all times is
even more needed [16]–[19]. At present, the biggest obstacle
to this demand is the lack of large-scale full-time aerial view
datasets for vehicle detection. Considering the robustness of
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(a) Uncertainty of RGB modality.

Infrared image RGB image

(b) Uncertainty of infrared modality.
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(c) Results in RGB modality.

Baseline UA-CMDet

(d) Results in infrared modality.

Fig. 1: Uncertainty in the RGB modality and infrared modality.
(a) At night, some RGB images that are completely out of light
in aerial scenes, which leads to uncertain vehicle locations. In
this situation, the corresponding infrared images can provide
more clear imaging details. (b) Due to the lack of color
information and the complex background of aerial scenes,
there are some confusing rectangle objects in infrared images
that look similar to vehicles. Besides, due to the thermal
crossover of infrared imaging devices, “ghost shadows” will
appear in some locations without any vehicles. These problems
cause strong uncertainty when we use infrared images in object
detection, and affect the detection accuracy. In (c) and (d), the
left side shows the results of the baseline on a single modality,
and the right side shows the results of our method. Our
method integrates the effective information of two modalities
and achieves much better results.

infrared cameras in full-time imaging, we attempt to introduce
infrared images to provide complementary information for the
RGB modality and form RGB-Infrared image pairs. To fill
this gap, we collect a large-scale drone-based RGB-Infrared
cross-modality vehicle detection dataset named DroneVehicle,
which contains 28, 439 sets of RGB-Infrared image pairs,
and provides oriented bounding box annotations for a total
of 953, 087 objects. In addition, our DroneVehicle covers
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multiple scenarios including urban roads, residential areas,
parking lots, and other scenarios from day to night. To the
best of our knowledge, this is the first and the largest full-
time drone-based RGB-Infrared cross-modality dataset.

These RGB-Infrared cross-modality images, while introduc-
ing effective information, also introduce redundant informa-
tion [20]–[22]. For example, infrared images are not sensitive
to light, which can provide more effective object locations
and categories for RGB images under low-light conditions.
However, due to the lack of color information and the adverse
effect of thermal crossover, some false objects with a similar
appearance to real objects may appear in infrared images,
which are redundant information for RGB images under good
lighting conditions. How to handle this dilemma and take
the respective advantages of the RGB and infrared modalities
to jointly improve the performance of object detection has
attracted widespread attention from the community.

Some researchers have conducted in-depth research on
RGB-Infrared cross-modality object detection [23]–[27]. Un-
fortunately, these methods are only designed for multispectral
pedestrian detection tasks, which cannot predict the orienta-
tions of the objects in aerial scenes. Therefore, these methods
cannot handle the detection of vehicles with different orien-
tations and different categories in aerial scenes. In addition,
these works are usually carried out on urban street view scenes,
which are unable to address certain problems in aerial scenes.
In addition to the different orientations of objects in aerial
scenes mentioned above, there are also problems such as wide
coverage scenes, confusing image background, and extremely
low visibility of some scenarios.

Our DroneVehicle shows that the RGB-Infrared cross-
modality vehicle detection still faces great challenges in aerial
scenes. Fig. 1 (a) shows some RGB images that are completely
out of light in aerial scenes, which leads to uncertain vehicle
locations. In this situation, the corresponding infrared images
can provide more clear imaging details. Nevertheless, due to
the color information lacking, the infrared images also perform
poor detection accuracy in some daytime scenarios with good
illumination. For instance, some confusing rectangle objects
in the infrared image look similar to vehicles, as shown in the
first row of Fig. 1 (b). Besides, due to the thermal crossover
of infrared imaging devices, “ghost shadows” will appear in
some locations without any vehicles. These problems cause
strong uncertainty when we use infrared images in object
detection, and affect the detection accuracy. Moreover, due
to the subtle difference between the poses of the visible
light camera and the infrared camera during image collection,
there may be some pixel misalignment between the RGB and
infrared images, which also brings cross-modality uncertainty
in object position.

To tackle this problem, we propose an uncertainty-aware
cross-modality vehicle detection (UA-CMDet) method, which
combines RGB and Infrared information in a unified frame-
work. Specifically, we design an uncertainty-aware module
(UAM) to quantify the uncertainty of each modality. The UAM
takes the ground-truth annotation of RGB-Infrared image pairs
as prior knowledge and joins the RGB illumination and the
cross-modality Intersection over Union (IoU) to calculate the

RGB Modality

Infrared Modality

urban roads highways parking lots residential areas

Fig. 2: Some example annotated images of the DroneVehicle
dataset. The first row shows some examples in the RGB
modality, and the second row shows the corresponding ex-
amples in the infrared modality.

uncertainty weights of each modality. Note that, this module
is removed after training, and it does not increase any extra
computations during inference. In addition, we further design
an illumination-aware cross-modal non-maximum suppression
(IA-NMS) strategy to fuse the detection results of different
modalities.

The effectiveness and reliability of the proposed meth-
ods are verified on our DroneVehicle dataset. As shown
in Fig. 1 (c), in the RGB modality, due to poor lighting
conditions, many objects are not detected by the baseline, and
multiple objects are even mistakenly detected as one. In addi-
tion, due to the lack of color and texture details, the infrared
images appear “ghost shadows” caused by thermal crossover,
which is hard to detect correctly by the baseline methods.
As a comparison, our method integrates RGB information to
infrared modality and achieves much better results, as shown
in Fig. 1 (d).

The main contributions of this paper are summarized as
follows:

• We construct a large-scale drone-based RGB-Infrared
dataset (DroneVehicle) that contains 953, 087 object in-
stances in 56, 878 images recorded from the diverse
scenarios. Compared to other drone-based datasets, our
DroneVehicle is the first and the largest dataset that can
significantly promote the development of drone-based
cross-modal vehicle detection.

• We propose an uncertainty quantification method, termed
uncertainty-aware module (UAM), to effectively measure
the uncertainty between two modalities by data prior
information. Our UAM can be flexibly applied to various
cross-modality object detection frameworks.

• We propose an uncertainty-aware cross-modality detector
(UA-CMDet), which for the first time joint the uncer-
tainty information of two different modalities to boost
the vehicle detection performance and achieve superior
performance against state-of-the-arts.

The remaining paper is organized as follows. We briefly
summarize the related works in Sec. II. Our DroneVehicle
dataset is introduced in Sec. III. We present the proposed
framework (UA-CMDet) in Sec. IV and conducted extensive
experiments in Sec. V to validate its effectiveness. Sec. VI
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TABLE I: Comparison of the state-of-the-art benchmarks and datasets. Note that, the resolution indicates the maximum
resolution of videos/images included in the benchmarks or datasets, R stands for RGB modality, I stands for infrared modality,
and the BB is short for bounding box. (1k = 1, 000)

Object detection
datasets

Scenario Modality #Images Categories Avg.
#labels/categories

Resolution Oriented
BB

Year

KITTI [28] driving R 15.4k 2 80k 1241× 376 2012
PASCAL VOC [29] life R 16.5k 20 2, 002 469× 387 2012

MS COCO [30] life R 328.0k 80 31.2k 640× 640 2014
DLR 3K [31] aerial R 20 2 2, 946 5616× 3744

√
2015

VEDAI [32] aerial R/I 1.2k 9 411 1024× 1024
√

2015
UA-DETRAC [33] surveillance R 140.1k 4 302.5k 960× 540 2015

COWC [34] aerial R 32.7k 1 32.7k 2048× 2048 2016
CARPK [35] drone R 1, 448 1 89.8k 1280× 720 2017

DOTA [6] aerial R 2, 806 15 12.5k 12029×5014
√

2018
UAVDT [36] drone R 80k 3 280.5k 1080× 540 2018
VisDrone [8] drone R 10, 209 10 54.2k 2000× 1500 2018

BDD100K [37] driving R 100k 10 184k 1280× 720 2020
EAGLE [38] aerial R 8, 280 2 107.9k 936× 936

√
2020

DroneVehicle(ours) drone R+I 56, 878 5 190.6k 840× 712
√

2021

concludes this work.

II. RELATED WORK

In this section, we first review several natural scene vehicle
detection datasets, then briefly review the existing aerial view
datasets that can support vehicle detection tasks, and finally
review some state-of-the-art vehicle detection algorithms.

A. Existing Natural Scene Datasets

In recent years, researchers have established many excellent
natural scene datasets for evaluating vehicle detection. Specif-
ically, it mainly includes the life scene datasets represented by
PASCAL VOC [29] and MS COCO [30], and the driving scene
datasets represented by KITTI [28] and BDD100K [37]. PAS-
CAL VOC is a well-known benchmark for object detection,
which contains 16, 551 images and annotation files. It provides
bounding box annotations for 20 different categories. Among
them, the categories with vehicle attribute are Bus and Car.
According to [29], there are 3, 267 annotated bounding boxes
for car and 822 annotated bounding boxes for Bus. MS COCO
is a large dataset, which is mainly used for object detection and
semantic segmentation. Compared with the PASCAL VOC in
object detection, MS COCO has a more complex background,
a larger number of objects, and a smaller size of objects.
Therefore, the MS COCO is more challenging. MS COCO
contains more than 328, 000 images with 2.5 million man-
ually annotated object instances. It has 80 object categories
with 31, 200 instances on average per category. But it only
contains three categories with vehicle attributes (Car, Bus and
Truck), so the corresponding annotated bounding boxes are
also limited. KITTI and BDD100K are well-known driving
scene datasets, which are designed to evaluate environmental
perception algorithms in autonomous vehicles. They are all
collected by vehicle cameras in an urban environment. KITTI
consists of 7, 481 training images and 7, 518 test images,

and contains more than 200, 000 object annotations captured
in cluttered scenarios. It mainly includes vehicle attribute
annotations and pedestrian attribute annotations, among which
vehicle attribute annotations specifically include cars, vans,
trucks, trams. BDD100K provides a total of 1, 841, 435 anno-
tated bounding boxes for 100, 000 key frames captured from
100, 000 videos. It has annotated 10 categories, of which there
are three categories (Bus, Truck, Car) with vehicle attribute.
Although these datasets promote the advancement of vehicle
detection technology in natural scenes, they cannot meet the
needs of vehicle detection in scenarios such as smart city and
disaster rescue. These scenes often need to deal with a broader
perspective, more variable object orientations, and scales, so
we propose an aerial view dataset specifically designed for
vehicle detection to meet these needs.

B. Existing Aerial View Datasets

In recent years, some aerial view datasets have been pro-
posed for aerial vehicle detection. UA-DETRAC [33] is a
large-scale dataset for vehicle detection and tracking. It is
mainly shot on road crossing bridges in Beijing and Tianjin,
China. It has more than 140, 000 frames and a total of 1.21
million labeled bounding boxes of objects, of which 8250
vehicles are manually annotated. DLR 3K [31] is composed of
20 aerial images captured by the DLR 3K camera system of the
German Aerospace Center. It mainly contains two categories
(Car and Truck), and each object is manually annotated as
an oriented bounding box. Since the image was taken at a
height of 1000 meters above the ground, the image resolution
is set to 5616 × 3744 pixels. VEDAI [32] is a database for
evaluating the detection of small vehicles in aerial images.
It includes different vehicle categories for a total of more
than 3, 700 annotated objects in more than 1, 200 images
and includes four different sub-sets (large-size color images,
small-size color images, large-size infrared images, small-size
infrared images). COWC [34] is a large diverse dataset of
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car truck freight car bus van

Fig. 3: Examples of five categories in the DroneVehicle.

cars from overhead images. It includes 32, 716 unique cars
and 58, 247 usable negative examples. CARPK [35] consists
of 1, 448 images and contains 89, 777 annotated cars captured
by the drone from different parking lots. UAVDT [36] mainly
contains about 80, 000 representative frames from 10 hours
raw videos and annotated 14 kinds of attributes (e.g., weather
condition, flying altitude, vehicle category, and occlusion) with
bounding boxes. VisDrone [8] consists of 263 video clips
and 10, 209 images with rich annotations (such as object
bounding boxes, object categories, occlusion, truncation ratios,
etc.). DOTA [6] includes 15 different categories and contains
188, 282 annotated object instances. The latest DOTA-v1.5
also adds many annotations to the small object instances about
or below 10 pixels that were missed previously. EAGLE [38]
is a large-scale dataset for multi-class vehicle detection with
object orientation information in aerial imagery. It provides
a total of 215, 986 bounding box annotations for the two
main categories (small vehicles and large vehicles), including
208, 963 small and 7, 023 large vehicles. The above-mentioned
datasets have greatly promoted the application of vehicle
detection in aerial view scenes, but there are many dark night
scenarios in the real world, and it is difficult to handle such
cases only relying on the RGB modality. However, all of the
above-mentioned datasets only contain RGB modality except
the VEDAI. The infrared images generally perform well in
dark night scenarios, but unfortunately, the VEDAI dataset
is small and lacks sufficient dark night scenarios, so the
complementarity of the two modalities cannot be reflected.
In contrast to the above-mentioned aerial view datasets, our
proposed DroneVehicle dataset contains pairs of RGB images
and infrared images collected in various urban environments,
which can support the research of cross-modal vehicle detec-
tion.

C. Vehicle Detection

Vehicle detection aims to find the location of the vehicle
and determine its category [39]. In recent years, significant
progress has been made in object detection. As an important
topic in object detection, vehicle detection also benefits from
the progress of object detection. Among them, whether it is
natural scenes or aerial scenes, vehicle detection algorithms
represented by RetinaNet [40] and Faster R-CNN [41] have
been widely used. RetinaNet is a dense detector consisting
of the feature extractor, the classification subnetworks, and
the regression subnetworks. Its main contribution is the pro-
posed focal loss, which aims to solve the problem of the
extreme imbalance between the foreground category and the
background category of the dense detector during the training

TABLE II: The total number of annotated bounding boxes for
each category in the two modalities.

Modality car truck bus van freight car
RGB 389, 779 22, 123 15, 333 11, 935 13, 400

Infrared 428, 086 25, 960 16, 590 12, 708 17, 173

process. Different from RetinaNet, Faster R-CNN is a two-
stage detector. In the first stage, region proposals are first
generated through RPN (Region Proposal Networks), and then
these candidate regions are classified to distinguish foreground
and background. And perform bounding box regression on
these candidate regions. In the second stage, the feature maps
of the region of interest are extracted through the RoI Pooling
layer, and then sent to the classification subnetworks of the
vehicle category and the regression subnetworks of the bound-
ing box. In aerial scenes, the orientation and scale of many
vehicle objects change very frequently, so vehicle detectors
based on Deformable RoI Pooling [42] can often achieve better
performance. Compared with RoI Pooling in Faster R-CNN,
the main difference of Deformable RoI Pooling is the addition
of an offset learning module, so that the sampling points of
the convolution kernel on the feature map can be offset to
focus on the region of interest. Mask R-CNN [43] adds a
branch to predict the segmentation mask based on Faster R-
CNN, and at the same time replaces the RoI Pooling layer
with the RoI Align layer. Among them, the RoI Align layer
alleviates the problem of misalignment between the feature
map and the original image in the RoI feature extraction stage.
Cascade Mask R-CNN [44] is composed of multiple detectors,
which are trained in stages with increasing IoU thresholds. A
detector outputs a good data distribution as input and then
continues to train the next detector. This method effectively
improves the false positive problem. Hybrid Task Cascade [45]
improves the information flow by incorporating cascade and
multi-tasking at each stage and leverage spatial context to
further boost the accuracy. RoITransformer [10] adds an RoI
Transformer module based on Faster R-CNN. The module
is mainly composed of RRoI Leaner and RRoI Wrapping.
Its core idea is to convert the horizontal proposals HRoI
output by RPN into the oriented proposals RRoI. Although
the above methods have promoted the progress of vehicle
detection, they only support a single modality, especially in
dark night scenarios, these algorithms will fail in the RGB
modality. To tackle this problem, we propose an uncertainty-
aware cross-modality vehicle detection (UA-CMDet) method,
which combines RGB and Infrared information in a unified
framework.

III. DRONEVEHICLE DATASET

We select five vehicle categories of frequent interests in
drone applications, i.e., car, truck, bus, van and freight car. We
carefully annotated 953, 087 oriented bounding boxes of object
instances from these categories. The detailed comparison of
the provided drone datasets with other related benchmark
datasets in object detection are presented in Table. I.
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Fig. 4: The distribution of data under different lighting condi-
tions in the DroneVehicle dataset and its sample images.

A. Data Collection

The DroneVehicle dataset contains 28, 439 RGB-Infrared
image pairs. All the images are captured by the camera-
equipped drones, covering a wide range of aspects, including
scenarios (different types of urban roads, residential areas,
parking lots, highways, etc.) and objects (car, bus, truck, van,
freight car, etc.). Note that, the dataset was collected using
drone platforms in different scenarios and under various light-
ing conditions. The DroneVehicle contains 953, 087 manually
annotated bounding boxes. Some example images are shown
in Fig.2.

B. Data Preprocessing

1) Data Pruning: Data pruning is an important step in
making a dataset, so the raw data collected by the drone
needs to be pre-processed. A part of the images with poor
imaging quality are discarded, such as blurred images. Then
we manually check all the image data and uniformly convert
the resolution of the image to 840× 712. Finally, we get the
data without annotation.

2) Data Calibration: We first perform distortion correction
on all cleaned images. Since the attitudes of the drone are
difficult to maintain absolute stability during the data col-
lection process, the cross-modal image pair captured by the
two cameras will inevitably appear pixel misalignment. In the
calibration stage, we perform affine transformation and region
cropping on each RGB-Infrared image pair to ensure that most
cross-modal image pairs are aligned.

C. Data Annotation

In computer vision, the typical annotation methods mainly
utilize rectangular bounding boxes to annotate the objects on
images. The bounding boxes are annotated with (xc, yc, w, h),
where (xc, yc) is the center location, w and h are the width
and height. These annotation methods are qualified for many
scenarios, such as autonomous driving scenarios and traffic
surveillance scenarios. Due to the uncertainty of the camera
angle in the UAV, it is difficult to calibrate the object precisely

1480

1323
1199

1395
1310

12401239 1206

2572

0

1000

2000

3000

15° 30° 45°

80m

100m

120m

80m15°

100m15°

120m15°80m30°

100m30°

80m45°

100m45° 120m30° 120m45°

Fig. 5: The distribution of data at different heights and angles
in the DroneVehicle dataset and its sample images.

with these methods. Considering the various object orienta-
tions in aerial images, we deploy the oriented bounding box
to accurately and compactly represent the object outline in the
annotation procedure. Following [6], we choose the arbitrary
quadrilateral bounding boxes to annotate oriented objects. In
detail, we annotate {(xi, yi), i = 1, 2, 3, 4} for each object,
where (xi, yi) denotes the vertices positions of the oriented
bounding boxes in the image. Some samples of annotated
images in our dataset are shown in Fig.2.

D. Statistics and Attributes

Five categories are chosen and annotated in our DroneVehi-
cle dataset, including car, truck, bus, van, and freight car. Some
examples are shown in Fig.3. In the DroneVehicle dataset, we
separately counted the total number of annotated bounding
boxes for each category in RGB and infrared modalities. The
statistical results are shown in Table. II.

The DroneVehicle dataset consists of a total of 56, 878
images collected by the drone, half of which are RGB im-
ages, and the resting are infrared images. We have made
rich annotations with oriented bounding boxes for the five
categories. Among them, car has 389, 779 annotations in RGB
images, and 428, 086 annotations in infrared images, truck has
22, 123 annotations in RGB images, and 25, 960 annotations
in infrared images, bus has 15, 333 annotations in RGB
images, and 16, 590 annotations in infrared images, van has
11, 935 annotations in RGB images, and 12, 708 annotations
in infrared images, and freight car has 13, 400 annotations in
RGB images, and 17, 173 annotations in infrared image.

Since infrared images present higher contrast in low light
conditions, they have more annotations than RGB images.
According to different illumination levels, we divide the
images in the DroneVehicle dataset into three scenarios: Day,
Night, and Dark night, which has 14, 478, 5, 468 and 8, 493
images respectively. The ratio of the sum of Night data and
Dark night data to Day data is close to 1:1. As shown in
the Fig.4, in DroneVehicle, dark night data mainly involve
scenarios, such as parking lots, residential areas, roads without
street lights; night data mainly involve roads and blocks with
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Fig. 6: The architecture of the proposed UA-CMDet. UA-CMDet contains three branches. Among them, two branches take
RGB image and infrared image respectively as input and the other branch takes the fused feature map as input. In the training
phase, the three branches respectively predict their classification confidence scores and bounding box coordinates. Among
them, in each detection head, the uncertainty weight of the corresponding modality is obtained through the uncertainty-aware
module (UAM). And in the inference phase, the output of each branch will be post-processed through IA-NMS to obtain
the final detection results. In UAM, first calculate the IoU between the ground-truth bounding boxes of the RGB image and
the Infrared image. According to the cross-modal IoU matching results, UAM calculates three uncertainty weights for three
different branches and outputs these uncertainty weights to the corresponding detection heads.

lighting conditions. In a dark scenario, many vehicles in the
RGB image are difficult to be distinguished by human eyes,
which are hard to be annotated precisely. But the same objects
in an infrared image are much more distinct. However, in
some daytime scenarios, due to the lack of color information
and texture details in infrared images, RGB images often have
more complete annotations.

In drone-based practice, it is impossible for the camera
to maintain a vertical downward viewing angle. Therefore,
in addition to 15, 475 pairs of cross-modal images taken in
vertical viewing angles, DroneVehicle also covers 12, 964 pairs
of cross-modal images with three different angles (15°, 30°
and 45°) and three different heights (80m,100m and 120m).
We report the details with corresponding example images in
different viewing angles and heights as shown in Fig.5.

Each image in our DroneVehicle has an average of 16.76
vehicles, of which the maximum number is 206. In summary,
this dataset covers different modalities, different scenarios,
different lighting conditions, different viewing angles and
heights, etc., and contains a large number of finely annotated
objects. This is the first and the largest dataset that can
significantly promote the development of UAV-based RGB-
Infrared vehicle detection.

IV. METHOD

In this work, we propose an uncertainty-aware cross-
modality vehicle detection (UA-CMDet) framework. It con-

tains an uncertainty-aware module (UAM) and a cross-
modality detector (CMDet). Furthermore, we design an
illumination-aware cross-modal non-maximum suppression
strategy (IA-NMS) to better integrate the modal-specific in-
formation in the inference phase. The overall architecture of
the proposed method is shown in Fig.6.

A. Uncertainty-Aware Module

Uncertainty can be used to evaluate the credibility be-
tween different modalities [46], [47]. Mount efforts have
been developed to quantify the uncertainty by constructing
a mathematical distribution [48]–[50], which is quantified to
evaluate indicators such as variance and standard deviation. In
this work, we propose an uncertainty-aware module (UAM) to
quantify the cross-modal uncertainty in a task-driven manner.
The left side of the Fig.6 shows the structure of UAM.

IoU (Intersection over Union) is used to evaluate the local-
ization quality of the predicted box in object detection. In the
uncertainty-aware module, we calculate the IoU of the ground-
truth bounding boxes in an RGB-infrared image pair and
use it to quantify the localization difference of ground-truth
bounding boxes in the two modalities. Different from the IoU
calculation in the horizontal bounding box, our cross-modal
IoU (CM IoU ) is performed within polygons. The Brgb and
Binfrared represent the ground-truth bounding boxes of RGB
and infrared images, respectively. The area is a function
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for calculating the area of an arbitrary polygon. Finally, the
CM IoU can be calculated as,

CM IoU =
area (Brgb

⋂
Binfrared)

area (Brgb

⋃
Binfrared)

(1)

In UAM, we first calculate the CM IoU between the
ground-truth bounding boxes of the RGB image and the
Infrared image. Ideally, the CM IoU should be close to 1.
According to CM IoU , we can match the corresponding
ground-truth boxes in two modalities, and then determine
the index of the missing bounding boxes in the respective
modality.

For the infrared modality, due to the lack of color infor-
mation and texture details, the objects in the infrared image
may have a confusing appearance, and it is easy to miss the
annotations when manually annotating. In this case, we use the
ground-truth boxes in the RGB modality to fill in these missing
bounding boxes in the infrared modality. Then, we assign an
uncertainty weight ωinf to each newly added bounding box
in the infrared modality and set the weight of the original
bounding box to 1. Finally, the uncertainty weight ωI of each
object in the infrared modality can be calculated as,

ωI =

{
ωinf if infrared object miss,
1 otherwise

(2)

Since objects with low visibility in the RGB image are
missing annotations, it is difficult for certain bounding boxes
in the infrared modality to find the corresponding position
in the RGB modality. In this case, these missing bounding
boxes in the RGB modality are uncertain, so we assign an
uncertainty weight ωrgb to each of them. Meanwhile, we also
use the ground-truth boxes in the infrared modality to fill in the
missing bounding boxes in the RGB modality. In addition, dif-
ferent lighting conditions also greatly affect the performance
of the detector, especially for the RGB modality. For cross-
modal object detector, different illumination levels also reflect
the overall uncertainty of RGB images. Hence, we utilize the
gray histogram to calculate the RGB illumination value. In
the night scenarios, we define the illumination value of the
RGB image as the illumination uncertainty weight of the RGB
modality, denoted as ωiv . In addition, it is difficult to ensure
that the cross-modal image pairs are completely aligned pixel-
by-pixel during image collection, which means CM IoU is
between 0 and 1. We take the object position in the infrared
modality as a reference and set an alignment threshold as
µ. When 0 < CM IoU < µ, we take the CM IoU as
the uncertainty weight of the misaligned object, denoted as
ωcm iou, and assign it to the ground-truth bounding boxes of
the object in the RGB modality. Finally, the uncertainty weight
ωR of each object in the RGB modality can be calculated as,

ωR =


ωrgb if RGB object miss,
ωcm iou × ωiv if RGB object not aligned,
ωiv if RGB object is aligned

(3)

B. Uncertainty-Aware Cross-modality Detector

Our uncertainty-aware cross-modality vehicle detector (UA-
CMDet) includes a cross-modality detector (CMDet) and an
uncertainty-aware module (UAM). Specifically, we choose
RoITransformer [10] as our basic oriented vehicle detector
and modify it to a cross-modality detector (CMDet) to handle
cross-modal inputs. Among them, CMDet is composed of
RGB branch, infrared branch, and fusion branch, and we
design a cross-modal fusion module to joint learning the fused
feature and the respective knowledge of each modality. The
uncertainty-aware module (UAM) provides the corresponding
uncertainty weight for each detection head.

As shown in Fig.6, the input of our UA-CMDet is a
pair of RGB-Infrared images, which are feed to the feature
extractors. In this work, the ResNet [51] is taken as the feature
extractor. We send the extracted feature maps of the two
modalities into the cross-modal fusion module and obtain a
set of feature maps with cross-modal knowledge. In the cross-
modal fusion module, we first concatenate the feature maps
of each modality in the channel dimension and then impose a
1×1 convolution layer to achieve dimensionality reduction and
cross-channel information interaction. Then the feature maps
of the three branches are sent to their respective detection head.
Among them, UAM provides the corresponding uncertainty
weights for each detection head. Considering the specific
feature contained in the respective modality, we retrain the
independent detection heads of the infrared modality and the
RGB modality during training. In the test phase, the outputs
of the three detection heads are utilized to further enhance the
detection performance.

We follow the detection head structure of [10] and de-
sign an Region Proposal Network (RPN) [41] and an RoI
Transformer module. The RPN is responsible for proposing
the horizontal proposals, and the RoI Transformer module is
responsible for transforming the horizontal proposals into the
oriented bounding boxes and performs fine classification and
regression. In each detection head, UAM can recalibrate the
weights of the object bounding box regression involved in
the RPN and RoI Transformer module, thereby reducing the
regression loss of bounding boxes with uncertainty. In UA-
CMDet, the loss function Lloc of the object bounding box
regression is as follows,

Lloc (t
u, v, ω) = ω

∑
i

smoothL1 (t
u
i − vi) (4)

Where i ∈ {x, y, w, h, θ}, tu represents the predicted result,
and u represents the ground-truth class. v represents the
ground-truth bounding-box regression target, (x, y) denotes
the center of the predicted result, and (w, h) denotes the width
and height of the predicted result. The θ gives the orientation
of the predicted result. And ω represents the uncertainty
weight, which can be calculated as,
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ω =


ωR if it is the RGB branch,
ωI if it is the infrared branch,
ωF if it is the fusion branch

(5)

Among them, the uncertainty weight ωF of each bounding
box on the fusion branch is consistent with that on the infrared
branch, which is calculated as,

ωF = ωI (6)

Taking the RGB branch as an example, We use a multi-task
loss Lrgb to jointly train for classification and bounding-box
regression:

Lrgb (p, u, t
u, v, ω) =Lcls (p, u)

+ λ [u ≥ 1]Lloc (t
u, v, ω) (7)

In which, Lcls uses the cross-entropy loss function, and p
represents the predicted probability of each class. The Iverson
bracket indicator function [u ≥ 1] evaluates to 1 when u ≥ 1
and 0 otherwise. By convention the catch-all background class
is labeled u = 0. The hyper-parameter λ controls the balance
between the two task losses. According to convention, all
experiments use λ = 1. In UA-CMDet, the total loss function
contains the loss functions of three branches. We perform a
weighted sum on them:

L = αLrgb + βLinf + γLfusion (8)

Where α, β, γ is the trade-off parameters. In all experiments,
they are all set to 1, so that the respective modal weights are
consistent.

C. Illumination-Aware Cross-modal NMS

Some information peculiar to a single modality may be lost
in the cross-modal fusion phase, so it is generally difficult to
achieve the best effect only using the detection results of the
fusion branch. To avoid this problem, our UA-CMDet retains
the independent detection head of the RGB modality and the
infrared modality during the training phase and the inference
phase. And in the inference phase, we can use the output
of three independent branches to better integrate the modal-
specific information.

In object detection, non-maximum suppression (NMS) [52]
is often used to determine the final object bounding boxes.
NMS sorts the candidate bounding boxes according to the
classification probability output by the classifier. For a com-
mon object detector, the classification probability output by
the classifier is often obtained through softmax, but softmax
tends to inflate the probability of the predicted class [53]. This
problem is more acute in cross-modal object detection. For
example, in a dark scenario, the RGB branch can hardly accu-
rately determine the true position of the object, so many false
positive samples will be predicted. After softmax, these false
positive samples will still get the corresponding classification
probabilities. When the prediction results of the three branches

TABLE III: Statistics of the number of objects after the
DroneVehicle dataset is split. R stands for RGB modality, I
stands for infrared modality.

Categories Train Val Test

RGB Infrared RGB Infrared RGB Infrared

car 246, 700 270, 350 18, 965 20, 588 124, 114 137, 148
truck 13, 685 15, 833 1, 336 1, 470 7, 102 8, 657
bus 10, 421 11, 334 751 789 4, 161 4, 467
van 7, 275 7, 701 700 725 3, 960 4, 282

freight car 8, 712 11, 193 710 918 3, 978 5, 062

in the model are fused, the false positive samples predicted by
the RGB branch will seriously affect the final fusion effect.

Considering that the RGB images is very sensitive to
lighting conditions and NMS can remove redundant bounding
boxes, we further propose a illumination-aware cross-modal
non-maximum suppression strategy. In our illumination-aware
cross-modal NMS (IA-NMS), Br = {br1, .., brN}, Bt =
{bt1, .., btN}, Bf = {bf1, .., bfN}, Sr = {sr1, .., srN},
St = {st1, .., stN}, Sf = {sf1, .., sfN}, among them, Br,
Bt and Bf are the list of initial detection boxes for the RGB
branch, the infrared branch and the fusion branch, respectively.
And Sr, St and Sf contain corresponding detection scores,
respectively. Let Nl be the NMS threshold. We use the
illumination uncertainty weight ωiv of the current RGB image
to weight the detection scores of the candidate bounding boxes
corresponding to the RGB modality, which can be expressed
as Sr ← Sr×ωiv . Then we merge all the candidate bounding
boxes of the three branches together for NMS operation.

IA-NMS can reduce the interference of the RGB modal
prediction results on the final detection results of the model
in a dark scenario. As shown in Fig.6, in the inference phase,
UA-CMDet can realize the fusion of the results of the three
detection head branches through IA-NMS. By convention, we
set the NMS threshold Nl to 0.1.

V. EXPERIMENT

In this section, we present our experimental settings and
extensive results with in-depth analysis. Firstly, we carry out
ablation studies for the proposed method on the DroneVe-
hicle dataset and then discuss the operations that affect the
performance of the proposed method. Finally, the mAP of
our method and the state-of-the-arts are reported, and the
visualization of the detection results is discussed.

A. Experimental Setting

1) Implementation Details: We utilize ResNet-FPN [54] as
the backbone network, and the pretrained ResNet-50 model is
used for initialization. Each image is randomly horizontally
flipped with a probability of 0.5 to increase the diversity. The
whole network is optimized by SGD optimizer for 12 epochs
with a learning rate of 0.005 and a batch size of 2. Weight
decay and momentum are set to 0.0001 and 0.9, respectively.
We implement our codes with the Pytorch framework [55]
and conduct experiments on a workstation with two NVIDIA
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TABLE IV: Ablation study on DroneVehicle dataset. Baseline is RoITransformer, UAM stands for uncertainty-aware module,
R stands for RGB modality, I stands for infrared modality, the cross-modal fusion method that uses the element-wise-add
operation is denoted as CM-E, and the cross-modal fusion method that uses the concatenate operation is denoted as CM-C.
Where UA-CMDet∗ represents that the UA-CMDet does not use IA-NMS and only uses the results of the fusion branch.

Methods Modality CM-E CM-C UAM IA-NMS car freight car truck bus van mAP
Baseline R − − − − 68.13 29.08 44.17 70.55 27.64 47.91
Baseline R − −

√
− 68.11 30.10 43.91 76.68 28.02 49.36

Baseline I − − − − 88.85 41.49 51.53 79.48 34.39 59.15
Baseline I − −

√
− 89.24 43.18 51.29 79.12 34.78 59.52

CMDet R+I
√

− − − 89.69 46.60 58.47 80.63 37.52 62.58
UA-CMDet∗ R+I

√
−

√
− 89.69 47.28 58.68 80.76 38.71 63.02

UA-CMDet R+I
√

−
√ √

87.97 46.64 57.71 86.80 38.26 63.48

CMDet R+I −
√

− − 89.56 47.99 58.63 80.75 35.73 62.53
UA-CMDet∗ R+I −

√ √
− 89.76 47.15 58.87 80.65 39.79 63.25

Ours R+I −
√ √ √

87.51 46.80 60.70 87.08 37.95 64.01

GTX1080Ti GPUs. We have conducted experiments with
different ωrgb, ranging from 0.01 to 0.5. Experimental results
showed that the model achieved the highest mAP when the
ωrgb was set to 0.1. For ωinf , we set it to 1, because it was
utilized as a reference model and only needed to compensate
for the missing objects. The alignment threshold µ measures
the matching degree of the object positions between two
modalities, we set µ to 0.8 in our experiments.

2) Baselines: We compare our methods with 7 state-of-the-
arts: RetinaNet(OBB) [40], Faster R-CNN(OBB) [6], Faster
R-CNN(Dpool) [42], Mask R-CNN [43], Cascade Mask R-
CNN [44], Hybrid Task Cascade∗ [45], RoITransformer [10].
Specifically, for RetinaNet(OBB) and Faster R-CNN(OBB),
OBB means that the detector has an oriented bounding box
detection head. Further, we replace RoI Align in Faster R-
CNN (OBB) with Deformable RoI Pooling, and call it Faster
R-CNN (Dpool). For Mask R-CNN, Cascade Mask R-CNN,
Hybrid Task Cascade∗, they treat oriented object detection
as a pixel-level classification problem. Where ∗ means that
the semantic segmentation branch is removed from the Hy-
brid Task Cascade. For a fair comparison, all the detection
results of our method and all baselines are obtained under
identical experimental settings. We implement and evaluate
all the algorithms in one unified code library modified from
MMDetection [56].

3) Partition Protocol: We split the dataset into the training
set, validation set, and testing set. Among them, the training set
contains 17, 990 RGB-Infrared image pairs, the validation set
contains 1, 469 RGB-Infrared image pairs, and the remaining
8, 980 RGB-Infrared image pairs form the testing set. As
shown in the Table. III, in the training set, there are a total of
286, 793 vehicles in the RGB modality and 316, 411 vehicles
in the infrared modality; in the validation set, there are a
total of 22, 462 vehicles in the RGB modality and 24, 490
vehicles in the infrared modality; in the test set, there are a
total of 143, 315 vehicles in the RGB modality and 159, 616
vehicles in the infrared modality. All experiments in this paper
are trained on the training set and evaluated on the test set.
It is worth noting that all training and validation sets in

DroneVehicle will be open source.
4) Evaluation Metric: The standard metrics, Mean Average

Precision (mAP) is adopted to evaluate the drone-based RGB-
Infrared vehicle detection accuracy. The mAP measures the
quality of bounding box predictions in the test set. Follow-
ing [29], a prediction is considered as true positive if the IoU
between the prediction and its nearest ground-truth annotation
is larger than 0.5.

B. Ablation Study

1) Uncertainty-Aware Module: To verify the effectiveness
of UAM, we select RoITransformer as the baseline, directly
add UAM to the baseline, and train the RGB modal detec-
tor and infrared modal detector respectively. As shown in
Table. IV, UAM is effective to improve the mAP of the
two modalities. Among them, the mAP of RGB modality is
increased by 1.45%, and the mAP of infrared modality is
increased by 0.37%. In addition, we used two feature fusion
operations on the cross-modal detector (CMDet), namely the
element-wise-add operation and the concatenate operation. For
a fair comparison, UA-CMDet does not use IA-NMS and only
uses the results of the fusion branch. And the CMDet uses
the same training and inference configuration as UA-CMDet.
When the element-wise-add operation is used, the mAP of the
CMDet is 0.44% lower than the UA-CMDet of the same fusion
operation. When using the concatenate operation, the mAP
of the CMDet is 0.72% lower than the UA-CMDet. These
experimental results prove that the uncertainty-aware module
is effective.

2) Cross-Modal Fusion: To verify that the cross-modal
fusion operation in UA-CMDet is effective, it can be seen
from the Table. IV that even without IA-NMS, the mAP of our
UA-CMDet is 13.89% higher than the baseline with UAM in
RGB modality, and 3.73% higher than it in infrared modality.
As a comparison, we used the element-wise-add operation to
replace the cross-modal fusion operation in UA-CMDet and
conducted experiments under the same conditions. The results
show that its mAP is 0.23% lower than the original UA-
CMDet, but it is still better than the single-modality object
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detector. In addition, for the cross-modal detector (CMDet),
when the element-wise-add operation is used, the mAP of
CMDet is 14.67% higher than the baseline model trained in
the RGB modality and 3.43% higher than the baseline model
trained in the infrared modality. When using the concatenate
operation, the mAP of CMDet is 14.62% higher than the
baseline model trained in the RGB modality and 3.38% higher
than the baseline model trained in the infrared modality. The
above experiments prove that the cross-modal fusion operation
is effective. According to the experiments in Table. IV, we also
found that after using UAM and IA-NMS, the concatenate
operation brings greater mAP gain to the model than the
element-wise-add operation. Therefore, concatenate operation
is selected as the cross-modal fusion method in UA-CMDet.
After performing the concatenate operation on the features of
the two modalities, we use a 1× 1 convolution to ensure the
consistency of the fusion features and the features of each
single modality in the number of channels.

3) Illumination-Aware NMS: Under exactly the same ex-
perimental conditions, we conducted two sets of experiments
to verify the effect of the illumination-aware NMS (IA-NMS)
in UA-CMDet. The results are shown in the Table. IV. The
first set of experiments uses concatenate operation (CM-C)
and 1 × 1 convolution to achieve cross-modal feature fusion.
When IA-NMS is not used, we directly use the output of the
cross-modal fusion branch as the final detection results, and its
mAP is lower than the model using IA-NMS by 0.76%. Then
the second set of experiments directly used the element-wise-
add operation (CM-E) to achieve cross-modal feature fusion.
When IA-NMS is not used, we also use the output of the cross-
modal fusion branch as the final detection results, and its mAP
is 0.46% lower than the model using IA-NMS. After using IA-
NMS, in our UA-CMDet, the AP value of many categories has
been improved. Moreover, no matter whether UA-CMDet uses
CM-C or CM-E, the AP value of bus has increased by more
than 6%. The above experiments prove that the illumination-
aware NMS (IA-NMS) is effective.

C. Disscussion

To quantify the uncertainty weights of each modality,
UA-CMDet mainly includes three operations: SMO (Sup-
plement of Missing Objects), MA(Misalignment-Aware), and
IA(Illumination-Aware). To determine whether these opera-
tions are effective, we continue to explore them.

As shown in Table. V, in the RGB modality, the SMO is
added to the baseline, which includes assigning uncertainty
weights to these missing objects. At this time, the mAP has
increased by 0.42% compared to the baseline. On this basis,
after introducing the MA, the mAP has increased by 0.61%.
Finally, we add the IA to the model and reach the highest
mAP value. This mAP is 0.42% higher than the mAP of
the model without IA. In the infrared modality, the SMO is
added to the baseline, which includes assigning uncertainty
weights to these missing objects. At this time, the mAP
has increased by 0.27% compared to the baseline. On this
basis, after introducing the MA, the mAP has increased by
0.10%, achieving the highest mAP in a single modality. For

TABLE V: Detailed discussion in UA-CMDet. Baseline is
RoITransformer, UAM stands for uncertainty-aware module,
R denotes RGB modality, I denotes infrared modality, EWA
is short for element-wise-add operation, and CAT is short for
concatenate operation, SMO is short for Supplement of Missing
Objects, MA is short for Misalignment-Aware, and IA is short
for Illumination-Aware. Where UA-CMDet∗ represents that
the UA-CMDet does not use IA-NMS and only uses the results
of the fusion branch.

Methods Modality SMO MA IA mAP
Baseline R − − − 47.91
Baseline R

√
− − 48.33

Baseline R
√ √

− 48.94
Baseline+UAM R

√ √ √
49.36

Baseline I − − − 59.15
Baseline I

√
− − 59.42

Baseline+UAM I
√ √

− 59.52

CMDet(EWA) R+I − − − 62.58
CMDet(EWA) R+I

√ √
− 62.82

UA-CMDet∗(EWA) R+I
√ √ √

63.02

CMDet(CAT) R+I − − − 62.53
CMDet(CAT) R+I

√ √
− 62.60

UA-CMDet∗(CAT) R+I
√ √ √

63.25

the cross-modal detector (CMDet), we conducted experiments
on two cross-modal fusion operations. For the element-wise-
add operation, after the SMO and the MA are added to the
CMDet(EWA), the mAP of the model is increased by 0.24%.
And after added the IA, the mAP of the model has been further
increased by 0.20%. For the concatenate operation, after the
SMO and the MA are added to the CMDet(CAT), the mAP of
the model is increased by 0.07%. And after added the IA, the
mAP of the model has been further increased by 0.65%. This
all proves that the three operations we proposed are effective
and can be embedded in any RGB-Infrared cross-modality
vehicle detection framework.

D. Comparisons

1) Quantitative evaluation: We compare our method with
state-of-the-art methods on the DroneVehicle dataset under the
same settings. The results are shown in the Table. VI. Since
existing methods [6], [10], [40], [42]–[45] are designed for
single modality, we train them on single modality (RGB or in-
frared modality). RoITransformer achieved the advanced mAP
among these single-modality object detectors. Compared with
them, our UA-CMDet achieves superior performance with the
highest mAP. And compared with the RoITransformer, the
mAP of our UA-CMDet has increased by 16.10% and 4.86%
in RGB modality and infrared modality, respectively.

Compared to the highest accuracy of each category in the
RGB modality, our method improves the accuracy of four
categories by more than 16%. And compared to the highest
accuracy of each category in the infrared modality, our method
improves the accuracy of all categories by more than 3.5%.
Specifically, in the RGB modality, our method improves the
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TABLE VI: Evaluation on our DroneVehicle Dataset. Where ∗ means that the semantic segmentation branch is removed from
the Hybrid Task Cascade.

Methods Modality car freight car truck bus van mAP
RetinaNet(OBB) [40] RGB 67.50 13.72 28.24 62.05 19.26 38.16

Faster R-CNN(OBB) [6] RGB 67.88 26.31 38.59 66.98 23.20 44.59
Faster R-CNN(Dpool) [42] RGB 68.23 26.40 38.73 69.08 26.38 45.76

Mask R-CNN [43] RGB 68.52 26.83 39.84 66.75 25.35 45.46
Cascade Mask R-CNN [44] RGB 68.00 27.25 44.67 69.34 29.80 47.81
Hybrid Task Cascade∗ [45] RGB 67.89 27.22 44.55 70.22 28.61 47.70

RoITransformer [10] RGB 68.13 29.08 44.17 70.55 27.64 47.91

RetinaNet(OBB) [40] Infrared 79.86 28.05 32.84 67.32 16.44 44.90
Faster R-CNN(OBB) [6] Infrared 88.63 35.16 42.51 77.92 28.52 54.55

Faster R-CNN(Dpool) [42] Infrared 88.94 36.79 47.91 78.28 32.79 56.94
Mask R-CNN [43] Infrared 88.77 36.63 48.86 78.38 32.16 56.96

Cascade Mask R-CNN [44] Infrared 81.00 38.97 47.18 79.32 33.00 55.89
Hybrid Task Cascade∗ [45] Infrared 88.57 42.85 47.71 79.46 34.16 58.55

RoITransformer [10] Infrared 88.85 41.49 51.53 79.48 34.39 59.15

UA-CMDet(Ours) RGB+Infrared 87.51 46.80 60.70 87.08 37.95 64.01

Baseline

UA-CMDet (Ours)

(a) RGB Modality.

UA-CMDet (Ours)

Baseline

(b) Infrared Modality.

Fig. 7: Qualitative analysis of UA-CMDet on DroneVehicle. (a) and (b) are the qualitative analysis in the RGB modality and
infrared modality respectively. The first row of (a) shows the detection results of the baseline in the RGB modality, and the
second row shows the detection results of UA-CMDet in the RGB modality. The first row of (b) shows the detection results of
the baseline in the infrared modality, and the second row shows the detection results of UA-CMDet in the infrared modality.
The area selected by the red dashed box in the figure represents the error detection and missed detection. The solid red box
represents the magnification effect of the area of interest in the image.

accuracy of car by 18.99%, the accuracy of freight car by
17.72%, the accuracy of truck by 16.03%, and the accuracy
of bus by 16.53%. But our method only improves the accuracy
of van by 8.15%. The possible reason is that the appearance
similarity between van and car is higher, which makes it
difficult for the object detector to distinguish them. And in
the infrared modality, our method improves the accuracy of
freight car by 3.95%, the accuracy of truck by 9.17%, the
accuracy of bus by 7.6%, and the accuracy of van by 3.56%.
However, we find that the accuracy of car decrease. Here we
give an explanation. The predicted bounding boxes generated
by the three branches of UA-CMDet will be sent to the NMS
together. Since there is more overlap between each other, some
positive sample objects may be filtered out by NMS.

2) Qualitative evaluation: We use the RoITransformer as
the baseline, and then qualitatively evaluate our UA-CMDet on
the DroneVehicle dataset. In Fig. 1 (c), we have shown that
UA-CMDet can cope with the problem of uncertain vehicle
locations in RGB images under poor lighting conditions. And
Fig. 1 (d) also shows the correct detection results of UA-
CMDet for the “ghost shadows” and confusing rectangle
objects in infrared images. Next, we continue to conduct
qualitative evaluations on more examples. In Fig. 7 (a), the
first row shows the detection results of the baseline in the
RGB modality, and the second row shows the detection results
of UA-CMDet in the RGB modality. In Fig. 7 (b), the first
row shows the detection results of the baseline in the infrared
modality, and the second row shows the detection results
of UA-CMDet in the infrared modality. The area selected
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Fig. 8: Visualization of UA-CMDet detection results on DroneVehicle. The first row shows the detection results in the night
scenarios. The third row shows the detection results in the daytime scenarios. The second row and the fourth row respectively
represent the detection results of the corresponding infrared images.

by the red dashed box in the figure represents the error
detection and missed detection. The solid red box represents
the magnification effect of the area of interest in the image.
But the results of the second and fourth rows show that our
UA-CMDet is not bothered by these problems. UA-CMDet
can accurately detect each object in the two modalities, which
proves that our method can effectively overcome the problems
existing in a single modality and improve the accuracy of
vehicle detection. The main reason for this success is that
our UA-CMDet can effectively learn the information of the
two modalities, and use this information to make up for the
shortcomings of the single-modality.

Fig.8 shows the visualization of our UA-CMDet detection
results on the DroneVehicle dataset. Among them, the first row
and the third row show the visualization of the detection results
on the RGB image. The first row mainly shows the detection
results in the night scenarios, and the third row mainly shows
the detection results in the daytime scenarios. The second and
fourth rows show the visualization of the detection results on
the corresponding infrared image. It can be seen from Fig.8
that our detection results are very encouraging, which also
proves the effectiveness of our method.

VI. CONCLUSION

In this paper, we constructed a large-scale drone-based
RGB-Infrared vehicle detection dataset (DroneVehicle), which
is the first and the largest cross-modal dataset that makes
vehicle detection possible in complex aerial scenes. We sin-
cerely hope that DroneVehicle can contribute to the computer

vision community. Considering the great gap between RGB
and infrared images, we proposed an uncertainty-aware cross-
modality vehicle detection (UA-CMDet) framework, which
joints the uncertainty information of two different modalities
to better extract cross-modal effective information. Among
them, an uncertainty-aware module (UAM) was designed to
quantify the uncertainty weights of RGB modality and infrared
modality. We further proposed an illumination-aware NMS
(IA-NMS) to integrate the modal-specific information in the
inference phase. Extensive experiments have validated the
effectiveness of the proposed framework and its internal mod-
ules. Our proposed framework achieves superior performance
against state-of-the-arts on DroneVehicle.

In this work, we mainly focused on uncertainty quantifi-
cation of RGB modality and infrared modality in a unified
cross-modal fusion framework. Since our DroneVehicle was
collected from the real world, the long tail problem still
exists in the dataset, which will also affect the performance
of the vehicle detector. In the future, we will take the long
tail data distribution into consideration, and explore a more
effective framework to further increase the detection accuracy
and improve the robustness on tail objects. More importantly,
we sincerely hope that more researchers can contribute to this
field and use DroneVehicle to promote the development of
drone-based cross-modality vehicle detection for smart city
traffic management.
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